
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

ETD Archive

2010

Computational Complexity of Signal Processing Functions in Computational Complexity of Signal Processing Functions in

Software Radio Software Radio

Kushal Y. Shah
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

 Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Shah, Kushal Y., "Computational Complexity of Signal Processing Functions in Software Radio" (2010).
ETD Archive. 793.
https://engagedscholarship.csuohio.edu/etdarchive/793

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/793?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

COMPUTATIONAL COMPLEXITY OF SIGNAL

PROCESSING FUNCTIONS IN SOFTWARE RADIO

KUSHAL Y. SHAH

Bachelor of Engineering in Electronics and Communication

Gujarat University

June, 2008

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December, 2010

This thesis has been approved

for the Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

__

Thesis Committee Chairperson, Dr. Chansu Yu

__

Department & Date

__

Dr. Fuqin Xiong

__

Department & Date

__

Dr. Wenbing Zhao

__

Department & Date

 iii

ACKNOWLEDGEMENTS

 First of all, I would like to thank my advisor Dr. Chansu Yu for giving me this wonderful

opportunity and encouraging me to pursue research in the field of wireless communications. I am

very grateful for his enthusiasm, patience and invaluable guidance which enabled me to fulfill

my endeavors.

 I would also like to thank my committee members, Dr. Wenbing Zhao and Dr. Fuqin Xiong,

for being extremely supportive throughout my studies at Cleveland State University.

 I would also like to thank my lab-mates, Sachin, Robert, Tianning and Murali, who provided

precious inputs at various stages of my research work.

 Last but not the least; I would like to thank my parents, sister, fiancée, friends, and family for

their continuous support and encouragement during this entire journey.

 iv

COMPUTATIONAL COMPLEXITY OF SIGNAL

PROCESSING FUNCTIONS IN SOFTWARE RADIO

KUSHAL Y. SHAH

ABSTRACT

 The increased usage of mobile communication devices has imposed a challenge of

achieving efficient communication with minimum power consumption. Moreover, with

the advent of software defined radios (SDR), it is highly possible that signal processing

functions would be implemented in software in future mobile devices. Hence, the power

consumption of these future devices will be directly related to the power consumed by the

processor that executes SDR software. This thesis aims at analyzing the computational

complexity of different modulation schemes and signal processing communication

functions of IEEE WiFi standard. This analysis provides good insight on how the

computational load varies at different data rates for different modulation schemes.

 For this purpose, we have analyzed computational complexity of various modulation

schemes and other communication functions using widely known software radio platform

i.e. USRP hardware and GNU Radio open source software platform, Matlab and OProfile

(open source Linux profiling tool). After performing an extensive analysis, we are able to

determine how different modulation schemes and communication functions perform

computationally on a given platform. This analysis would help to achieve effective

communication along with the efficient use of power in SDR based systems.

v

TABLE OF CONTENTS

 Page

ABSTRACT……………………………………………………………………… vi

LIST OF TABLES……………………………………………………………….. vii

LIST OF FIGURES……………………………………………………………… viii

ACRONYMS……………………………………………………………………. ix

CHAPTER

I. INTRODUCTION…………………………………………………… 1

II. RELATED WORK…………………………………………………... 4

 2.1 Low-Power Radio………………………………………………... 4

 2.2 Bitrate Scaling for Energy-Delay Tradeoff……………………… 8

 2.3 Previous Work on Computational Complexity Analysis………... 12

III. SOFTWARE RADIO TESTBENCH AND OPROFILE……………. 15

 3.1 GNU Radio – SDR Software Architecture………………………. 17

 3.2 USRP – SDR Hardware Architecture……………………………. 19

 3.3 Matlab and Simulink……………………………………………... 21

 3.4 OProfile…………………………………………………………... 23

IV. COMPUTATIONAL COMPLEXITY ANALYSIS OF SDR………….. 25

 4.1 USRP/GNU Radio-based Complexity Analysis………………… 26

 4.1.1 Transmitter Results with USRP1…………………………. 27

 4.1.2 Receiver Results with USRP1……………………………. 34

 4.1.3 Complexity Analysis with Bandwidth Variation…………. 38

 4.2 BBN 802.11b-based Complexity Analysis……………………… 41

vi

 4.3 Matlab-based Complexity Analysis……………………………... 43

 4.4 Summary………………………………………………………… 46

V. CONCLUSION AND FUTURE WORK………………………………. 48

BIBLIOGRAPHY……………………………………………………………….. 50

APPENDICES…………………………………………………………………... 53

A. OProfile Tools………………………………………………………….... 54

B. GNU Radio Signal Processing Functions……………………………….. 56

C. Miscellaneous Commands………………………………………………. 69

vii

LIST OF TABLES

Table Page

I. Overall Transmitter Complexity for each Modulation Scheme………… 28

II. Summary of Modulation Specific Symbols for Transmitter……………. 28

III. Computational Complexity of Transmission functions………………… 29

IV. Overall Receiver Complexity for each Modulation Scheme…………… 35

V. Complexity of Individual Reception Symbols in GNU Radio………….. 36

VI. Summary of Modulation Specific Symbols for Receiver………………. 37

VII. Modulation-specific Complexity Analysis with Bandwidth Variation…. 40

VIII. Overall GNU Radio Complexity Analysis with Bandwidth Variation…. 40

IX. Profiling results of BBN 802.11b Transmitter…………………………... 42

X. Computational Complexity for Individual Symbols in Matlab…………. 44

viii

LIST OF FIGURES

Figure Page

1. Typical Hardware-Based Radio………………………………………… 5

2. Energy Delay Trade-off for QAM……………………………………… 10

3. IEEE 802.11a/b/g Implementation…………………………………….. 13

4. Block Diagram of Software Defined Radio……………………………. 16

5. Block Diagram of GNU Radio Architecture…………………………… 18

6. Schematic Block Diagram of USRP……………………………………. 19

7. Detailed Schematic Block Diagram of USRP1………………………… 20

8. Basic Transceiver using GNU Radio…………………………………... 26

9. Transmitter Complexity for each Modulation Scheme………………… 29

10. Computational Complexity of GNU Radio Transmitter………………. 33

11. Receiver Complexity for each Modulation Scheme…………………… 36

12. BBN 802.11b Transceiver…………………………………………….. 42

13. Computational Complexity of BBN 802.11b Transmitter……………. 42

14. Matlab SDR……………………………………………………………. 43

15. Matlab SDR Transmitter………………………………………………. 43

16. Matlab SDR Receiver………………………………………………….. 44

17. Computational Complexity of Matlab SDR……………………………. 46

ix

ACRONYMS

DBPSK Differential Binary Phase Shift Keying

DQPSK Differential Quaternary Phase Shift Keying

QAM Quadrature Amplitude Modulation

CCK Complimentary Code Keying

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

USRP Universal Software Radio Peripheral

MAC Media Access Control

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

CCA Clear Channel Assessment

AGC Automatic Gain Control

SAW Surface Acoustic Wave

DVS Digital Voltage Scaling

SIMD Single Instruction, Multiple Data

PLCP Physical Layer Convergence Procedure

SWIG Simplified Wrapper and Interface Generator

CIC Cascaded Integrator-Comb

GMSK Guassian Minimum Shift Keying

1

CHAPTER I

INTRODUCTION

 With the advent of software defined radios; it is possible to realize a fully

programmable wireless communication system in the future. It is likely that in the near

future, most of the mobile communication devices will be based on SDR as it can be

easily reconfigured as compared to hardware radios. Most of the current SDR platforms

are implemented on either Field Programmable Gate Arrays (FPGAs) or digital signal

processors (DSPs). These hardware platforms are capable of supporting signal processing

functions of most of the modern high speed wireless protocols. However, these hardware

platforms are currently very expensive and require high skills to program them [1].

 Due to above constraints, the developers often tend to use SDR systems based on

general purpose processor architecture. One of the examples of such system is GNU

Radio and USRP, where GNU Radio provides software platform for implementing signal

processing functions on general purpose architecture and USRP provides hardware

2

platform which serves as RF Front end. However, currently implementing SDR on

general purpose PC architecture has its own set of limitations such as requirement of very

high bus throughput from RF Front end to processor, meeting low latency real time

deadlines of PHY and MAC layers and able to meet high computational requirements of

PHY signal processing functions [1].

 As said earlier, it is expected that future mobile communication devices will be based

on SDR systems. However, the computational requirements for some of the widely used

wireless protocols such as IEEE 802.11a/b/g can be very high and thus can drain the

power resources of the SDR devices very quickly. So besides the issue of performance,

another critical requirement in future SDR devices is to manage energy usage judiciously

and efficiently. In this thesis, the main focus is on the computational requirements

imposed by the PHY signal processing functions on general purpose processor

architectures. The aim of this analysis is to identify which signal processing functions are

highly computationally intensive on the processor. This analysis would help the

developers of SDR devices to select appropriate processor architecture based on the

requirements of the application. Also, for a given platform, the developers can use this

analysis to devise a scheme or algorithm to use the energy resources judiciously.

