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COMPUTATIONAL COMPLEXITY OF SIGNAL 

PROCESSING FUNCTIONS IN SOFTWARE RADIO 

KUSHAL Y. SHAH 

ABSTRACT 

     The increased usage of mobile communication devices has imposed a challenge of 

achieving efficient communication with minimum power consumption. Moreover, with 

the advent of software defined radios (SDR), it is highly possible that signal processing 

functions would be implemented in software in future mobile devices. Hence, the power 

consumption of these future devices will be directly related to the power consumed by the 

processor that executes SDR software. This thesis aims at analyzing the computational 

complexity of different modulation schemes and signal processing communication 

functions of IEEE WiFi standard. This analysis provides good insight on how the 

computational load varies at different data rates for different modulation schemes. 

     For this purpose, we have analyzed computational complexity of various modulation 

schemes and other communication functions using widely known software radio platform 

i.e. USRP hardware and GNU Radio open source software platform, Matlab and OProfile 

(open source Linux profiling tool). After performing an extensive analysis, we are able to 

determine how different modulation schemes and communication functions perform 

computationally on a given platform. This analysis would help to achieve effective 

communication along with the efficient use of power in SDR based systems.  
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CHAPTER I 

INTRODUCTION 

 

 

     With the advent of software defined radios; it is possible to realize a fully 

programmable wireless communication system in the future. It is likely that in the near 

future, most of the mobile communication devices will be based on SDR as it can be 

easily reconfigured as compared to hardware radios.  Most of the current SDR platforms 

are implemented on either Field Programmable Gate Arrays (FPGAs) or digital signal 

processors (DSPs). These hardware platforms are capable of supporting signal processing 

functions of most of the modern high speed wireless protocols. However, these hardware 

platforms are currently very expensive and require high skills to program them [1].  

     Due to above constraints, the developers often tend to use SDR systems based on 

general purpose processor architecture. One of the examples of such system is GNU 

Radio and USRP, where GNU Radio provides software platform for implementing signal 

processing functions on general purpose architecture and USRP provides hardware
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platform which serves as RF Front end. However, currently implementing SDR on 

general purpose PC architecture has its own set of limitations such as requirement of very 

high bus throughput from RF Front end to processor, meeting low latency real time 

deadlines of PHY and MAC layers and able to meet high computational requirements of 

PHY signal processing functions [1]. 

     As said earlier, it is expected that future mobile communication devices will be based 

on SDR systems. However, the computational requirements for some of the widely used 

wireless protocols such as IEEE 802.11a/b/g can be very high and thus can drain the 

power resources of the SDR devices very quickly. So besides the issue of performance, 

another critical requirement in future SDR devices is to manage energy usage judiciously 

and efficiently. In this thesis, the main focus is on the computational requirements 

imposed by the PHY signal processing functions on general purpose processor 

architectures. The aim of this analysis is to identify which signal processing functions are 

highly computationally intensive on the processor. This analysis would help the 

developers of SDR devices to select appropriate processor architecture based on the 

requirements of the application. Also, for a given platform, the developers can use this 

analysis to devise a scheme or algorithm to use the energy resources judiciously. 

     This thesis provides a detailed analysis of computational complexity of different 

modulation schemes such as M-ary DPSKs and QAMs using GNU Radio/USRP and also 

about the signal processing functions of IEEE 802.11b standard using Matlab/Simulink 

software. The rest of the thesis is organized as follows. Chapter 2 provides a background 

on wireless communication systems, work done on power saving mechanisms by other 
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researchers. Chapter 3 describes the software radio testbench used for the detailed 

analysis of computational complexity. Chapter 4 focuses on the computational 

complexity results and their detailed analysis. Chapter 5 summarizes the findings of the 

entire thesis. Chapter 6 discusses the future scope of this work. Usage of different 

software tools, details of different signal processing functions used in GNU Radio are 

provided in the appendix for reference. 
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CHAPTER II 

RELATED WORK 

 

     In this section, we first discuss design considerations for low power operations in 

hardware-based conventional wireless radio in Section 2.1. In Section 2.2, we discuss 

about the impact of bit-rate scaling on energy-delay (rate) trade-off. In Section 2.3, we 

discuss previous research efforts on computational complexity analysis for software 

defined radio. 

 

2.1 Low-Power Radio 

     As a reference, Fig. 1 shows a typical hardware-based radio, which consists of RF 

front end and electronics part [2], [3]. The RF front end is responsible for gain (power 

amplifier and low-noise amplifier) and frequency conversion. The electronics part is  
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responsible for frequency synthesis, filtering, modulation, up converting, etc. Note that, 

in SDR, the RF front end part still remains the same as in the conventional hardware-

based radio but the electronics part is replaced by a general-purpose microprocessor-

based platform with software support. 

 

 

Figure 1: Typical Hardware-Based Radio  

 

     Power dissipation of RF front ends is analyzed in great detail in [4]. The main signal 

processing functions of an RF front end are gain (to convert the usually weak signals to 

convenient amplitude levels for further processing) and frequency conversion (to convert 

signals to convenient frequencies for further processing). In the receive path, selecting the 

desired channel among (many) other channels, and extracting the information that is 

applied through modulation to the radio signal, is usually carried out in the IF signal 

processing circuits. In the transmit path, modulating the information to be transmitted 

onto a radio signal is often also carried out in the IF circuits [4]. 
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     802.11 standards have always put power saving as priority in the design and 

implementations. Initial implementations of the 802.11 standard including Prism I and II 

attempt to reduce the energy cost in many different ways. One of the ways to achieve 

power savings is to shut down the radio when it is not being used. The media access 

controller (MAC) keeps sensing the channel for any signal and if there is not activity then 

it turns off the radio. It is also possible to put different parts of communication circuitry 

to sleep using separate power control lines in order to save power. It is also possible to 

save power by transmitting at as low power as possible without compromising the 

reliability factor. This transit power control has something to do with modulation scaling 

as discussed later in this section. 

     Design considerations for low power WLAN in the framework of 802.11 standards 

have been discussed in detail in [5]. Minimizing power consumption is one of the 

important features of IEEE 802.11 standards. IEEE 802.11b standard is designed for 

transmitting at lower distances at higher data rates such as 1, 2, 5.5 and 11 Mb/s. 

Processing gain and multipath protection are achieved using efficient phase shift keying 

(PSK) waveforms. By minimizing the time frame when transmitter is on and transmitting 

with minimal power usage would be the key objective of power reduction. 

     Some of the well-known methods for saving power in 802.11 standard are to transmit 

at as low power as possible, operating at low voltage, sensing channel at low power for 

low power acquisition, putting radio to sleep when unused, and using single oscillator 

and surface acoustic wave (SAW) filter [5].  
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     Different sections of the circuitry can be put to sleep by using separate power control 

enable lines. These sections are generally the ones used in conventional radio such as RF 

and IF processing sections. Even the gaining circuitry is kept running at low power until 

significant activity is sensed on channel in order to contribute to power saving. In order to 

achieve this signal detection is carried out by detectors in baseband processing section. 

One of the major power consumption areas in a communication system is sensing the 

channel and processing it continuously when radio is in receiver mode. So it is very 

important to minimize power consumption as much as possible in this section. Two 

techniques used for carrier sense-processing are Clear-channel-assessment (CCA) and 

acquisition activation. Automatic Gain Control (AGC) behavior and Barker codeword 

correlation can be used together in order to sense carrier on channel. Thus AGC can be 

used in carrier sense process to minimize power consumption to a large extent. Deciding 

a threshold level for starting the digital signal processing would offer significant 

advantage to power saving. For example, if in a certain application very weak signals are 

not important and can be ignored without any impact on performance, then a huge 

amount of power savings can be realized as the receiver circuitry would be activated only 

when there is sudden rise in received signal power probably indicating arrival of a packet. 

However, if the weak signals are also important for the performance then Barker 

correlation should be used for carrier detection. For example, a signal transmitted at a 

data rate of 1 Mb/s can have an SNR of 0 dB and hence in this case Barker correlation on 

the noise floor becomes very important. Barker correlation requires only additions and 

subtractions and hence can be easily implemented such that it consumes low power [5]. 
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     802.11 standards also have low-power acquisition mode and Power Save Mechanism 

(PSM) which can address energy cost during the long, idle listen period. The radio can 

end up spending more energy while listening idly for a signal. This cost can be 

minimized by turning on only the low-power carrier-sense processing while not running 

the costly acquisition circuitry [5]. 

