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  CHARACTERIZATION OF A TYPE II METALLOTHIONEIN 

                                   FROM Helianthus annuus  

                 USING RECOMBINANT DNA TECHNIQUES                                      

                                 SRIDHAR BHOGAVALLI       

                                   

    ABSTRACT 

Metallothioneins (MTs) are ubiquitous low molecular weight, cysteine rich proteins with 

a pronounced affinity for metal ions with d10 configuration such as Cu, Cd and Zn. These 

heavy metals form metal-thiolate clusters with cysteine side chains. In contrast to the 

vertebrate forms, knowledge about the properties of members of the plant metallothionein 

family is still scarce. We describe here a method of isolation and purification of 

metallothionein from the plant Helianthus annuus, performed by affinity chromatography 

using glutathione-agarose column. In this study, alignment of gene sequence of the 

isolated H. annuus metallothionein cDNA with known MTs showed that it belongs to the 

type 2 of the plant MTs. The gene sequence encoding MTs was cloned into a suitable 

vector and the protein was overexpressed in Escherichia coli. The purified 

metallothionein was evaluated by SDS-PAGE and characterized by UV spectra of the 

apo-and metal bound protein. Detection of metal bound protein was also carried out by 

using chemiluminescence assay. The metal binding ability of metallothionein was 

evaluated by 5, 5 dithio (2-nitrobenzoic acid) (DTNB) analysis. The affinity of metal ions 

for metallothionein was in the order of Cu>Cd>Zn.  
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                                                   CHAPTER I   
 
                                           OBJECTIVES 

 

Certain plants take up higher than normal quantities of toxic metals from the soil (1). 

They are called hyperaccumulators and Helianthus annuus (dwarf sunflower) is one such 

a plant. So this study was mainly based on the hypothesis that hyperaccumulation of 

metal ions in H. annuus depends largely on the availability of metal binding proteins, 

membrane transporters and enzymes to uptake, translocate and sequester metals. They are 

induced when the plants are exposed to toxic metals. The long-term goal of this study is 

to examine and understand the molecular mechanisms underlying the hyperaccumulation 

in H. annuus. In this project the study was focused on the isolation and cloning of a 

metallothionein (MT) gene from H. annuus followed by purification and characterization 

of the expressed MT. The specific aims of this project are:  

(i)To isolate and purify MT from the plant H. annuus. 

(ii)To evaluate the purified MT by SDS-PAGE and characterization of the protein by UV 

Spectroscopy. 

iii) To study the metal binding ability of MT by DTNB analysis. 

iv) To detect the MT using chemiluminescence assay.    



 

 2

 

 

                                                                                              

                                                     CHAPTER I I  

                                            BACKGROUND 

 

2.0. Phytoremediation of toxic metals 

Metals, radionuclides and other inorganic contaminants are among the most prevalent 

forms of environmental contaminants and their remediation in soils, sediments and water 

is rather a difficult task (2).  While environmental pollution by these substances has 

become the major environmental problem, the most remediation approaches available are 

costly and complicated.  So the technique of using plants is emerging as an innovative 

approach with great potential for achieving sustainable development (2). This novel 

technique of using terrestrial plants for environmental remediation is called 

phytoremediation (21).  

       This approach has a great potential for application in the remediation of toxic metals 

in the environment since is a low-cost effective and environmentally friendly. A 

phytoremediation system capitalizes on the synergistic relationships among plants, 

microorganisms, water, and soil that have evolved in nature over many years. Various 

biological processes for instance, participate in phytoremediation, which include plant-

microbe interactions and other rhizophere processes, plant uptake, translocation and 

tolerance in plant (compartmentation, degradation) and the chelators involved in storage 

and transport (4).  
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          Phytoremediation includes (i) phytoextraction in which metal accumulating plants 

are used to transport and concentrate metals from the soil into the harvestable roots and 

above-ground shoots,  (ii) rhizofiltration in which roots absorb, precipitate  and  

concentrate   toxic metals from polluted effluents and (iii) phytostabilization in which 

heavy metal-tolerant plants are used to reduce the mobility of heavy metals, thereby 

reducing the risk of further environmental degradation by leaching into the ground water 

or by airborne spread (3).  

 

2.0.1. Toxicity of heavy metals 

Plants possess some characteristic features which enable them to absorb heavy metals 

from soil and water that are essential for their growth and development (3). These metals 

include iron (Fe), manganese (Mn), copper (Cu), molybdenum (Mo) and nickel (Ni). 

Plants also accumulate toxic metals with no biological function, such as silver (Ag), 

cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), lead (Pb), selenium (Se). 

However, excessive accumulation of these metals can be toxic to plants (22). They inhibit 

root and shoot growth by affecting nutrient uptake and homeostasis. Heavy metals also 

interact with membrane components altering its permeability, potential and enzymatic 

activity (23). Based on the chemical and physical properties of heavy metals, three 

different molecular mechanisms of heavy metal toxicity can be distinguished: (i) 

production of reactive oxygen species by autoxidation and Fenton reaction; these 

reactions are typical for transition metals such as Fe or Cu, which upon oxidation give 

rise to free radicals that cause damage to the cell (6); (ii) blocking of essential functional 

groups in biomolecules, which is typical for non-redox reactive heavy metals such as Cd, 
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Hg (6) and (iii) displacement of essential metal ions from pigments or enzymes, 

disrupting the function of these biomolecules (6). Some transition metals initiate 

hydroxyl radical production, which can not be controlled by antioxidants. Exposure of 

plants to non-redox reactive metals also results in lipid peroxidation, H2O2   accumulation 

and an oxidative burst. Cadmium and some other metals cause a transient depletion of 

glutathione (GSH) and inhibition of antioxidative enzymes, especially of glutathione 

reductase. So, cadmium when not removed rapidly may trigger, the disturbance of the 

redox control of the cell, a sequence of reactions leading to growth inhibition, 

lignification and finally cell death (6). 

 

2.0.2. Defense mechanisms against toxic metals  

The sensitivity of plants to heavy metals depends on an interrelated network of 

physiological and molecular mechanisms such as (i) uptake and accumulation of metals 

through binding to extracellular exudates and cell wall constituents; (ii) efflux of heavy 

metals from cytoplasm to extraplasmatic compartments including vacuoles; (iii) 

complexation of heavy metal ions inside the cell by various substances, for example  

organic acids, amino acids, ferritins, phytochelatins, and metallothioneins. (iv) 

biochemical stress defense responses such as the induction of oxidative enzymes (10).            

