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EXPERIMENTAL STUDY OF MULTIRATE MARGIN IN

SOFTWARE DEFINED MULTIRATE RADIO

TIANNING SHEN

ABSTRACT

Due to the recent development of spectrally-efficient modulation schemes, IEEE

802.11 Wifi and IEEE 802.16 WiMax radios support wireless communication at mul-

tiple bit rates. While high-rate transmission allows delivering more information in

less time, the corresponding performance improvement is less than expected due to

the PHY- and MAC-layer overheads, imposed by the 802.11/16 standards. This is

particularly true in wireless ad hoc networks as there exist rate-distance and rate-hop

count tradeoffs.

The concept of multi-rate margin is proposed in this thesis, which exploits the

difference in communication characteristics at different rates and serves as the fun-

damental ingredient for an opportunistic transmission protocol, targeted to meliorate

the ad hoc mobile wireless network performance. In this thesis, the multi-rate margin

is analyzed with theoretical derivation, perceived with simulation result using MAT-

LAB and observed through real world testing using USRP and GNU Radio, which is

a recent implementation of Software Defined Radio.
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CHAPTER I

INTRODUCTION

1.1 Multi-rate Radio and Adaptive Coding and

Modulation (ACM)

The concept of multi-rate radio appears to be a new terminology in the area of

wireless communication at the first glance, but in fact the phenomenon of multi-rate

radio has already been there when different types of modulation methods are used to

transmit a certain amount of data that are supposed to occupy the same spectrum

bandwidth. These multiple modulation methods result in multiple bit rates and

necessitate the technology of ACM.

Nowadays, ACM is widely used in wireless communication networks, e.g. ACM

is specified as a primary technology in physical layer for IEEE 802.11 Standard (Wi-

Fi)[1],[2], IEEE 802.16 Standard (WiMax)[3] and even in the most advanced open

standards of digital television Digital Video Broadcasting C Standard 2 (DVB-S2).

ACM is also selected as one of the major link adaptation strategies.

It is well known that the mobile radio channel fundamentally limits the perfor-

mance of wireless communication systems. The propagation path between transmitter

1
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and receiver can easily change from line of sight to the one that is full of obstacles such

as buildings, mountains, etc. Establishing models for wireless channels has historically

been one of the most difficult parts in wireless system design because unlike wired

communications the parameters of wireless communications always change extremely

randomly. One of the important channel models is fading channel, where signal

strength changes rapidly over a short period of time or distance[4, 5]. It is imaginable

that when wireless communication systems are affected by changing weather condi-

tions, the systems without ACM will not be able to deal with such signal degradation

which directly endangers the performance of the communication systems, while the

systems installed with ACM will be able to adjust the modulation schemes to protect

the communication from being ruined by the weather-related fading, which might be

induced by the storm or heavy rain, etc.

One application example of ACM is in DVB-S2, which is shown in Figure 1. In

this figure, 8PSK Rate 9/10 is the most efficient coding and modulation combination

when the channel condition is good, while QPSK Rate 1/2 is the most robust coding

the modulation combination for fading channel or rainy conditions.

Figure 1: Sample satellite footprint with downlink EIRP values[40]
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1.2 Multi-rate Margin

Although higher data rates like 48Mbps and 54Mbps can be used in IEEE

802.11a radios, the network performance does not improve linearly due to rate-

independent PHY- and MAC-layer overheads as well as undesirable behavior known

as performance anomaly in wireless LANs, which will be discussed in detail in Chap-

ter 2. To address these issues in wireless LANs, opportunistic transmission protocols

[7, 8] have been proposed to allow a node to transmit multiple frames back-to-back

at high data rates when it captures the chance to use the medium.

However, this may not be effective in Ad Hoc Wireless Networks because it is

possible that no data is ready to be transmitted although a node captures the chance.

Multi-hop Opportunistic Transmission (MTOP) is an extended version of the conven-

tional opportunistic transmission protocol, proposed by Dr. Yu at Cleveland State

University. It allows a frame to be forwarded over multiple hops at high data rates

when the first node in the chain captures the chance to use the medium. Eliminating

the MAC-layer overhead such as DCF Interframe Space (DIFS) and backoff time will

definitely enhance the entire throughput in Ad Hoc Wireless Networks. Note that

DIFS and backoff time are imposed by the Carrier Sensing Multiple Access with Col-

lision Avoidance (CSMA/CA) protocol adopted as the MAC protocol in the IEEE

802.11 Standard.

This thesis focuses on demonstrating the existence of and quantifying the

Multi-rate Margin in multi-rate radios, which is the basic assumption in the de-

velopment of MTOP. It will be verified via mathematical analysis, Matlab-based sim-

ulation as well as GNU Radio/Universal Software Radio Peripheral (USRP)-based

experiments.
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1.3 Software Radio and GNU Radio

As mentioned above, this thesis uses GNU Radio and USRP, a recent im-

plementation of Software Radio, as an experimental tool to help us perceive the

multi-rate margin in real world [9].

As one of the hot topics of 4 G wireless communication technologies, software

radio is absolutely a revolution in radio design in that it is capable of changing radios

on the fly, creating new choices for users. One of the major advantages of software

radio against hardware based radio comes with the flexibility of using the software.

Instead of using a bunch of fixed function gadgets, changing the modes of our own

radio can be easily realized by changing the codes which will then be loaded into our

software radio. With the help of software radio, our cell phones will be able to give

us connectivity using GPRS, 802.11 Wi-Fi, 802.16 WiMax, a satellite hookup or the

emerging standard of today.

As one of the representatives in the family of the software radio, GNU Radio is

an open source software toolkit of signal processing for building up our own software

defined radios. It provides functions to define the transmitted waveforms, to demod-

ulate the received signals and gives us a collection of modulators and demodulators

that keep on growing. The type of modulation techniques can be easily modified by

changing the argument of a certain modulation option in the command line.

1.4 Contributions and Outline of the Thesis

The contributions of this thesis are: Demonstrate deep understanding of GNU

Radio and USRP (Universal Software Radio Peripheral); Design the entire testing

scenario and observe the multi-rate margin in real world wireless communication with

GNU Radio and USRP; Simulate the IEEE 802.11b self-interference communication

system and investigate the multi-rate margin phenomenon in 802.11b mixed networks;

Explore the merits of multi-rate margin in MTOP.
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This thesis is organized as follows: Chapter 2 shows some background of multi-

rate support in IEEE 802.11 Radio and Software Defined Radio (SDR); Chapter 3

presents the multi-rate margin phenomenon existing in the 802.11b radio via math-

ematical analysis and Matlab-based simulation. Chapter 4 presents the multi-rate

margin phenomenon existing in the GNU Radio/USRP-based software radio plat-

form via simulation as well as experiment. Chapter 5 covers the exploration of Multi-

rate Margin in MTOP. Finally, conclusions and possible future work will be given in

Chapter 6.



CHAPTER II

LITERATURE REVIEW

2.1 Modulation and Coding in communication sys-

tems

Modulation and coding are the most important parts or technologies in com-

munication systems. Digital modulation is the process of using the variation of signal

to represent the digital symbols and coding scheme is a method to use redundant

symbols to protect the information symbols. As can be seen, digital modulation is

aimed to increase the bandwidth efficiency but at the same time sacrifices the power

efficiency, while coding scheme is designed to improve the power efficiency but simul-

taneously suffers from bandwidth efficiency loss. The power efficiency of a modulation

or coding scheme is straightforwardly defined as the required Eb/No for a certain bit

error rate over AWGN channel and bandwidth efficiency of a modulation or coding

scheme is defined as Rb/W, where Rb is the bit transmission rate and W is the

bandwidth of the transmitted signal [4]. Figure 2 shows the bandwidth efficiency and

power efficiency characteristics of three typical modulation schemes, MPSK, MFSK

and QAM. As can be seen from Figure 2, the bandwidth efficiency of QAM and

6
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MPSK is rather higher than that of FSK, which is one of the primary reason that

QAM and MPSK are chosen as the modulation scheme in IEEE 802.11a and IEEE

802.11b rather than FSK.

Figure 2: Bandwidth and power efficiency plan [4]



8

2.2 Multi-rate Support of IEEE 802.11 Radios

2.2.1 Multi-rate and Modulation Schemes in IEEE 802.11

Standards

Multi-rate support is one of the key technologies used in IEEE 802.11 to adjust

data transmission rate according to the change in communication environment with

the objective of improving the overall performance. Figure 3 shows the modulation

schemes and corresponding data rates used in 802.11a, where convolutional coding

scheme is selected as the channel coding scheme and Orthogonal Frequency Division

Multiplexing (OFDM) is chosen as the multiplexing technique to utilize multi-carrier

to transmit signals. The idea of OFDM is to convert a stream of serial data symbols

into parallel data symbols and allocate them on a set of orthogonal sub-carriers.

Obviously, the length of one symbol duration is extended, which would reduce the

intersymbol interference caused by multi-path fading channel. The coding rate in

Figure 3 is defined as the number of transmitted information bits over the number of

coded bits, e.g. the coding rate of 3/4 means the number of input bits divided by the

number of output bits of the convolutional encoder is 3/4. Rather than generating the

codeword based on the linear combination of the information bits in block codes, the

encoder of the convolutional codes contains memory and the output of the encoder

at any time not only depends on the inputs at that time but also on some number

of previous inputs [10]. The modulation methods of BPSK and QPSK are similar

because both of them use transmitted bits to modulate the phase of the transmitted

signal, e.g. a cosine waveform. The only difference between BPSK and QPSK is

that the latter one groups two bits into one symbol to modulate the phase while the

former one only uses one bit to modulate the phase. Table 1 shows the modulation

method of QPSK, which is also used in 802.11b. The QAM modulation method is a

kind of non-constant envelop modulation scheme, the constellation of which is shown

in Figure 4.
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Figure 3: Rate dependent parameters of IEEE 802.11a [2](convolutional code is se-
lected as the channel coding scheme and there are 48 subcarriers)
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DBPSK (Differential BPSK) and DQPSK (Differential QPSK) are used in

802.11b to transmit signals at 1Mbps and 2Mbps. For DBPSK, each bit is first

differentially encoded based on formula 2.1.

B(i) = B(i − 1)xorA(i) (2.1)

Where A(i) is the current information bit and B(i) is the encoded bit at that time.

For DQPSK, the encoding scheme uses similar encoding method as that of

DBPSK except it is based on modular 4 additions. The detailed modulation tech-

niques of 802.11b will be discussed in Chapter 3.

Table I: DQPSK encoding table[1]

Dibit Pattern (d0, d1) Even Symbols Phase Change Odd Symbols Phase Change
(d0 is first in time) (+jw) (+jw)

00 0 π

01 π/2 3π/2(-π/2)
11 π 0
10 3π/2(-π/2) π/2

2.2.2 PHY and MAC layer specification

There are three different physical layers that are supported by IEEE 802.11

standard: one layer based on infrared and two layers on the basis of radio transmission.

Based on the physical layer specification in IEEE 802.11 b [1], the PLCP service data

unit (PSDU) shall be appended to the Physical Layer Convergence Procedure (PLCP)

preamble and header to generate the PHY protocol data unit (PPDU). Two different

preambles and headers are defined: the mandatory supported long preamble and

header and optional short preamble and header. The preamble and header are used

to aid in demodulation and transmission of the PSDU. Figure 5 and 6 show the format

for long PPDU and short PPDU.

With the illustration in Figure 5 and 6, the side effect of the PHY-layer over-

head can be easily analyzed. Considering a PSDU comprised with 512-byte data,

since the long PLCP preamble and header are 144 bits and 48bits (192µs), the overall
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Figure 4: Constellation Picture for 16QAM [4]

Figure 5: Long PLCP PPDU format [1]
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Figure 6: Short PLCP PPDU format [1]

frame size is 4288µs (t1) at 1Mbps. Since the payload can be transmitted at higher

rates, it becomes 2240, 937, and 564µs for 2, 5.5 and 11Mbps, respectively (t2, t5.5,

and t11). Consequently, the per-frame PHY overhead due to long PLCP preamble

and header is 4.5, 8.6, 20.5 and 34.0% at 1, 2, 5.5 and 11Mbps. Even if the short

PLCP preamble and header are selected and transmitting the short PLCP preamble

and hearder will cost 96µs, the per-frame PHY overhead due to short PLCP preamble

and header is 2.3, 4.5, 11.42 and 20.5 % at 1, 2, 5.5 and 11Mbps. As can be seen

from the analysis, the overhead of the short PLCP is still very large.