     Still, idle listening could be a significant contributor of the total energy expenditure 

simply because of its longer duration. Low power sleep state is available in many 

conventional radios. In this state, significantly low power is consumed as even carrier 

sense processing is not allowed [6]. Low power sleep state has shown clear benefits over 

various different energy cost studies. IEEE 802.11 PSM allows a radio can go into sleep 

mode on its own if it has nothing for transmission or reception. 

 

2.2 Bitrate Scaling for Energy-Delay Tradeoff 

     The major contributor of power consumption in software radio is the radio electronics 

used for transmissions at GHz carrier frequency, which is particularly true for short-range 

communication (RF Front-end power, PRF, on the order of 1mW for signals transmitted at 

1Mbps with BER of 10
−5

) [3]. Sending frames in burst at high bit rates and then turning 

off transmitter during no activity periods can also help in power savings. However, this 

method causes a significant overhead for switching between on and off state [3] and thus, 

a better alternative is to use dynamic voltage scaling (DVS). 
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     Each transmitted symbol in M-ary modulation scheme is obtained from a number of 

distinct waveforms. Thus, log2M number of bits are required for each symbol. Some of 

the well-known M-ary modulation schemes are Phase Shift Keying (M-PSK),  

Quadrature Amplitude Modulation (M-QAM), and Frequency Shift Keying (M-FSK). In 

[3], bandwidth efficiency is analyzed against power used for transmission. In order to 

carry out this analysis they transmitted a signal at 1Mbps with a frequency of 5.8GHz and 

BER was set to 10
−5

. The channel was assumed as Rayleigh fading channel. The path loss 

exponent is around 2-3 as can be seen in a closed environment with large obstacles [3]. In 

M-ary modulation schemes, transmit on-time is minimized by the number of bits per 

symbol if the symbol rate is kept at 1 MSymbols/s. However, this can increase both PRF 

as well as PElec [3]. 

     In [7], modulation scaling and the corresponding energy-delay tradeoff has been 

studied in detail 

      (1) 

     Where  is , RS is symbol rate, and b is the constellation size (number of bits per 

symbol).  



10 
 

 

Figure 2: Energy Delay Trade-off for QAM [9] 

     As b increases, the packet delay ( ) is reduced but energy cost (Ebit) increases. In this 

case certain portions of the circuitry runs at a frequency which is close to instantaneous 

rate of symbols (RS) while the other portions  run at maximum possible symbol rate, 

hence the power consumed by the electronic circuitry can be represented as follows [7], 

    (2) 

     PRF depends on the BER requirement related to the modulation scheme used. The 

value of CE is affected by radio architecture, circuit implementation and the 

semiconductor technology. In other words, 

    (3) 
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     Fig. 2 shows the similar trend [8]. Here, CS is also constant based on receiver 

implementation and operating temperature. It is clear from above discussion that by 

varying constellation size ‘b’ one can find an optimal point between energy consumption 

and performance delay. This process is known as modulation scaling. The constellation 

size can be modified in order to minimize power consumption such that it does not 

increases delay to an extent that it affects the performance. In [7], this tradeoff has been 

exploited to develop an energy-aware packet scheduling scheme. It is possible to 

conserve energy in packet scheduling system by bringing modulation level down when 

there are no packets in queue. And similarly when more number of packets queue up, one 

can increase ‘b’ so that there is no overflowing or long queuing. The basic concept is to 

adjust the ‘b’ of the modulation schemes based on the traffic in the system (i.e. being 

transmitted). 

     The energy-delay tradeoff has been discussed in [7]. Rate or constellation size 

adaptation helps to improve the energy and delay performance. It also proposes a link 

scheduling algorithm in the context of TDMA-based sensor networks [9]. They are based 

on the prior result that for some short-range applications, M-ary modulation outperforms 

binary modulation for energy savings by decreasing the transmission time, which again 

assumes that transmit power is adjusted according to the constellation size to maintain 

BER. 

     In modern wireless nodes, three critical parameters are present all the time, which are 

as follow: voltage scaling, convolution code strength, and radio transmission power [10]. 

For example, based on the required transmission distance one can adjust the transmitter 

power. Also, this study uses four criteria to judge the efficiency of communication 
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system: range, reliability, latency, and energy. These are the most general criteria used to 

specify communication requirements of an application. 

 

2.3 Previous Work on Computational Complexity Analysis  

     The most recent study on computational complexity has been conducted in [1], which 

was necessary to assess the performance limitation and to comprehend abundant new 

ideas such as lookup tables (LUT), SIMD (single instruction, multiple data) architecture, 

etc. SORA is a software radio platform that can realize the commercial 802.11a/b/g 

network interface cards in combination with SoftWiFi radio system [1]. It includes radio 

control board (RCB) which connects PC memory through high-speed and low-latency 

PCIe bus to RF front-end, SIMD extensions in existing processors, software architecture 

that uses lookup tables aggressively, and real-time provisions for faster PHY processing. 

     According to their performance study, receiving signals modulated higher modulation 

rates requires higher CPU utilization. It is observed that a single core of present day’s 

multi-core CPUs can easily handle load imposed by different 802.11b modulation modes. 

Sora SoftWiFi requires about 70% of the total power available from a single core for 

processing SDR functions at a data rate of 11Mbps. However, two cores might be used 

for processing receiver functionalities of 802.11a/g PHY layer. From their study, Viterbi 

decoder proves to be the most computationally intensive section of 802.11a/g statndard. It 

requires about 1.4 Gcycles/s when modulation data rata is higher than 24Mbps [1]. 
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Figure 3: IEEE 802.11a/b/g Implementation [1] 

     The least computationally intensive component found in 11b and 11a/g standard was 

the Frame detection section. It required only 11% for 11b and 3.2% for 11a/g and it 

remains constant for different data rates. However, one important thing to note is that the 

frame detection takes place every single time even if there is not useful communication as 

the receiver does not know when the frame will arrive. Also in case of SORA, whenever 

a frame is detected it utilizes about 29% of a single core to synchronize in 11b and about 

20% of a single core in 11a/g [1]. The next step that SORA performs after frame 

synchronization is it will demodulate Physical Layer Convergence Procedure (PLCP) 

header. This header is always transmitted at the lowest data rate supported by the 802.11 

standard. This component requires about 27.5% of a single core in case of 11b and 

requires about 44% in case of 11 a. Thus from their study, it is very clear that 

demodulation at higher data rates is the most computationally intensive part of a 

communication system. Also, theoretically they found that direct implementation of 

802.11b requires about 10 Gops while 802.11a/g requires about 40 Gops. Software 

techniques in SORA are efficient PHY processing by pre-calculating LUTs (make them 
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resident in L2 cache), multi-core streamlines processing, and real-time support. Also, 

they found that SIMD model can easily accommodate FFT, FIR filters and Viterbi 

decoder. FIR filter is the most demanding in the implementation of 802.11b while Viterbi 

decoder is the most demanding in 802.11a. 

     To SDR platform developers, it is important to understand the computational 

complexity of SDR functions in order to make a decision on architectural choices for the 

SDR. For example, SODA is software radio platform, based on an asymmetric processor 

consisting of a scalar and SIMD pipeline [11]. According to [11], the heaviest 

computational work is Viterbi decoder, FFT and IFFT in 802.11a (24Mhz) wireless 

system. In W-CDMA, it is Searcher and Turbo decoder. In [12], computational 

complexity of DQPSK modulation has been analyzed in the context of GNU radio/USRP. 

Filtering in receiver is highly computationally intensive, ranging from 100-200 

operation/sample. Applying the sampling speed of 22.5 MHz will result in 22.5 MSPS 

(mega samples per second), so that it needs 2,250 - 4,500 MIPS (million instructions per 

second).  

     This thesis, for the first time, evaluates the computational complexity of SDR software 

by using the modulation schemes implemented in GNU Radio, BBN implementation of 

802.11b in GNU Radio and 802.11b implementation in Matlab. This thesis evaluates the 

communication complexity of SDR in terms of the total cycles as well as the 

instantaneous CPU power (cycles per second) to correctly compare the complexity of 

different modulation schemes. For the microprocessor that runs SDR, the latter is more 

important because it determines the voltage and frequency level and thus, the energy cost.  