Other types of metal-triggered defense mechanisms include accumulation of 

pathogenesis-related proteins (PRs), activity of heat shock proteins and formation of 

reactive oxygen species during biotic stress (24). The potential chelators may also be 

involved in the process of detoxification and tolerance of toxic metals; include amino 

acids, organic acids, phytosiderophores and nicotianamine (4). 
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2.1. Binding and sequestration of metal ions  

Plant properties important for metal accumulation are the metal tolerance and 

accumulation, which are determined by metal uptake, root-shoot translocation, 

intracellular sequestration, chemical modification and general stress resistance (4). The 

pathway of transport and translocation of metal ions taken up by plants across the root 

cell membrane is symplast xylem apoplast  shoot apoplast and involves specific 

membrane transporter proteins and organic acid chelators. Once inside the shoot cells, 

these metal ions are translocated to a final destination where they can do the least harm to 

essential cellular processes through a process that involves membrane metal transporters, 

sequestration by chelators or formation of conjugates (4). Of these chelation of metals by 

high-affinity ligands is potentially a very important mechanism of heavy metal 

detoxification and tolerance (26). Detoxification of inorganic pollutants (metals) in plants 

generally involves conjugation followed by active sequestration of toxic metal into the 

vacuole and apoplast.   

         The potential ligands mainly involved in this process of detoxification through 

sequestration include: phytosiderophores facilitate uptake of iron and other metals in 

grass. These are biosynthesized from nicotianamine, which is composed of three 

methionines coupled via nonpeptide bonds (18). Nicotianamine also chelates metals and 

may facilitate their transport (19). Organic acids (e.g. citrate, malate, histidine) not only 

can facilitate uptake of metals into roots but also play a role in transport, sequestration 

and tolerance of metals (21). Metals are also bound by the thiol-rich peptides glutathione 

(GSH) and phytochelatins (PCs), or by the cysteine rich metallothioneins (7). After 

chelation of metal ions by GSH or PCs, an ABC-type transporter actively transports the 
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metal-chelate complex to the vacuole, where it is further complexed by sulfide (4). On 

the other hand, detoxification of organic pollutants typically comprises three phases: 

chemical modification, conjugation and finally sequestration. Conjugation to GSH also 

plays a role in sequestration and tolerance of organic pollutants. The glutathione-S-

conjugates are actively transported to the vacuole or the apoplast by ATP-dependent 

membrane pumps (4). 

 

 

Figure 1. A model showing the mode of binding and sequestration of organic pollutants 

and inorganic pollutants (metal ions) by various chelating agents namely, GSH: 

glutathione, Glu: glucose, MT: metallothioneins, NA: nicotianamine, OA: organic acids, 

PC: phytochelatins.  
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2.2. Protein induction upon heavy metal stress  

Certain types of plants take up higher than normal quantities of toxic metals (e.g. Pb, Cd, 

and Cu) from the soil (1). This is called hyperaccumulation. These plants therefore evoke 

different defense mechanisms to resist the cytotoxic burden of the accumulated metals 

and scavenging mechanism for the efficient uptake of these potentially toxic elements 

from the soil (10)� These metals are first taken up by the root system and are 

subsequently distributed to stems and leaves. At any point along the pathway of 

transporting these metals, they could be converted to a less toxic form through chemical 

conversion or by complexation (3). For instance, one way to reduce toxic properties of 

metals would be to induce certain types of proteins that would affect the metal uptake 

processes or sequester them (26). Some of the strategies developed by the plants to 

accumulate metals may include the synthesis or induction of metal binding proteins. 

Thiol-rich peptides glutathione (GSH), phytochelatins (PCs) and metallothioneins have 

been studied extensively (4). These peptide chelators use thiol groups as ligands, so the 

sulfur biosynthetic pathways are critical for sequestering heavy metals (1). These 

contribute to metal detoxification by buffering cytosolic metal ions.  Another group of 

proteins that are not directly related to metal binding are heat shock proteins (HSPs); they 

were shown to be induced in plants in response to heavy metal stress (26). 

 

2.3. Metal binding proteins 

The proteins described below are believed to be involved in binding toxic metals in 

plants. They are phytochelatins, metallothioneins and metallohistins. 
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2.3.1. Phytochelatins 

Phyotchelatins (PCs) are a group of small cysteine rich metal binding peptides present in 

both plants and fungi (8). They are induced in plants when the plants encounter heavy 

metal stress (27). The structure of phytochelatins consists mainly of three types of amino 

acids namely cysteine (Cys), glycine (Gly) and glutamic acid (Glu). These are arranged 

generally in a conformation (  -Glu-Cys)n-Gly, where n = 2 to 8. They are structurally 

related to glutathione [GSH: ( -Glu-Cys-Gly)]. Phytochelatins are not gene-encoded, but 

enzymatically synthesized from glutathione (7). They are synthesized from glutathione 

by the enzyme phytochelatin synthase, which is strongly activated by metal ions such as 

Cd, Pd and Hg (9). The catalytic mechanism of action and the function of phytochelatin 

synthase in the biosynthesis of phytochelatins is as follows: the C-terminal domain of the 

enzyme acts as a local sensor of heavy metal ions, such as Cd. The cysteine residues bind 

Cd ions, bringing them into closer proximity and transferring them to the activation site 

in the N-terminal, catalytic domain. The activated N-terminal domain catalyzes the 

transfer of the -Glu-Cys moiety of a molecule of GSH onto a second molecule of GSH 

or an existing PCn molecule to form a PCn+1 product (27). Phytochelatins are thought to 

be involved in the accumulation, detoxification and metabolism of heavy metal ions such 

as cadmium, lead, copper and mercury in plant cells (7). They act by binding to metal 

ions and transport the metal ions to vacuoles for storage, where metals are less accessible 

to cells (27). 
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2.3.2. Metallothioneins 

These are a group of low molecular weight cysteine rich intracellular metal binding 

proteins found in plants, animals and eukaryotes (11). In contrast to the vertebrate forms, 

knowledge about the properties of members of the plant metallothionein family is still 

scarce (29). In general the molecular mass of metallothioneins range from 3500-14000 

Daltons. They are gene encoded unlike PCs that are enzymatically synthesized (7).   