The mandatory access mechanism of IEEE 802.11 is based on Carrier Sensing

Multiple Access with Collision Avoidance (CSMA/CA), which is a random access

scheme based on carrier sensing and collision avoidance via random backoff. Figure 7

shows the scenario for the basic CSMA/CA. For the basic CSMA/CA method, when

the node senses the media is idle, it waits for DCF Interframe Space (DIFS) period

and senses the media again, if the media is still idle, it chooses a random backoff

time within a contention window (CW) and delays the transmission for this period

of time. If the media is still idle after waiting for the random back off time, the node

immediately transmit MPDU. Upon receiving a correct packet at the receiver, the



13

receiving station waits for a Short Interframe Space (SIFS) interval and transmits a

positive acknowledgment frame (ACK) back to the source station, implying that the

transmission is successful. From Figure 7, the MAC-layer overhead can be easily seen.

Suppose each frame transmission contend for the media access based on the random

time selection from CW. Since CWmax is 31 1023 and slot time is 20µs, the time for

contention is 1620 or 320µs (tc) on the average when CWmax is 31. Now, Ti, the time

duration for the frame sequence at data rate i, is as follows: DIFS and contention (tc

or 50+320µs), Data (ti), SIFS (tSIFS or 10s) and ACK (tACK or 376µs).

Ti = tc + ti + tSIFS + tACK (2.2)

It totals 5044, 2996, 1693, and 1320µs for 1, 2, 5.5 and 11Mbps, respectively.

Considering the payload size, the MAC-layer overhead amounts to 15.0, 25.2, 44.7

and 57.3% for 1, 2, 5.5 and 11Mbps, respectively. In other words, 57.3% of medium

time is wasted due to the MAC overhead at 11Mbps, which is increased to as much

as 95.0% when CWmax reaches 1023. It is evident, therefore, that it is critically

important to reduce this overhead, particularly for high-rate transmissions.

Figure 7: Basic CSMA scenario [46]
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2.3 Multi-rate Performance in Wireless Networks

As is known, current WLAN has multi-rate support, where data could be

transmitted with different transmission rates. A number of approaches have been

proposed for exploiting the multi-rate capability of wireless network. They usually

fall into two categories as sender-based and receiver-based approaches.

As one of the sender-based approaches, Auto-Rate Fallback (ARF) [32] aimed

to optimize the application throughput in WaveLan II devices, which implemented the

802.11 DSSS standard. A higher transmission rate will be used by the sender after a

certain number of successful transmissions between sender and receiver at a relatively

lower transmission rate and falls back to a lower rate after one or two consecutive

failures. Its two primary disadvantages are that it is not efficient when the channel

conditions change very fast because it needs up to 10 successful packet transmissions

when the optimum rate adaptation is from one packet to the next in a fast changing

channel; it is not efficient when the channel conditions are stable because changing to

higher rate after 10 successful transmissions results in retransmission attempts [35].

Other proposals of ARF variations include adaptive ARF [33], adaptive multi-rate

retry (AMRR) [33] and estimated rate fall back (ERF) [34].

Receiver-Based Auto Rate [36] involves the use of the RTS/CTS control frames

between the source and destination nodes before each data transmission. The receiver

uses the received RTS frame to calculate the transmission rate for the upcoming

data frame and insert the transmission rate information in the CTS frame, which is

supposed to piggyback the data rate information to the source node. The calculation

of the transmission rate is based on the received Signal to Noise Ratio (SNR) of the

received RTS frame and on a number of SNR thresholds calculated on the assumption

of a known wireless channel condition. The flaws of this method mainly stem from

the fact that the calculation of SNR thresholds is based on a priori channel model

and the incompatibility of this method with the existing 802.11 standard imposes the

impossibility on deploying this method in the current 802.11 wireless networks.
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A great deal of work on multi-rate adaptation has been reported in the context

of multihop networks [42], [43] because it can greatly improve the network through-

put. They can be categorized as proactive or on-demand depending on the routing

algorithm used. With a proactive multi-rate algorithm, each node maintains link costs

to each of its neighbors while taking the multirate capability into account. Link costs

used include delay, bandwidth distance product (BDiP) [39], medium time metric

(MTM) [42], estimated transmission time (ETT, MITs Roofnet) [45], weighted cu-

mulative ETT (WCETT, MSRs testbed) [44], and bandwidth delay product (BDP,

Strix Systems) [44].

2.4 Software Defined Radio

2.4.1 Disadvantages of Hardware Defined Radio

As the traditional approach for the radio design, hardware based design is to

use analog circuit to build each element of the radio chain and each element in the

radio system just performs a specific function. The typical analog radio receiver block

is shown in Figure 8.

First of all, if any of the parameters of the technical requirement changes, the

traditional analog radio has to be redesigned to suit the needs of new conditions

and even the hardware module has to be replaced and remanufactured. Redesigning,

building and manufacturing will cost a lot and take longer time to put the product

into the market, which is one of the most significant points that traditional radio is

confronting. Second, with hardware based radio, it is quite hard to include many

different kinds of services on one device because of the limitations of the elements

comprising the hardware radio. Each element is supposed to only realize one specific

function, so the hardware based radio cannot work as a CDMA cell phone and at the

same time receive DVB signal.
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Figure 8: analog radio receiver block diagram[12]

2.4.2 Characteristics of Software Defined Radio

Software Defined Radio is the technique that uses software to realize the func-

tion of the traditional radio. It can get code as close to the antenna as possible, define

the transmitted waveforms, and demodulate the received waveforms. The most ap-

parent benefit is that we just need to load the relative program to change modulation

scheme and coding scheme for different application requirement instead of having to

change the dedicated circuit to satisfy different criterion. With only one PC and

one USRP, we can tune our hardware to receive FM signal, satellite signal and even

HDTV signal, and we can also create mesh network to transmit data among the

nodes in the mesh network without relying on so called internet backhaul. The SDR

receiver diagram is shown in Figure 9. As can be seen from Figure 9, as the DSP or

FPGA can only process digital signals, the A/D converters is required at the receiver

to convert the analog signal to digital signal, and after transforming the analog signal

to digital signal, the rest of the work such as down sampling and demodulation will

be completed using software.



17

Figure 9: SDR receiver block diagram [12]



CHAPTER III

MULTI-RATE MARGIN IN 802.11

3.1 Overview of Multi-rate Margin

The concept of multi-rate margin arises from the adaptive coding and modu-

lation technique introduced in the first chapter. Figure 10 shows another application

of ACM. The required area differs at different rate. This is called multi-rate margin.

This thesis is to show it via analysis, simulation and experimentation. When choosing

the modulation types in ACM, the QPSK is always chosen for noisy channels and

16QAM is chosen for clear channels because the former is more robust against noise

and interference but has lower transmission bit rate compared with the later one. The

reason for the above is that different modulation technique has different BER perfor-

mance and different bandwidth efficiency, both of which are actually contradictory

to each other. Improving BER performance will definitely deteriorate its bandwidth

efficiency. For the same BER value, the SNR requirement of 16QAM is higher than

that of QPSK.

When the propagation path model is decided, the receiver sensitivity, defined

as the minimum input signal (Smin) required to produce a specified output signal that

can ensure the system BER satisfies the application requirement, can be converted to

18
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Figure 10: One application of ACM [6]

transmission range(communication range). As the higher the transmission rate, the

higher the receiver sensitivity in dBm, the transmission range of lower transmission

rate radio is longer than that of higher transmission rate radio. On the other hand,

provided that the maximum interference signal strength was derived from receiver

sensitivity and SIR, where SIR is taken as the equivalent of SINR, the maximum

interference signal strength can be converted to the minimum distance between in-

terferer and receiver. As is known, CSMA is implemented in 802.11 MAC layer, for

CSMA to work, certain spatial area around the transmitter is protected via carrier

sensing. The carrier sensing range is defined as the sum of interference range and

transmission range. The differences among the carrier sensing ranges for different

rate radios are called multi-rate margin. This thesis is targeted to show that there

exists multi-rate margin via analysis, simulation and real world experimentation.

3.2 Theoretical Analysis for Multi-rate Margin

The idea of observing multi-rate margin in multi-rate radio in fact stems from

the phenomenon of different SINR requirements for multi-rate radio such as 802.11a

standard which is shown in Table 4. As long as the path loss model is defined, the
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receiver sensitivity can be converted to communication distance and SINR can be

used to calculate the interference range.

Steps to analyze the multi-rate margin are as follow: (i)Estimate the commu-

nication range (ri) based on the receive sensitivity at different rates. (ii)Calculate

the SIR requirement based on a certain BER value for multi-rate radios. (iii) Sub-

tract receive sensitivity from the SIR requirement for target BER of 10−5 to estimate

the maximum tolerable interference for multi-rate radios. (iv) translate the tolerable

interference to the minimum RI (receiver to interferer) distance for multi-rate radios

((1 + δ)ri) with the assumption that a path loss model is known. (v)Add the RI

distance to the communication range to estimate the minimum TI (transmitter to

interferer) distance at different rates ((2+ δ)ri). (vi) Again, translate the TI distance

to the required carrier sense threshold at different rates based on the transmit power

and path loss model. (vii) Finally, multi-rate margin is the difference between the car-

rier sense threshold at 1Mbps and the required carrier sense thresholds at high rates.

Here characteristics of 802.11b multi-rate radio will be analyzed. Table 5 shows the

results.

Table II: For BER equal to 10−5, these are defined SNR and receiver sensitivity to
meet BER requirement[25]

Rates(Mbps) SINR(dB) Receiver Sensitivity(dBm)
54 24.56 -65
48 24.05 -66
36 18.80 -70
24 17.04 -74
18 10.79 -77
12 9.03 -79
9 7.78 -81
6 6.02 -82

There are three arguments that need to be explained in this Table: receiver

sensitivity, SIR requirement, carrier sense threshold (defer threshold).

First, the receiver sensitivity is defined as the minimum input signal (Smin)

required to produce a specified output signal having a certain signal-to-noise (S/N)
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Table III: Characteristics of an 802.11b multi-rate radio. (Transmit power: 15 dBm,
indoor radio propagation model with path loss exponent of 3.3 [30].)

Data rate (Mbps) 1 2 5.5 11
Receive sensitivity (dBm) -94 -91 -87 -82

Range (m) 272 221 167 118
SIR requirement (dB) 2.2 5.2 4.4 7.6
Max. interference (dBm) -96.2 -96.2 -91.4 -89.6

Min. RI distance (m) 317 317 227 200
TI distance (m) 589 538 394 318

Defer threshold (dBm) -105.1 -103.8 -99.3 -96.2

ratio to ensure that the BER achieves the systems requirement [37]. Receiver sensi-

tivity indicates how faint an RF signal can be received by the receiver successfully.

Indoor path loss model [30] has been used to derive the communication range, i.e.

path loss = 40.2 + 20log10(d) if d < 8m, and 58.5 + 33log10(d/8), otherwise, which

is exactly the framework for step i. Based on the receiver sensitivity, transmission

power and path loss model, the communication range can be easily derived.

Second, SINR means how strong the signal is to overshadow the influence of

noise and interference in order to achieve a satisfactory BER. A higher-rate com-

munication requires a higher threshold, which means that it is more vulnerable to

interference. The SINR requirement at four data rates of 802.11b radio is based on

the study in [30]. Figure 11 shows the BER curve for four different data rates. Be-

cause the capacity of networks more depends on the interference than noise, the SINR

will be replaced by SIR as in [30]. With the BER versus SIR equations in [30] for

802.11b standard, the required SIR for 1, 2, 5.5 and 11Mbps transmission is 2.2, 5.2,

4.4, and 7.6 respectively if the required BER is 10−5.