 This thesis provides a detailed analysis of computational complexity of different

modulation schemes such as M-ary DPSKs and QAMs using GNU Radio/USRP and also

about the signal processing functions of IEEE 802.11b standard using Matlab/Simulink

software. The rest of the thesis is organized as follows. Chapter 2 provides a background

on wireless communication systems, work done on power saving mechanisms by other

3

researchers. Chapter 3 describes the software radio testbench used for the detailed

analysis of computational complexity. Chapter 4 focuses on the computational

complexity results and their detailed analysis. Chapter 5 summarizes the findings of the

entire thesis. Chapter 6 discusses the future scope of this work. Usage of different

software tools, details of different signal processing functions used in GNU Radio are

provided in the appendix for reference.

4

CHAPTER II

RELATED WORK

 In this section, we first discuss design considerations for low power operations in

hardware-based conventional wireless radio in Section 2.1. In Section 2.2, we discuss

about the impact of bit-rate scaling on energy-delay (rate) trade-off. In Section 2.3, we

discuss previous research efforts on computational complexity analysis for software

defined radio.

2.1 Low-Power Radio

 As a reference, Fig. 1 shows a typical hardware-based radio, which consists of RF

front end and electronics part [2], [3]. The RF front end is responsible for gain (power

amplifier and low-noise amplifier) and frequency conversion. The electronics part is

5

responsible for frequency synthesis, filtering, modulation, up converting, etc. Note that,

in SDR, the RF front end part still remains the same as in the conventional hardware-

based radio but the electronics part is replaced by a general-purpose microprocessor-

based platform with software support.

Figure 1: Typical Hardware-Based Radio

 Power dissipation of RF front ends is analyzed in great detail in [4]. The main signal

processing functions of an RF front end are gain (to convert the usually weak signals to

convenient amplitude levels for further processing) and frequency conversion (to convert

signals to convenient frequencies for further processing). In the receive path, selecting the

desired channel among (many) other channels, and extracting the information that is

applied through modulation to the radio signal, is usually carried out in the IF signal

processing circuits. In the transmit path, modulating the information to be transmitted

onto a radio signal is often also carried out in the IF circuits [4].

6

 802.11 standards have always put power saving as priority in the design and

implementations. Initial implementations of the 802.11 standard including Prism I and II

attempt to reduce the energy cost in many different ways. One of the ways to achieve

power savings is to shut down the radio when it is not being used. The media access

controller (MAC) keeps sensing the channel for any signal and if there is not activity then

it turns off the radio. It is also possible to put different parts of communication circuitry

to sleep using separate power control lines in order to save power. It is also possible to

save power by transmitting at as low power as possible without compromising the

reliability factor. This transit power control has something to do with modulation scaling

as discussed later in this section.

 Design considerations for low power WLAN in the framework of 802.11 standards

have been discussed in detail in [5]. Minimizing power consumption is one of the

important features of IEEE 802.11 standards. IEEE 802.11b standard is designed for

transmitting at lower distances at higher data rates such as 1, 2, 5.5 and 11 Mb/s.

Processing gain and multipath protection are achieved using efficient phase shift keying

(PSK) waveforms. By minimizing the time frame when transmitter is on and transmitting

with minimal power usage would be the key objective of power reduction.

 Some of the well-known methods for saving power in 802.11 standard are to transmit

at as low power as possible, operating at low voltage, sensing channel at low power for

low power acquisition, putting radio to sleep when unused, and using single oscillator

and surface acoustic wave (SAW) filter [5].

7

 Different sections of the circuitry can be put to sleep by using separate power control

enable lines. These sections are generally the ones used in conventional radio such as RF

and IF processing sections. Even the gaining circuitry is kept running at low power until

significant activity is sensed on channel in order to contribute to power saving. In order to

achieve this signal detection is carried out by detectors in baseband processing section.

One of the major power consumption areas in a communication system is sensing the

channel and processing it continuously when radio is in receiver mode. So it is very

important to minimize power consumption as much as possible in this section. Two

techniques used for carrier sense-processing are Clear-channel-assessment (CCA) and

acquisition activation. Automatic Gain Control (AGC) behavior and Barker codeword

correlation can be used together in order to sense carrier on channel. Thus AGC can be

used in carrier sense process to minimize power consumption to a large extent. Deciding

a threshold level for starting the digital signal processing would offer significant

advantage to power saving. For example, if in a certain application very weak signals are

not important and can be ignored without any impact on performance, then a huge

amount of power savings can be realized as the receiver circuitry would be activated only

when there is sudden rise in received signal power probably indicating arrival of a packet.

However, if the weak signals are also important for the performance then Barker

correlation should be used for carrier detection. For example, a signal transmitted at a

data rate of 1 Mb/s can have an SNR of 0 dB and hence in this case Barker correlation on

the noise floor becomes very important. Barker correlation requires only additions and

subtractions and hence can be easily implemented such that it consumes low power [5].

8

 802.11 standards also have low-power acquisition mode and Power Save Mechanism

(PSM) which can address energy cost during the long, idle listen period. The radio can

end up spending more energy while listening idly for a signal. This cost can be

minimized by turning on only the low-power carrier-sense processing while not running

the costly acquisition circuitry [5].

 Still, idle listening could be a significant contributor of the total energy expenditure

simply because of its longer duration. Low power sleep state is available in many

conventional radios. In this state, significantly low power is consumed as even carrier

sense processing is not allowed [6]. Low power sleep state has shown clear benefits over

various different energy cost studies. IEEE 802.11 PSM allows a radio can go into sleep

mode on its own if it has nothing for transmission or reception.

2.2 Bitrate Scaling for Energy-Delay Tradeoff

 The major contributor of power consumption in software radio is the radio electronics

used for transmissions at GHz carrier frequency, which is particularly true for short-range

communication (RF Front-end power, PRF, on the order of 1mW for signals transmitted at

1Mbps with BER of 10
−5

) [3]. Sending frames in burst at high bit rates and then turning

off transmitter during no activity periods can also help in power savings. However, this

method causes a significant overhead for switching between on and off state [3] and thus,

a better alternative is to use dynamic voltage scaling (DVS).

9

 Each transmitted symbol in M-ary modulation scheme is obtained from a number of

distinct waveforms. Thus, log2M number of bits are required for each symbol. Some of

the well-known M-ary modulation schemes are Phase Shift Keying (M-PSK),

Quadrature Amplitude Modulation (M-QAM), and Frequency Shift Keying (M-FSK). In

[3], bandwidth efficiency is analyzed against power used for transmission. In order to

carry out this analysis they transmitted a signal at 1Mbps with a frequency of 5.8GHz and

BER was set to 10
−5

. The channel was assumed as Rayleigh fading channel. The path loss

exponent is around 2-3 as can be seen in a closed environment with large obstacles [3]. In

M-ary modulation schemes, transmit on-time is minimized by the number of bits per

symbol if the symbol rate is kept at 1 MSymbols/s. However, this can increase both PRF

as well as PElec [3].

 In [7], modulation scaling and the corresponding energy-delay tradeoff has been

studied in detail

 (1)

 Where is , RS is symbol rate, and b is the constellation size (number of bits per

symbol).

10

Figure 2: Energy Delay Trade-off for QAM [9]

 As b increases, the packet delay () is reduced but energy cost (Ebit) increases. In this

case certain portions of the circuitry runs at a frequency which is close to instantaneous

rate of symbols (RS) while the other portions run at maximum possible symbol rate,

hence the power consumed by the electronic circuitry can be represented as follows [7],

 (2)

 PRF depends on the BER requirement related to the modulation scheme used. The

value of CE is affected by radio architecture, circuit implementation and the

semiconductor technology. In other words,

 (3)

11

 Fig. 2 shows the similar trend [8]. Here, CS is also constant based on receiver

implementation and operating temperature. It is clear from above discussion that by

varying constellation size ‘b’ one can find an optimal point between energy consumption

and performance delay. This process is known as modulation scaling. The constellation

size can be modified in order to minimize power consumption such that it does not

increases delay to an extent that it affects the performance. In [7], this tradeoff has been

exploited to develop an energy-aware packet scheduling scheme. It is possible to

conserve energy in packet scheduling system by bringing modulation level down when

there are no packets in queue. And similarly when more number of packets queue up, one

can increase ‘b’ so that there is no overflowing or long queuing. The basic concept is to

adjust the ‘b’ of the modulation schemes based on the traffic in the system (i.e. being

transmitted).

 The energy-delay tradeoff has been discussed in [7]. Rate or constellation size

adaptation helps to improve the energy and delay performance. It also proposes a link

scheduling algorithm in the context of TDMA-based sensor networks [9]. They are based

on the prior result that for some short-range applications, M-ary modulation outperforms

binary modulation for energy savings by decreasing the transmission time, which again

assumes that transmit power is adjusted according to the constellation size to maintain

BER.

 In modern wireless nodes, three critical parameters are present all the time, which are

as follow: voltage scaling, convolution code strength, and radio transmission power [10].

For example, based on the required transmission distance one can adjust the transmitter

power. Also, this study uses four criteria to judge the efficiency of communication

12

system: range, reliability, latency, and energy. These are the most general criteria used to

specify communication requirements of an application.