          Metallothioneins (MT) are classified based on the arrangement of cysteine 

residues. Class I MTs contain 20 highly conserved cysteine residues and are wide spread 

in vertebrates. Those without this strict arrangement of cysteines are referred to as class II 

MTs and include all those from plants, fungi and non vertebrate animals. The class II 

proteins in the plants can be further classified based on amino acid sequence as type I and 

type II MTs. Type I MTs contain a total of 6 Cys-Xaa-6Cys motifs (Xaa is another amino 

acid) that are distributed equally among two domains that are separated by 40 amino 

acids that include aromatic residues. This is a common feature of plant MTs. Type II 

MTs have either a configuration of 6Cys-6Cys or 6Cys-Xaa-Xaa-6 Cys. The biosynthesis 

of metallothioneins is regulated at the transcriptional level and is induced by several 

factors such as hormones, cytotoxic agents and metals (8). Some of the functions of MTs 

include heavy metal detoxification, homeostasis and providing defense against oxidative 

stress.  

        Apo-metallothioneins have a non-rigid three dimensional structure with two 

different cysteine clusters, one at the N-terminal ( –domain) and the other at the C-

terminal ( -domain). Each cluster is able to bind four and three metal ions, respectively 

(16). These two metal binding domains give them a dumbbell conformation (28). The 
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randomally coiled polypeptide form of MT adopts its tertiary structure or holoprotein 

form upon the chelation of metal ions (32). The chelation of metal ions is mediated 

through the cysteine residues which are highly conserved between species and they are 

arranged to present their sulphur atoms to the metal ions in a way that meets the co-

ordination geometry of the ions without placing a strain on the protein (28). Thus the 

large number of cysteine residues in MT bind a variety of metals by mercaptide bonds to 

form stable metal thiolate clusters with some of the toxic metals like Cd, Zn, Cu and Hg 

(32).  MTs in animals as well as plants are not only involved in homeostasis of essential 

metals and metal detoxification, but are also implicated in a range of physiological 

processes, including scavenging reactive oxidant species, regulating cell growth, 

proliferation and response to stress conditions (33). 

 

                             
 
Figure.2. Structure of type 2 metallothionein showing the two metal binding cysteine 

rich domains, –domain (N-terminal) and -domain (C-terminal). 
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2.3.3. Metallohistins 
 
Two small multimeric histidine-rich proteins, AgNt84 and Ag164, encoded by two 

nodule-specific cDNAs isolated from nodule cDNA libraries of the actinorhizal host 

plant Alnus glutinosa, represent a new class of plant metal binding proteins (15). AgNt84 

and Ag164 are not related to the metal binding metallothioneins or phytochelatins. They 

represent a new class of plant metal binding proteins. They were also found to play a 

biological role in symbiosis and bioremediation (15). 

 

2.4. Proteomics  

Metallothioneins are difficult to identify in plants and it was necessary to employ 

genomic techniques to produce milligram amount of MTs. 

 

2.4.1. Fusion proteins 

Fusion proteins, also known as chimeric proteins, are proteins created through the joining 

of two or more genes which originally coded for separate proteins. Translation of this 

fusion gene results in a single polypeptide with function properties derived from each of 

the original proteins. Recombinant fusion proteins are created artificially by recombinant 

DNA technology for use in biological research or therapeutics. This is achieved by 

removing the stop codon from the DNA sequence of the first protein and then appending 

the DNA sequence of the second protein in frame. This DNA sequence will be then 

expressed by cells as a single protein. This technique is often used for identification and 

purification of proteins, by using a GST protein or a hexa histidine peptide (6x histidine 

tag) which can be isolated by using affinity chromatography.  
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2.4.2. Glutathione S-transferase (GST) gene fusion system  

The glutathione S-transferase gene fusion system is an integrated system for the 

expression, purification and detection of fusion proteins produced in bacterial, yeast, 

mammalian and insect cells. The sequence encoding the GST protein is incorporated into 

an expression vector such as pGEX-4T-1. The sequence encoding the protein of interest 

is then cloned into this vector. Induction of the vector results in expression of a fusion 

protein - the protein of interest fused to the GST protein. The fusion protein can then be 

released from the cells and purified. 

         Purification of the fusion protein is facilitated by the affinity of the GST protein for 

glutathione residues. Glutathione residues are coupled to an agarose resin and the 

expressed protein product is brought into contact with the resin. The fusion protein binds 

to the glutathione-resin complex and all other non-specific proteins are washed off. The 

fusion protein can then be released from the resin using glutathione elution buffer at low 

pH. The fusion protein having the GST can be separated from the protein of interest by 

using a number of different enzymes (thrombin, factor X), which cleave specific sites 

between the GST and the protein of interest. 
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                                                                    CHAPTER I I I  

                                          EXPERIMENTAL METHODS 

 

3.1. Isolation and cloning of the Metallothionein Gene 

The following experimental methods described below were based on the methodology 

described in the literature (14). Metallothionein (MT) used in these experiments was the 

translated product of specific mRNA. The expression of MT genes can be detected 

primarily through the examination of steady state levels of MT RNA. To overcome 

certain drawbacks associated with the direct isolation of proteins from plant material such 

as plant growth, low yields and proteolytic degradation, isolaton of the protein was done 

by cloning the plant MT gene into suitable vectors for recombinant protein expression in 

E.coli. This provided highly pure MT in sufficient yield for the present investigations. 

         MT cDNA used in this project was obtained from the plant Helianthus annuus. 

Alignment of gene sequence of the isolated Helianthus annuus MT cDNA (clone 4) with 

known MTs showed that it belongs to the type 2 of the plant MTs (Fig. 3). In this 

experiment the expression and purification of Glutathione-S-Transferase (GST) fusion 

proteins was performed following the protocol shown in Figure 3. The gene sequence 

encoding the MT cDNA of H. annuus was cloned in frame with the Glutathione-S-

transferase (GST) gene of the expression vector pGEX-4T-1.  The recombinant plasmid  
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was then used to produce a fusion protein, where in N -terminus is GST and C-terminus 

is the plant MT (13). Then E.coli was transformed with the recombinant plasmid DNA 

containing the MT cDNA to produce pGST-MT cells as described.   

 

                      

Figure 4. A typical protocol for expression and purification of GST fusion proteins. 