Carrier sense threshold or defer threshold is defined as a signal strength level

such that if the detected signal strength is above that specified level, any transmitter

should defer its transmission. The carrier sensing range is an equivalent of the defer

range explained in the Figure 12, which comes from the Energy Detect (ED) or defer

threshold specified in the 802.11 PHY Clear Channel Assessment (CCA) [38]. With

CCA implemented in all of the nodes, the interferer will declare the medium to be
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Figure 11: BER versus SIR in 802.11b[30]

busy if the signal strength detected at the interferer is greater than the defer threshold,

so the signal transmission from interferer will be inhibited. Below will show how defer

threshold is estimated at different data rates of an 802.11b radio.

Assume that the signal strength at the receiver is equal to the receiver sensi-

tivity in Table 3, maximum tolerable interference to meet the SIR requirement can

be derived based on that assumption (step (iii)). Assume every node transmits with

the same power, using the path loss model mentioned above; the interference range

would be easily obtained. Because the receiver does not transmit signal and does not

need to sense the media, the collision safe distance can only be assured by sensing

the carrier signal from the transmitter. In other words, collisions are avoided when

there is no other simultaneous transmitter within 589m ((2 + δ)ri) from an 1 Mbps

transmitter, which is obtained by adding the communication range (r1) to the RI

distance ((1 + δ)ri) [39] (step (v)). Similarly, nodes within 318m ((2 + δ)ri) from an

11 Mbps transmitter should defer. Again, Figure 12 shows this defer range (DF) at

1 and 11Mbps, respectively.

In single-hop WLAN, the defer threshold is preferably set to be as low as

possible to prohibit as many interfering communication attempts as possible and
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Figure 12: Interference and the required defer range (the required defer range in the
right diagram is 271 meters smaller than that in the left but as the same defer range
is used in the network, the extra space at 11Mbps mode would be utilized in MTOP.

thus protect the ongoing communication. However, the defer threshold in multi-hop

environment has to be chosen with great carefulness because a low defer threshold

will disallow more concurrent communications than necessary and thus degrades the

spatial use efficiency, while a high defer threshold will induce collisions. However, as

shown in Table 3, transmissions at different rates will require different defer thresholds

but node cannot change its defer threshold dynamically in practice. Moreover, nodes

do not always know the data rate of the signal they receive or overhear. So, to ensure

there is no severe collision imposed by the interferer no matter which transmission rate

the transmitter is using, the smallest defer threshold should be used in the multi-hop

environment [39].

As can be seen from Table 3, the difference between the defer thresholds for

1Mbps and 11Mbps is 8.9dB, which is called multi-rate margin in this thesis, leaving a

room for network improvement. The MTOP protocol exploits this margin by allowing

a frame to be relayed through 1-2 more hops with a single media access, which will

be discussed in details in chapter 5.
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3.3 Simulation for Multi-rate Margin

In this section, the interference issue of the physical layer of the IEEE 802.11b

standard will be discussed. The physical layer system models for 1, 2, 5.5, and

11 Mbps modes of the IEEE 802.11b standard are described in this section. The

transmitter and receiver will be operating in 1, 2, 5.5 and 11Mbps modes and in each

mode there will be four different kinds of interferers operating on 1, 2, 5.5 and 11Mbps

modes respectively. The interference problem among different operating modes in

IEEE 802.11b standard will be analyzed with the help of MATLAB simulation. In

the MATLAB simulation, the desired transmitted signal and interference signal are

assumed to be synchronized all the time, which means there is neither timing nor

frequency offset between received signal and interference signal.

In IEEE 802.11b standard, the first rate is achieved by using differential BPSK

(DBPSK) with Direct-Sequence Spread Spectrum (DSSS) and an 11 chip Barker code;

the chip rate is 11 M chip/s. The last rate is obtained using Complementary Code

Keying (CCK), also at 11 M chip/s. The construction of the communication models

used for investigating the interference problem among different modes in 802.11b fol-

lows the similar structure that is to investigate the interference issue between 802.15.2

standard and 802.11b standard in[30]. The communications system model for the 1

M bps bit rate is presented in Figure 13, again consisting of the transmitter, the

channel, the receiver and the IEEE 802.11b interference source. The details of this

model are explained in 3.3.1 through 3.3.4. The CCK system is shown in Figure 17

and discussed in 3.3.3.

3.3.1 802.11b 1Mbps DSSS Model

This system utilizes a spread spectrum scheme to mitigate the effect of inter-

ference. The Barker sequence with code length P = 11 is employed to spread the

signal. The bit duration, T, is exactly 11 chip periods, Tc long. The processing gain
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Figure 13: 802.11b DSSS 1Mbps with another 1Mbps interferer system model

(PG) of this system is [27]

PG = Rc/Rb = 11,Where Rb = 1/T is the bit rate, and Rc =1/Tc is the chip

rate.

The structure of the communication system is strictly following the specifica-

tions of the physical layer in 802.11b standard. As shown in Figure 29, the input

data bits are first differentially encoded. The resulting sequence is spread by the

Barker code. The output of the spreader is fed to a square-root raised-cosine (RRC)

pulse-shaping filter. The impulse response of this filter and how to choose the roll-off

factor may be found in Lee[28]. At the receiver, the input samples are first fed into

the square-root raised-cosine matched filter. The despreading filter is a rectangular

filter that integrates the output of the multiplier during a bit period. The differen-

tial decoder calculates the difference between the phase angle of the received symbol

and that of the previous one to generate the output bit stream. It is assumed that

the carrier frequency of the local oscillator at the receiver is synchronized to that of

the transmitter and chip timing of the receiver is synchronized to the transmitter.

Because the interference signal transmitter works in the same frequency range and

under the same 802.11b standard as the desired signal transmitter, it is assumed that
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there is no frequency and phase difference between desired signal and interference

signal and timing difference between desired signal and interference signal is also ig-

nored. The transmitters structure of the 1Mbps interference signal is exactly the

same as that of the desired signals transmitter except that the input bit stream bi is

generated randomly, which means the interference bit sequence is independent with

the desired transmitted bit sequence. According to[1], the Barker spreading code in

the interference signal transmitter is also in the same format as that of desired signal

transmitter.

Figure 14 shows the simulation result for the physical layer interference problem

between 1Mbps mode and other 3 transmission modes. The communication systems

structures when 1Mbps is interfered by other 3 modes have not been plotted out

here because the interference blocks of other 3 modes can be easily found from other

sections discussing the interference problems of 2Mbps, 5.5Mbps and 11Mbps.

Figure 14: 1Mbps 802.11b performance with IEEE 802.11b interference. AWGN
channel. SNR = 35dB

3.3.2 802.11b 2Mbps DSSS Model

The system model for 2Mbps mode is just the duplicate of that for 1Mbps

mode except that Gray code and QPSK modulation schemes are used for 2Mbps
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mode. Figure 15 shows the system model for 2Mbps mode with another 2Mbps mode

interfering the desired communication. Figure 16 shows the simulation result for the

physical layer interference problem between 2Mbps mode and other 3 transmission

modes.

With the only difference between the construction of interferers transmitter

and that of the desired signals transmitter being the transmitted bit sequence, the

around 50% BER when SIR is below 0dB is expectable, the formula derivation of

which will be given below.

Figure 15: 802.11b DSSS 2Mbps with another 2Mbps interferer system model

3.3.3 802.11b 11Mbps CCK Model

Because both 5.5Mbps mode and 11Mbps mode employ the CCK modulation

method and the way the dibits are mapped to phase φ1 in 11Mbps mode is easier

than that in 5.5 Mbps mode, 11Mbps mode is analyzed here before analyzing the

5.5Mbps mode.

For the CCK (complementary codes keying) modulation modes, the spreading

code length is 8, which means one symbol consists of exactly 8 complex chips with

chipping rate 11M chips per second. The equation 3.1 will be used to derive the CCK
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Figure 16: 2Mbps 802.11b performance with IEEE 802.11b interference. AWGN
channel. SNR = 35dB

code words for both 5.5Mbps mode and 11Mbps mode.

C = {ej(φ1+φ2+φ3+φ4), ej(φ1+φ3+φ4), ej(φ1+φ2+φ4),−ej(φ1+φ4), ej(φ1+φ2+φ3), ej(φ1+φ3),

−ej(φ1+φ2), ej(φ1)}

(3.1)

where C is the code word, C = {c0 to c7}, φ1, φ2, φ3 and φ4 are encoded by the

input bit sequence based on DBPSK and DQPSK.

Let us take 11Mbps mode as an example. In 11Mbps mode, the input is

supposed to be 8 bits sequence. After this CCK encoder, the output will be turned

into 8 chips code word based on the equation 3.2 [3].

The 11Mbps mode utilizes CCK as its modulation and demodulation method.

The structure of the communication system in Figure 17 strictly followed the spec-

ifications of the physical layer in 802.11b standard. Below we will describe how the

CCK encoder and CCK decoder function. Suppose 8 bits (d0 to d7; d0 first in time)

are transmitted per symbol. The first dibit (d0, d1) encodes φ1 based on DQPSK,

the scheme of which is specified in Table 1. The phase φ1 is changed according to the

preceding symbol. In other words, the phase change for φ1 is relative to the phase
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of the preceding DQPSK symbol. All odd-numbered symbols are given an extra 180

degree (π) rotation, in accordance with the DQPSK modulation shown in Table 1[3].

Symbol number starts with 0 for the first 8 chips code word. For example, suppose

the reference starting phase is 0, (d0, d1) is (0, 0) and (d8, d9) is (1, 0). Based on

the Table 1, the first φ1 should be 0 and second φ1 should be pi/2 rather than -π/2

Figure 17: 802.11b 11Mbps with another 11Mbps interferer system model

The data dibits (d2, d3), (d4, d5) and (d6, d7) encode φ2, φ3 and φ4, respec-

tively, based on QPSK encoding scheme, which is shown in Table 4. Gray code is not

used in this coding scheme.

Table IV: QPSK encoding scheme[3]

Dibit Pattern (di, d(i+1))(di is first in time) Phase
00 0
01 π/2
10 π

11 3π/2

Rather than implementing the complex optimum maximum likelihood decoder,

a less complex sub-optimum algorithms is used for the decoder implementation. The

equations proposed by Van Nee[29] are used for our decoding technique.
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φ2 = arg{r1r2∗ + r3r4∗ + r5r6∗ + r7r8∗}

φ3 = arg{r1r3∗ + r2r4∗ + r5r7∗ + r6r8∗}

φ4 = arg{r1r5∗ + r2r6∗ + r3r7∗ + r4r8∗}

φ1 = arg{r4e−j(φ4) + r6e−j(φ3) + r7e−j(φ2) + r8}

(3.2)

where r = [r1 r2 r3 r4 r5 r6 r7 r8] is the received symbol.

After taking the above CCK decoding method, reverse DQPSK and QPSK

procedures are applied to the decoded φ1, φ2, φ3 and φ4 to find out the final decoded

bits. The transmitters construction of the 11Mbps interference signal is exactly the

same as that of the desired signals transmitter except that the input bit stream bi is

generated randomly, which means the interference bit sequence is independent with

the desired transmitted bit sequence.

Figure 18: 11Mbps 802.11b performance with IEEE 802.11b interference. AWGN
channel. SNR = 35dB

3.3.4 802.11b 5.5Mbps CCK Model

In 5.5Mbps CCK, only 4 bits are supposed to encode φ1, φ2, φ3 and φ4. The

first dibit (d0, d1) is used to encode φ1 based on DQPSK as in 11Mbps mode while

the dibit (d2, d3) encode the φ2, φ3 and φ4 by setting φ2 = (d2*π) +π/2, φ3 = 0
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and φ4 = d3 *π. The encoded φ1, φ2, φ3 and φ4 will then be used to form an 8-chip

CCK symbol based on the equation 6.1.