15 
 

CHAPTER III 

SOFTWARE RADIO TESTBENCH AND OPROFILE 

 

     In the recent times, software defined radio has gained a lot of importance as it 

provides flexibility to the radio communication by implementing radio functionality in 

software rather than in hardware. Some of the major advantages of software radio are that 

they can be reconfigured “on-the-fly”, their features can be quickly and easily upgraded, 

and they can be used to build smart or cognitive radios. However, due to the constraints 

of today’s technology, there is still some RF hardware involved in software defined radio 

system. Figure 4 illustrates the block diagram of software defined radio. There are quite a 

few software defined radio systems today and one of them is GNU Radio/USRP system. 

The emergence of GNU Radio software and USRP hardware has allowed the    



16 
 

research community to develop and analyze wireless communication systems easily in 

software radio environment. 

 

Figure 4: Block Diagram of Software Defined Radio  

     GNU Radio is an open source software toolkit that allows easy development of 

software defined radios. GNU Radio provides signal processing blocks which can be 

used to implement software radio functionalities on a general purpose processor. Radio 

front-end for GNU Radio is provided by USRP. USRP acts as a flexible hardware 

platform that can provide basic RF front-end functionalities. 
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3.1 GNU Radio – SDR Software Architecture 

     GNU Radio software architecture provides a library of signal processing blocks which 

can be glued together to build and deploy software defined radios [13]. The library 

provides various functions for signal processing functions such as filtering, adding 

signals, transforming, decoding, hardware access and many others. These libraries or 

modules are implemented in C++ language in the form of classes. Each of these signal 

processing block is equivalent to complex communication block implemented in 

conventional hardware radio. Thus, in GNU Radio, low level communication blocks are 

implemented by these C++ modules. In GNU Radio, the top level application 

programming for implementing advanced wireless radio communication protocols is 

implemented in Python scripting language. Basically, Python is used to create a 

flowgraph to connect signal processing blocks in GNU Radio. This flowgraph resembles 

to a radio chain comprising of nodes which are the signal processing blocks implemented 

in C++ while the data flows along the edges of the flowgraph. Each node in the 

flowgraph performs exactly one signal processing function while the data flowing along 

the edges of the flowgraph can be in the form of symbols, samples or bits. Each 

flowgraph at least needs one source and one sink acting as input and output ports. Figure 

5 provides the generic block diagram of GNU Radio Architecture. 
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Figure 5: Block Diagram of GNU Radio Architecture 

     As the signal processing blocks and higher level application development is done in 

two different languages, SWIG (simplified wrapper and interface generator) is used to 

connect them together. SWIG is a software tool which wraps C/C++ blocks for using 

them with a variety of high level scripting languages such as Python, TCL, Perl and many 

more. Due to the use of SWIG, GNU Radio architecture is capable of using powerful 

features of both Python and C++ languages [14].  

     C++ is used to implement signal processing blocks it can efficiently manipulate bytes, 

packet headers, and implement algorithms that can run over large data sets. On the other 

side, Python is used for its flexibility and ease of programming as it allows developers to 

build their applications quickly. Together Python and C++ blocks can implement 

software radio functionalities on a general purpose processor. USRP hardware provides 

or accepts data from GNU Radio through USB cable connected to computer. 

 

Python Application 

SWIG 

C++ Signal Processing Blocks 

USB Interface 
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3.2 USRP – SDR Hardware Architecture 

     While GNU Radio provides the software platform for implementing most of the signal 

processing functions, Universal Software Radio Peripheral (USRP) provides a basic 

hardware platform in order to transmit and receive signals at different frequencies with 

different bandwidths. In short, USRP provides RF frontend for software defined radio 

platform. USRP consists of a motherboard which can support different daughterboards 

for communication at different frequencies. It was developed by a team headed by Matt 

Ettus [15]. There are two different versions of USRPs called as USRP1 and USRP2. 

USRP1 consists of RF frontend, ADCs/DACs, FPGA and USB controller while USRP2 

is a more advanced version of USRP1 and it provides Ethernet connectivity to the 

computer instead of USB connection. Following figure shows schematic block diagram 

of USRP1. 

 

 

Figure 6: Schematic Block Diagram of USRP 

     As seen in the figure above, USRP1 uses a FPGA for performing frequency up/down 

conversion. Basically, FPGA manages the data rate of the signal so that it can be 

DAC 
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transferred through USB cable to or from the computer. ADCs/DACs are respectively 

used to convert signal from analog to digital format and vice versa. USB controller 

controls data transfer over USB cable [16]. All of the above things are accommodated on 

the motherboard while the daughterboards provide the RF front-end functionality. 

Depending on the frequency band to be used for communication, different 

daughterboards can be plugged in and out of USRP system. The figure below shows a 

detailed schematic block diagram of USRP1. 

 

Figure 7: Detailed Schematic Block Diagram of USRP1 [17] 
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     In case of USRP1, the digital down converters used in RX path are implemented in 

FPGA configuration while the digital up converters used in TX path are implemented in 

AD9862 CODEC chips instead of FPGA. And the only transmit signal processing blocks 

implemented in FPGA are the CIC (cascaded integrator-comb) interpolators [17]. 

     Thus, in short, both GNU Radio and USRP were used together to build software 

defined radio in this thesis and were used to analyze computational complexities of 

different signal processing functions implemented in software. In the next section, Matlab 

and Simulink software is covered in detail as they are very useful and effective tools for 

simulating software radio functionality. 

 

3.3 Matlab and Simulink 

     Matlab is a very high level language that provides an interactive environment so that 

one can easily focus on their applications rather than worrying about the programming 

details. Because of its flexibility and wide reach, Matlab is used to implement numerous 

applications in field of engineering, science and mathematics. Some of these widely 

known applications are signal and image processing, communications, control design, 

financial modeling and analysis, and computational biology. Moreover, Matlab provides 

some toolboxes which are collections of task and application specific Matlab functions, 

which makes application development a lot easier for the developer. 

     It also makes it easier to develop various algorithms and architecture exploration for 

communication systems. It allows design teams working in different areas such as RF, 
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baseband, control, and analog to collaborate easily [18]. Also, through re-use of models 

and algorithms already available in Matlab, it is possible to enable early verification 

throughout the design cycle. It also allows integration with legacy code and with third-

party hardware and software co-simulation environments easily. For above mentioned 

reasons, Matlab is a great tool for designing and simulating communication systems. 

     On the other hand, Simulink can be used for modeling, simulating, and analyzing 

dynamic systems in multiple domains that include controls, signal processing, 

communications, and other complex systems [18]. Moreover, modeling in simulink is 

easy as it provides graphical user interface and a customizable set of block libraries. 

     For computational complexity analysis, Simulink is used to implement software 

defined radio applications as it allows simulation and performance analysis of SDRs. 

Simulink also provides automatic code generation for creating embedded software. Also, 

tools provided in simulink can easily interact with SCA and VHDL code generators. 

Simulink can also be used for specification capturing and executable implementation-

independent model construction. Moreover, it allows model elaboration from behavioral 

modeling using fixed-point analysis [18]. 

     Simulink enables designer to build implementation-independent models required by 

SDR programs and hence allows code portability and reuse. Moreover, there are some 

useful toolboxes that are readily available along with Matlab and Simulink. The most 

important toolboxes that were used in this thesis for software defined radio purposes were 

communications toolbox, signal processing toolbox. 
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     Signal Processing Toolbox and Blockset provide tools for design and analysis of 

industry-standard algorithms for analog and digital signal processing. Communications 

Toolbox and Blockset provide tools for exploring, analyzing, designing and simulating 

physical layer of communication systems [18].  

 

3.4 OProfile 

     In order to analyze computational complexity of communication functions, it was 

necessary to use a system profiler that collects the information with very low overhead. 

OProfile seemed to be the best choice as it has been used in many previous research 

works and it is widely used for Linux systems with a wide variety of underlying 

processor architectures. 

     OProfile uses hardware performance counters already available for various events in 

the processor for profiling application code. It supports all the Intel processors (32-bit as 

well as 64-bit), AMD Athlon, AMD64, ARM, Alpha and more. It also works on most 

2.2, 2.4 and 2.6 kernels. 