 

3.2. Growth of E.coli cells and expression of the recombinant fusion protein (GST-

MT)  

Transformed E.coli cells were grown in Luria-Bertani (LB) broth containing 100µg/mL 

ampicillin at 37 °C overnight. In the following day the overnight culture was diluted to 

100 mL using fresh LB broth containing ampicillin. Incubation continued under similar 
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conditions for one hour. Isopropyl -D-thiogalactoside (IPTG) was added to a final 

concentration of 0.1 mM to induce protein synthesis.  Following incubation for 5-6 h at 

37 °C, cells were pelleted by centrifugation at 5000 rpm for 10 min. 

 

3.3. Pur ification of the expressed fusion protein 

The pelleted cells were resuspended in 500 -1000 µL of Bacterial Protein Extraction 

reagent (B-PER) to lyse the cells. Cell lysis was further aided by the addition of 10 µL of 

lysozyme solution, 6 µL of 1M MgCl2 followed by the addition of 10 µL of endonuclease 

enzyme. The suspension was then transferred into a micro centrifuge tube and was gently 

mixed at room temperature to facilitate solubilization of proteins.  

         The suspension was centrifuged at 14000 rpm for 10 min and the supernatant was 

collected into another centrifuge tube. The supernatant containing the recombinant fusion 

protein (GST-MT) was purified by affinity chromatography using a Glutathione-Agarose 

column (Pierce) that was pre-equilibrated with 1X phosphate buffered saline (PBS). The 

supernatant was passed through the column 4-5 times to make sure all the fusion protein 

(GST-MT) was bound to the column. This was followed by 3-4 column volumes of PBS 

buffer until all other non-specifically bound proteins were eluted off the column. This 

was further confirmed by checking with coomassie blue based protein assay reagent 

whose color turns from pink to purple in the presence of protein. The fusion protein 

(GST-MT) bound to the column was eluted with 50 mM Tris-Glutathione elution buffer. 

Then the first ten fractions, each of 400-500 µL were collected in centrifuge tubes and 

checked for the presence of fusion protein using coomassie blue based protein assay 

reagent. The fractions containing the fusion protein were pooled and the purity of these 
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pooled fractions was further analyzed by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE). From this analysis, fractions containing the fusion protein 

were pooled and dialyzed overnight at 4°C in 2 L of Tris buffer saline (TBS) to remove 

glutathione.          

                                             

3.4. Thrombin cleavage of the GST-MT 

Thrombin is an endolytic serine protease that selectively cleaves any fusion protein 

containing a thrombin cleavage site. Cleavage of fusion protein can be done while it is 

bound to the column or in solution after elution from the column. On-column cleavage is 

generally recommended since many potential contaminants can be washed out and the 

target protein eluted with a higher level of purity. Off-column cleavage is suggested if 

optimization of cleavage conditions is necessary. In this experiment cleavage of the 

fusion protein was carried out off the column to optimize the cleavage conditions. The 

optimal pH range for cleavage of fusion protein was between 8 and 9.  The cleavage of   

1 mg of fusion protein in a final volume of 1 mL was carried out using thrombin agarose 

resin as described. The dialyzed samples containing the fusion protein (GST-MT) were 

subjected to digestion with thrombin to cleave the GST-MT protein into GST and MT. 

Before digestion, 100 µL of thrombin agarose resin was thoroughly resuspended into 

homogenous slurry using 500 µL of thrombin resuspending buffer. Then it was 

centrifuged at 2500 rpm and the supernatant was removed. This step was repeated 2-3 

times to thoroughly wash the resin. After these washing steps, 100 µL of the 10X 

thrombin resuspension buffer was added to the centrifuged resin to resuspend it. The 

fusion protein was then added to the resuspension containing the thrombin agarose resin. 
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This resuspension was incubated overnight at room temperature with gentle agitation to 

keep the resin resuspended. In the following day the suspension was gently centrifuged 

for 5 min at 2500 rpm to remove the resin. The supernatant collected was then passed 

through glutathione - agarose column where GST binds to the column and the flow 

through collected contains only the metallothionein (MT). Once again the column was 

washed with PBS buffer to make sure the entire MT was eluted. Cleavage of fusion 

protein was also carried out by directly using thrombin solution. One unit of thrombin 

can cleave more than 90 % of the 0.1 mg of fusion protein.  

 

3.5. Protein concentration determination using Bio-Rad protein assay 

In this assay, concentrations of the purified GST-MT and MT were determined using 

Bio-Rad protein assay. The Bio-Rad Protein Assay is a dye binding assay in which a 

differential color change of a dye occurs in response to various concentrations of protein. 

The absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 dye 

shifts form 465 nm to 595 nm when binding to protein occurs. This dye binds to  

primarily basic and aromatic amino acid residues, especially arginine. Thus by applying 

Beer’s law, protein quantitation can be calculated by using an appropriate ratio of dye 

volume to sample concentration.  

            A standard procedure of determining protein concentration using the Bio-Rad 

assay kit was as follows: dye reagent of 50 mL was prepared by diluting 10 mL of dye 

reagent with 40 mL of deionized water. Several dilutions of a protein standard, bovine 

serum albumin (BSA) were prepared. The concentrations of these dilutions were in the 

range 0.2 to 0.9 mg/mL. Then 100 µL each standard and sample solution were pipetted 
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into a clean dry test tube. Protein solutions were normally assayed in duplicate.  Five mL 

of diluted dye reagent was added to the protein solutions and mixed well. These mixtures 

were incubated at room temperature for 5-60 min and the absorbance was measured at 

595 nm. A calibration curve was constructed by plotting the absorbance at 595 nm 

against protein concentration of the standards and protein concentration of the sample 

was determined. 

                                          

3.6. Analysis of pur ified protein by SDS-PAGE 

The purpose of SDS-PAGE is to separate proteins according to their size. The other 

function includes estimation of sample purity. The main principle involved in this method 

is that sodium dodecyl sulphate (SDS) is an anionic detergent, which when dissolved 

confers a net negative charge on the protein over a wide pH range. A polypeptide chain 

binds SDS in proportion to its relative molecular mass. The negative charges on SDS 

perturb the conformation of proteins thus allowing the protein to interact with detergent, 

with the generation of a net negative charge. Thus all proteins are attracted towards a 

positively charged anode in an electric field. The polyacrylamide gel used is a cross-

linked matrix that functions as a sort of sieve to hold the molecules as they are 

transported by the electric current. In this experiment an SDS/PAGE gel was run to 

analyze whether the pooled fractions contain the fusion protein and also to see if the 

eluted sample after cleavage contains the metallothionein. Before this process, 

polyacrylamide gel needed for the experiment was made as described below. 