The decoding method for φ2, φ3 and φ4 is exactly the same as that in 11Mbps,

while the decoding method for φ1 is a little bit different, which decodes φ1 to be

arg{(r4 + r2)e−j(φ4) + (r7 + r5)e−j(φ2) + r6 + r8}. In the MATLAB simulation for

5.5Mbps and 11Mbps modes, this sub-optimally coherent receiver to decode the re-

ceived phase is used. Figuer 19 shows the flow graph of the communication system

for 5.5Mbps with another 5.5Mbps interferer, while Figuer 20 presents the BER per-

formance.

Figure 19: 802.11b 5.5Mbps with another 5.5Mbps interferer system model

3.3.5 Simulation Results

Because the interference signal is assumed to be the AWGN signal in the

theoretical analysis of Chapter 3 and the interference signal is assumed to be entirely

synchronized with the receiver in terms of timing and carrier frequency in the previous

802.11 b self-interference simulation analysis, the simulation result cannot be exactly

the same as the result derived from the theoretical analysis. However, the similarity

of the SIR requirements in theoretical analysis and simulation analysis when BER
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Figure 20: 5.5Mbps 802.11b performance with IEEE 802.11b interference. AWGN
channel. SNR = 35dB

is equal to 10−5 can be seen from below. From last 4 figures of simulation, it can

be observed that the SIR requirement for 1Mbps, 2Mbps, 5.5Mbps and 11Mbps is 0,

0, 4,and 7dB respectively, when BER is required to reach 10−5. Table 5 shows the

multi-rate margin analysis based on our simulation result for 802.11 b radios. It can

be seen that there is still an 8.1 dB margin between 1Mbps and 11Mbps and two

relay nodes could be inserted for 11Mbps scenario if the defer threshold of 1Mbps

were used as the defer threshold for both the 1Mbps and 11Mbps system.

Table V: Simulation analysis of the Interference Issues in an 802.11 b multi-rate radio.
(Transmit power: 15 dBm, indoor radio propagation model with path loss exponent
of 3.3 [30].)

Data rate (Mbps) 1 2 5.5 11
Receive sensitivity (dBm) -94 -91 -87 -82

Range (m) 272 221 167 118
SIR requirement (dB) 0 0 4 7
Max. interference (dBm) -94 -91 -91 -89

Min. RI distance (m) 272 221 221 191
TI distance (m) 544 442 388 309

Defer threshold (dBm) -103.97 -101 -99.13 -95.87



CHAPTER IV

MULTI-RATE MARGIN IN GNU

RADIO/USRP-BASED TESTBED

4.1 GNU Radio and USRP

4.1.1 GNU Radio Basics

GNU Radio [26] is an open source software toolkit of signal processing for

building up our own software defined radios. It provides functions to define the

transmitted waveforms, to demodulate the received signals and gives us a collection

of modulators and demodulators that keep on growing. The type of modulation

techniques can be easily modified by changing the argument of a certain modulation

option in the command line[13].

In GNU Radio, the radio chain resembles a network where the nodes are signal

processing blocks and lines represent the data flow. Each signal processing block is

written in C++ and Python is used to glue those signal processing blocks together

to create your own radio. The way GNU Radio components are linked is shown in

Figure 21.

With RF part and ADC/DAC, the analog signal can be received and trans-

33
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Figure 21: Block Diagram of GNU Radio Components[14]

formed to digital signal, it is necessary to spend some time explaining the role of RF

part. Generally speaking, the role of RF part is to translate the signal centered at

the high frequency down to a signal centered at the intermediate frequency without

distorting the shape of the waveform. As an example, a cable modem tuner module

translates a 6 MHz chunk of the spectrum centered between about 50 MHz and 800

MHz down to an output range centered at 5.75 MHz. A typical structure of RF front

end after breaking it into small parts is shown below in Figure 22:

Figure 22: A typical structure of RF front end

The Low Noise Amplifier (LNA) and the Band Pass Filter (BPF) are used

to select the bandwidth of interest and amplify the signal. For example, in order

to receive the FM stations, you may like to use an LNA and an BPF with a cutoff
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frequency of 120 MHz[13]. After filtering the noise out of our interested bandwidth,

we use local oscillator whose frequency is locked at RF-IF to downconvert the RF

band signal to IF band. At the output of the mixer, we get two chunks of spectrum

centered at IF and 2 * RF - IF respectively, the later of which would be filtered

out through an intermediate filter following the mixer. After this whole process, the

ADC is able to process the signal locating at IF band. The reason that we do not

connect ADC to antenna to directly process the signal is that based on our current

technique, ADC is not fast enough to catch up with 500MHz and even 5GHz for

RFX2400 daugterboards. Even if the ADC that could keep up with that fast speed

were produced, the power consumed would be very high and the cost for the whole

circuit would be much higher than the circuit consisting of RF front end.

4.1.2 USRP

USRP Characteristics

USRP is the hardware component that supports GNU Radio. It loads the code

created by software installed on your computer and realizes the commands embedded

in the code with a cable connecting your computer to the USB2.0 port on the USRP

box. Typically, the USRP consists of a motherboard containing up to four 12-bit,

64M sample/sec ADCs, four 14-bit, 128M sample/sec DACs, a Field Programmable

Gate Array (FPGA) and a programmable USB 2.0 controller. Each fully populated

USRP motherboard supports four daughterboards, two for receiving and two for

transmitting. RF front ends are implemented on the daughterboards. A general

setup of the USRP board is shown in Figure 23: For the detailed specifications of the

3 important components, AD/DA converters, daughter boards and the FPGA on the

USRP board, interested readers could refer to the reference[15].
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Figure 23: USRP Board (One USRP motherboard can support up to 4 daughtboards
and there are an FPGA and two AD/DA converters on one motherboard)

A/D and D/A Converters

Because the 4 high-speed 12-bit AD converters can sample at a rate of 64M

samples per second, based on Nyquist Criterion it could digitize a band as wide as

32MHz. For the AD/DA converters, some readers may argue that we could also

sample the signal whose center frequency is above 32MHz without the RF frond end

as long as its single bandwidth is no greater than 32MHz because the chunk of our

interested signal would be left and right shifted along the frequency domain by 64MHz

when that signal is sampled at a rate of 64M samples per second in the time domain.

So, the chunk of our interested signal must be mapped to some places between -

32MHz and 32MHz. After synchronization at the FPGA part, the center frequency

of this chunk of signal could be tracked, leading precise demodulation at the receiver

side. But it would not be an ideal case if we considered the fact that the higher the

frequency of the sampled signal, the more the SNR will be degraded by jitter.

There is a programmable gain amplifier (PGA) before the ADCs to amplify
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the input signal in order to utilize the entire input range of the ADCs in case the

signal is too weak. The gain of the PGA can reach up to 20dB.

Daughter Boards

As can be seen from Figure 11, the four slots on the motherboard can be used

to plug in up to 2 RX daughter boards and 2 TX daughter boards. The daughter

boards are aimed to hold the RF transmitter and receiver interface.

The daughter board is chosen as RFX2400. The reason to choose this daughter

board is that on one hand, the built-in file in GNU Radio we used for our implemen-

tation works fine with the RFX2400 daughter board, and on the other hand we have

enough RFX2400 available in our lab. The useful features of RFX2400 board are listed

below: 30 MHz transmitting and receiving bandwidth; Built-in T/R switching;Built-

in analog RSSI measurement;Adjustable transmit power.

FPGA

For the FPGA part, the most important element we should understand is the

DDC (digital down converter), the graph of which is shown in Figure 24. First, it

down converts the signal from the IF band to the base band. Second, it decimates

the signal so that the data rate can be adapted by the USB 2.0 and is reasonable for

the computers’ computing capability. The decimator can be treated as a low pass

filter followed by a downsampler. Suppose the decimation factor is D. If we look at

the digital spectrum, the low pass filter selects out the band [-π/D, π/D], and then

the downsampler spread the spectrum in [-π/D, π/D] to [-π, π][2]. For example, the

bandwidth of FM station is 200 kHz which is constrained by the tone of our human

being. After setting the decimation rate to be 250, the data rate across the USB

port will be 64MHz/250 = 256 kHz, which is well suited for the 200 kHz bandwidth,

which means none of the spectral information will be lost. The maximum sustainable

rate across USB is 32MB/sec. All samples sent over the USB interface are in 16-bit
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signed integers in IQ format, i.e. 16-bit I and 16-bit Q data (complex), which means

4 bytes need to be used to represent one complex sample, resulting in 8M complex

samples/sec across the USB, which limits the maximum input spectral bandwidth to

be no greater than 8MHz.

Figure 24: Block Diagram of the Functional Components of FPGA[17]

4.2 Simulation for Multi-rate Margin

4.2.1 Design of Simulation Environment

DBPSK and DQPSK are selected in our experimentation as two different mod-

ulation schemes because only these two phase shift keying modulation schemes can

be realized using GNU Radio and USRP.

Before adding USRP onto our canvass, the communication system should be

simulated in GNU Radio to ensure that DBPSK and DQPSK modulation schemes

have been implemented correctly. As is known, each signal processing block is written

in C++ and Python file is supposed to connect these signal processing blocks together.

Figure 25 shows the signal flow graph in my communication system. A python file

has been created to provide users with a control panel where the systems parameters
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such as modulation mode, the number of transmitted bits, the signal to noise ratio

etc. can be imported. This control panel is easy to use and after each run the bit

error rate will be displayed in the terminal along with the corresponding signal to

noise ratio. Figuer 26 presents a snapshot of the control panel and the python code

is listed in A.

As is known, in order to explore the multi-rate margin in multi-rate radio,

changing modulation scheme is not the unique method and coding scheme can also

be utilized to observe the multi-rate margin. As in GNU Radio, because the imple-

mentation template of Reed Solomon code has already existed in the GNU Radio

project, it is much easier to implement Reed Solomon code than to implement other

coding schemes, Reed Solomon (RS) coding scheme is selected to be our error control

coding method in our system. The control panel for RS is similar to that for inspect-

ing modulations but the mydbpsk.py file should be substituted by mydbpsk rs.py file

(A).

Figure 25: Flow Chart for Testing the BER Performance of our Communication
System

The RS code in our system is shortened RS(207, 187), which is supposed to be

able to correct 10 errors. Regarding the fact that 256 bytes long packet should be used

to help with buffer alignment, some paddings are added to the tail of each packet.
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Figure 26: Control Panel to Ease the Simulation Procedure

Several lines of python code should be added into the DBPSK and DQPSK blocks to

encode the bit streams before getting them modulated. In our practical transmission

system, the preamble and access code, which are used for synchronization at the

receiver, cannot be changed because they are the only pair that are supposed to

be recognized by the receiver and at the receiver side, each received packet is first

demodulated and then the preamble and header part are shredded off, so the coding

and decoding schemes are only imposed on the payload part. There are tens of lines

that have to be added in packet utils.py file, which is the most crucial file transforming

a piece of payload into a frame that can be transmitted over the air. A shows the

modified lines in packet utils.py.

In fact, another RS code with different coding rate has also been imple-

mented in GNU Radio. In order to implement a new RS code, there are several

C++ files that should be modified to fit the needs of new RS code’s criterion,

which are listed here: atsc.i, atsc consts.h, atsci reed solomon.cc, atsc rs decoder.cc,

atsc rs encoder.cc atsc types, etc.[25].

The flow graph of our communication system with RS is quite similar to Figure

13 except that the RS encoding block should be appended before the bit-to-byte block
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and the corresponding RS decoding block should be post-appended after the bytes-

to-bits block.

4.2.2 Simulation Results

DBPSK and DQPSK without Reed-Solomon

Before testing the multi-rate margin in the outside, the BER performance of

our communication system was analyzed via simulation. The optimum receivers for

DBPSK and DQPSK modulation schemes are used in GNU Radio. BER performance

of the optimum DBPSK and DQPSK has been shown in Figure 27.