     OProfile works on the principle of sampling, and it helps the programmer to identify 

problems with their code [19]. OProfile uses a kernel driver which is well supported by 

daemon to collect data which is profiled by it [20]. It also provides several tools which 

can be used for interpreting the raw data collected by the profiler. OProfile makes use of 

the hardware performance counters available in the CPU. It can also be used to measure 

time spent by each function – a functionality provided by gprof [20]. The tools available 
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in OProfile for post profile analysis that allows user to generate function-level or 

instruction-level detailed reports. OProfile imposes very low overhead on the system 

which is very beneficial. This overhead varies based on the sampling frequency. 

     Some of the common events that OProfile can monitor are total number of retired 

instructions, time during which processor is not halted, retired branches, retired 

mispredicted branches, cache references, etc. 
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CHAPTER IV 

COMPUTATIONAL COMPLEXITY ANALYSIS OF SDR 

 

          The purpose of this section is to obtain the computational complexity of SDR 

functions in terms of the number of samples (instructions executed by processor). 

However, for the microprocessor that runs SDR, what is more important is the required 

instructions to execute per second because it determines the voltage and frequency level. 

In section 4.1, 4.2, and 4.3, computational complexity of USRP/GNU Radio, BBN 

802.11b and Matlab is analyzed respectively. In section 4.4, we provide a brief summary 

of our observations. It is noted that our evaluation results using USRP, GNU Radio and 

Matlab coincide with observations made by other researchers mentioned above in [1], 

[11]. 
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4.1 USRP/GNU Radio-based Complexity Analysis 

     The following are the details of the experimental setup. (i) Each USRP system 

(version 5b) includes a RFX2400 transceiver (2.3-2.9 GHz) and GNU Radio software 

(version 3.1.3). (ii) Modulation schemes profiled on the transmitter side are GMSK, 

DBPSK, DQPSK, and QAM while only GMSK, DBPSK, and DQPSK are profiled on 

receiver side. (iii) Carrier frequency and bandwidth we have tested are 2.4 GHz and 100 

KHz, respectively, with the data rate of 100 - 1000 Kbps. A smaller bandwidth and data 

rates are used partly due to bandwidth constraints imposed by the USRP [21]. (iv) 

Transmitter amplitude is set to 8,000, which is smaller than the default value (12,000). (v) 

Packet size is 1,500 bytes and 1,000 packets were transmitted for each experiment. (vi) 

We used Oprofile as a profiling tool. (vii)We profiled transmitter as well as receiver 

complexity using benchmark_tx.py in GNU Radio. See Fig. 8 for the corresponding 

signal flow. 

 

Figure 8: Basic Transceiver using GNU Radio 

     We describe only parts of the whole symbols because the number of the profiled 

results is too many. These symbol names allow us to understand what operations are 

performed. While performing transmission by using USRP, GNU Radio executes not 

only the modules directly related to transmission operation (e.g., modulation, filter), but 
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also other modules, such as various libraries, modules related with USRP and Python. 

They also have heavy complexity. 

 

4.1.1 Transmitter Results with USRP1 

GMSK: 

sudo ./benchmark_tx.py -f 2400M -r 200k -m gmsk -v 

Important symbols: 

gr_frequency_modulator_fc::work 

gr_bytes_to_syms::work 

gr_interp_fir_filter_fff::work 

DBPSK/DQPSK/D8PSK/QAM8/QAM16/QAM64/QAM256: 

sudo ./benchmark_tx.py -f 2400M -r 200/400/600/800/1000k -m 

dbpsk/dqpsk/d8psk/qam8/qam16/qam64/qam256 -v 

Important symbols: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 
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gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

     Table I indicates the number of samples used by modulation specific symbols as well 

as the number of samples used by entire GNU Radio when that particular modulation 

scheme is used. Table II represents symbols used by each modulation scheme. Figure 9 

provides a graphical representation of computational complexity of entire GNU Radio for 

each modulation scheme. Table III provides computational complexity of each major 

transmission function in GNU Radio. 

Modulation 

Scheme 

Samples for 

Important 

Symbols 

Samples for 

Total Symbols 

GMSK 10437 80163 

DBPSK 15294 102944 

DQPSK 10825 61883 

D8PSK 8933 48654 

QAM8 9026 48624 

QAM16 8302 41815 

QAM64 7279 34974 

QAM256 6988 31597 

 

Table I: Overall Transmitter Complexity for each Modulation Scheme 

Symbols GMSK DBPSK DQPSK D8PSK QAM8 QAM16 QAM64 QAM256 

gr_frequency_modulator_fc Y N N N N N N N 

gr_bytes_to_syms Y N N N N N N N 

gr_interp_fir_filter_fff Y N N N N N N N 

get_bit_be N Y Y Y Y Y Y Y 

gr_packed_to_unpacked_bb N Y Y Y Y Y Y Y 

gr_interp_fir_filter_ccf N Y Y Y Y Y Y Y 

gr_diff_encoder_bb N Y Y Y Y Y Y Y 

gr_map_bb N Y Y Y Y Y Y Y 

gr_chunks_to_symbols_bc N Y Y Y Y Y Y Y 

 

Table II: Summary of Modulation Specific Symbols for Transmitter 
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Figure 9: Transmitter Complexity for each Modulation Scheme 

 

 
DBPSK DQPSK D8PSK QAM8 QAM16 QAM64 QAM256 Functions 

25844 12931 8784 8720 6636 4602 3368 fcomplex_dotprod_sse 

19543 9728 6536 6562 4830 2942 2322 gr_fir_ccf_simd 

10554 5281 3547 3534 2675 1767 1321 gr_multiply_const_cc 

5204 2604 1770 1737 1303 871 654 usrp_sink_c 

4415 4067 4208 4099 4045 4337 3791 get_bit_be 

3932 3085 2308 2462 2484 1735 2338 gr_packed_to_unpacked_bb 

3396 1673 1092 1034 754 510 411 gr_interp_fir_filter_ccf 

1739 925 623 620 472 311 228 gr_diff_encoder_bb 

1230 608 430 422 329 227 157 gr_map_bb 

950 482 305 295 224 186 122 gr_chunks_to_symbols_bc 

 

Table III: Computational complexity of Transmission Functions 

Sequence of events in GNU Radio (irrespective of modulation scheme): 

1. gr_packed_to_unpacked_bb::general_work 

   get_bit_be (It is a function defined inside gr_packed_to_unpacked_bb.cc) 

2. gr_map_bb::work 

3. gr_diff_encoder_bb::work 
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4. gr_chunks_to_symbols_bc::work 

5. gr_interp_fir_filter_ccf::work 

6. gr_fir_ccf_simd::filter 

7. fcomplex_dotprod_sse 

8. gr_multiply_const_cc::work 

9. usrp_sink_c::copy_to_usrp_buffer 

     The top 5 functions (from 1 to 5) are directly involved in modulation scheme. The 

bottom 4 functions from (6 to 9) are GNU Radio operations for transmission. 

     For DBPSK, gr_map_bb::work requires 1230 samples. This means that when it is 1 bit 

per symbol it requires 1230 samples. For DQPSK, it requires only 608 samples. This 

means that when it is 2 bits per symbol it requires 608 samples which is nothing but 

approximately 1/2 of the samples required by DBPSK. For D8PSK, it requires 430 

samples. This means that when it is 3 bits per symbol it requires 430 samples which is 

nothing but approximately 1/3rd of the samples required by DBPSK. And so on for 

QAM256, it requires 157 samples. This means that when it is 8 bits per symbol it requires 

157 samples which is nothing but approximately 1/8th of the samples required by 

DBPSK. 

     Thus, we can deduce that the number of samples required by gr_map_bb::work is 

directly affected by the number of bits per symbol specified by the modulation scheme. If 

we look closely, this result is true for all the symbols (from 2 to 5 which are related to 

modulation only) except for gr_packed_to_unpacked_bb. 
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     The result does not apply to gr_packed_to_unpacked_bb::general_work and 

get_bit_be. This symbol is used to unpack the data from the source file into chunks of 

size specified by the number of bits per symbol. Now, in case of our experiments same 

amount of data which is 1 Megabyte is sent out. But after 

gr_packed_to_unpacked_bb::general_work and get_bit_be have finished their work, there 

would be different number of chunks of data for each modulation scheme. 