 

 



 

 20

3.6.1. Mater ials 

The materials needed for the preparation of gel include acryl/bis acryl solution (50 % 

acrylamide and 0.235 % bisacrylamide) (Bio-Rad), 1 M Tris (pH 8.6), 1 M Tris (pH 6.8), 

10 % SDS, freshly prepared 10 % ammonium persulfate, distilled H2O, TEMED (N, N, 

N`, N`-tetramethylethylenediamine) and isobutanol. A stock solution of Tris-glycine 

running buffer (4X) was prepared by mixing Tris (0.025 M), glycine (0.192 M) and SDS 

(0.1 %) and pH was adjusted to 8.3. Working solution (1X) of 800 mL was prepared by 

diluting the stock solution. Sample buffer/SDS reducing buffer was prepared by mixing 

0.0625 M Tris-HCl (pH 6.8), 2 % SDS, 5 % -mercaptoethanol and 0.001 % pyronin Y.    

 

3.6.2. Gel preparation 

Electrophoresis gels required for SDS/PAGE were made up of separating gel and 

stacking gel. The separating gel was first made on which then a stacking gel preparation 

was poured and polymerized.                

    

3.6.3. Separating gel  

After assembling the gel plates, separating part of the gel was prepared by mixing 11.2 

mL of 1 M Tris (pH 8.6), 9.6 mL of polyacrylamide (50 % acrylamide and 0.235 % 

bisacrylamide), 0.3 mL 10 % SDS and 8.7 mL of milliQ water in a 50 mL beaker. Before 

pouring the above mixture in between the gel plates, 0.35 mL of 10 % ammonium 

persulfate and 35 µl of TEMED were added to the beaker. This solution was mixed 

uniformly and quickly poured into the gel  assembly up to three quarters and was overlaid 

with isobutanol to get rid off any air bubbles present on the surface of the gel. Then it 

was allowed to polymerize for at least 30 min. 
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3.6.4. Stacking gel 

After polymerization of separating gel, overlaid isobutanol layer was poured off and then 

washed with milliQ water to completely remove isobutanol. Stacking part of the gel was 

prepared by thoroughly mixing 0.9 mL of 1 M Tris (pH 6.8), 0.75 mL polyacrylamide 

(50 % acrylamide and 1.33 % bisacrylamide), 80 µl of 10 % SDS and 5.6 mL of milliQ 

water. To the above mixture, 75 µl of 10 % ammonium persulfate and 7.5 µl of TEMED 

were added, thoroughly mixed and poured above the separating part of the gel. Then the 

comb with 10 wells was placed properly without introducing air bubbles and the gel was 

allowed to polymerize for at least 45 min. 

 

3.6.5. Gel electrophoresis  

Once the gel was polymerized, comb was removed from gel without disturbing the wells                                         

and the gel with the 10 well slots was placed into the gel chamber. Tris-glycine running 

buffer was prepared from 4X stock buffer by dilution. The gel chamber was filled with 

running buffer. The purified fusion protein fractions and the metallothionein samples 

were prepared for gel electrophoresis by mixing with a sample buffer /SDS reducing 

buffer. Fifteen µL of each protein sample was transferred to a centrifuge tube and 5 µL of 

the 4X sample buffer was added to it and mixed well. These samples were then heated at 

95 °C for 5 min. The heated samples of 20 µL each were then loaded in the order after 

loading protein marker in the first slot. After the samples were loaded, covering lid was 

placed properly on the gel chamber by connecting corresponding electrodes (black to 

black and red to red). Other ends of electrodes were connected to a voltage supply unit. 

An initial voltage of 50 V was applied until all samples were stacked in the stacking part 



 

 22

of the gel and after this the voltage was increased to as high as 150 V to 200 V. The gel 

was allowed to run for sufficient time until all the samples and the marker reach the 

bottom. Then the electrophoresis apparatus was disconnected from the voltage source. 

The gel was taken out carefully and the stacking part of the gel was removed. Then the 

gel was placed carefully in a tray and to have better staining of the protein bands, the 

protein bands on the gel were initially fixed with 50 % methanol and 10 % acetic acid for 

30 min. The gel was washed with water for an hour and then it was subjected to different 

staining methods. 

 

3.7. Staining Methods 

 

3.7.1. Coomassie blue staining 

After the protein bands on the gel were fixed, the gel was then stained with Coomassie 

blue dye for an hour. This was followed by destaining the gel with 28 % methanol and   9 

% acetic acid overnight.  

 

3.7.2. Silver  staining  

Silver staining method is much more sensitive than the coomassie blue staining 

technique, which is generally weak for small proteins with low abundance of 

hydrophobic and aromatic residues such as MTs. Consequently, this is the method of 

choice when low molecular weight proteins like metallothioneins and very low amounts 

of protein have to be detected on electrophoresis gels. 

 

 



 

 23

3.8. Tr icine-SDS-PAGE 

In a regular SDS/PAGE system, proteins with in the molecular mass range of 20-100 kDa 

can be separated using Tris-Glycine as running buffer.  But using the same system to 

separate proteins like MT whose molecular mass is less than 20 kDa can be partly 

achieved or not at all. So a new system namely Tricine-SDS-PAGE was tried to analyze 

proteins with molecular mass less than 20 kDa. The principle involved in this is as same 

as the previously discussed SDS/PAGE except that it differs in the composition of 

separating gel and the running buffer.  

 

3.8.1. Gel Preparation 

The materials needed for preparation of gel are acryl/Bis acryl solution (50 % acrylamide 

and 0.235 % bisacrylamide),  2 M Tris (pH 8.45), 0.1 M Tricine,  10 % SDS, milliQ 

water, 10 % ammonium persulfate,TEMED. Cathode buffer (1X) was prepared by 

mixing 0.1 M Tris, 0.1 M Tricine and 0.1 % SDS and the pH was adjusted to 8.25. Anode 

buffer was prepared by making 0.2 M Tris and the pH was adjusted to 8.9.   