2.3 Previous Work on Computational Complexity Analysis

 The most recent study on computational complexity has been conducted in [1], which

was necessary to assess the performance limitation and to comprehend abundant new

ideas such as lookup tables (LUT), SIMD (single instruction, multiple data) architecture,

etc. SORA is a software radio platform that can realize the commercial 802.11a/b/g

network interface cards in combination with SoftWiFi radio system [1]. It includes radio

control board (RCB) which connects PC memory through high-speed and low-latency

PCIe bus to RF front-end, SIMD extensions in existing processors, software architecture

that uses lookup tables aggressively, and real-time provisions for faster PHY processing.

 According to their performance study, receiving signals modulated higher modulation

rates requires higher CPU utilization. It is observed that a single core of present day’s

multi-core CPUs can easily handle load imposed by different 802.11b modulation modes.

Sora SoftWiFi requires about 70% of the total power available from a single core for

processing SDR functions at a data rate of 11Mbps. However, two cores might be used

for processing receiver functionalities of 802.11a/g PHY layer. From their study, Viterbi

decoder proves to be the most computationally intensive section of 802.11a/g statndard. It

requires about 1.4 Gcycles/s when modulation data rata is higher than 24Mbps [1].

13

Figure 3: IEEE 802.11a/b/g Implementation [1]

 The least computationally intensive component found in 11b and 11a/g standard was

the Frame detection section. It required only 11% for 11b and 3.2% for 11a/g and it

remains constant for different data rates. However, one important thing to note is that the

frame detection takes place every single time even if there is not useful communication as

the receiver does not know when the frame will arrive. Also in case of SORA, whenever

a frame is detected it utilizes about 29% of a single core to synchronize in 11b and about

20% of a single core in 11a/g [1]. The next step that SORA performs after frame

synchronization is it will demodulate Physical Layer Convergence Procedure (PLCP)

header. This header is always transmitted at the lowest data rate supported by the 802.11

standard. This component requires about 27.5% of a single core in case of 11b and

requires about 44% in case of 11 a. Thus from their study, it is very clear that

demodulation at higher data rates is the most computationally intensive part of a

communication system. Also, theoretically they found that direct implementation of

802.11b requires about 10 Gops while 802.11a/g requires about 40 Gops. Software

techniques in SORA are efficient PHY processing by pre-calculating LUTs (make them

14

resident in L2 cache), multi-core streamlines processing, and real-time support. Also,

they found that SIMD model can easily accommodate FFT, FIR filters and Viterbi

decoder. FIR filter is the most demanding in the implementation of 802.11b while Viterbi

decoder is the most demanding in 802.11a.

 To SDR platform developers, it is important to understand the computational

complexity of SDR functions in order to make a decision on architectural choices for the

SDR. For example, SODA is software radio platform, based on an asymmetric processor

consisting of a scalar and SIMD pipeline [11]. According to [11], the heaviest

computational work is Viterbi decoder, FFT and IFFT in 802.11a (24Mhz) wireless

system. In W-CDMA, it is Searcher and Turbo decoder. In [12], computational

complexity of DQPSK modulation has been analyzed in the context of GNU radio/USRP.

Filtering in receiver is highly computationally intensive, ranging from 100-200

operation/sample. Applying the sampling speed of 22.5 MHz will result in 22.5 MSPS

(mega samples per second), so that it needs 2,250 - 4,500 MIPS (million instructions per

second).

 This thesis, for the first time, evaluates the computational complexity of SDR software

by using the modulation schemes implemented in GNU Radio, BBN implementation of

802.11b in GNU Radio and 802.11b implementation in Matlab. This thesis evaluates the

communication complexity of SDR in terms of the total cycles as well as the

instantaneous CPU power (cycles per second) to correctly compare the complexity of

different modulation schemes. For the microprocessor that runs SDR, the latter is more

important because it determines the voltage and frequency level and thus, the energy cost.

15

CHAPTER III

SOFTWARE RADIO TESTBENCH AND OPROFILE

 In the recent times, software defined radio has gained a lot of importance as it

provides flexibility to the radio communication by implementing radio functionality in

software rather than in hardware. Some of the major advantages of software radio are that

they can be reconfigured “on-the-fly”, their features can be quickly and easily upgraded,

and they can be used to build smart or cognitive radios. However, due to the constraints

of today’s technology, there is still some RF hardware involved in software defined radio

system. Figure 4 illustrates the block diagram of software defined radio. There are quite a

few software defined radio systems today and one of them is GNU Radio/USRP system.

The emergence of GNU Radio software and USRP hardware has allowed the

16

research community to develop and analyze wireless communication systems easily in

software radio environment.

Figure 4: Block Diagram of Software Defined Radio

 GNU Radio is an open source software toolkit that allows easy development of

software defined radios. GNU Radio provides signal processing blocks which can be

used to implement software radio functionalities on a general purpose processor. Radio

front-end for GNU Radio is provided by USRP. USRP acts as a flexible hardware

platform that can provide basic RF front-end functionalities.

17

3.1 GNU Radio – SDR Software Architecture

 GNU Radio software architecture provides a library of signal processing blocks which

can be glued together to build and deploy software defined radios [13]. The library

provides various functions for signal processing functions such as filtering, adding

signals, transforming, decoding, hardware access and many others. These libraries or

modules are implemented in C++ language in the form of classes. Each of these signal

processing block is equivalent to complex communication block implemented in

conventional hardware radio. Thus, in GNU Radio, low level communication blocks are

implemented by these C++ modules. In GNU Radio, the top level application

programming for implementing advanced wireless radio communication protocols is

implemented in Python scripting language. Basically, Python is used to create a

flowgraph to connect signal processing blocks in GNU Radio. This flowgraph resembles

to a radio chain comprising of nodes which are the signal processing blocks implemented

in C++ while the data flows along the edges of the flowgraph. Each node in the

flowgraph performs exactly one signal processing function while the data flowing along

the edges of the flowgraph can be in the form of symbols, samples or bits. Each

flowgraph at least needs one source and one sink acting as input and output ports. Figure

5 provides the generic block diagram of GNU Radio Architecture.

18

Figure 5: Block Diagram of GNU Radio Architecture

 As the signal processing blocks and higher level application development is done in

two different languages, SWIG (simplified wrapper and interface generator) is used to

connect them together. SWIG is a software tool which wraps C/C++ blocks for using

them with a variety of high level scripting languages such as Python, TCL, Perl and many

more. Due to the use of SWIG, GNU Radio architecture is capable of using powerful

features of both Python and C++ languages [14].

 C++ is used to implement signal processing blocks it can efficiently manipulate bytes,

packet headers, and implement algorithms that can run over large data sets. On the other

side, Python is used for its flexibility and ease of programming as it allows developers to

build their applications quickly. Together Python and C++ blocks can implement

software radio functionalities on a general purpose processor. USRP hardware provides

or accepts data from GNU Radio through USB cable connected to computer.

Python Application

SWIG

C++ Signal Processing Blocks

USB Interface

19

3.2 USRP – SDR Hardware Architecture

 While GNU Radio provides the software platform for implementing most of the signal

processing functions, Universal Software Radio Peripheral (USRP) provides a basic

hardware platform in order to transmit and receive signals at different frequencies with

different bandwidths. In short, USRP provides RF frontend for software defined radio

platform. USRP consists of a motherboard which can support different daughterboards

for communication at different frequencies. It was developed by a team headed by Matt

Ettus [15]. There are two different versions of USRPs called as USRP1 and USRP2.

USRP1 consists of RF frontend, ADCs/DACs, FPGA and USB controller while USRP2

is a more advanced version of USRP1 and it provides Ethernet connectivity to the

computer instead of USB connection. Following figure shows schematic block diagram

of USRP1.

Figure 6: Schematic Block Diagram of USRP

 As seen in the figure above, USRP1 uses a FPGA for performing frequency up/down

conversion. Basically, FPGA manages the data rate of the signal so that it can be

DAC

20

transferred through USB cable to or from the computer. ADCs/DACs are respectively

used to convert signal from analog to digital format and vice versa. USB controller

controls data transfer over USB cable [16]. All of the above things are accommodated on

the motherboard while the daughterboards provide the RF front-end functionality.

Depending on the frequency band to be used for communication, different

daughterboards can be plugged in and out of USRP system. The figure below shows a

detailed schematic block diagram of USRP1.

Figure 7: Detailed Schematic Block Diagram of USRP1 [17]

21

 In case of USRP1, the digital down converters used in RX path are implemented in

FPGA configuration while the digital up converters used in TX path are implemented in

AD9862 CODEC chips instead of FPGA. And the only transmit signal processing blocks

implemented in FPGA are the CIC (cascaded integrator-comb) interpolators [17].

 Thus, in short, both GNU Radio and USRP were used together to build software

defined radio in this thesis and were used to analyze computational complexities of

different signal processing functions implemented in software. In the next section, Matlab

and Simulink software is covered in detail as they are very useful and effective tools for

simulating software radio functionality.

3.3 Matlab and Simulink

 Matlab is a very high level language that provides an interactive environment so that

one can easily focus on their applications rather than worrying about the programming

details. Because of its flexibility and wide reach, Matlab is used to implement numerous

applications in field of engineering, science and mathematics. Some of these widely

known applications are signal and image processing, communications, control design,

financial modeling and analysis, and computational biology. Moreover, Matlab provides

some toolboxes which are collections of task and application specific Matlab functions,

which makes application development a lot easier for the developer.