     For example, for DBPSK if there are 100,000 data chunks for 1 Megabyte then for 

DQPSK it would be 50,000 data chunks for same amount data. After 

gr_packed_to_unpacked_bb::general_work and get_bit_be are finished, rest of the 

symbols (from 2 to 5) deal with data chunks and not with the original data. As these data 

chunks depend on number of bits per symbol specified by modulation scheme, the 

number of samples required by the symbols (2 to 5) would also depend on number of bits 

per symbol. 

     This clearly implies that the computational complexity of modulation scheme itself in 

GNU Radio is affected by the number of bits per symbol. 

     However, subsequent transmission functions in GNU Radio are also affected by the 

selection  of number of bits per symbol. This is because once the modulation of data is 

completed; the subsequent operations would deal with data symbols and not the original 

data. Now, the number of data symbols would vary from one modulation scheme to 

another.  

     Hence, the number of samples required by the symbols (from 6 to 9 which are not 

related to modulation but are used by GNU Radio for transimission purposes) are also 
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affected by the choice of modulation scheme. And thus, we get different number of 

samples for entire GNU Radio operation when we change the modulation scheme.    

     At the end, it can be said that higher the number of bits per symbol for a modulation 

scheme the lesser it is computationally complex. It is always preferable to use a 

modulation scheme with a higher number of bits per symbol if computational complexity 

is a priority.                                                                 

     As modulation changes from DBPSK to DQPSK to D8PSK, transmitter complexity 

decreases. It is also the case with QAM8, QAM16, QAM64 and QAM256. However, the 

difference in the latter is not as huge as in the former. 

     This is because the difference between no. of samples for a given symbol reduces 

from DBPSK to D8PSK and from QAM8 to QAM256. In GNU Radio, all the modulation 

schemes from DBPSK to all QAMs use same symbols.  

     As we can see for fcomplex_dotprod_sse function, DBPSK requires 25844 samples 

and DQPSK requires almost half of the number of samples. So the difference is huge 

(almost 13000 samples) in between DBPSK and DQPSK for this symbol. Now, QAM16 

uses 1/4th of the samples used by DBPSK while QAM64 uses 1/6th of the samples used 

by DBPSK. However, the difference between samples of QAM16 and QAM64 is small 

(almost 2000 samples only). This can be seen in all the other symbols of a modulation 

scheme. Thus, it seems that the transmitter complexity reduces drastically initially and 

then gradually.   
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     Fig. 10 compares the total number of cycles and the required cycles per second for 

each modulation scheme. As modulation changes from DBPSK to DQPSK to D8PSK, 

overall transmitter complexity decreases. It is also the case with QAM8, QAM16, 

QAM64, and QAM256. This is because the computational workload greatly depends on 

the number of symbols, which decreases as the modulation level increases. On the other 

hand, considering the different communication duration at different data rate, the required 

cycles per second exhibits the opposite trend, which means that lower rate 

communication takes more time but low voltage and frequency for the microprocessor. 

Due to the quadratic effect of voltage on energy, it would mean energy savings.  

 
 

Figure 10: Computational Complexity of GNU Radio Transmitter 
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4.1.2 Receiver Results with USRP1 

GMSK: 

sudo ./benchmark_rx.py -f 2400M -r 200k -m gmsk -v 

Important Symbols: 

gr_fast_atan2f 

gr_quadrature_demod_cf::work 

gr_binary_slicer_fb::work 

gr_clock_recovery_mm_ff::general_work 

gr_clock_recovery_mm_ff::forecast 

gri_mmse_fir_interpolator::interpolate 

gri_mmse_fir_interpolator::ntaps 

DBPSK/DQPSK: 

sudo ./benchmark_rx.py -f 2400M -r 200/400k -m dbpsk/dqpsk -v 

Important Symbols: 

gr_feedforward_agc_cc::work 

gr_constellation_decoder_cb::work 

gr_multiply_const_cc::work 
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gr_unpack_k_bits_bb::work 

gr_diff_phasor_cc::work 

gr_map_bb::work 

gr_interp_fir_filter_ccf::work 

gr_sincosf 

gri_mmse_fir_interpolator_cc::interpolate 

gri_mmse_fir_interpolator_cc::ntaps() 

gr_mpsk_receiver_cc::mm_sampler 

gr_mpsk_receiver_cc::mm_error_tracking 

gr_mpsk_receiver_cc::general_work 

gr_mpsk_receiver_cc::phase_error_tracking 

gr_mpsk_receiver_cc::decision_bpsk/qpsk 

gr_mpsk_receiver_cc::phase_error_detector_bpsk/qpsk 

gr_mpsk_receiver_cc::forecast 

Modulation Samples for Important 

Symbols 

Samples for All Symbols 

GMSK 52634 181274 

DBPSK 265033 484742 

DQPSK 144508 285547 

 

Table IV: Overall Receiver Complexity for each Modulation Scheme 
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Figure 11: Receiver Complexity for each Modulation Scheme 

DBPSK DQPSK Symbols 

160234 82251 gr_feedforward_agc_cc::work 

60503 28913 fcomplex_dotprod_sse 

21075 10346 gr_mpsk_receiver_cc::mm_sampler 

20453 10474 gr_fft_filter_ccc::work 

18647 8288 gr_mpsk_receiver_cc::mm_error_tracking 

13827 7449 gr_mpsk_receiver_cc::general_work 

13641 15796 gr_correlate_access_code_bb::work 

13318 7372 gr_fir_ccf_simd::filter 

12629 10575 gr_constellation_decoder_cb::work 

8281 4788 gr_mpsk_receiver_cc::phase_error_tracking 

7285 5518 gr_count_bits32 

5443 2819 gr_single_pole_iir<double, double, double>::filter 

5377 2770 gr_multiply_const_cc::work 

4156 2786 gr_unpack_k_bits_bb::work 

4086 3110 gr_interp_fir_filter_ccf::work 

4002 4146 gr_count_bits64 

3844 1938 gr_probe_avg_mag_sqrd_c::work 

3728 1885 gri_mmse_fir_interpolator_cc::interpolate 

3546 1795 gr_diff_phasor_cc::work 

3353 2026 gr_sincosf 

2998 3044 gr_framer_sink_1::work 

2961 1543 usrp_source_c::copy_from_usrp_buffer 

2629 1347 gr_mpsk_receiver_cc::phase_error_detector_bpsk/qpsk 

2324 3412 gr_mpsk_receiver_cc::decision_bpsk/qpsk 

1298 688 gr_map_bb::work 

940 476 gri_fft_complex::execute 

285 169 gr_mpsk_receiver_cc::forecast 

11 6 gri_mmse_fir_interpolator_cc::ntaps 

 

Table V: Complexity of Individual Reception Symbols in GNU Radio 
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Symbols GMSK DBPSK DQPSK 

gr_fast_atan2f Y N N 

gr_quadrature_demod_cf Y N N 

gr_binary_slicer_fb Y N N 

gr_clock_recovery_mm_ff Y N N 

gri_mmse_fir_interpolator Y N N 

gr_feedforward_agc_cc::work N Y Y 

gr_mpsk_receiver_cc N Y Y 

gr_constellation_decoder_cb N Y Y 

gr_multiply_const_cc N Y Y 

gr_unpack_k_bits_bb N Y Y 

gr_diff_phasor_cc N Y Y 

gr_map_bb N Y Y 

gr_sincosf N Y Y 

gri_mmse_fir_interpolator_cc N Y Y 

 

Table VI: Summary of Modulation Specific Symbols for Receiver 

     Table IV indicates the number of samples used by modulation specific symbols as 

well as the number of samples used by entire GNU Radio for reception when that 

particular modulation scheme is used. Table V provides computational complexity of 

each major reception function in GNU Radio. Figure 11 provides a graphical 

representation of computational complexity of entire GNU Radio for each modulation 

scheme for reception. Table VI represents symbols used by each modulation scheme. 

     As seen in transmitter, most of the symbols associated with DQPSK require 

approximately half the number of samples than that required in DBPSK. Also, some of 

the symbols which are not associated with modulation and are used only by GNU Radio 

require half the number of samples when using DQPSK than that required when using 

DBPSK. So, we can see even in case of receiver, number of bits per symbol not only 

affects the number of samples required by modulation functions but also the GNU Radio 

functions. 
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     However, there are four symbols related to modulation which are 

gr_constellation_decoder_cb, gr_unpack_k_bits_bb::work, gr_interp_fir_filter_ccf::work, 

and gr_mpsk_receiver_cc::decision_qpsk/bpsk which require more or less number of 

samples irrespective of whether the modulation scheme is DBPSK or DQPSK. It is 

possibly because the input parameter for these functions is not just the number of data 

symbols received but they depend on some other parameters too. 