          Electrophoresis gels required for Tricine-SDS-PAGE were made up of separating 

gel and stacking gel. Separating gel was prepared by mixing 9.6 mL of polyacrylamide 

(50 % acrylamide and 0.235 % bis acrylamide), 15 mL of 2 M Tris HCl (pH 8.45), 0.3 

mL of 10 % SDS, 5.1 mL of MilliQ water, 0.3 mL of 10 % ammonium persulfate and 35 

L of TEMED. Ammonium persulfate and TEMED were then added at the end and the 

solution was mixed properly. This was applied in between the gel plates and overlaid 

with isobutanol. After the separating gel was polymerized, stacking part of the gel 

prepared as discussed in SDS-PAGE was applied above the separating part of the gel and 

was allowed to polymerize for at least 45 min. 
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3.8.2. Gel Electrophoresis 

When the gel is polymerized, comb was carefully removed from the gel without 

disturbing the wells and the gel was assembled in the electrophoresis apparatus as 

discussed in the SDS-PAGE. Cathode buffer was placed in cathode chamber and anode 

buffer was put in the anode chamber. Samples were loaded into the gel slots and the gel 

chamber was covered with lid. Initially 50 V of voltage applied until all the samples were                                                                  

stacked and after it was increased to 150-200 V. The gel was allowed to run for sufficient 

time until all the samples and the marker reach the bottom .Then the electrophoresis 

apparatus was disconnected from the voltage source. The gel was taken out carefully and 

the stacking part of the gel was removed. Then the gel was placed carefully in a tray and 

to have better staining of the protein bands, the protein bands on the gel were initially 

fixed with 50 % methanol and 10 % acetic acid for 30 min. The gel was washed with 

water for an hour and then it was subjected to different staining methods such as 

coomassie blue staining and silver staining methods as previously discussed. 

 

3.9. Spectroscopic Character ization of the protein  

Metallothioneins are the proteins with low abundance of aromatic amino acids and 

histidine (17). Because of this unusual amino acid composition, it is not detected by 

standard spectrophotometric assays (30). The binding of group-2B metal ions to the 

apoprotein intensifies the far UV absorption and introduces characteristic absorption 

shoulders whose positions differ as a function of the metal (31). These metal ions are 

bound to the proteins through mercaptide bonds forming thiolate complexes. The position 

and intensity of these so called ligand-to-metal charge transfer bands is indicative for the 
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sort of metal ions bound (17). Therefore, UV-Visible spectroscopy is the method of 

choice for the initial characterization of a new plant MT. As described above, in this 

experiment metallothionein isolated from the plant H. annuus was characterized by 

studying the UV spectra of the apoprotein and of the metal-protein complex at 260nm, 

following the methodology described in the literature (10). 

 

3.10. Reaction of the protein with Ellman’s reagent 

DTNB [5,5 dithio (2-nitrobenzoic acid)] is commonly called Ellman’s reagent and                           

is a symmetrical aryl disulfide which readily undergoes the thiol-disulfide interchange 

reaction in the presence of thiol rich peptides like the metallothionein (35).  

 

 

Figure 5. Generalized reaction of DTNB with thiol compounds.  

 

          DTNB is one of the favorite reagents for the spectrophotometric measurement of 

protein sulfhydryls or the thiol group rich peptides like the metallothionein. The main 

principle involved in this process is that the colorless DTNB on reaction with the thiol 

group is converted into a yellow colored compound namely 2-nitro-5-thiobenzoate (TNB) 



 

 26

which has maximum absorbance at 412 nm. The competitive reaction with DTNB is used 

to assess the accessibility of DTNB to protein sulfhydryls, which relates to protein 

structure and metal binding affinity. In this experiment the competitive reaction of apo-

metallothionein (apo-MT) and different metal bound MTs with DTNB was studied by 

measuring the change in absorbance at 412 nm during various time intervals. DTNB is 

also used for the determination of total thiol (-SH) content in the protein samples such as 

metallothioneins. The free thiol content in a peptide was calculated using the formula, 

 

                (Total volume / Protein sample volume) × Absorbance at 412 nm 

                ______________________________________________________ 

                                                        13600                              

  

13600 = Extinction coefficient of DTNB 

 

3.11. Detection of metalloproteins using chemiluminescence assay 

Metalloproteins such as metallothioneins bind transition metals and identification of the 

metal cofactor in a protein can greatly facilitate its functional assignment. Existing 

methods for the detection of metalloproteins such as atomic absorption spectrometry 

consume large amounts of protein, require expensive equipment and are not much 

sensitive (34). The method described here is a chemiluminescence assay that is sensitive, 

consumes minimal amounts of protein, is inexpensive and is fast and adaptable to a large 

number of samples. This method was mainly used for the detection of proteins such as 

metallothioneins that contain the most common transition metals such as Cu, Ni, and Zn 

(34).  
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          Chemiluminescence assay was used for the detection of metal bound 

metallothionein based on the fact that luminol, in the presence of certain catalysts will 

produce chemiluminescence when mixed with a base and an oxidant (Fig. 5). Transition 

metals such as Fe, Cu, Mn, Co, Ni and Zn mainly act as catalysts for this reaction. In this 

experiment, protein samples to be analyzed by chemiluminescence assay were prepared 

by mixing 50 L of apo-MT with different concentrations of metals such as Cu, Cd and 

Zn. To these solutions, 50 L of luminol solution (11 mM luminol + 500 mM Na2CO3 + 

230 mM H2O2) was added and the final volume was made 1000 L using phosphate 

buffer (pH: 7.2). The change in intensity of light emitted was measured for the apo-MT 

and metal bound MTs with a luminometer (Turner Biosystems). The intensity of light 

emitted was measured as arbitrary emission units at different time intervals. A graph was 

constructed by plotting the arbitrary emission units against the time in minutes. 

 

 

    

 

                                         

       

 

 

 

 

Figure 6. Light producing luminol reaction. Certain transition metals can act as the 

catalyst for this reaction. 
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                                                 CHAPTER IV 

                                     RESULTS AND DISCUSSION 

 

4.0.1. Analysis of fusion protein fractions by SDS- PAGE 

As discussed in the section 3.3, the supernatant collected after cell lysis and 

centrifugation usually with a volume of 2 mL containing the fusion protein glutathione-s-

transferase-metallothionein (GST-MT) was applied to a glutathione-agarose column. The 

supernatant was passed through the column repeatedly to make sure all the fusion protein 

was bound to the column. The fusion protein bound to the column was eluted with 50 

mM Tris-Glutathione elution buffer and ten fractions, each of volume 500 µL were 

collected in centrifuge tubes. Out of the ten fractions collected, fractions from 2 to 8 were 

subjected to SDS-PAGE analysis using Tris-glycine as the running buffer to check the 

presence of fusion protein and purity of the samples. The gel was stained with Coomassie 

Blue, destained overnight and a picture of the gel was taken to analyze the protein bands. 