Figure 27: BER Performance for DBPSK and DQPSK [4]

The DBPSK and DQPSK without RS coding system have also been simulated

and the same clear BER performance graph can be observed in Figuer 28. Because in

outdoor testing, the parameters used to measure the degree of multi-rate margin are
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Packet Delivery Ratio (PDR) and SNR, both of which can be easily converted from

BER and EbNo respectively, Figuer 29 is plotted out to show the simulation curve

of PDR versus SNR. As can be seen from Figure 29, 95% PDR is chosen to be the

acceptable value and the corresponding SIR for DBPSK and DQPSK is 7.55dB and

11.55dB respectively.

Based on the receive sensitivity of 802.11 b radios discussed in Chapter 3 and

the SIR values mentioned in the previous paragraph, we can easily see that the allowed

maximum interference signal strength for DBPSK and DQPSK is -101.55dBm and

-102.55dBm, indicating that the interference distance is 459 meters for DBPSK and

492 for DQPSK, respectively. The carrier sensing range for DBPSK and DQPSK

would be 731 meters and 713 meters, which predicts that a multi-rate margin should

emerge when real world transmission is engaged.

Figure 28: BER Simulation Result for DBPSK and DQPSK without RS code

DBPSK and DQPSK with Reed-Solomon

As can be seen from Figuer 30 and 31, there are still around 4dB multi-rate

margin between DBPSK and DQPSK with reed Solomon coding scheme and both of

the PDR and BER curves with RS coding scheme have been shifted to the left with

regard to the PDR and BER curves without RS coding scheme, say around 3 dB for
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Figure 29: PDR Simulation Result for DBPSK and DQPSK without RS code

Figure 30: BER Simulation Result for DBPSK and DQPSK with RS code
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Figure 31: PDR Simulation Result for DBPSK and DQPSK with RS code

DQPSK modulation scheme. Using the same analysis procedure as previous section,

645 meters and 620 meters are estimated to be the carrier sensing range for DBPSK

and DQPSK respectively. So, there would still be a 25 meters multi-rate margin if

Reed Solomon coding were implemented in our system.

4.3 Experiment for Multi-rate Margin

4.3.1 Design and Implementation of Testbed

Design Procedure

Although the simulation environment of our communication system is designed

successfully in Section 4.2, transmitting real signals over the air needs us to connect

USRP and our general processor together.

First of all, in GNU Radio, benchmark rx.py and benchmark tx.py under the

folder of gnuradio/gnuradio-examples/python/digital are usually used as the basic

files to transmit and receive real signals. All of the other Python files that are used

to transmit signal are modified based on these two files. The primary purpose of

benchmark tx.py is to provide an interface for us to specify the parameters for the
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communication system, to generate the transmitted data and to call the send pkt

function in transmit path module. The primary purpose of benchmark rx.py is to

get the receiver ready for the signal specified by the input on the command line and

display the true or false condition of the received packet. Three important parameters

for transmitter as well as receiver are center frequency(f), bit rate(r) and samples per

symbol(S). The relationship between these three elements is explained below.

The most important element for a communication system is the bit rate or

so-called coded bit rate. For our GNU Radio and USRP system, the bit rate is

specified as: bit rate = converter rate / interpolation rate / samples per symbol *

bits per symbol, where the converter rate, standing for the sampling frequency of the

DAC and ADC in our implementation is set to the default value, which is 128MHz

for the Tx part and 64MHz for the Rx part and interpolation rate should be replaced

with decimation rate for the receiver side. There are some tricks for setting the

samples per symbol value, the range of which is from 2 to 7 defined in GNU Radio.

According to Nyquist sampling theory, two samples per symbol is enough for the

receiver to restore the transmitted symbol as long as the bandwidth of the symbol is

finite in the frequency domain and the aliasing could be neglected after shifting the

spectrum to left and right by fs which is two times the cutoff frequency of the symbol.

Considering the factors we explained above, samples per symbol is chosen to be 4,

which has been in fact verified by my testing: with the same distance between two

USRPs, the PER was almost 100% when samples per symbol was 2 while the PER

was almost 0% when samples per symbol was 4 under DQPSK modulation scheme.

Because the interpolation rate or decimation rate is chosen from a specific range

respectively, e.g. decimation rate can be changed from 8 to 256 with a step of 2, we

chose 200kbps for the case of DBPSK and 400kbps for the DQPSK case and both of

these two rates can be reached accurately.

Second, the transmit path module is to glue the USRP hardware module with

the software signal processing blocks such as modulator and amplifier and to set
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some parameters such as amplitude amplification factor and interpolation rate. The

receive path module is just to demodulate the received signal following the reverse

path of that in transmit path. It is the function called make packet in packet utils.py

module that transforms a payload into a frame. What is actually transmitted over

the air is the packet called pkt packed in the packet utils.py file, which consists of

preamble (P), access code (AC), header1 (H), header2 (CH), payload and crc. Figuer

32 shows how each frame is constructed: where copied header is just a duplicated one

of its previous header, where the lower 12 bits indicates the length of the payload or

how many bytes the payload contains, the higher 4 bits indicates the whitener offset.

The reason of adding padding code in the tail is to generate sufficient padding so

that each packet sent across the USB ultimately comprises of a multiple of 512 bytes.

Note: the length of the complex data type is 8. After reading the code about how

Cyclic Redundancy Code (CRC) works in GNU Radio, the fact that there is no error

correcting effect in CRC in the transmitted packet is confirmed. The way CRC in

the packet utils.py module works is: at the receiver end, the payload in the received

packet is used to generate an expected CRC which is supposed to be compared with

the CRC attached behind the payload and if the expected CRC were different from

the attached CRC, this packet would be considered to be a false packet, which should

be dropped. So, the effect of CRC is only detection in the demo file, but considering

the statistical theory, if the length of payload were large enough, say 1500 bytes per

packet, it would be a meaningful detection method since with only 4 bytes in CRC, if

there were an error in CRC it would be highly possible that the message in payload

happened to have some errors, producing a wrong expected CRC, which would induce

a False Packet judgment.

The unmake packet function in packet utils.py module will extract the payload

and CRC from the received packet and justify the correctness of the demodulated

payload. If the payload is wrong, it will signal the receive path module that this

packet is false.
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Figure 32: Transmitted frame (padding code is to add some padding at the end of
the packet to fit the needs of USRP)

Implementation Procedure

Received Signal Strength Indicator (RSSI) is one of the most important pa-

rameters in our testing scenario: the RSSI of each received packet has been read and

the sum of them is divided by the number of the total received packets to get an

average value. All of the RSSI values are stored in the file RSSIM.dat, from which

an average value will be calculated by running RSSIM.py file (A). There are 3 ways

to read the RSSI value of the received packet in the USRP system: 1) Analog RSSI

(we can read it using AUX ADC); 2) Digital RSSI in FPGA (from output of ADCs);

3) Digital RSSI in host (computed however you like, from the channel zed signal sent

over the bus by the USRP)[18]. At the beginning, the value read was an analog

signal value after the lowpass filter on the board, but after doing some testing, it was

found that anything falling within the 15MHz-20MHz bandwidth of the lowpass filter

would cause a rise in the RSSI value. In other words, even when there is no packet

transmitting between two USRPs, the RSSI value read is greater than 160 while the

maximum RSSI value is only 4096. The changing range of RSSI value is so small

that it could not reflect the trivial change in the received signal power. Based on the

observation above, another method was adopted, which was to calculate the filtered

squared magnitude of each received packet because if carrier sense algorithms were

implemented in the benchmark files, there must be some kind of received signal’s

magnitude calculation method in the files in order to compare the strength of the

received signal with a threshold to realize carrier sensing. So the RSSI values stored
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in the RSSIM.dat file stand for the magnitude of the received signal.

Second, the bit streams used for testing should be randomly generated, so a

random number generator (seed.py file) has been created to generate a sequence of

random code, the length of which can be defined by the user (A). Before doing out-

door experimentation, a tx payload file was generated stemming from the randomly

generated bit streams and that tx payload file would be saved at the receiver side in

order to calculate the number of bit errors in each received packet.

Third, the ber.py file has been created to calculate the bit error rate of all the

transmitted packets (A).

Forth, tx run.py and rx run.py files have been created to automate the whole

testing procedure (A). Fifth, in order to check out the latest code from the develop-

ment trunk, which is updated the moment a developer puts his code into the trunk, we

should input the command $ svn co http://gnuradio.org/svn/gnuradio/trunk GNU

Radio in the terminal to download the latest version of the code.

It is possible to use one PC to handle two USRPs at the same time as long as

the w argument is set to 0 for the transmitter and to 1 for the receiver, but one thing

that should be taken into account is the maximum bandwidth for each of the USRP

system would be diminished by half.

In fact, the other two parameters, costas-alpha and gain-mu, regulating the

frequency/phase tracking loop and timing recovery gain[19], are the real culprits of

the malfunction of the DQPSK system. Although DBPSK demodulator functions

very well with the default values of these two parameters, DQPSK demodulator is

unable to demodulate any correct packet with its default values of these parameters.

The key point is to chose a good starting point for parameters, costas-alpha and

gain-mu so that the DQPSK demodulator also functions as well as DBPSK’s. A for

loop to search the appropriate starting points of those two parameters was created

using shell script language. After running that program, it is known that costas-alpha

should be set to 0.05 and gain-mu to 0.001, which did produce reasonable results for
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both of these two modulation schemes after our indoor testing.

4.3.2 Experiment Results

Since radio propagation and its channel dynamics cannot easily be captured

using analytical or simulation models, we tried to observe the multi-rate margin based

on a small-scale test bed using USRP [15]and GNU Radio [16].

The following are the details of the experiment as similarly done in [20]. (i) The

testbed includes 3 USRP systems (version 5b), 3 RFX2400 transceivers (2.3-2.9 GHz)

and GNU Radio software (version 3.1.3). (ii) Modulation schemes used are DBPSK

and DQPSK. (iii) Carrier frequency and bandwidth are 2.479 GHz and 200 KHz,

respectively. Therefore, the maximum data rate is 200Kbps and 400Kbps for DBPSK

and DQPSK, respectively. A smaller bandwidth and data rates are used partly due

to bandwidth constraints imposed by the USRP and USB port [21]. (iv)Transmitter

amplitude is set to 8,000, which is smaller than the default value (12,000). This is to

make the communication range no farther than 300 feet. Considering the three-node

scenario with transmitter, receiver and interferer as in Figure 8, we needed an open

space of at least 500 feet long. (v) Packet size is 1,500 bytes and 3,300 packets were

transmitted for each experiment. (vi)Carrier sensing is effectively disabled to know

the effect of interference more clearly. In fact, the implementation of carrier sense-

based medium access protocol is known to be difficult for the current USRP/GNU

Radio platform. Since USRP communicates via USB (2.0) port with a host system

that runs GNU Radio, there exists a non-negligible delay between the instance that

USRP senses the medium idle and another instance that the host system recognizes

it[22, 23, 27].

Our goal was to validate Table 5, particularly the margin (8.9 dB discussed

in Section 4.2) with two data rates supported by DBPSK and DQPSK modulation

schemes. The experiment has been conducted in two phases.

First, in order to obtain communication range (r) with DBPSK and DQPSK,
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we set up two USRP systems and measured RSSI versus distance and PDR versus

RSSI. In this experiment, the RX is fixed at the center of a circle and TX is moved

from 300ft towards RX. At each position, 3,300 packets are received at the RX and

the measured RSSI is the average RSSI of these packets. The first 200 packets are

ignored in case there would be synchronization problem. The relationship between

Distance and RSSI is shown in Figuer 33 and the relationship between RSSI and PDR

is shown in Figure 34. According to our experimental results shown in Figuer 33 and

34, r for DBPSK and DQPSK is estimated as 215ft and 150ft, respectively. Note that

95% PDR is used to estimate the maximum communication range.