 It also makes it easier to develop various algorithms and architecture exploration for

communication systems. It allows design teams working in different areas such as RF,

22

baseband, control, and analog to collaborate easily [18]. Also, through re-use of models

and algorithms already available in Matlab, it is possible to enable early verification

throughout the design cycle. It also allows integration with legacy code and with third-

party hardware and software co-simulation environments easily. For above mentioned

reasons, Matlab is a great tool for designing and simulating communication systems.

 On the other hand, Simulink can be used for modeling, simulating, and analyzing

dynamic systems in multiple domains that include controls, signal processing,

communications, and other complex systems [18]. Moreover, modeling in simulink is

easy as it provides graphical user interface and a customizable set of block libraries.

 For computational complexity analysis, Simulink is used to implement software

defined radio applications as it allows simulation and performance analysis of SDRs.

Simulink also provides automatic code generation for creating embedded software. Also,

tools provided in simulink can easily interact with SCA and VHDL code generators.

Simulink can also be used for specification capturing and executable implementation-

independent model construction. Moreover, it allows model elaboration from behavioral

modeling using fixed-point analysis [18].

 Simulink enables designer to build implementation-independent models required by

SDR programs and hence allows code portability and reuse. Moreover, there are some

useful toolboxes that are readily available along with Matlab and Simulink. The most

important toolboxes that were used in this thesis for software defined radio purposes were

communications toolbox, signal processing toolbox.

23

 Signal Processing Toolbox and Blockset provide tools for design and analysis of

industry-standard algorithms for analog and digital signal processing. Communications

Toolbox and Blockset provide tools for exploring, analyzing, designing and simulating

physical layer of communication systems [18].

3.4 OProfile

 In order to analyze computational complexity of communication functions, it was

necessary to use a system profiler that collects the information with very low overhead.

OProfile seemed to be the best choice as it has been used in many previous research

works and it is widely used for Linux systems with a wide variety of underlying

processor architectures.

 OProfile uses hardware performance counters already available for various events in

the processor for profiling application code. It supports all the Intel processors (32-bit as

well as 64-bit), AMD Athlon, AMD64, ARM, Alpha and more. It also works on most

2.2, 2.4 and 2.6 kernels.

 OProfile works on the principle of sampling, and it helps the programmer to identify

problems with their code [19]. OProfile uses a kernel driver which is well supported by

daemon to collect data which is profiled by it [20]. It also provides several tools which

can be used for interpreting the raw data collected by the profiler. OProfile makes use of

the hardware performance counters available in the CPU. It can also be used to measure

time spent by each function – a functionality provided by gprof [20]. The tools available

24

in OProfile for post profile analysis that allows user to generate function-level or

instruction-level detailed reports. OProfile imposes very low overhead on the system

which is very beneficial. This overhead varies based on the sampling frequency.

 Some of the common events that OProfile can monitor are total number of retired

instructions, time during which processor is not halted, retired branches, retired

mispredicted branches, cache references, etc.

25

CHAPTER IV

COMPUTATIONAL COMPLEXITY ANALYSIS OF SDR

 The purpose of this section is to obtain the computational complexity of SDR

functions in terms of the number of samples (instructions executed by processor).

However, for the microprocessor that runs SDR, what is more important is the required

instructions to execute per second because it determines the voltage and frequency level.

In section 4.1, 4.2, and 4.3, computational complexity of USRP/GNU Radio, BBN

802.11b and Matlab is analyzed respectively. In section 4.4, we provide a brief summary

of our observations. It is noted that our evaluation results using USRP, GNU Radio and

Matlab coincide with observations made by other researchers mentioned above in [1],

[11].

26

4.1 USRP/GNU Radio-based Complexity Analysis

 The following are the details of the experimental setup. (i) Each USRP system

(version 5b) includes a RFX2400 transceiver (2.3-2.9 GHz) and GNU Radio software

(version 3.1.3). (ii) Modulation schemes profiled on the transmitter side are GMSK,

DBPSK, DQPSK, and QAM while only GMSK, DBPSK, and DQPSK are profiled on

receiver side. (iii) Carrier frequency and bandwidth we have tested are 2.4 GHz and 100

KHz, respectively, with the data rate of 100 - 1000 Kbps. A smaller bandwidth and data

rates are used partly due to bandwidth constraints imposed by the USRP [21]. (iv)

Transmitter amplitude is set to 8,000, which is smaller than the default value (12,000). (v)

Packet size is 1,500 bytes and 1,000 packets were transmitted for each experiment. (vi)

We used Oprofile as a profiling tool. (vii)We profiled transmitter as well as receiver

complexity using benchmark_tx.py in GNU Radio. See Fig. 8 for the corresponding

signal flow.

Figure 8: Basic Transceiver using GNU Radio

 We describe only parts of the whole symbols because the number of the profiled

results is too many. These symbol names allow us to understand what operations are

performed. While performing transmission by using USRP, GNU Radio executes not

only the modules directly related to transmission operation (e.g., modulation, filter), but

27

also other modules, such as various libraries, modules related with USRP and Python.

They also have heavy complexity.

4.1.1 Transmitter Results with USRP1

GMSK:

sudo ./benchmark_tx.py -f 2400M -r 200k -m gmsk -v

Important symbols:

gr_frequency_modulator_fc::work

gr_bytes_to_syms::work

gr_interp_fir_filter_fff::work

DBPSK/DQPSK/D8PSK/QAM8/QAM16/QAM64/QAM256:

sudo ./benchmark_tx.py -f 2400M -r 200/400/600/800/1000k -m

dbpsk/dqpsk/d8psk/qam8/qam16/qam64/qam256 -v

Important symbols:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

28

gr_map_bb::work

gr_chunks_to_symbols_bc::work

 Table I indicates the number of samples used by modulation specific symbols as well

as the number of samples used by entire GNU Radio when that particular modulation

scheme is used. Table II represents symbols used by each modulation scheme. Figure 9

provides a graphical representation of computational complexity of entire GNU Radio for

each modulation scheme. Table III provides computational complexity of each major

transmission function in GNU Radio.

Modulation

Scheme

Samples for

Important

Symbols

Samples for

Total Symbols

GMSK 10437 80163

DBPSK 15294 102944

DQPSK 10825 61883

D8PSK 8933 48654

QAM8 9026 48624

QAM16 8302 41815

QAM64 7279 34974

QAM256 6988 31597

Table I: Overall Transmitter Complexity for each Modulation Scheme

Symbols GMSK DBPSK DQPSK D8PSK QAM8 QAM16 QAM64 QAM256

gr_frequency_modulator_fc Y N N N N N N N

gr_bytes_to_syms Y N N N N N N N

gr_interp_fir_filter_fff Y N N N N N N N

get_bit_be N Y Y Y Y Y Y Y

gr_packed_to_unpacked_bb N Y Y Y Y Y Y Y

gr_interp_fir_filter_ccf N Y Y Y Y Y Y Y

gr_diff_encoder_bb N Y Y Y Y Y Y Y

gr_map_bb N Y Y Y Y Y Y Y

gr_chunks_to_symbols_bc N Y Y Y Y Y Y Y

Table II: Summary of Modulation Specific Symbols for Transmitter

29

Figure 9: Transmitter Complexity for each Modulation Scheme

DBPSK DQPSK D8PSK QAM8 QAM16 QAM64 QAM256 Functions

25844 12931 8784 8720 6636 4602 3368 fcomplex_dotprod_sse

19543 9728 6536 6562 4830 2942 2322 gr_fir_ccf_simd

10554 5281 3547 3534 2675 1767 1321 gr_multiply_const_cc

5204 2604 1770 1737 1303 871 654 usrp_sink_c

4415 4067 4208 4099 4045 4337 3791 get_bit_be

3932 3085 2308 2462 2484 1735 2338 gr_packed_to_unpacked_bb

3396 1673 1092 1034 754 510 411 gr_interp_fir_filter_ccf

1739 925 623 620 472 311 228 gr_diff_encoder_bb

1230 608 430 422 329 227 157 gr_map_bb

950 482 305 295 224 186 122 gr_chunks_to_symbols_bc

Table III: Computational complexity of Transmission Functions

Sequence of events in GNU Radio (irrespective of modulation scheme):

1. gr_packed_to_unpacked_bb::general_work

 get_bit_be (It is a function defined inside gr_packed_to_unpacked_bb.cc)

2. gr_map_bb::work

3. gr_diff_encoder_bb::work

30

4. gr_chunks_to_symbols_bc::work

5. gr_interp_fir_filter_ccf::work

6. gr_fir_ccf_simd::filter

7. fcomplex_dotprod_sse

8. gr_multiply_const_cc::work

9. usrp_sink_c::copy_to_usrp_buffer

 The top 5 functions (from 1 to 5) are directly involved in modulation scheme. The

bottom 4 functions from (6 to 9) are GNU Radio operations for transmission.

 For DBPSK, gr_map_bb::work requires 1230 samples. This means that when it is 1 bit

per symbol it requires 1230 samples. For DQPSK, it requires only 608 samples. This

means that when it is 2 bits per symbol it requires 608 samples which is nothing but

approximately 1/2 of the samples required by DBPSK. For D8PSK, it requires 430

samples. This means that when it is 3 bits per symbol it requires 430 samples which is

nothing but approximately 1/3rd of the samples required by DBPSK. And so on for

QAM256, it requires 157 samples. This means that when it is 8 bits per symbol it requires

157 samples which is nothing but approximately 1/8th of the samples required by

DBPSK.