           Lanes 3 and 4 contain the fractions 3 and 4 show two distinct bands (figure 6). Out 

of these bands, one of them appears in the mass range of about 35 kDa, which is likely 

the fusion protein (GST-MT) band. Another distinct band appears with in a molecular 

mass range of about 26 kDa and is the GST protein. The fractions other than 3 and 4 did 

not show any GST-MT band, which shows that these fractions do not have any fusion 

protein. So from this analysis fractions 3 and 4 containing the fusion protein were pooled 
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and they were subjected to overnight cleavage with 10 µL of thrombin at room 

temperature. In the following day these fractions containing the cleaved GST-MT were 

passed through glutathione-agarose column so that only GST would bind to the column 

and the fractions containing MT would not be retained. The eluant from this column 

treatment was further analyzed by Tricine SDS-PAGE gel. 

                                                              

                                                                  

       

 

 

 
 

               

    

 

 

 

 

 

 

 

 

 

 

Figure 7. SDS-PAGE analysis of fusion protein (GST-MT) using Tris-glycine running 

buffer; lane 1: Molecular Marker, lanes 2-8: fusion protein fractions.  
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4.0.2. Analysis of protein samples by Tr icine SDS/PAGE: 

To ascertain cleavage of the GST-MT and to check the purity of the sample, the eluted 

samples were analyzed on the Tricine SDS-PAGE gel. Tricine [N-tris (hydroxymethyl) 

methylglycine] was used instead of Tris-glycine buffer as the cathode buffer, because 

Tricine SDS-PAGE is useful for analyzing proteins with molecular mass below 20 kDa, 

such as metallothioneins and other small peptides. The electrophoresis procedure for 

using Tricine as running buffer was described in the sections 3.8.1 and 3.8.2. The gel was 

initially stained with Coomassie Blue, destained overnight and a picture of the gel was 

taken to analyze the protein bands. 

         Lane 2 shows two distinct bands (Fig.7). Out of these bands, one appears in a mass 

range of about 35 kDa and is judged to be the GST-MT prior to cleavage by thrombin. 

Another protein band had mass range of about 26 kDa, therefore it is likely to be the 

GST. Lane 3 is the supernatant fraction following cleavage but before passing through 

the glutathione-agarose column. But this lane showed no visible protein bands, which 

may be due to not loading enough sample into the well. Lanes 4 and 5 were from the 

eluted MT fractions. Lane 4 shows no visible protein band, which could be due to the 

incomplete elution of protein from the column. A faint band with a mass range of 14 kDa  

is seen in the lane 5, which could be due to the presence of MT. It may be that the light 

staining is attributed to the absence of aminoacids which react with the dye. There are 

reports which indicate that MT is not properly stained by Coomassie Blue (17).  So to test 

whether the faint band observed was due to the poor reaction of the Coomassie Blue with 

MT, the same gel was restained with sliver stain. 
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Figure 8.Coomassie Blue stained Tricine SDS/PAGE analysis of MT samples. Lanes 1 

and 6 are protein markers, lane2: GST-MT before cleavage, lane 3: GST-MT after 

cleavage but before column treatment, lane 4, 5: eluted MT fractions. 

 

  
          Silver staining of the gel resulted in appearance of a distinct MT band at 14 kDa 

(Fig.8, lane 5), which was barely visible in the Coomassie Blue stained gel (Fig.7, lane 

5). This indicated that the metallothionein migrated in SDS-PAGE at an apparent 

molecular mass of 14 kDa, while the mass of MT is around 7 KDa. Lane 3 is the 

supernatant fraction following cleavage but before passing through the glutathione-
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agarose column and three visible protein bands are seen (Fig. 8). Out of these bands, one 

light band corresponded to a mass range of about 35 kDa, indicating that it contains GST-

MT that was not completely cleaved by thrombin.  Another band had a mass range of 26 

kDa, which is the cleaved GST from GST-MT. A distinct band corresponding to 14 kDa 

band was seen and that is the cleaved MT.  But the same lane did not show any visible 

protein bands in the Coomassie Blue stained gel (Fig.7) 

      The results in the figures 7 and 8 showed that the metallothioneins are not easily 

detectable by Coomassie dye. This could be mostly due to the low level of aromatic 

aminoacids in the MT, which react with the dye. Coomassie Blue staining was found to 

be weak for small proteins with low abundance of hydrophobic and aromatic residues 

such as MTs (17). Alternatively the reasons for not seeing the MT band in lane 4 (figure 

7 and 8) could be due to the fact that the protein was not completely eluted from the 

column. Furthermore, the MT band appeared to be 14 kDa in lane 5(figure 7 and 8). This 

means that the MT migrated in SDS-PAGE at an apparent molecular mass of 14 kDa, 

while the calculated mass of MT is around 7 KDa. The nucleotide sequence of isolated 

MT cDNA of H.annuus showed that it has a molecular mass of 7 kDa. So, these 

discrepancies or unpredicted migrations have been described frequently for proteins 

containing disulfide bridges such as MTs, which preclude sufficient binding of the SDS 

owing to their compact structure, leading to a lower negative charge and consequently to 

a higher apparent molecular mass in the experiment (29). Increased apparent masses have 

been described frequently for metallothioneins and were thought to be associated with the 

oxidative formation of multimeric species (17). The metallothionein (MT) could have 

been dimerized and therefore, appeared at 14 kDa, instead of at 7 kDa.                                                             
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Figure 9. Silver stained Tricine SDS/PAGE analysis of metallothionein samples. left, 

Lane 1: molecular marker, Lane 2: GST-MT before cleavage, Lane 3: fusion protein 

fraction following cleavage but before the column treatment, Lane 4 and 5: MT fractions. 
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4.0.3. Spectroscopic Character ization of the protein 

The results in the figures 7 and 8 showed that the MTs were not easily detectable by 

Coomassie Blue which mainly reacts with proteins abundant in arginine, aromatic amino 

acids and histidine (17). This could be due to the low level of aromatic aminoacids and 

histidine in the metallothioneins (31). Because of this unusual amino acid composition 

with low levels of aromatic aminoacids which show an appreciable absorption above 250 

nm, metallothioneins are not readily detected by standard spectrophotometric assays 

which measure absorbance in long UV and Visible range. However, the binding of 

group-2B metal ions such as Cu, Cd and Zn to the apoprotein intensifies the far UV 

absorption and introduces characteristic absorption shoulders above 250 nm whose 

positions differ as a function of the metal (31). These metal ions are bound to the proteins 

through mercaptide bonds forming thiolate complexes (32). Therefore, UV-Visible 

spectroscopy is the method of choice for the initial characterization of a new plant MT 

and metal ion binding to MTs can be observed by UV spectroscopy due to the 

characteristic absorption bands originating from the metal-thiolate cluster formation. 