 

4.1.3 Complexity Analysis with Bandwidth Variation 

     Next, we observed transmission complexity with varying bandwidth. We created a 

bandwidth effect by changing bit rate. For example, we performed transmission and 

reception with DBPSK 200kbps (200KHz) and DBPSK 400kbps (400KHz) and also with 

DQPSK 400kbps (200KHz) and DQPSK 800kbps (400 KHz).  

 

DBPSK: 

Bits per symbol = 1 

Samples per symbol = 2 

Data Rate = 200kbps 

Sampling Frequency or Rate = 2 Samples/Symbol * 1 Symbol/Bit * 200k Bits/Second  

        = 400k Samples/Second 
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Bandwidth = Sampling Frequency/2 = 200kHz 

Data Rate = 400kbps 

Sampling Frequency or Rate = 2 Samples/Symbol * 1 Symbol/Bit * 400k Bits/Second  

        = 800k Samples/Second 

Bandwidth = Sampling Frequency/2 = 400kHz 

 

DQPSK: 

Bits per symbol = 2 

Samples per symbol = 2 

Data Rate = 400kbps 

Sampling Frequency or Rate = 2 Samples/Symbol * (1/2) Symbol/Bit * 400k Bits/Second  

        = 400k Samples/Second 

Bandwidth = Sampling Frequency/2 = 200kHz 

Data Rate = 800kbps 

Sampling Frequency or Rate = 2 Samples/Symbol * (1/2) Symbol/Bit * 800k Bits/Second  

        = 800k Samples/Second 

Bandwidth = Sampling Frequency/2 = 400kHz 
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Modulation 

Scheme 

Transmitter Receiver 

 200KHz 400KHz 200KHz 400KHz 

DBPSK 15294 15378 265033 303578 

DQPSK 10825 10660 144508 181416 

 

Table VII: Modulation-specific Complexity Analysis with Bandwidth Variation 

Modulation 

Scheme 

Transmitter Receiver 

 200KHz 400KHz 200KHz 400KHz 

DBPSK 102944 102662 484742 540836 

DQPSK 61883 61850 285547 359396 

 

Table VIII: Overall GNU Radio Complexity Analysis with Bandwidth Variation 

     Table VII provides complexity analysis for DBPSK and DQPSK related-only symbols 

for both transmitter and receiver with bandwidth variation. Table VIII provides 

complexity analysis for entire GNU Radio transmitter and receiver when DBPSK and 

DQPSK are used with bandwidth variation. 

     Comparing two results, we found that transmitter complexity is almost constant while 

bit rate and bandwidth is doubled. Also, this is similarly observed with DQPSK. This 

reason is that the number of instructions is not changed even though bandwidth increases. 

However, unlike the transmitter complexity, the receiver complexity increases around 

11% and 25% for DBPSK and DQPSK, respectively. This is because high bitrate 

increases sampling rate to receive incoming data from the channel. We observed that, in 

case of transmitter, the number of samples (instructions) required to write all the symbols 

into GNU Radio USRP buffer (usrp sink c - Interface to Universal Software Radio 

Peripheral Tx path) is same in both the cases (200KHz and 400KHz). However, in case 

of receiver, the GNU Radio USRP buffer (usrp_source_c - Interface to Universal 
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Software Radio Peripheral Rx path), the number of samples increases for 400KHz 

scenario then 200KHz. 

      

4.2 BBN 802.11b-based Complexity Analysis 

     USRP/GNU Radio-based experiment mentioned above is not sufficient because it 

does not implement the 802.11 standard. To obtain more reliable results, we profiled 

transmission complexity of BBN 802.11b implementation in GNU Radio [3]. We use 

Oprofile [20] again. Note that the BBN 802.11b implementation does not include a 

transmitter with 5.5Mbps and 11Mbps data rates. In 802.11b, CCK (complementary code 

keying) encoding is based on differential QPSK modulation to encode the phase 

parameters which are used to make 8-bit CCK code words. Based on this, we 

implemented a block for the purpose of profiling computational complexity of CCK 

modulation. Fig. 12 provides signal flow in BBN 802.11b transceiver. Table IX shows 

detailed information on the profiled results for a subset of symbols. It is interesting to 

observe that, with a few exceptions, each symbol block takes a decreasing amount of 

computations as data rate increases.  

     Figure 13 shows a similar trend as it was observed in the GNU Radio/USRP 

transmitter complexity for each modulation scheme. As we see here, BPSK requires 

higher number of total cycles than QPSK but lower number of cycles per second due to 

different communication data rates. Same trend is observed for 4-CCK and 8-CCK. 
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Figure 12: BBN 802.11b Transceiver 

Symbols 1Mbps 2Mbps 5.5Mbps 11Mbps 

bbn_scrambler_bits 0.65  0.65 0.67 0.67 

gr_packed_to_unpacked 0.24 0.18 0.17 0.17 

get_bit_be 0.14 0.19 0.15 0.15 

gr_fir_ccf_simd::filter 3.36 1.71 0.79 0.41 

fcomplex_dotprod_sse 3.11 1.48 0.80 0.37 

 

Table IX: Profiling results of BBN 802.11b Transmitter 

 
 

Figure 13: Computational Complexity of BBN 802.11b Transmitter 
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4.3 Matlab-based Complexity Analysis 

     Using Matlab and Simulink, one can design SDR in a modularized manner. Moreover, 

they allow simulation and performance analysis of SDRs [22]. We additionally use the 

Matlab implementation of 802.11b to estimate the computational complexity of SDR 

functions. Here are the details of our experiment. (i) We use Matlab V7.9.0.529, 

Simulink V7.4, Communications Toolbox V4.4, Signal Processing Toolbox V6.12, 

Communications Blockset V4.3, and Signal Processing Blockset V6.10 on Ubuntu 8.04 

(Hardy). (ii) We use again Oprofile (0.9.6) for profiling the computations. (iii) The 

packet size in each scenario is 1024 bytes and 1000 packets are transmitted for each data 

rate. (iv) The PLCP header size is 192 bits (long preamble) and 128 bits (short preamble). 

Fig. 14, 15 and 16 show SDR implementation in Matlab and Simulink. Fig. 17 shows the 

total number of cycles at each data rate as well as the corresponding cycles per second. It 

shows that as the data rate increases the computational complexity decreases which is 

consistent with the results that we obtained using USRP/GNU Radio and BBN 802.11b. 

 

Figure 14: Matlab SDR 

 

Figure 15: Matlab SDR Transmitter 
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Figure 16: Matlab SDR Receiver 

     The Oprofile profiling results provided a huge number of functions used by Matlab 

and Simulink for simulation of SDR. However, there are few major functions that are 

required for signal processing purposes while the rest of the functions are used for 

performing mathematical functions by Matlab. Table X provides a list of all the major 

functions of Matlab and Simulink and also the total number of samples used by each 

function. Figure 17 shows similar trend for computational complexity for Matlab SDR as 

seen in the case of GNU Radio/USRP and BBN 802.11b transceiver. 

 

 Functions 1 Mbps 2 Mbps 5.5 Mbps 11 Mbps 

   Long 

Preamble 

Short 

Preamble 

Long 

Preamble 

Short 

Preamble 

Long 

Preamble 

Short 

Preamble 

1 sdspfilter2 1355325 693185 677675 271830 256340 151445 135940 

2 sdspupfir2 347730 177850 173855 69740 65765 38855 34875 

3 Sdspstatfcns 94100 48600 47400 18800 17100 10275 8960 

4 scomawgnchan2 15585 7970 7800 3125 2955 1745 1555 

5 sdspdsamp2 9325 4675 4575 1765 1745 920 900 

6 Scomapskdemod 3575 2470 2460 1185 1200 645 625 

7 Scomapskmod 1460 1130 1115 490 470 965 940 

8 scomerrrate2 465 465 455 460 465 460 455 

9 Scominttobit 185 180 182 190 185 185 195 

10 Sdspstatminmax N/A N/A N/A 440 450 3095 3090 

11 sdspperm2 N/A N/A N/A 130 140 55 62 

 TOTAL 1827750 936525 915517 368155 346815 208645 187597 

 TOTAL (Entire 

MATLAB) 

2123500 1091000 1071500 458750 437000 299500 280000 

 

Table X: Computational Complexity for Individual Symbols in Matlab 
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As seen above there are quite a few functions used for signal processing by Matlab. Each 

function has its own significance and is described below briefly:  

1. sdspfilter2 - RX Pulse Shaping filter (Direct form II Transpose filter) in RX Front End 

block. 