 Thus, we can deduce that the number of samples required by gr_map_bb::work is

directly affected by the number of bits per symbol specified by the modulation scheme. If

we look closely, this result is true for all the symbols (from 2 to 5 which are related to

modulation only) except for gr_packed_to_unpacked_bb.

31

 The result does not apply to gr_packed_to_unpacked_bb::general_work and

get_bit_be. This symbol is used to unpack the data from the source file into chunks of

size specified by the number of bits per symbol. Now, in case of our experiments same

amount of data which is 1 Megabyte is sent out. But after

gr_packed_to_unpacked_bb::general_work and get_bit_be have finished their work, there

would be different number of chunks of data for each modulation scheme.

 For example, for DBPSK if there are 100,000 data chunks for 1 Megabyte then for

DQPSK it would be 50,000 data chunks for same amount data. After

gr_packed_to_unpacked_bb::general_work and get_bit_be are finished, rest of the

symbols (from 2 to 5) deal with data chunks and not with the original data. As these data

chunks depend on number of bits per symbol specified by modulation scheme, the

number of samples required by the symbols (2 to 5) would also depend on number of bits

per symbol.

 This clearly implies that the computational complexity of modulation scheme itself in

GNU Radio is affected by the number of bits per symbol.

 However, subsequent transmission functions in GNU Radio are also affected by the

selection of number of bits per symbol. This is because once the modulation of data is

completed; the subsequent operations would deal with data symbols and not the original

data. Now, the number of data symbols would vary from one modulation scheme to

another.

 Hence, the number of samples required by the symbols (from 6 to 9 which are not

related to modulation but are used by GNU Radio for transimission purposes) are also

32

affected by the choice of modulation scheme. And thus, we get different number of

samples for entire GNU Radio operation when we change the modulation scheme.

 At the end, it can be said that higher the number of bits per symbol for a modulation

scheme the lesser it is computationally complex. It is always preferable to use a

modulation scheme with a higher number of bits per symbol if computational complexity

is a priority.

 As modulation changes from DBPSK to DQPSK to D8PSK, transmitter complexity

decreases. It is also the case with QAM8, QAM16, QAM64 and QAM256. However, the

difference in the latter is not as huge as in the former.

 This is because the difference between no. of samples for a given symbol reduces

from DBPSK to D8PSK and from QAM8 to QAM256. In GNU Radio, all the modulation

schemes from DBPSK to all QAMs use same symbols.

 As we can see for fcomplex_dotprod_sse function, DBPSK requires 25844 samples

and DQPSK requires almost half of the number of samples. So the difference is huge

(almost 13000 samples) in between DBPSK and DQPSK for this symbol. Now, QAM16

uses 1/4th of the samples used by DBPSK while QAM64 uses 1/6th of the samples used

by DBPSK. However, the difference between samples of QAM16 and QAM64 is small

(almost 2000 samples only). This can be seen in all the other symbols of a modulation

scheme. Thus, it seems that the transmitter complexity reduces drastically initially and

then gradually.

33

 Fig. 10 compares the total number of cycles and the required cycles per second for

each modulation scheme. As modulation changes from DBPSK to DQPSK to D8PSK,

overall transmitter complexity decreases. It is also the case with QAM8, QAM16,

QAM64, and QAM256. This is because the computational workload greatly depends on

the number of symbols, which decreases as the modulation level increases. On the other

hand, considering the different communication duration at different data rate, the required

cycles per second exhibits the opposite trend, which means that lower rate

communication takes more time but low voltage and frequency for the microprocessor.

Due to the quadratic effect of voltage on energy, it would mean energy savings.

Figure 10: Computational Complexity of GNU Radio Transmitter

34

4.1.2 Receiver Results with USRP1

GMSK:

sudo ./benchmark_rx.py -f 2400M -r 200k -m gmsk -v

Important Symbols:

gr_fast_atan2f

gr_quadrature_demod_cf::work

gr_binary_slicer_fb::work

gr_clock_recovery_mm_ff::general_work

gr_clock_recovery_mm_ff::forecast

gri_mmse_fir_interpolator::interpolate

gri_mmse_fir_interpolator::ntaps

DBPSK/DQPSK:

sudo ./benchmark_rx.py -f 2400M -r 200/400k -m dbpsk/dqpsk -v

Important Symbols:

gr_feedforward_agc_cc::work

gr_constellation_decoder_cb::work

gr_multiply_const_cc::work

35

gr_unpack_k_bits_bb::work

gr_diff_phasor_cc::work

gr_map_bb::work

gr_interp_fir_filter_ccf::work

gr_sincosf

gri_mmse_fir_interpolator_cc::interpolate

gri_mmse_fir_interpolator_cc::ntaps()

gr_mpsk_receiver_cc::mm_sampler

gr_mpsk_receiver_cc::mm_error_tracking

gr_mpsk_receiver_cc::general_work

gr_mpsk_receiver_cc::phase_error_tracking

gr_mpsk_receiver_cc::decision_bpsk/qpsk

gr_mpsk_receiver_cc::phase_error_detector_bpsk/qpsk

gr_mpsk_receiver_cc::forecast

Modulation Samples for Important

Symbols

Samples for All Symbols

GMSK 52634 181274

DBPSK 265033 484742

DQPSK 144508 285547

Table IV: Overall Receiver Complexity for each Modulation Scheme

36

Figure 11: Receiver Complexity for each Modulation Scheme

DBPSK DQPSK Symbols

160234 82251 gr_feedforward_agc_cc::work

60503 28913 fcomplex_dotprod_sse

21075 10346 gr_mpsk_receiver_cc::mm_sampler

20453 10474 gr_fft_filter_ccc::work

18647 8288 gr_mpsk_receiver_cc::mm_error_tracking

13827 7449 gr_mpsk_receiver_cc::general_work

13641 15796 gr_correlate_access_code_bb::work

13318 7372 gr_fir_ccf_simd::filter

12629 10575 gr_constellation_decoder_cb::work

8281 4788 gr_mpsk_receiver_cc::phase_error_tracking

7285 5518 gr_count_bits32

5443 2819 gr_single_pole_iir<double, double, double>::filter

5377 2770 gr_multiply_const_cc::work

4156 2786 gr_unpack_k_bits_bb::work

4086 3110 gr_interp_fir_filter_ccf::work

4002 4146 gr_count_bits64

3844 1938 gr_probe_avg_mag_sqrd_c::work

3728 1885 gri_mmse_fir_interpolator_cc::interpolate

3546 1795 gr_diff_phasor_cc::work

3353 2026 gr_sincosf

2998 3044 gr_framer_sink_1::work

2961 1543 usrp_source_c::copy_from_usrp_buffer

2629 1347 gr_mpsk_receiver_cc::phase_error_detector_bpsk/qpsk

2324 3412 gr_mpsk_receiver_cc::decision_bpsk/qpsk

1298 688 gr_map_bb::work

940 476 gri_fft_complex::execute

285 169 gr_mpsk_receiver_cc::forecast

11 6 gri_mmse_fir_interpolator_cc::ntaps

Table V: Complexity of Individual Reception Symbols in GNU Radio

37

Symbols GMSK DBPSK DQPSK

gr_fast_atan2f Y N N

gr_quadrature_demod_cf Y N N

gr_binary_slicer_fb Y N N

gr_clock_recovery_mm_ff Y N N

gri_mmse_fir_interpolator Y N N

gr_feedforward_agc_cc::work N Y Y

gr_mpsk_receiver_cc N Y Y

gr_constellation_decoder_cb N Y Y

gr_multiply_const_cc N Y Y

gr_unpack_k_bits_bb N Y Y

gr_diff_phasor_cc N Y Y

gr_map_bb N Y Y

gr_sincosf N Y Y

gri_mmse_fir_interpolator_cc N Y Y

Table VI: Summary of Modulation Specific Symbols for Receiver

 Table IV indicates the number of samples used by modulation specific symbols as

well as the number of samples used by entire GNU Radio for reception when that

particular modulation scheme is used. Table V provides computational complexity of

each major reception function in GNU Radio. Figure 11 provides a graphical

representation of computational complexity of entire GNU Radio for each modulation

scheme for reception. Table VI represents symbols used by each modulation scheme.

 As seen in transmitter, most of the symbols associated with DQPSK require

approximately half the number of samples than that required in DBPSK. Also, some of

the symbols which are not associated with modulation and are used only by GNU Radio

require half the number of samples when using DQPSK than that required when using

DBPSK. So, we can see even in case of receiver, number of bits per symbol not only

affects the number of samples required by modulation functions but also the GNU Radio

functions.

38

 However, there are four symbols related to modulation which are

gr_constellation_decoder_cb, gr_unpack_k_bits_bb::work, gr_interp_fir_filter_ccf::work,

and gr_mpsk_receiver_cc::decision_qpsk/bpsk which require more or less number of

samples irrespective of whether the modulation scheme is DBPSK or DQPSK. It is

possibly because the input parameter for these functions is not just the number of data

symbols received but they depend on some other parameters too.

