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BYZANTINE FAULT TOLERANCE
FOR

NONDETERMINISTIC APPLICATIONS

BO CHEN

ABSTRACT

The growing reliance on online services accessible on the Internet demands 

highly reliable system that would not be interrupted when encountering faults. A 

number of Byzantine fault tolerance (BFT) algorithms have been developed to mask 

the most complicated type of faults — Byzantine faults such as software bugs, 

operator mistakes, and malicious attacks, which are usually the major cause of service 

interruptions. However, it is often difficult to apply these algorithms to practical 

applications because such applications often exhibit sophisticated non-deterministic 

behaviors that the existing BFT algorithms could not cope with. 

In this thesis, we propose a classification of common types of replica non-

determinism with respect to the requirement of achieving Byzantine fault tolerance, 

and describe the design and implementation of the core mechanisms necessary to 

handle such replica nondeterminism within a Byzantine fault tolerance framework. In 

addition, we evaluated the performance of our BFT library, referred to as ND-BFT 

using both a micro-benchmark application and a more realistic online porker game 

application. The performance results show that the replicated online poker game 

performs approximately 13% slower than its nonreplicated counterpart in the presence 

of small number of players.  
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CHAPTER I

INTRODUCTION

The society is increasingly dependent on services provided by computer 

systems and our vulnerability to computer failures is growing as a result: we expect to 

have highly-available systems or applications that should work correctly and provide 

services without interruptions. This requires the system or the application to be 

carefully designed and implemented, and rigorously tested. However, considering the 

intense pressure for short development cycles and the widespread use of commercial-

off-the-shelf software components, it is not surprising that software systems are 

notoriously imperfect. Problems such as software crashing, leaking of confidential 

information, modify or deleting of critical data, or injecting of erroneous information 

into the application data. These malicious faults often referred as Byzantine faults. 

The Byzantine faults can be handled by replicating the server and employing a 

Byzantine fault tolerance (BFT) algorithm as described in [2, 8, 17, 18].

Byzantine fault tolerance algorithms require the replicas to operate 

deterministically, i.e., given the same input under the same state, all replicas produce 
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the same output and transit to the same state. However, it is incorrect to assume that 

practical applications will operate deterministically. Moreover it is equally incorrect 

to categorize the determinism into a single type. Therefore, when a practical 

application is replicated to tolerate Byzantine fault, its replica nondeterminism must 

be analyzed carefully and be tackled properly to ensure replica consistency.

In previous research, although the replica nondeterminism issue has been 

studied, it is limited to only the most simplistic forms of nondeterminisim, which we 

term as nondeterminism and verifiable pre-determinable nondeterminism[2, 8, 17, 

18].  The former assumes that any nondeterministic operations and their side effects 

can be mapped into some pre-specified abstract operations and state, which are 

deterministic. The later assumes that any nondeterministic values can be determined 

prior to the execution of a request, and such values proposed by one replica can be 

verified by other replicas in a deterministic manner, and the values are accepted only 

if they are believed to be correct.

Therefore, new techniques must be carried out to cope with replicated 

applications that exhibit other types of nondeterministic behavior to guarantee replica 

consistency. For example, many online gaming applications contain some kind of 

nondeterminism whose value [4, 14] (e.g., random numbers that determine the state of 

the applications) proposed by one replica cannot be verified by another one. It is 

incorrect to treat this type of replica nondeterminism the same as the verifiable pre-

determinable nondeterminism because a faulty replica could use a predictable 

algorithm to update its internal state and collude with its clients, without being 

detected, which defeats the purpose of Byzantine fault tolerance. As another example, 

2



multi-threaded applications may exhibit nondeterminism whose values [13] (e.g., 

thread interleaving) cannot be determined prior to the execution of a request (without 

losing concurrency) which cannot be handled by existing BFT mechanisms.

1.1  Contribution

In this thesis, we introduce a classification of common types of replica non-

determinism present in many applications. We propose a set of mechanisms that can 

be used to control these types of nondeterministic operations. We also describe the 

implementation of the core mechanisms and their integration with a well-known BFT 

framework [18]. More, specifically, we make the following research contributions:

 We provide two types of motivating applications to illustrate the inadequacy 

of current approaches to the problem of replica non-determinism

 We provide a classification of common types of replica nondeterminism for 

both Byzantine fault tolerance and benign fault tolerance.