Second, in order to obtain interference range ((1+δ)r), we set up three USRPs,

a transmitter (T), a receiver (R) and an interferer (I) on a straight line (T-R-I) as

in Figure 12. The distance between T and R is fixed at 80% of the communication

range that we have already found in our first step, i.e., 172ft and 120ft for DBPSK

and DQPSK, respectively. Since the communication distance is only 80% of the

maximum communication range, the communication performance between T and R

would be very good and PDR would be greater than 95%. But when I approaches

R, the interference signal will disrupt the communication between T and R. The

interference range is defined as the distance between R and I when the PDR from

T to R stays steady at 95%. In our experiment, as I approaches R, it would cause

a stronger interference. SIR at node R decreases and so is PDR. Figure 35 and 36

show PDR versus RSSI (from I to R) and PDR versus SIR. Note that the recorded

RSSI is proportional to the mean power value of each received packet. The SIR at

the receiver is calculated as RSSI from the sender, which is in the form of decibel,

minus RSSI from the interferer [24].

According to the experiment results, we observed that the degree of capture

is more significant at low data rate (DBPSK) as similarly observed in[19]. From

Figure 33 and Figure 35, interference range ((1+δ)r) is estimated as 220ft and 235ft

for DBPSK and DQPSK, respectively, and the required CS range ((2+δ)r) is about
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392ft and 355ft. Comparing with Table 3, we can conclude that the same trend as

well as the additional margin at a high rate (392 versus 355 ft) has been observed.

Figure 33: RSSI versus Distance

Figure 34: PDR versus RSSI

Because the theoretical data such as receiver sensitivity for our communica-

tion system is not available, the simulation result will be used as the reference for

our experimental outcomes. In fact, the simulation analysis in Section 4.2.2 and Fig-

ure 29 definitely consolidates the correctness of our outdoor experimentation. From

Figure 29 and Figure 36, three important conclusions can be achieved. First, the
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Figure 35: PDR versus RSSI from Interference

Figure 36: PDR versus SIR
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trends of the curves in these two figures are roughly the same. Second, in theoretical

curve, the PDR reaches 100% when SNR is around 8dB for DBPSK and 12dB for

DQPSK, while PDR attains 100% when SIR is around 10dB for DBPSK and 16dB for

DQPSK. In other words, the curves obtained from outdoor testing have been right

shifted around 3dB which is conceivable because it is more difficult for receiver to

demodulate packets when there is background noise, multi-path or other propagation

effects nearby[20]. Third or the most important observation is that the gap between

the DBPSK curve and DQPSK curve in simulation figure and the figure obtained

from outdoor experimentation are almost the same, around 4.5 dB.

The transmission range difference for DBPSK and DQPSK implemented with

RS coding scheme has also been observed in our outdoor testing, which is shown in

Figuer 37. From this figure, the communication range for DBPSK with RS (207,

187) is approximately 310ft and the communication range for DQPSK with RS (207,

187) is around 220ft. So, apart from changing different modulation schemes, adapting

different coding schemes is an alternative to observe multi-rate margin. For example,

with DBPSK modulation scheme and RS (207, 187) coding scheme, the communica-

tion distance is extended by 44.19%, while the bandwidth efficiency is decreased by

10%. So, as can be imagined from Figure 10, the DBPSK modulation scheme could be

used in inner layer communication system, while the DBPSK with RS coding scheme

could be used in outer layer communication system.
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Figure 37: PDR versus RSSI with Reed Solomon Coding



CHAPTER V

EXPLOITATION OF MULTI-RATE

MARGIN

Multi-rate Margin could be exploited by MTOP, which has been briefly dis-

cussed in Chapter 1. To better understand the special characteristics of MTOP,

Figure 38 has been drawn to illustrate the transmission characteristics of MTOP over

other transmission protocols. Using the idea of multi-rate margin in MTOP, a frame

could be relayed through several intermediate nodes without inter-frame gaps such

as DIFS and backoff time. It does not seem to be possible considering the nodes con-

tention when frames are relayed among intermediate nodes, but the strategy employed

in MTOP will prove the feasibility of this method.

5.1 Multi-rate Transmission Opportunity (MTOP)

As can be seen from Table 3, the difference between the carrier sensing range

of 1Mbps mode and that of 11Mbps mode is 271 meters. This 271 meters space can

actually used for two extra node to relay the transmitted frame without DCF Inter-

frame Space (DIFS) and backoff time because the relaying action will be protected

55
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Figure 38: DCF, TXOP and MTOP packet transmission protocol[41]

by the carrier sensing range of 1Mbps mode. To better illustrate the MTOP idea,

Figure 12 has been plotted out.

The idea of MTOP is to relay one packet via several nodes only with the inter-

packet gap of SIFS. This will efficiently improve the overall throughput for the mesh

network particularly at high rate because all the nodes that are supposed to relay

the packet are sitting within the protected arch and transmitting packets without

considering the interference; this will give us a chance to omit the DCF Interframe

Space (DIFS) and backoff time between each pair of the relaying nodes. For example,

in the high rate communication in Figure 12, a hop node could be inserted on the

right side of the receiver and the distance between the hop node and the receiver is

118 meters. With 589 meters set to be the defer range, the first, second and third

hop communications would not be disturbed by any interferer because both of them

are being protected by the defer range, while in the 1 Mbps case, there is no more

space to insert any more node for relaying.

A small scale test bed consisting of USRP and GNU Radio is again used to

verify the efficiency of MTOP idea. The MAC layer implementation of MTOP and

the layout of our scenario will be discussed below.
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5.2 The MTOP Scenario Layout and result analy-

sis

Current implementation of GNU Radio does packet transmission and reception

using USRP based on packets streaming i.e. there is no carrier sense mechanism

implemented in the benchmark programs for packet transmission and reception. It

was modified to include carrier sense algorithm[31]. Further this code was modified

to include MTOP algorithm too. The python code for implementing the CSMA and

MTOP algorithm in the benchmark programs for sending, forwarding and receiving

the packets will be found in A.

Two sets of experiments were conducted to exhibit the properties of MTOP:

the first one is supposed to prove the second hop of transmission will not be impacted

by an interferer sitting outside the carrier sense range of transmitting node i.e. node

A; the second one is to observe the effect of MTOP on communication inside the

multi-rate wireless network boundaries.

First set consisted of observing wireless communication among three nodes

with CSMA and with/without MTOP algorithm. In the first part of this exercise,

nodes A, B and C used DQPSK modulation scheme at 400 Kbps and interferer node

D used DBPSK modulation at 200 Kbps. Since MTOP affects only the working of

intermediate hop, node B was selected for implementing MTOP for this prototype.

Measurements were recorded for both the scenarios in which node B was working

on CSMA with and without MTOP implementation. In this exercise, firstly, PDR

and throughput measurements for node C were recorded without MTOP implemen-

tation on intermediate hop node i.e. node B. In the second part of this exercise,

measurements were recorded with MTOP implementation on node B.

Table VI: Table representing PDR and throughput improvement [41]

PDR% Throughput(Kbps)
Without MTOP 87.53 53.64

With MTOP 90.54 55.31
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Figure 39: USRP Placement in Edgewater Park, Cleveland [41]

From Table 6, it can be seen that the PDR has been improved by 3.03%

when nodes communicate with MTOP against nodes without MTOP. It proves the

argument that no adverse impact has been induced on wireless network performance

when intermediate nodes send a packet without waiting for next contention period

(after DCF Interframe Space (DIFS)). In addition to PDR, throughput with MTOP

in effect was also higher by 1.67% than without MTOP scenario, proving our argument

of improvement in end-to-end communication scenario.

The second set of experiments was done to observe the effect of MTOP on

communication inside the multi-rate wireless network boundaries. Without MTOP

algorithm, each node competes for the medium and transmits the packet on medium

availability. This restricts the ability to transmit the data packet over multiple hops

of communication and reach the destination in less time. Throughput improvement is

the main objective of MTOP. Using MTOP, a packet can be transmitted much faster

over a series of hops without possible packet collision.

In this exercise, we wanted to prove that MTOP improves the network perfor-

mance through increased throughput without increased collision. A set of PDR and

throughput measurements was taken in this scenario with all the nodes inside the
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Figure 40: Real Test setup in front of Rhodes Tower of Cleveland State University
[41]

carrier sense range of node A. Node A, B and C were kept in a line with intermediate

distance of 90 ft. between nearby nodes. Node D and E were kept in the vicinity of

node B and C with a distance of 80 ft. between them. The testing setup is shown

with a top view of the location, in Figure 40, where this experiment was actually

performed. Firstly, the measurements were taken without MTOP implementation

on node B followed by another set of measurements with MTOP implementation.

Under the MTOP implementation, node B forwards the packets received from node

A, to node C which is the packet destination node. Frame length of each packet

transmitted was kept as 1000 bytes and each measurement was performed multiple

times to exclude any effect of environmental disturbances i.e. wind. It was observed

that throughput was improved by 13.19% after implementing MTOP in the wireless

scenario, without any impact on PDR which was seen as almost constant. Further

details of the measurements are listed in Tables 7 and 8.
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Table VII: PDR and throughput recorded for node C and E for out of carrier range
interference[41]

Node C Node E
PDR% Throughput(Kbps) PDR% Throughput(Kbps)

Without MTOP 90.22 48.37 71.94 38.83
With MTOP 93.15 54.15 76.62 44.54

Table VIII: Average PDR and throughput for out of carrier range interference[41]

PDR% Throughput(Kbps)
Without MTOP 81.08 43.59

With MTOP 84.88 49.34



CHAPTER VI

SUMMARY AND FUTURE RESEARCH

6.1 Conclusions

Multi-rate margin is the fundamental ingredient for multi-hop opportunistic

transmission (MTOP) protocol, which is targeted to improve communication per-

formance in wireless network environment. In this thesis, the concept of multi-rate

margin is introduced based on the multi-rate analysis in IEEE 802.11b radios after

the multi-rate support in IEEE 802.11 radios is investigated; Deep understanding to

Software Defined Radio (SDR) and GNU Radio has been provided; the multi-rate

margin has been analyzed from theoretical point of view, investigated via MATLAB

communication system simulation and tested through real world wireless communica-

tion in outdoor testing with the help of GNU Radio and USRP; the multi-rate margin

is also exploited for providing proof of concept of MTOP and even the self-interference

problem of 802.11b radios has been investigated, the simulation result of which could

be utilized for performance enhancement in multi-hop networks based on the idea of

multi-rate margin.

The around 4.5dB gap has been observed between PDR versus SIR perfor-

mance curves of DBPSK and DQPSK communication systems from the outdoor ex-
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perimentation, the result of which is exactly verified by the communication system

simulation using MATLAB. Apart from the multi-rate margin between DBPSK and

DQPSK, the similar trend is also observed when two kinds of modulation schemes

are implemented with Reed Solomon coding schemes. The multi-rate margin between

DBPSK and DBPSK encoded with RS codes is also apparently observed. MTOP has

also been considered as performing better compared with a simple ad hoc network

communication scenario.

This thesis shows a promising approach for improving the wireless network

performance investigated by Dr. Chansu Yu from Cleveland State University. An

attempt has been made to provide the real world transmission result to support

the multi-rate margin, which has been consolidated by a variety of simulation and

theoretical analysis.

6.2 Future Research

Instead of changing modulation schemes to observe multi-rate margin, other

coding schemes can also be utilized to observe multi-rate margin, say convolutional

coding schemes. It will be easier to see the trade off between the advantages resulting

from multi-rate margin and the loss in the bandwidth efficiency. While the RS code

is good at error detection, the convolutional code more suits to correcting errors.