4.1.3 Complexity Analysis with Bandwidth Variation

 Next, we observed transmission complexity with varying bandwidth. We created a

bandwidth effect by changing bit rate. For example, we performed transmission and

reception with DBPSK 200kbps (200KHz) and DBPSK 400kbps (400KHz) and also with

DQPSK 400kbps (200KHz) and DQPSK 800kbps (400 KHz).

DBPSK:

Bits per symbol = 1

Samples per symbol = 2

Data Rate = 200kbps

Sampling Frequency or Rate = 2 Samples/Symbol * 1 Symbol/Bit * 200k Bits/Second

 = 400k Samples/Second

39

Bandwidth = Sampling Frequency/2 = 200kHz

Data Rate = 400kbps

Sampling Frequency or Rate = 2 Samples/Symbol * 1 Symbol/Bit * 400k Bits/Second

 = 800k Samples/Second

Bandwidth = Sampling Frequency/2 = 400kHz

DQPSK:

Bits per symbol = 2

Samples per symbol = 2

Data Rate = 400kbps

Sampling Frequency or Rate = 2 Samples/Symbol * (1/2) Symbol/Bit * 400k Bits/Second

 = 400k Samples/Second

Bandwidth = Sampling Frequency/2 = 200kHz

Data Rate = 800kbps

Sampling Frequency or Rate = 2 Samples/Symbol * (1/2) Symbol/Bit * 800k Bits/Second

 = 800k Samples/Second

Bandwidth = Sampling Frequency/2 = 400kHz

40

Modulation

Scheme

Transmitter Receiver

 200KHz 400KHz 200KHz 400KHz

DBPSK 15294 15378 265033 303578

DQPSK 10825 10660 144508 181416

Table VII: Modulation-specific Complexity Analysis with Bandwidth Variation

Modulation

Scheme

Transmitter Receiver

 200KHz 400KHz 200KHz 400KHz

DBPSK 102944 102662 484742 540836

DQPSK 61883 61850 285547 359396

Table VIII: Overall GNU Radio Complexity Analysis with Bandwidth Variation

 Table VII provides complexity analysis for DBPSK and DQPSK related-only symbols

for both transmitter and receiver with bandwidth variation. Table VIII provides

complexity analysis for entire GNU Radio transmitter and receiver when DBPSK and

DQPSK are used with bandwidth variation.

 Comparing two results, we found that transmitter complexity is almost constant while

bit rate and bandwidth is doubled. Also, this is similarly observed with DQPSK. This

reason is that the number of instructions is not changed even though bandwidth increases.

However, unlike the transmitter complexity, the receiver complexity increases around

11% and 25% for DBPSK and DQPSK, respectively. This is because high bitrate

increases sampling rate to receive incoming data from the channel. We observed that, in

case of transmitter, the number of samples (instructions) required to write all the symbols

into GNU Radio USRP buffer (usrp sink c - Interface to Universal Software Radio

Peripheral Tx path) is same in both the cases (200KHz and 400KHz). However, in case

of receiver, the GNU Radio USRP buffer (usrp_source_c - Interface to Universal

41

Software Radio Peripheral Rx path), the number of samples increases for 400KHz

scenario then 200KHz.

4.2 BBN 802.11b-based Complexity Analysis

 USRP/GNU Radio-based experiment mentioned above is not sufficient because it

does not implement the 802.11 standard. To obtain more reliable results, we profiled

transmission complexity of BBN 802.11b implementation in GNU Radio [3]. We use

Oprofile [20] again. Note that the BBN 802.11b implementation does not include a

transmitter with 5.5Mbps and 11Mbps data rates. In 802.11b, CCK (complementary code

keying) encoding is based on differential QPSK modulation to encode the phase

parameters which are used to make 8-bit CCK code words. Based on this, we

implemented a block for the purpose of profiling computational complexity of CCK

modulation. Fig. 12 provides signal flow in BBN 802.11b transceiver. Table IX shows

detailed information on the profiled results for a subset of symbols. It is interesting to

observe that, with a few exceptions, each symbol block takes a decreasing amount of

computations as data rate increases.

 Figure 13 shows a similar trend as it was observed in the GNU Radio/USRP

transmitter complexity for each modulation scheme. As we see here, BPSK requires

higher number of total cycles than QPSK but lower number of cycles per second due to

different communication data rates. Same trend is observed for 4-CCK and 8-CCK.

42

Figure 12: BBN 802.11b Transceiver

Symbols 1Mbps 2Mbps 5.5Mbps 11Mbps

bbn_scrambler_bits 0.65 0.65 0.67 0.67

gr_packed_to_unpacked 0.24 0.18 0.17 0.17

get_bit_be 0.14 0.19 0.15 0.15

gr_fir_ccf_simd::filter 3.36 1.71 0.79 0.41

fcomplex_dotprod_sse 3.11 1.48 0.80 0.37

Table IX: Profiling results of BBN 802.11b Transmitter

Figure 13: Computational Complexity of BBN 802.11b Transmitter

43

4.3 Matlab-based Complexity Analysis

 Using Matlab and Simulink, one can design SDR in a modularized manner. Moreover,

they allow simulation and performance analysis of SDRs [22]. We additionally use the

Matlab implementation of 802.11b to estimate the computational complexity of SDR

functions. Here are the details of our experiment. (i) We use Matlab V7.9.0.529,

Simulink V7.4, Communications Toolbox V4.4, Signal Processing Toolbox V6.12,

Communications Blockset V4.3, and Signal Processing Blockset V6.10 on Ubuntu 8.04

(Hardy). (ii) We use again Oprofile (0.9.6) for profiling the computations. (iii) The

packet size in each scenario is 1024 bytes and 1000 packets are transmitted for each data

rate. (iv) The PLCP header size is 192 bits (long preamble) and 128 bits (short preamble).

Fig. 14, 15 and 16 show SDR implementation in Matlab and Simulink. Fig. 17 shows the

total number of cycles at each data rate as well as the corresponding cycles per second. It

shows that as the data rate increases the computational complexity decreases which is

consistent with the results that we obtained using USRP/GNU Radio and BBN 802.11b.

Figure 14: Matlab SDR

Figure 15: Matlab SDR Transmitter

44

Figure 16: Matlab SDR Receiver

 The Oprofile profiling results provided a huge number of functions used by Matlab

and Simulink for simulation of SDR. However, there are few major functions that are

required for signal processing purposes while the rest of the functions are used for

performing mathematical functions by Matlab. Table X provides a list of all the major

functions of Matlab and Simulink and also the total number of samples used by each

function. Figure 17 shows similar trend for computational complexity for Matlab SDR as

seen in the case of GNU Radio/USRP and BBN 802.11b transceiver.

 Functions 1 Mbps 2 Mbps 5.5 Mbps 11 Mbps

 Long

Preamble

Short

Preamble

Long

Preamble

Short

Preamble

Long

Preamble

Short

Preamble

1 sdspfilter2 1355325 693185 677675 271830 256340 151445 135940

2 sdspupfir2 347730 177850 173855 69740 65765 38855 34875

3 Sdspstatfcns 94100 48600 47400 18800 17100 10275 8960

4 scomawgnchan2 15585 7970 7800 3125 2955 1745 1555

5 sdspdsamp2 9325 4675 4575 1765 1745 920 900

6 Scomapskdemod 3575 2470 2460 1185 1200 645 625

7 Scomapskmod 1460 1130 1115 490 470 965 940

8 scomerrrate2 465 465 455 460 465 460 455

9 Scominttobit 185 180 182 190 185 185 195

10 Sdspstatminmax N/A N/A N/A 440 450 3095 3090

11 sdspperm2 N/A N/A N/A 130 140 55 62

 TOTAL 1827750 936525 915517 368155 346815 208645 187597

 TOTAL (Entire

MATLAB)

2123500 1091000 1071500 458750 437000 299500 280000

Table X: Computational Complexity for Individual Symbols in Matlab

45

As seen above there are quite a few functions used for signal processing by Matlab. Each

function has its own significance and is described below briefly:

1. sdspfilter2 - RX Pulse Shaping filter (Direct form II Transpose filter) in RX Front End

block.

2. sdspupfir2 - TX Pulse shaping filter for FIR Interpolation in TX Upsampling and

Pulse shaping block.

3. scomawgnchan2 - AWGN Channel block.

4. sdspdsamp2 - Used in RX Signal to Chips conversion block.

5. scomapskmod - Used in TX Modulation and Spreading block.

6. scomapskdemod - Used in RX Demodulation and Despreading block.

7. scominttobit - Converting random data source bytes into bits on Transmitter side

between Data source and Framing block.

8. sdspstatfcns - Used in RX Demodulation and Despreading block to pick out maximum

value over a set of input elements.

9. sdspperm2 - Used in RX Demodulation and Despreading block to select or reorder a

set of input elements.

10. sdspstatfcns - Statistical function (using variance) to compute TX signal power.

11. scomerrrate2 – Used for error rate calculation for BER purposes.