 We propose a unified framework to ensure consistent Byzantine fault tolerant 

replication for applications exhibiting the nondeterministic behavior we have 

classified. 

 We provide a preliminary implementation of the unified framework based on 

the original BFT framework and report the performance evaluation results of 

our prototype on handling different types of replica non-determinism.

 We propose a alternative technology with better security result, however, the 

performance of this technology is not as good as ND-BFT, thus there is still a 

lot of future research to do on this topic.    
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1.2  Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides background 

information. We start by describing BFT and other related techniques that used to 

tolerate Byzantine fault, which is a big picture of what is Byzantine fault and how to 

tolerant it. Chapter 3 describes ND-BFT: we explain the limitation of original BFT, 

and provide a systematic classification of different type of replica nondeterminism. 

The reminder of this chapter describes the corresponding solution for each type of 

replica nondeterminism and the proof of correctness. The implementation of the ND-

BFT library, interface and online poker game that equipped ND-BFT library is 

presented in Chapter 4. The detailed performance analysis for the ND-BFT library and 

online poker game is described in the second half of Chapter 4. Chapter 5 discusses 

related work. Finally, our conclusions and some direction for future work appear on 

Chapter 6.
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CHAPTER II

BACKGROUND

In this chapter, we present the background information including fault 

tolerance, Byzantine fault tolerance and other Byzantine fault-tolerant techniques to 

provide a big picture of the importance for a distributed system to obtain such 

capabilities to tolerate Byzantine fault.

2.1 Fault Tolerance

In this section, we present the basic concept of fault tolerance to show the 

importance for a distributed system to obtain such capability.

Fault tolerance, an important subject in distributed system design, is defined as a 

capability that a system can mask the occurrence and recovery from failures. In other 

words, a fault tolerant system can continue to operate without notice by outside in the 

presence of failure.

A characteristic feature of distributed systems that distinguishes them from 

single-machine system is the notion of partial failure. A partial failure may happen 
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when one component in a distributed system fails. The failure may affect the proper 

operation of other components, while at the same time leaving yet other components 

totally unaffected. In contrast, a failure in non-distributed systems is often going to 

affect all components, and may easily bring down the entire applications.

An important goal in distributed systems design is to construct the system in 

such a way that it can automatically recover from partial failures without seriously 

degrade the overall performance. In particular, whenever a failure occurs, the 

distributed system should continue to operate in an acceptable way whiles repairs are 

being made, that is, it should tolerate faults and continue to operate to some extent.

There are several types of failure exist during the operation as following:

 Crash failure: A process simply halts

 Omission failure: A process does not respond to incoming requests.

 Timing failure: A process responds too sooner or too later to a request.

 Response failure: A process responds a request in a wrong way.

 Byzantine failure: A process exhibits any kind of failure.

Redundancy is the essence to achieve fault tolerance. When applied to 

processes, the notion of process group becomes important. A process group consists 

of several processes that closely cooperate to provide a service. In fault tolerant 

process groups, one or more processes can fail without affecting the availability of the 

services. Often, it is necessary that communication within the group be highly 

reliable, and adheres to stringent ordering and atomicity properties to achieve fault 

tolerance which is often referred as reliable group communication, or reliable multi-

casting.
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2.2 Byzantine Fault Tolerance

2.2.1 Byzantine Fault

A Byzantine fault is an arbitrary fault that occurs during the operation by a 

distributed system. When a Byzantine failure occurs, the system may respond in any 

unpredictable way which exhibits in real world environment as computers and 

networks behaves in unexpected ways due to hardware failures, software errors, 

network congestion and disconnection, as well as malicious attacks. Those problems 

become increasing crucial nowadays,. because people are increasingly depending on 

online services.

The term “Byzantine faults” was originated from the classic Byzantine 

General's problem[1], which several legions lead by one commander and several 

lieutenants camped outside of the enemy’s castle and wait for commander's 

command. To make sure each lieutenant gets the same command, each lieutenant is 

required to send received command (attack or retreat) to the rest of the lieutenants. 