To further confirm the benefits of MTOP idea, NS-2 network simulation is

necessary to get launched because experimental findings always need simulation result

for support.
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APPENDIX A

PROGRAM

A.1 Program: Python code for outdoor testing

and GNU Radio simulation

A.1.1 Program: Rx Program collecting data

#!/usr/bin/env python

#

# Copyright 2005,2006,2007 Free Software Foundation, Inc.

#

# This file is part of GNU Radio

#

# GNU Radio is free software; you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 3, or (at your option)

# any later version.

#

# GNU Radio is distributed in the hope that it will be useful,
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# but WITHOUT ANY WARRANTY; without even the implied warranty of‘

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with GNU Radio; see the file COPYING. If not, write to

# the Free Software Foundation, Inc., 51 Franklin Street,

# Boston, MA 02110-1301, USA.

#

from gnuradio import gr, gru, modulation_utils

from gnuradio import usrp

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import random

import struct

import sys

import time

# from current dir

from receive_path import receive_path

import fusb_options

import cPickle as p

#import os
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#print os.getpid()

#raw_input(’Attach and press enter: ’)

class my_top_block(gr.top_block):

def __init__(self, demodulator, rx_callback, options):

gr.top_block.__init__(self)

self.rxpath = receive_path(demodulator, rx_callback, options)

#print self.rxpath.u.read_aux_adc(0, 0)

#self.rxpath.u.read_aux_adc(0, 0)

self.connect(self.rxpath)

# /////////////////////////////////////////////////////////////////////////////

# main

# /////////////////////////////////////////////////////////////////////////////

global n_rcvd, n_right

def main():

global n_rcvd, n_right, rx_sequence, rssi_m, rssi, per, tb, MAX

MAX = 1325

rx_sequence = {}

rssi = {}

rssi_m = {}

per = []

n_rcvd = 0

n_right = 0

txpayload = ’txpayload.dat’

f2 = file(txpayload)
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txdata = p.load(f2)

#print txdata

f2.close

pktnos_tx = txdata.keys()

pktnos_tx.sort()

txno_max = pktnos_tx[-1] # the max pktno allowed

#print txno_max

def rx_callback(ok, payload):

global n_rcvd, n_right, rx_sequence

#delay = 0.0001

(pktno,) = struct.unpack(’!H’, payload[0:2])

n_rcvd += 1

#rx_sequence[pktno] = payload # modified for BER

#rssi[pktno] = tb.rxpath.u.read_aux_adc(0, 0) # modified for RSSI the type

#of return is int

#rssi_m[pktno] = tb.rxpath.probe.level()

#while tb.rxpath.carrier_sensed():

# rssi_m[pktno] = tb.rxpath.probe.level()

if n_rcvd > 200: # erase #0-#199 packets

rx_sequence[pktno] = payload

rssi_m[pktno] = tb.rxpath.probe.level()

if ok:

n_right += 1

PER = float(n_right)/float(pktno-200) # modified for PER which stands
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#for PDR

#print pktno

per.append(PER)

#if pktno > (MAX - 3):

# print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d PER

= %.4f" % (

# ok, pktno, n_rcvd, n_right, PER) # modified for PER

#if pktno > 900:

print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d PDR = %.4f"

% (

ok, pktno, n_rcvd, n_right, PER)

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

# put all the received sequence in a file

perfile = ’per.dat’

f = file(perfile, ’w’)

p.dump(per,f)

f.close()

rxpayload = ’rxpayload.dat’

f = file(rxpayload, ’w’)

p.dump(rx_sequence, f)

f.close()

rssifile = ’RSSI.dat’

f = file(rssifile, ’w’)

p.dump(rssi, f)
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f.close()

rssimfile = ’RSSIM.dat’

f = file(rssimfile, ’w’)

p.dump(rssi_m, f)

f.close()

pass

except RuntimeError:

# put all the received sequence in a file

perfile = ’per.dat’

f = file(perfile, ’w’)

p.dump(per,f)

f.close()

rxpayload = ’rxpayload.dat’

f = file(rxpayload, ’w’)

p.dump(rx_sequence, f)

f.close()

rssimfile = ’RSSIM.dat’

f = file(rssimfile, ’w’)

p.dump(rssi_m, f)

f.close()

pass

finally:

# put all the received sequence in a file

perfile = ’per.dat’

f = file(perfile, ’w’)

p.dump(per,f)

f.close()

rxpayload = ’rxpayload.dat’
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f = file(rxpayload, ’w’)

p.dump(rx_sequence, f)

f.close()

rssimfile = ’RSSIM.dat’

f = file(rssimfile, ’w’)

p.dump(rssi_m, f)

f.close()

pass}

A.1.2 Program: Tx Program sending data

#!/usr/bin/env python

#

# Copyright 2005, 2006, 2007 Free Software Foundation, Inc.

#

# This file is part of GNU Radio

#

# GNU Radio is free software; you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 3, or (at your option)

# any later version.

#

# GNU Radio is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with GNU Radio; see the file COPYING. If not, write to
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# the Free Software Foundation, Inc., 51 Franklin Street,

# Boston, MA 02110-1301, USA.

#

from gnuradio import gr, gru, modulation_utils

from gnuradio import usrp

from gnuradio import eng_notation

from gnuradio.eng_option import eng_option

from optparse import OptionParser

import random, time, struct, sys

# from current dir

from transmit_path import transmit_path

import fusb_options

import cPickle as p

#import os

#print os.getpid()

#raw_input(’Attach and press enter’)

class my_top_block(gr.top_block):

def __init__(self, modulator, options):

gr.top_block.__init__(self)

self.txpath = transmit_path(modulator, options)

self.connect(self.txpath)
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# /////////////////////////////////////////////////////////////////////////////

# main

# /////////////////////////////////////////////////////////////////////////////

def main():

global arrImg

arrImg = []

def send_pkt(payload=’’, eof=False):

return tb.txpath.send_pkt(payload, eof)

def rx_callback(ok, payload):

print "ok = %r, payload = ’%s’" % (ok, payload)

#def source_seed(charnum): # modified

# charnum = int(charnum)

# #arrImg = []

# for i in range(0, charnum):

# data = random.randint(0,255) # generate charnum random characters

from 0 to 255

# arrImg.append(data)

#arrImg.append(’’)

# print len(arrImg) let us use source.dat file as the random generator which

is known by both the Tx and Rx.

source_data = ’source.dat’

f = file(source_data)

arrImg = p.load(f)
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print len(arrImg)

f.close()

mods = modulation_utils.type_1_mods()#The mod/demod code registers

when they are loaded.

#See for example the last two lines in

#gnuradio-core/src/gnuradio/blks2impl/dbpsk.py

parser = OptionParser(option_class=eng_option, conflict_handler="resolve")

expert_grp = parser.add_option_group("Expert")

parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

default=’gmsk’,

help="Select modulation from: %s [default=%%default]"

% (’, ’.join(mods.keys()),))

parser.add_option("-s", "--size", type="eng_float", default=1500,

help="set packet size [default=%default]") # how many

in one packet

parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

help="set megabytes to transmit [default=%default]") #

of the bytes being sent

parser.add_option("","--discontinuous", action="store_true", default=False,

help="enable discontinous transmission

(bursts of 5 packets)")

parser.add_option("","--random-num", action="store_true", default=False,

help="enable random char generation")

parser.add_option("","--from-file", default=None,
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help="use file for packet contents")

#parser.add_option("","--charnum", type="eng_float", default=125000,

# help="set the number of random characters

[default=%default]")

# modified

transmit_path.add_options(parser, expert_grp)

for mod in mods.values():

mod.add_options(expert_grp)

fusb_options.add_options(expert_grp)

(options, args) = parser.parse_args ()

if len(args) != 0:

parser.print_help()

sys.exit(1)

if options.tx_freq is None:

sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

parser.print_help(sys.stderr)

sys.exit(1)

if options.from_file is not None:

source_file = open(options.from_file, ’r’)

#if options.random_num is not False:
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#source_seed(options.charnum)

# build the graph

tb = my_top_block(mods[options.modulation], options) # dbpsk_mod

1st call

r = gr.enable_realtime_scheduling()

if r != gr.RT_OK:

print "Warning: failed to enable realtime scheduling"

tb.start() # start flow graph UP TO HERE

# generate and send packets

nbytes = int(1e6 * options.megabytes)

n = 0

pktno = 0

pkt_size = int(options.size)

# generate a dictionary to store transmitted pktno and corresponding

payload

tx_sequence = {}

while n < nbytes:

if options.from_file is None and options.random_num is False:

data = (pkt_size - 2) * chr(pktno & 0xff) # duplicate the

char being transmitted (pkt_size-2) times with each byte standing

for one char, say’0’

elif options.from_file is not None:
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# is "0x00" 1&0xff = 1 chr(1)=0x01

data = source_file.read(pkt_size - 2)

if data == ’’:

break;

else:

data = ’’

for m in range(0,pkt_size-2):

datan = arrImg[pktno * (pkt_size - 2) + m]

#if datan == ’’:

# break;

datan = chr(datan & 0xff)

data = data + datan

payload = struct.pack(’!H’, pktno & 0xffff) + data

tx_sequence[pktno] = payload #modified

#rx_callback(True, payload) # modified

send_pkt(payload)

n += len(payload) # including pktno

sys.stderr.write(’.’)

if options.discontinuous and pktno % 5 == 4:

time.sleep(1)

pktno += 1

# put all the transmitted sequence in a file

txpayload = ’txpayload.dat’

f = file(txpayload, ’w’)

p.dump(tx_sequence, f)
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f.close()

send_pkt(eof=True)

tb.wait() # wait for it to finish

if __name__ == ’__main__’:

try:

main()

except KeyboardInterrupt:

pass



APPENDIX B

PROGRAM

B.1 Program: MATLAB code for communication

system simulation

B.1.1 Program: simulation for DBSPK with RS (255,235)

function [BER] = test(num_bit, M, bitrate, fs, fc )

%------------------------------------------

% bit generator

%------------------------------------------

bits = rand(1, num_bit) > 0.5;

bits = double(bits);

%-------------------------------------

% reed-solomon encoder

%-------------------------------------

m=8; %number of bits each symbol from input

t=10; %error correction ability from input

x_msg = bi2de(reshape(bits,m,length(bits)/m).’, ’left-msb’);
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x_msg = x_msg.’;

n=2^m-1-48; %code length only here modified!!!

k=n-2*t; %information length 3 187

x_msg = reshape(x_msg, k, length(x_msg)/k).’;

msg = gf(x_msg, m);

code = rsenc(msg, n, k);

code = reshape(code.’, 1, length(bits)/m/k*n);

code_uint32 = code.x;

en_bits = de2bi(double(code_uint32), m, ’left-msb’); % convert to bits

[x,y]=size(en_bits);

en_bits = reshape(en_bits.’, 1, x.*y); % reshape it to get a row vector

%------------------------------------------

% gray code

%------------------------------------------

for j=1:length(en_bits)

if en_bits(j) == 0

gr_en_bits(j) = 0;

else

gr_en_bits(j) = 1;

end

end

%------------------------------------------

% differential encoding

%------------------------------------------

len_bits = length(gr_en_bits);

d(1)=0; %-- reference bit is 0
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for j = 1:len_bits

d(j+1)= xor(gr_en_bits(j), d(j));

end

diff = d;

%------------------------------------------

% baseband BPSK modulate

%------------------------------------------

h = modem.pskmod(M); %Create a modulator object

mod_sym = modulate(h,diff); % Modulate the signal bits

%------------------------------------------

% Pulse Shaping and RRC Filter

%------------------------------------------

width = 1/bitrate; % bit duration time [s]

points = fs * width; % the number of points for each bit,

num = rcosine(1,points,’sqrt’); % Transfer function of filter

xpulse = rcosflt(mod_sym,1,points,’filter’,num);% Filter the data.

xpulse = xpulse.’;

%----------------------------------------

%IF modulation

%----------------------------------------

dt = width/points; % sampling period

t = dt .* [0 : length(xpulse) - 1];

y_tx = xpulse.*exp(i.*2.*pi.*fc.*t);

%-------------------------------------------

% channel

%-------------------------------------------

%k = log2(M); % bits per symbol
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%EbNo = 20;

EbNo = 10; % for bpsk Eb is Es

Num = length(EbNo); % measure the length of EbNo

for j = 1:Num

snr = EbNo(j) + 10*log10(log2(M)) - 10*log10(points);

y_noisy = awgn(y_tx,snr,’measured’, ’db’);

y_rx = y_noisy;

%--------------------------------------------

%(receive filter) match filter

%--------------------------------------------

y_match = rcosflt(y_rx.* exp (-i.*2.*pi.*fc.*t),1, points,’Fs/filter’,num);

length(y_match);

y_match = y_match.’;

%-----------------------------------------

% Sample it at time T

%-----------------------------------------

decision_t = [(6*points+1) : points : ((length(mod_sym)+5)*points+1)];

y_decision = y_match(decision_t);

%---------------------------------------------

%differential decoder differentiation also induces noise???