          In this study metallothionein isolated from H.annuus was investigated by 

measuring the UV spectra of the apo- and of the Cu2+- protein complex at 260 nm, 

following methodology described in the literature (16). Absorbance at 260 nm of apo-MT 

sample was very low and the absorbance increased as Cu2+ concentration increased from 

0 to 50 µM to the apo-MT samples (Fig.9). Thus the change in absorbance was 

proportional to the increase in Cu2+ content within the indicate range and these results 

were similar to the results reported in the literature (16). This change in absorbance could 

be mostly due to the formation of metal-thiolate clusters. In this study the concentration 
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of metal was confined to the indicated range (0 to 50 µM). However it could be that with 

increase in concentration of Cu2+ beyond the indicated range, the absorbance is expected 

to increase proportionally until saturation with Cu2+ is reached. Similar experiments were 

conducted with copper itself and it showed little absorbance at this wavelength. Similar 

studies were also done using other metals namely Cd and Zn ions. But the change in 

absorbance was not proportional to the metal concentration and did not agree with the 

above results. This could be due to the interaction of the metals with some nonspecific 

sites on MT.  

 

 

                 

Figure 10.  Absorbance change obtained as a function of the Cu2+ concentration.  
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4.0.4. Reaction of MT with DTNB reagent  

Metal binding ability of metallothionein was also evaluated by use of the Ellman's 

reagent (5, 5’ -dithiobis (2-nitrobenzoic acid) (DTNB). DTNB is a symmetrical aryl 

disulfide which readily undergoes the thiol-disulfide interchange reaction in the presence 

of thiol peptides like metallothionein (35). It absorbs little visible radiation but the 

absorbance increases when it forms 2-nitro-5-thiobenzoate (TNB) which has a relatively 

intense absorbance at 412 nm (35). DTNB has been used for the determination of thiol 

content in the protein (37). When a small amount of the sample containing MT and 

DTNB were mixed together, the solution turned yellow, indicating the presence of thiol 

groups on the MT. Therefore the reaction of MTs with DTNB make thiol group 

unavailable for binding metal ions.  

           In this experiment the metal binding ability of MT towards metals Cu, Cd and Zn 

was studied by reaction with DTNB following the procedure described (36). This study 

showed that the competitive reaction of apo-MT and metal bound MTs with DTNB 

therefore affect the change in absorbance at 412 nm differently. The results relating the 

absorbance changes at 412 nm with time are shown (Fig.10). It showed that the affinity 

of metal ions namely Cu, Cd and Zn for MT was in the order of Cu> Cd >Zn. Study was  

also conducted relating different concentrations of Cu, Cd to the change in thiol content 

of MT.  Thiol content of MT was calculated following the method described in method 

4.0.  A decrease in titratable thiol content and absorbance was observed with the increase 

in metal content. This could be due to the competitive reaction of metal ions with DTNB 

for thiol groups in the MT, which resulted in decrease in titratable thiol content available 

for DTNB to react with and caused the decrease in absorbance. 



 

 37

 

 

 

 

                                                                                                                                          

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150

Tim e (m in)

A
b

s
o

rb
a
n

c
e
 @

 4
1
2
n

m

Control MT

MT + CuSO4

MT + CdCl2

MT + ZnCl2

 

Figure 11. Change of absorbance of MT at 412 nm in the presence of Cu, Cd and Zn 

ions. 
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4.0.5. Chemiluminescence Assay  

Proteins such as metallothioneins and peptides such as phytochelatins bind transition 

metals and the identification of a metal bound to them would help to understand the role 

and functional assignment of the protein (34). However the existing methods for the 

detection of metalloproteins consume large amounts of protein and are not sensitive. So 

another method was tested, namely chemiluminescence assay. It is less expensive and 

potentially more sensitive. This method was used for the detection of metalloproteins 

such as metallothioneins that contain the most common transition metals such as Cu, Ni, 

and Zn (34). The method is based on the principle that luminol, in the presence of certain 

catalysts will produce chemiluminescence when mixed with a base and an oxidant. 

Transition metals such as Fe, Cu, Mn, Co, Ni and Zn can act as catalysts for this reaction. 

So, in this experiment metal-bound MT was detected by using a chemiluminescence 

assay.  

         In the experiment the MT was first equilibrated with Cu, Cd or Zn at a 

concentration of 10 µM (see method 4.1). These metal-bound MT samples were then 

mixed with 50 L of a luminol solution (11 mM luminol + 500 mM Na2CO3 + 230 mM 

H2O2).  The intensity of light emitted was measured before and after the addition of 

lumniol by luminometry. A change in intensity of light emitted by Cu-MT, Zn-MT and 

Cd-MT was compared to the apo-MT. Theoretically, the metal-MT complex should show 

an increase of luminescence. The results (Fig. 11) show an increase in luminescence of 

Cu-MT and Zn-MT as compared to apo-MT. However a similar change was not obtained 

with Cd-MT and the readings were even lower than that of apo-MT. The reason could be 

that the Cd may not be acting as a catalyst for the lumniol reaction.  
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           Figure 12. Reactivity of apo- and metal bound MTs with luminol solution.  
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                                                       CHAPTER V 

                                                   FUTURE STUDIES 

 

Much remains to be done and the following are to be examined in future studies: 

1. Procedures for preparing metallothioneins in pureform have to be improved and the 

conditions in terms of MT yield, conditions for purifying MT on the glutathione-agarose   

column need to be optimized. 

2. Metal binding properties such as the metal specificity and capacity of MT need to be 

determined and examined. 

3. The methods described in this study for the detection of metal bound MTs need to be 

repeated and expanded with other metals. 

4. The purified MT need to be further characterized with respect to its affinity, capacity 

and selectivity in complexation with Cu, Cd, Ni and Zn to examine if there is expression 

of metal specific metallothionein. 

5. Determine the molecular weight and amino acid sequence of the MT by mass 

spectrometry. 
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