46

Figure 17: Computational Complexity for Matlab SDR

4.4 Summary

 In case of transmitter, we see that the number of samples required by a particular

modulation scheme as well as by entire GNU Radio goes down as the number of bits per

symbol increases. It is clearly observed that the overall number of samples go down from

DBPSK to D8PSK as well as from QAM8 to QAM256. However, for different

modulation scheme, the duration of communication is different as it can support different

data rate. Thus, we see that the communication duration goes down from DBPSK to

47

D8PSK and from QAM8 to QAM256. As a result, the number of samples per second

show opposite trend than the overall number of samples required by respective

modulation schemes. Thus, number of samples per second increases as the number of bits

per symbol increases i.e. from DBPSK to D8PSK and QAM8 to QAM256.

 In case of receiver, very similar trend as seen in transmitter is observed. We see that

the number of samples required only by DQPSK is less than that of DBPSK. Moreover,

the number of samples used by entire GNU Radio while using DQPSK is also less than

that of DBPSK. We have also observed similar results in case of BBN 802.11b and

Matlab SDR. Overall, we can say that DQPSK is computationally less intensive than

DBPSK to communicate same amount of data.

 As a summary, highly sophisticated modulation schemes are preferable as they deliver

messages faster as well as execute small number of instructions. However, highly

sophisticated modulation schemes have high BER and hence, the performance obtained is

slightly at the expense of reliability. Also, as we observed, higher modulation schemes

will execute higher number of instructions per second. Hence, the microprocessor

running SDR will need higher voltage and frequency at that particular instant which

results in higher instantaneous power consumption. Thus, this complexity analysis can be

useful to choose desired modulation scheme based on the application’s performance

requirements as well as available power resources.

48

CHAPTER V

CONCLUSION AND FUTURE WORK

 The main aim of this thesis was to analyze computational complexity of different

signal processing functions utilized in software defined radio on different platforms. This

analysis in future would then help to devise a SDR-based communication system which

provides optimal performance with minimal power consumption. In this thesis, we were

able to analyze different modulation schemes such as GMSK, M-DPSK, and QAMs. We

also analyzed the performance of IEEE 802.11b standard. In this thesis, we were able to

realize that the computational complexity of any signal processing function heavily

depends on the number of bits per symbol (constellation size) for a particular modulation

scheme. The energy and delay performance can be traded off against each other by

varying constellation size or by changing the modulation scheme.

49

 The future goal of this research should be to expand this work to many other

modulation schemes as well as other popular standards such as IEEE 802.11a/g/n,

Bluetooth and ZigBee protocols. Based on all this analysis, we can devise mechanisms to

configure software radio on the fly to meet the application requirements along with low

power consumption and efficient performance.

 The computational complexity analysis could be useful to design a communication

system which uses both modulation scaling and dynamic voltage scaling for high

performance and low power consumption. In SDR-based wireless systems, different

modulation schemes or data rates demand different computational workload, thus making

it possible to save energy by applying the DVS technique as in conventional energy-

aware processor design.

50

BIBLIOGRAPHY

[1] K. Tan, J. Zhang, H. Wu, F. Ji, H. Liu, Y. Ye, S. Wang, Y. Zhang, W. Wang, and G.

M. Voelker, “Sora: High Performance Software Radio Using General Purpose Multi-

core Processors,” Proc. ACM/USENIX NSDI, 2009.

[2] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, “Energy-aware wireless

microsensor networks,” IEEE Signal Processing Magazine, vol. 19, pages 40-50, March,

2002.

[3] A. Y. Wang, S. H. Cho, C. G. Sodini, and A. P. Chandrakasan, “Energy efficient

modulation and MAC for asymmetric RF microsensor systems,” Proc. ACM ISLPED,

2001.

[4] P. G. M. Baltus and R. Dekker, “Optimizing RF Front Ends for Low Power,”

Proceedings of the IEEE, Vol. 88, No. 10, October, 2000, 1546-1559.

[5] B. A. Myers, J. B. Willingham, P. Landy, M. A. Webster, P. Frogge, and M. Fischer,

“Design Considerations for Minimal-Power Wireless Spread Spectrum Circuits and

Systems,” Proceedings of the IEEE, Vol. 88, No. 10, October, 2000, 1598-1612.

[6] A. Kamerman, and L. Monteban, “WaveLAN-II: A High-performance Wireless LAN

for the Unlicensed Band,” Bell Labs Technical Journal, Summer, 1997, 118-133.

[7] S. Cui, R. Madan, A. Goldsmith and S. Lall, “Energy-Delay Tradeoffs for Data

Collection in TDMA-based Sensor Networks,” Proc. IEEE ICC, 2005.

51

[8] C. Schurgers, V. Raghunathan, and M. B. Srivastava, “Power management for

energy-aware communication systems,” ACM Trans. On Embedded Computing Systems,

Vol. 2, No. 3, 2003, 431-447.

[9] S. Cui, A. Goldsmith, A. Bahai, “Energy-constrained Modulation Optimization,”

IEEE Trans. on Wireless Communications, September, 2005.

[10] R. Min, and A. Chandrakasan, “A framework for energy-scalable communication in

high-density wireless networks,” Proc. ACM ISLPED, 2002.

[11] Y. Lin, Y. L. Hyunseok, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,

“SODA: A Low-power Architecture For Software Radio,” ACM/IEEE ISCA, 2006.

[12] E. Marpanaji, B. Riyanto, A. Z. R. Langi, A. Kurniawan, A. Mahendra and T. Liung,

“Experimental Study of DQPSK Modulation on SDR Platform,” ITB Journal, Vol. 1,

No.2, 2007.

[13] www.gnuradio.org

[14] S. Hirve, “Multihop Transmission Opprotunistic Protocol on Software Radio,”

Master Thesis, Cleveland State University, Summer, 2009.

[15] www.ettus.com

[16] T. Shen, “Experimental Study of Multirate Margin in Software Defined Multirate

Radio,” Master Thesis, Cleveland State University, Fall, 2009.

[17] F. A. Hamza, “The USRP under 1.5X Magnifying Lens!,” June 2008. Available at:

gnuradio.org/redmine/attachments/download/129

[18] www.mathworks.com

[19] www.ibm.com/developerworks/linux/library/l-oprof.html

[20] www.oprofile.sourceforge.net

52

[21] K. A. Jamieson, “The SoftPHY Abstraction: from Packets to Symbols in Wireless

Network Design,” Ph.D. Dissertation, MIT, June 2008.

[22] R. D. Raut, K. D. Kulat, “BER performance maintenance at high data rates in

cognitive radio,” Proc. Int’l Conf. Electronics, Communications and Computer

(CONIELECOMP), 2010.

53

APPENDICES

54

APPENDIX A

OPROFILE TOOLS

OProfile Tools [20]:

Ophelp – Lists available events supported by the processor along with their short

descriptions.

Opcontrol – Tool that allows the user to configure different parameters for profiling and

data collection.

Opreport – Retrieves useful profile data and generates reports based on user

specifications.

Opannotate – OProfile users to produce reports with annotations of source or assembly

code so that it becomes easier for the user to identify where exactly the problem is. But

the user has to make sure that it enables profiling with debugging symbols.

55

Opgprof – Provides gprof-style data files for binary that can be used with gprof.

Oparchive – This tool will collect all the data collected by OProfile and will save it in an

archive. This archive can then be easily transferred from one machine to another based on

the requirements of the user.

Opimport – This tool can be used by the user who has moved the data collected from the

machine which was used for profiling to some other machine. It will help the user to

convert the original file into a format supported by current host machine.

56

APPENDIX B

GNURADIO SIGNAL PROCESSING FUNCTIONS

Transmitter Functions:

GMSK:

sudo ./benchmark_tx.py -f 2400M -r 200k -m gmsk -v

Important functions:

gr_frequency_modulator_fc::work

gr_bytes_to_syms::work

gr_interp_fir_filter_fff::work

57

DBPSK:

sudo ./benchmark_tx.py -f 2400M -r 200k -m dbpsk -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

gr_map_bb::work

gr_chunks_to_symbols_bc::work

DQPSK:

sudo ./benchmark_tx.py -f 2400M -r 400k -m dqpsk -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

58

gr_map_bb::work

gr_chunks_to_symbols_bc::work

D8PSK:

sudo ./benchmark_tx.py -f 2400M -r 600k -m d8psk -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

gr_map_bb::work

gr_chunks_to_symbols_bc::work

QAM8:

sudo ./benchmark_tx.py -f 2400M -r 600k -m qam8 -v

Important functions:

get_bit_be

59

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

gr_map_bb::work

gr_chunks_to_symbols_bc::work

QAM16:

sudo ./benchmark_tx.py -f 2400M -r 800k -m qam16 -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

gr_map_bb::work

gr_chunks_to_symbols_bc::work

60

QAM64:

sudo ./benchmark_tx.py -f 2400M -r 1000k -m qam64 -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

gr_map_bb::work

gr_chunks_to_symbols_bc::work

QAM256:

sudo ./benchmark_tx.py -f 2400M -r 1000k -m qam256 -v

Important functions:

get_bit_be

gr_packed_to_unpacked_bb::general_work

gr_interp_fir_filter_ccf::work

gr_diff_encoder_bb::work

61

gr_map_bb::work

gr_chunks_to_symbols_bc::work

Transmitter Functions [13]:

gr_frequency_modulator_fc::work – It is a Frequency modulator block which accepts

float type input and gives complex baseband output. In frequency modulation, changes in

the baseband signal are imposed on the frequency of the carrier wave.

gr_interp_fir_filter_fff::work – This block performs interpolation with FIR filters. The

input and output as well as taps used for interpolation for this block are in float type.

gr_bytes_to_syms::work – This block is used for converting byte streams to symbol

stream. The input for this block is byte steam while the output is float stream.

gr_packed_to_unpacked_bb::general_work – This block is used for converting packed

bytes stream to unpacked bytes stream. The input as well as output for this block is a

unsigned characters stream.

gr_interp_fir_filter_ccf::work - This block performs interpolation with FIR filters. The

input and output for this block are of gr_complex type while taps are of float type.

gr_diff_encoder_bb::work - This block implements differential encoder (b[0] = (a[0] +

b[-1]) % M). It operates on bits.

gr_map_bb::work – This block maps input bit pattern to a pre-defined bit pattern

(output[i] = map[input[i]]). This block also operates on bits.