%--------------------------------------------

for m_de= 1:(length(y_decision)-1)

decoded(m_de)=conj(y_decision(m_de)).*y_decision(m_de+1);

end

%--------------------------------------------

%demapping

%--------------------------------------------
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demap_bit = demodulate(modem.pskdemod(M),decoded);

%--------------------------------------------

%degray code

%--------------------------------------------

for j_demap=1:length(demap_bit)

if demap_bit(j_demap) == 0

degray_bits(j_demap) = 0;

else

degray_bits(j_demap) = 1;

end

end

%----------------------------------

% Reed-Solomon Decoder

%----------------------------------

de_bits = bi2de(reshape(degray_bits, m, length(degray_bits)/m).’,

’left-msb’);

de_bits = gf(de_bits,m);

de_sym = reshape(de_bits.’, n, length(de_bits)/n);

decoded_rs = rsdec(de_sym.’, n, k);

decoded_rs = reshape(decoded_rs.’, 1, length(bits)/m);

decoded_bits = de2bi(double(decoded_rs.x),m, ’left-msb’); %convert to bits

decoded_bits = reshape(decoded_bits.’, 1, length(bits));

%figure(4); stem(z_bit);

[num_err(j), BER(j)] = biterr(bits, decoded_bits);

%end

end



87

ebno = power(10, EbNo/10);

a1 = 2.*qfunc(sqrt(2.*ebno)).*(1-qfunc(sqrt(2.*ebno)));

a3 = 2.*qfunc(sqrt(2.*power(10, 7/10))).*(1-qfunc(sqrt(2.*power(10, 7/10))))

a2 = qfunc(sqrt(2.*ebno));

L = semilogy(EbNo, BER, EbNo, a1, EbNo, a2);

legend(’Simulated BER for DBPSK with RS’,’Theoretical BER for DBPSK’,

’Theoretical BER of BPSK’);

set(L, ’LineWidth’, [2]);

axis([0 10 1e-3 1e-1]);

title(’BER performance of coherently detected differentially encoded BPSK’,

’FontSize’, 16);

X = xlabel(’Eb/No [db]’);

set(X, ’FontSize’, 14);

Y = ylabel(’BER’);

set(Y, ’FontSize’, 14);

B.1.2 Program: simulation for 1Mbps with 1Mbps 802.11b

interference

%% 802.11b 1Mbps PHY link with 802.11b interference.

% This M code simulates DBPSK modulation and barker code spreading

% on a perfectly synchonized 802.11b link with other 802.11b devices

% interfering the communication. It calculates the BER

% rate at each SIR and plots the result with the assumption that SNR is

% equal to 35dB.

function [BER,BER_2, SIR] = test_inter(num_bit, M, bitrate, fs, fc )

% Specify a number of system constants.
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% Spreading parameters

Barker=[1 -1 1 1 -1 1 1 1 -1 -1 -1].’; % Barker sequence

Barker2=[1 1 1 -1 -1 -1 1 -1 -1 1 -1].’;

SpreadingRate=length(Barker); % Spreading rate

% Upsampling rate

SamplesPerChip=8; %fs/(bitrate*11)

SNR = 35;

%% ------------------------------------------

% bit generator

%------------------------------------------

%rand(’seed’, 1);

bits_src = rand(1, num_bit) > 0.5; %instead of using randint which generates

% a random scalar that is either 0 or 1, with equal probability,

%we use rand since rand returns a pseudorandom,

%scalar value drawn from a uniform distribution on the unit interval.

bits_src = double(bits_src);

numofone = sum(bits_src)

bits_inter = rand(1, num_bit) > 0.5;

bits_inter = double(bits_inter);

bits_inter_2 = rand(1, 2*num_bit) > 0.5;

bits_inter_2 = double(bits_inter_2);

%% ------------------------------------------

% differential encoding & modulate & spreading
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%------------------------------------------

len_bits = length(bits_src);

% gray code

en_xsym = bi2de(reshape(bits_inter_2,2,len_bits).’, ’left-msb’);

en_xsym = en_xsym.’;

for k=1:length(en_xsym)

if en_xsym(k) == 0

gr_en_xsym(k) = 0;

elseif en_xsym(k) == 1

gr_en_xsym(k) = 1;

elseif en_xsym(k) == 2

gr_en_xsym(k) = 3;

else

gr_en_xsym(k) = 2;

end

end

d1(1)=0; %-- reference bit is 0

d2(1)=0;

d3(1)=0;

for k = 1:len_bits

d1(k+1)= xor(bits_src(k), d1(k));

d2(k+1)= xor(bits_inter(k), d2(k));

end

for k = 1:len_bits

d3(k+1)= mod((gr_en_xsym(k) + d3(k)), 4);

end

diff1 = d1(2:len_bits+1);
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diff2 = d2(2:len_bits+1);

diff3 = d3(2:len_bits+1);

diff1 = 1-2*diff1; % 1-> -1

diff2 = 1-2*diff2; % 0-> 1

h = modem.pskmod(4); %Create a modulator object

mod_sym = modulate(h,diff3); % Modulate the signal bits

SpreadChips = reshape(Barker*diff1,[],1).’;

SpreadInterChips = reshape(Barker*diff2,[],1).’;

SpreadInterChips_2 = reshape(Barker*mod_sym,[],1).’;

%% -----------------------------------------------------

% RRC Filter

%---------------------------------------------------------------

h = rcosine(1,SamplesPerChip,’sqrt’, 0.01); % Transfer function of filter

Tx_Samples = rcosflt(SpreadChips,11*bitrate,SamplesPerChip*11*bitrate,

’filter’,h);% Filter the data. Normalize power due to upsampling

length(Tx_Samples)

Tx_Inter_Samples = rcosflt(SpreadInterChips,

11*bitrate,SamplesPerChip*11*bitrate,’filter’,h);% Filter the data.

length(Tx_Inter_Samples)

Tx_Inter_Samples_2 = rcosflt(SpreadInterChips_2,

11*bitrate,SamplesPerChip*11*bitrate,’filter’,h);% Filter the data.

Tx_Samples=Tx_Samples.’;

Tx_Inter_Samples=Tx_Inter_Samples.’;

Tx_Inter_Samples_2=Tx_Inter_Samples_2.’;

%% IF & Receiver Design

bit_width = 1/bitrate;
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dt = bit_width/11/SamplesPerChip; % sampling period

t = dt .* [0 : length(Tx_Samples) - 1];

Ep = sum(Tx_Samples.^2)/length(Tx_Samples);

Tx_Samples_Complex = Tx_Samples.*exp(i.*2.*pi.*fc.*t)/sqrt(Ep);

Signal_Power = var(Tx_Samples_Complex)

Ep2 = sum(Tx_Inter_Samples.^2)/length(Tx_Inter_Samples);

Tx_Inter_Samples_Complex = Tx_Inter_Samples.*exp(i.*2.*pi.*fc.*t)./sqrt(Ep2);

Signal_Power2 = var(Tx_Inter_Samples_Complex)

Ep3 = sum(Tx_Inter_Samples_2.*conj(Tx_Inter_Samples_2))/

length(Tx_Inter_Samples_2);

Tx_Inter_Samples_2 = Tx_Inter_Samples_2.*exp(i.*2.*pi.*fc.*t)./sqrt(Ep3);

Signal_Power3 = var(Tx_Inter_Samples_2)

noise = 1/sqrt(2)*[randn(1,length(Tx_Samples_Complex)) +

j*randn(1,length(Tx_Samples_Complex))];

noise_signal = sqrt(Signal_Power./power(10, 0.1*SNR)).*noise;

10*log10(Signal_Power/var(noise_signal))

SIR = 0;

for k3 = 1:length(SIR)

Amp = sqrt(Signal_Power./power(10, 0.1*SIR(k3)));

Tx_Inter_Samples_Complex_Amp = Tx_Inter_Samples_Complex.*Amp; % fd =1MHz

var(Tx_Samples_Complex)

var(Tx_Inter_Samples_Complex_Amp)

10*log10(var(Tx_Samples_Complex)/var(Tx_Inter_Samples_Complex_Amp))

Rx_Samples_Input = Tx_Samples_Complex + Tx_Inter_Samples_Complex_Amp ;
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Rx_Match = rcosflt(Rx_Samples_Input.* exp (-i.*2.*pi.*fc.*t),

11*bitrate,SamplesPerChip*11*bitrate,’Fs/filter’,h);

length(Rx_Match);

Rx_Match = Rx_Match.’;

decision_t = [(6*SamplesPerChip+1) : SamplesPerChip :

((length(SpreadChips)+5)*SamplesPerChip+1)]; % delay = 3

Rx_Samples = Rx_Match(decision_t);

% Despread - sample symbol

Rx_Symbols=Barker.’*reshape(Rx_Samples,SpreadingRate,num_bit);

% Multiply by Barker

Rx_Symbols = Rx_Symbols/SpreadingRate; % Make a row and normalize

% demodulate

for n = 1: length(Rx_Symbols)

if real(Rx_Symbols(n)) > 0

Rx_En_Bits(n) = 0;

else

Rx_En_Bits(n) = 1;

end

end

numofone= sum(Rx_En_Bits)

% Diff. Decod.

Rx_En_Bits = [0, Rx_En_Bits];

for m= 1:(length(Rx_En_Bits)-1)

Rx_Bits(m) = xor(Rx_En_Bits(m+1), Rx_En_Bits(m));

end

length(bits_src);

Rx_Bits;

ErrorBits(k3) = sum(bits_src~=Rx_Bits);
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clear Rx_En_Bits;

end

for k = 1:length(SIR)

Amp = sqrt(Signal_Power./power(10, 0.1*SIR(k)));

Tx_Inter_Samples_Complex_Two = Tx_Inter_Samples_2.*Amp; % fd =1MHz

Rx_Samples_Input_2 = Tx_Samples_Complex +

Tx_Inter_Samples_Complex_Two+ noise_signal;

Rx_Match_2 = rcosflt(Rx_Samples_Input_2.* exp (-i.*2.*pi.*fc.*t),

11*bitrate,SamplesPerChip*11*bitrate,’Fs/filter’,h);

% Filter the received data, we only need its real part;

length(Rx_Match_2);

Rx_Match_2 = Rx_Match_2.’;

decision_t = [(6*SamplesPerChip+1) : SamplesPerChip :

((length(SpreadChips)+5)*SamplesPerChip+1)]; % delay = 3

Rx_Samples_2 = Rx_Match_2(decision_t);

% Despread - sample symbol

Rx_Symbols_2=Barker.’*reshape(Rx_Samples_2,SpreadingRate,num_bit);

% Multiply by Barker

Rx_Symbols_2 = Rx_Symbols_2/SpreadingRate; % Make a row and normalize

% demodulate

for n = 1: length(Rx_Symbols_2)

if real(Rx_Symbols_2(n)) > 0

Rx_En_Bits_2(n) = 0;

else

Rx_En_Bits_2(n) = 1;

end
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end

% Diff. Decod.

Rx_En_Bits_2 = [0, Rx_En_Bits_2];

for m= 1:(length(Rx_En_Bits_2)-1)

Rx_Bits_2(m) = xor(Rx_En_Bits_2(m+1), Rx_En_Bits_2(m));

end

length(bits_src);

ErrorBits_2(k) = sum(bits_src~=Rx_Bits_2);

clear Rx_En_Bits_2;

end

BER = ErrorBits./length(bits_src)

BER_2 = ErrorBits_2./length(bits_src)

figure(1);

L = semilogy(SIR, BER, SIR, BER_2);

title(’1Mbps 802.11b DSSS performance with IEEE 802.11b interference’);

set(L, ’LineWidth’, [2]);

axis([-20 5 1e-3 1e-0]);

X = xlabel(’SIR [db]’);

set(X, ’FontSize’, 14);

Y = ylabel(’BER’);

set(Y, ’FontSize’, 14);
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