2. sdspupfir2 - TX Pulse shaping filter for FIR Interpolation in TX Upsampling and 

Pulse shaping block. 

3. scomawgnchan2 - AWGN Channel block. 

4. sdspdsamp2 - Used in RX Signal to Chips conversion block. 

5. scomapskmod - Used in TX Modulation and Spreading block. 

6. scomapskdemod - Used in RX Demodulation and Despreading block. 

7. scominttobit - Converting random data source bytes into bits on Transmitter side 

between Data source and Framing block. 

8. sdspstatfcns - Used in RX Demodulation and Despreading block to pick out maximum 

value over a set of input elements. 

9. sdspperm2 - Used in RX Demodulation and Despreading block to select or reorder a 

set of input elements. 

10. sdspstatfcns - Statistical function (using variance) to compute TX signal power. 

11. scomerrrate2 – Used for error rate calculation for BER purposes. 
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Figure 17: Computational Complexity for Matlab SDR 

 

4.4 Summary 

     In case of transmitter, we see that the number of samples required by a particular 

modulation scheme as well as by entire GNU Radio goes down as the number of bits per 

symbol increases. It is clearly observed that the overall number of samples go down from 

DBPSK to D8PSK as well as from QAM8 to QAM256. However, for different 

modulation scheme, the duration of communication is different as it can support different 

data rate. Thus, we see that the communication duration goes down from DBPSK to 
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D8PSK and from QAM8 to QAM256. As a result, the number of samples per second 

show opposite trend than the overall number of samples required by respective 

modulation schemes. Thus, number of samples per second increases as the number of bits 

per symbol increases i.e. from DBPSK to D8PSK and QAM8 to QAM256. 

     In case of receiver, very similar trend as seen in transmitter is observed. We see that 

the number of samples required only by DQPSK is less than that of DBPSK. Moreover, 

the number of samples used by entire GNU Radio while using DQPSK is also less than 

that of DBPSK. We have also observed similar results in case of BBN 802.11b and 

Matlab SDR. Overall, we can say that DQPSK is computationally less intensive than 

DBPSK to communicate same amount of data. 

     As a summary, highly sophisticated modulation schemes are preferable as they deliver 

messages faster as well as execute small number of instructions. However, highly 

sophisticated modulation schemes have high BER and hence, the performance obtained is 

slightly at the expense of reliability. Also, as we observed, higher modulation schemes 

will execute higher number of instructions per second. Hence, the microprocessor 

running SDR will need higher voltage and frequency at that particular instant which 

results in higher instantaneous power consumption. Thus, this complexity analysis can be 

useful to choose desired modulation scheme based on the application’s performance 

requirements as well as available power resources. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

     The main aim of this thesis was to analyze computational complexity of different 

signal processing functions utilized in software defined radio on different platforms. This 

analysis in future would then help to devise a SDR-based communication system which 

provides optimal performance with minimal power consumption. In this thesis, we were 

able to analyze different modulation schemes such as GMSK, M-DPSK, and QAMs. We 

also analyzed the performance of IEEE 802.11b standard. In this thesis, we were able to 

realize that the computational complexity of any signal processing function heavily 

depends on the number of bits per symbol (constellation size) for a particular modulation 

scheme. The energy and delay performance can be traded off against each other by 

varying constellation size or by changing the modulation scheme. 
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     The future goal of this research should be to expand this work to many other 

modulation schemes as well as other popular standards such as IEEE 802.11a/g/n, 

Bluetooth and ZigBee protocols. Based on all this analysis, we can devise mechanisms to 

configure software radio on the fly to meet the application requirements along with low 

power consumption and efficient performance. 

     The computational complexity analysis could be useful to design a communication 

system which uses both modulation scaling and dynamic voltage scaling for high 

performance and low power consumption. In SDR-based wireless systems, different 

modulation schemes or data rates demand different computational workload, thus making 

it possible to save energy by applying the DVS technique as in conventional energy-

aware processor design.  
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APPENDIX A  

OPROFILE TOOLS 

  

OProfile Tools [20]: 

Ophelp – Lists available events supported by the processor along with their short 

descriptions. 

Opcontrol – Tool that allows the user to configure different parameters for profiling and 

data collection. 

Opreport – Retrieves useful profile data and generates reports based on user 

specifications. 

Opannotate – OProfile users to produce reports with annotations of source or assembly 

code so that it becomes easier for the user to identify where exactly the problem is. But 

the user has to make sure that it enables profiling with debugging symbols. 
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Opgprof – Provides gprof-style data files for binary that can be used with gprof. 

Oparchive – This tool will collect all the data collected by OProfile and will save it in an 

archive. This archive can then be easily transferred from one machine to another based on 

the requirements of the user. 

Opimport – This tool can be used by the user who has moved the data collected from the 

machine which was used for profiling to some other machine. It will help the user to 

convert the original file into a format supported by current host machine. 
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APPENDIX B 

GNURADIO SIGNAL PROCESSING FUNCTIONS 

 

Transmitter Functions: 

GMSK: 

sudo ./benchmark_tx.py -f 2400M -r 200k -m gmsk -v 

Important functions: 

gr_frequency_modulator_fc::work 

gr_bytes_to_syms::work 

gr_interp_fir_filter_fff::work 
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DBPSK: 

sudo ./benchmark_tx.py -f 2400M -r 200k -m dbpsk -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 

gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

 

DQPSK: 

sudo ./benchmark_tx.py -f 2400M -r 400k -m dqpsk -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 
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gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

 

D8PSK: 

sudo ./benchmark_tx.py -f 2400M -r 600k -m d8psk -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 

gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

 

QAM8: 

sudo ./benchmark_tx.py -f 2400M -r 600k -m qam8 -v 

Important functions: 

get_bit_be 
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gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 

gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

 

QAM16: 

sudo ./benchmark_tx.py -f 2400M -r 800k -m qam16 -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 

gr_map_bb::work 

gr_chunks_to_symbols_bc::work 
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QAM64: 

sudo ./benchmark_tx.py -f 2400M -r 1000k -m qam64 -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 

gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

 

QAM256: 

sudo ./benchmark_tx.py -f 2400M -r 1000k -m qam256 -v 

Important functions: 

get_bit_be 

gr_packed_to_unpacked_bb::general_work 

gr_interp_fir_filter_ccf::work 

gr_diff_encoder_bb::work 
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gr_map_bb::work 

gr_chunks_to_symbols_bc::work 

Transmitter Functions [13]: 

gr_frequency_modulator_fc::work – It is a Frequency modulator block which accepts 

float type input and gives complex baseband output. In frequency modulation, changes in 

the baseband signal are imposed on the frequency of the carrier wave. 

gr_interp_fir_filter_fff::work – This block performs interpolation with FIR filters. The 

input and output as well as taps used for interpolation for this block are in float type. 

gr_bytes_to_syms::work – This block is used for converting byte streams to symbol 

stream. The input for this block is byte steam while the output is float stream. 

gr_packed_to_unpacked_bb::general_work – This block is used for converting packed 

bytes stream to unpacked bytes stream. The input as well as output for this block is a 

unsigned characters stream. 

gr_interp_fir_filter_ccf::work - This block performs interpolation with FIR filters. The 

input and output for this block are of gr_complex type while taps are of float type. 

gr_diff_encoder_bb::work - This block implements differential encoder (b[0] = (a[0] + 

b[-1]) % M). It operates on bits. 

gr_map_bb::work – This block maps input bit pattern to a pre-defined bit pattern 

(output[i] = map[input[i]]). This block also operates on bits. 
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gr_chunks_to_symbols_bc::work – This block produces a float stream in Z dimensions 

from unpacked bytes stream. So the output is stream of gr_complex while the input is 

unsigned characters stream.  

output[n Z + m] = symbol_table[input[n] Z + m], m=0,1,...,Z-1 

Here, Z is dimensions and its value is 1 by default. 