 62

gr_chunks_to_symbols_bc::work – This block produces a float stream in Z dimensions

from unpacked bytes stream. So the output is stream of gr_complex while the input is

unsigned characters stream.

output[n Z + m] = symbol_table[input[n] Z + m], m=0,1,...,Z-1

Here, Z is dimensions and its value is 1 by default.

This block along with the gr_packed_to_unpacked and gr_chunks_to_symbols are used

for converting bytes into complex symbols.

gr_multiply_const_cc::work - Output = Input * Constant

usrp_sink_c::copy_to_usrp_buffer – This block provides interface for GNU Radio to

Universal Software Radio Peripheral (USRP) Tx path. Input for this block is gr_complex.

gr_fir_ccf_simd::filter – It is a block which implements the SIMD model for gr_fir_ccf.

It helps in handling problems related with SSE and 3DNOW subclasses. gr_fir_ccf takes

complex symbols as input and provides complex symbols as output. It uses float taps.

Receiver Functions:

GMSK:

sudo ./benchmark_rx.py -f 2400M -r 200k -m gmsk -v

Important Symbols:

gr_fast_atan2f

 63

gr_quadrature_demod_cf::work

gr_binary_slicer_fb::work

gr_clock_recovery_mm_ff::general_work

gr_clock_recovery_mm_ff::forecast

gri_mmse_fir_interpolator::interpolate

gri_mmse_fir_interpolator::ntaps

DBPSK:

sudo ./benchmark_rx.py -f 2400M -r 200k -m dbpsk -v

Important Symbols:

gr_feedforward_agc_cc::work

gr_constellation_decoder_cb::work

gr_multiply_const_cc::work

gr_unpack_k_bits_bb::work

gr_diff_phasor_cc::work

gr_map_bb::work

gr_interp_fir_filter_ccf::work

 64

gr_sincosf

gri_mmse_fir_interpolator_cc::interpolate

gri_mmse_fir_interpolator_cc::ntaps()

gr_mpsk_receiver_cc::mm_sampler

gr_mpsk_receiver_cc::mm_error_tracking

gr_mpsk_receiver_cc::general_work

gr_mpsk_receiver_cc::phase_error_tracking

gr_mpsk_receiver_cc::decision_bpsk

gr_mpsk_receiver_cc::phase_error_detector_bpsk

gr_mpsk_receiver_cc::forecast

DQPSK:

sudo ./benchmark_rx.py -f 2400M -r 400k -m dqpsk -v

Important Symbols:

gr_feedforward_agc_cc::work

gr_constellation_decoder_cb::work

gr_multiply_const_cc::work

 65

gr_unpack_k_bits_bb::work

gr_diff_phasor_cc::work

gr_map_bb::work

gr_interp_fir_filter_ccf::work

gr_sincosf

gri_mmse_fir_interpolator_cc::interpolate

gri_mmse_fir_interpolator_cc::ntaps()

gr_mpsk_receiver_cc::mm_sampler

gr_mpsk_receiver_cc::mm_error_tracking

gr_mpsk_receiver_cc::general_work

gr_mpsk_receiver_cc::phase_error_tracking

gr_mpsk_receiver_cc::decision_bpsk

gr_mpsk_receiver_cc::phase_error_detector_bpsk

gr_mpsk_receiver_cc::forecast

 66

Receiver Functions [13]:

gr_fast_atan2f – This function implements Fast arc tangent using table lookup and linear

interpolation.

gr_quadrature_demod_cf::work – This block implements quadrature demodulator.

Quadrature demodulator is used in frequency modulation, frequency shift keying and

Gaussian minimum shift keying. The input is complex baseband and the output is of float

type.

gr_binary_slicer_fb::work – This function slices float binary symbol providing 1 bit as

an output. If x < 0 then 0 and if x >= 0 then 1.

gr_clock_recovery_mm_ff::general_work – This function uses the Mueller and Müller

(M&M) implementation for discrete-time error-tracking synchronizer. It operates on float

input and output.

gri_mmse_fir_interpolator::interpolate – This block is used to compute samples

between n(m*Ts) signal samples.

It uses a Mininum Mean Squared Error interpolator. It is better suited for signals that has

the bandwidth around 1/(4*Ts). Ts is the duration between two samples.

In this case, mu is quantized to the 32nd’s of a sample. It is a fractional delay and is

represented as float. It is always in the range of [0, 1].

 67

This function provides the output as a single value of interpolation of input value.

However it is necessary to have ntaps valid entries. All the input values from 0 to ntaps-1

are used as reference to compute the output.

gr_feedforward_agc_cc::work – This block uses non-causal AGC. It computes the gain

that will be required by receiver by analyzing a pre-determined number of input samples.

The input and output for this function are both of gr_complex type.

gr_constellation_decoder_cb::work – This block implements Constellation Decoder.

The input is gr_complex while output is bits.

gr_unpack_k_bits_bb::work – It converts the incoming byte with n bits into n output

bytes with each bit located in the LSB of the output byte.

gr_diff_phasor_cc::work - This block implements differential decoder.

gr_mpsk_receiver_cc – This block uses phase, frequency, and symbol synchronization

for receiving M-ary PSK signals.

It locks carrier frequency and phase in order to receive signals. It also performs symbol

timing recovery. Currently it can be used for DBPSK, DQPSK and D8PSK. It is assumed

that it can also demodulate OQPSK and PI/4 DQPSK modulated signals.

Costas loop are used for synchronizing phase and frequency of the incoming signals.

They perform error check in the incoming signal by comparing it to the nearest

constellation point. Based on the output of the Costas loop, the phase and frequency of

the NCO are modified. This block already has optimized phase detection scheme

implemented for BPSK and QPSK. In case of 8PSK, it uses brute force computation.

 68

Modified Mueller and Muller circuit is used for symbol synchronization.

The modified circuit is used to reduce the noise. It interpolates a sample from every mu

samples using the NCO. It finds the sampling error by analyzing earlier symbols.

69

APPENDIX C

MISCELLANEOUS COMMANDS

Transmitter profiling using benchmark_tx.py:

sudo ./benchmark_tx.py -f 2400M -m MOD_SCHEME -r DATA_RATE -v

This command is used to run benchmark_tx.py with desired input options.

MOD_SCHEME = DBPSK, DQPSK, D8PSK, GMSK, QAM8, QAM16, QAM64 and

QAM256.

DATA_RATE = Data rate is selected based on modulation scheme.

For example, DQPSK will have higher data rate as compared to DBPSK

70

Receiver profiling using benchmark_rx.py:

sudo ./benchmark_rx.py -f 2400M -m MOD_SCHEME -r DATA_RATE -v

MOD_SCHEME = DBPSK, DQPSK, GMSK.

DATA_RATE = Set same as that of transmitter.

Note: I was not able to receive (decode) any packets correctly using D8PSK. Moreover,

the demodulator block for QAM8, QAM16, QAM64 and QAM256 are not yet available

in GNU Radio package.

OProfile commands:

All the commands for OProfile are executed in a separate terminal tab.

First of all setup all the parameters for OProfile. Following are the parameters that I am

using currently in OProfile:

Event 0: INSTR_RETIRED:50000:1:1:1

Separate options: library

vmlinux file: none

Image filter: none

Call-graph depth: 0

Next is to setup a folder where we want to store the profiling results.

71

sudo opcontrol --session-dir=PATH_TO_FOLDER

Next, I execute benchmark_tx.py and benchmark_rx.py in a separate tab as shown above.

Then, I run a script file to start the OProfile tool. The command:

source start.sh

Once, the execution of benchmark_tx.py and benchmark_rx.py is finished. I run another

script file to stop the OProfile. The command is:

source stop.sh

Next, is to use opreport to generate text file of the results. The commands are as follows:

sudo opreport --session-dir=PATH_TO_FOLDER > FILE_NAME

sudo opreport -l --session-dir=PATH_TO_FOLDER > FILE_NAME

sudo opreport -d --session-dir=PATH_TO_FOLDER > FILE_NAME

The results are stored in the FILE_NAME. The -l and -d provide detailed profiling

results.

	Computational Complexity of Signal Processing Functions in Software Radio
	Recommended Citation

	Thesis_Plagiarism_final.pdf