This block along with the gr_packed_to_unpacked and gr_chunks_to_symbols are used 

for converting bytes into complex symbols. 

gr_multiply_const_cc::work - Output = Input * Constant 

usrp_sink_c::copy_to_usrp_buffer – This block provides interface for GNU Radio to 

Universal Software Radio Peripheral (USRP) Tx path. Input for this block is gr_complex.  

gr_fir_ccf_simd::filter – It is a block which implements the SIMD model for gr_fir_ccf. 

It helps in handling problems related with SSE and 3DNOW subclasses. gr_fir_ccf takes 

complex symbols as input and provides complex symbols as output. It uses float taps. 

 

Receiver Functions: 

GMSK: 

sudo ./benchmark_rx.py -f 2400M -r 200k -m gmsk -v 

Important Symbols: 

gr_fast_atan2f 
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gr_quadrature_demod_cf::work 

gr_binary_slicer_fb::work 

gr_clock_recovery_mm_ff::general_work 

gr_clock_recovery_mm_ff::forecast 

gri_mmse_fir_interpolator::interpolate 

gri_mmse_fir_interpolator::ntaps 

 

DBPSK: 

sudo ./benchmark_rx.py -f 2400M -r 200k -m dbpsk -v 

Important Symbols: 

gr_feedforward_agc_cc::work 

gr_constellation_decoder_cb::work 

gr_multiply_const_cc::work 

gr_unpack_k_bits_bb::work 

gr_diff_phasor_cc::work 

gr_map_bb::work 

gr_interp_fir_filter_ccf::work 
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gr_sincosf 

gri_mmse_fir_interpolator_cc::interpolate 

gri_mmse_fir_interpolator_cc::ntaps() 

gr_mpsk_receiver_cc::mm_sampler 

gr_mpsk_receiver_cc::mm_error_tracking 

gr_mpsk_receiver_cc::general_work 

gr_mpsk_receiver_cc::phase_error_tracking 

gr_mpsk_receiver_cc::decision_bpsk 

gr_mpsk_receiver_cc::phase_error_detector_bpsk 

gr_mpsk_receiver_cc::forecast 

 

DQPSK: 

sudo ./benchmark_rx.py -f 2400M -r 400k -m dqpsk -v 

Important Symbols: 

gr_feedforward_agc_cc::work 

gr_constellation_decoder_cb::work 

gr_multiply_const_cc::work 
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gr_unpack_k_bits_bb::work 

gr_diff_phasor_cc::work 

gr_map_bb::work 

gr_interp_fir_filter_ccf::work 

gr_sincosf 

gri_mmse_fir_interpolator_cc::interpolate 

gri_mmse_fir_interpolator_cc::ntaps() 

gr_mpsk_receiver_cc::mm_sampler 

gr_mpsk_receiver_cc::mm_error_tracking 

gr_mpsk_receiver_cc::general_work 

gr_mpsk_receiver_cc::phase_error_tracking 

gr_mpsk_receiver_cc::decision_bpsk 

gr_mpsk_receiver_cc::phase_error_detector_bpsk 

gr_mpsk_receiver_cc::forecast 
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Receiver Functions [13]: 

gr_fast_atan2f – This function implements Fast arc tangent using table lookup and linear 

interpolation. 

gr_quadrature_demod_cf::work – This block implements quadrature demodulator. 

Quadrature demodulator is used in frequency modulation, frequency shift keying and 

Gaussian minimum shift keying. The input is complex baseband and the output is of float 

type.  

gr_binary_slicer_fb::work – This function slices float binary symbol providing 1 bit as 

an output. If x < 0 then 0 and if x >= 0 then 1. 

gr_clock_recovery_mm_ff::general_work – This function uses the Mueller and Müller 

(M&M) implementation for discrete-time error-tracking synchronizer. It operates on float 

input and output. 

gri_mmse_fir_interpolator::interpolate – This block is used to compute samples 

between n(m*Ts) signal samples. 

It uses a Mininum Mean Squared Error interpolator. It is better suited for signals that has 

the bandwidth around 1/(4*Ts). Ts is the duration between two samples.  

In this case, mu is quantized to the 32nd’s of a sample. It is a fractional delay and is 

represented as float. It is always in the range of [0, 1]. 
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This function provides the output as a single value of interpolation of input value. 

However it is necessary to have ntaps valid entries. All the input values from 0 to ntaps-1 

are used as reference to compute the output. 

gr_feedforward_agc_cc::work – This block uses non-causal AGC. It computes the gain 

that will be required by receiver by analyzing a pre-determined number of input samples. 

The input and output for this function are both of gr_complex type. 

gr_constellation_decoder_cb::work – This block implements Constellation Decoder. 

The input is gr_complex while output is bits. 

gr_unpack_k_bits_bb::work – It converts the incoming byte with n bits into n output 

bytes with each bit located in the LSB of the output byte. 

gr_diff_phasor_cc::work - This block implements differential decoder. 

gr_mpsk_receiver_cc – This block uses phase, frequency, and symbol synchronization 

for receiving M-ary PSK signals. 

It locks carrier frequency and phase in order to receive signals. It also performs symbol 

timing recovery. Currently it can be used for DBPSK, DQPSK and D8PSK. It is assumed 

that it can also demodulate OQPSK and PI/4 DQPSK modulated signals.  

Costas loop are used for synchronizing phase and frequency of the incoming signals. 

They perform error check in the incoming signal by comparing it to the nearest 

constellation point. Based on the output of the Costas loop, the phase and frequency of 

the NCO are modified. This block already has optimized phase detection scheme 

implemented for BPSK and QPSK. In case of 8PSK, it uses brute force computation. 
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Modified Mueller and Muller circuit is used for symbol synchronization. 

The modified circuit is used to reduce the noise. It interpolates a sample from every mu 

samples using the NCO. It finds the sampling error by analyzing earlier symbols.  
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APPENDIX C 

MISCELLANEOUS COMMANDS 

 

Transmitter profiling using benchmark_tx.py: 

sudo ./benchmark_tx.py -f 2400M -m MOD_SCHEME -r DATA_RATE -v 

This command is used to run benchmark_tx.py with desired input options. 

MOD_SCHEME = DBPSK, DQPSK, D8PSK, GMSK, QAM8, QAM16, QAM64 and 

QAM256. 

DATA_RATE = Data rate is selected based on modulation scheme. 

For example, DQPSK will have higher data rate as compared to DBPSK 
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Receiver profiling using benchmark_rx.py: 

sudo ./benchmark_rx.py -f 2400M -m MOD_SCHEME -r DATA_RATE -v 

MOD_SCHEME = DBPSK, DQPSK, GMSK. 

DATA_RATE = Set same as that of transmitter. 

Note: I was not able to receive (decode) any packets correctly using D8PSK. Moreover, 

the demodulator block for QAM8, QAM16, QAM64 and QAM256 are not yet available 

in GNU Radio package. 

 

OProfile commands: 

All the commands for OProfile are executed in a separate terminal tab. 

First of all setup all the parameters for OProfile. Following are the parameters that I am 

using currently in OProfile: 

Event 0: INSTR_RETIRED:50000:1:1:1 

Separate options: library 

vmlinux file: none 

Image filter: none 

Call-graph depth: 0 

Next is to setup a folder where we want to store the profiling results. 
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sudo opcontrol --session-dir=PATH_TO_FOLDER 

Next, I execute benchmark_tx.py and benchmark_rx.py in a separate tab as shown above. 

Then, I run a script file to start the OProfile tool. The command: 

source start.sh 

Once, the execution of benchmark_tx.py and benchmark_rx.py is finished. I run another 

script file to stop the OProfile. The command is: 

source stop.sh 

Next, is to use opreport to generate text file of the results. The commands are as follows: 

sudo opreport --session-dir=PATH_TO_FOLDER > FILE_NAME 

sudo opreport -l --session-dir=PATH_TO_FOLDER > FILE_NAME 

sudo opreport -d --session-dir=PATH_TO_FOLDER > FILE_NAME 

The results are stored in the FILE_NAME. The -l and -d provide detailed profiling 

results. 
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