However, there are one or more traitors; the traitor can be either lieutenant or 

commander himself that they try to confuse other loyal lieutenants by sending 

different commands to them. In that case, a loyal lieutenant may receive conflict 

command and confuse about which one is true. And the campaign would be defeated 

if the majority of the troops do not follow the same command. This problem can be 

solved by the Byzantine Agreement: if there is one traitor, we need at least four 

generals including one commander to make an agreement among the loyal generals. If 

we using this solution in computer world, we can have following conclusion: to 
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tolerate f Byzantine fault, we need 3f+1 replicas. Figure 1 shows the proof of this 

algorithm that for a single Byzantine fault, 4 replicas are needed. (a) If the 

commander (i.e., primary replica) is faulty, he may send conflicting information to its 

lieutenants (i.e., replica replicas). However, the lieutenants can exchange information 

regarding what they heard from the commander and reach the correct decision (attack) 

based on majority voting. (b) On the other hand, if a lieutenant is faulty, he may lie to 

other lieutenants regarding the information he has heard from the commander. Other 

lieutenants can still reach a correct decision based on majority voting. Reducing the 

number of replicas to 3 cannot guarantee an agreement among the correct replicas. 
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Figure 1: Byzantine Agreement (one traitor)

2.2.2 Byzantine Fault Tolerance

Byzantine fault tolerance [2, 8, 17, 18], a technique that is able to defend 

against the Byzantine fault. A Byzantine fault tolerant system can reach the same 

group decision regardless of the existence of Byzantine faulty replicas.
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Since distributed applications are often structured in terms of clients and 

servers, each service comprises one or more servers and executes the clients' request. 

The state machine replication technique is a general approach to build a fault-tolerant 

system by replicating the servers and making them to behave identically. The 

replicated servers coordinate the original server to reach an agreement to tolerate 

faults. However, it is not enough for this approach to tolerate complicate Byzantine 

fault.

Therefore, systems that provide critical services must behave correctly in the 

face of Byzantine faults. Correct services in the presence of failures are achieved 

through replications: the services runs t a number replicated servers and as more than 

a third of the servers are non-faulty, the group as a whole continues to behave correct.

Byzantine fault tolerance algorithm, which initial by Castro and Liskov[8], is 

state machine based protocol. A Byzantine faulty replica may use all kinds of 

strategies to prevent the normal operations of the replicated services. In particular, it 

might propagate conflicting information to other replicas or components that it 

interacts with. To tolerate f Byzantine faulty replicas in an asynchronous environment, 

we need to have at least 3f+1 number of replicas. An asynchronous environment is 

one that has no bound on processing times, communication delays, and clock skews. 

Internet applications are often modeled as asynchronous systems. Usually, one server 

is designated as primary and the rest are replicas. The protocol move through a series 

of views, each view is denoted by a view number. The primary for a given view is 

determined based on the view number. Replicas remain in the current view unless the 

primary is suspected of being faulty. If the primary behaves in an incorrect or timely 
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way, the other replicas will execute a view change, selecting a new primary by 

internal vote and incrementing the view number and moving to a new view.

BFT algorithm has three communication rounds which is referred as three-

phase protocol in normal case operation as following:

Pre-Prepare     Invoked by the primary after receiving the request from the client that 

it assigns a sequence number, view number and correspond 

authenticator and multicast the PRE_PREPARE message to all 

replicas.

Prepare            A replica broadcast the Prepare message to the rest of replicas after it 

accepts the PRE_PREPARE message.

Commit            Once a replica receive 2f+1 PREPARE message that has the same 

view number and sequence number as the PRE_PREPARE message, 

then it broadcasting the COMMIT message to all replicas including 

the primary. 

A replica commits the corresponding REQUEST after it receives at least 2f 

matching COMMIT messages from other replicas. To prevent a faulty primary that 

intentionally delaying a message, the client starts a timer after it sends out the 

REQUEST message and waits for f+1 responses from different replicas.  Assuming f 

replicas are faulty, at least one response must from a non-faulty replica. If the timer 

expires, the client broadcasts the REQUEST message to all replicas and suspects the 

primary. The rest replicas will then have an election to elect a new primary. In BFT 

algorithm, digital signature or authenticator is employed to ensure the integrity of the 

message, and a cryptographic hash function is used to compute message digests.
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The normal case operation of BFT is illustrated in the Figure 2 below:

Figure 2:  Normal Case Operation of BFT

2.3  Other Byzantine fault tolerant techniques

2.3.1  Paxos

Paxos[26] is a well-known fault-tolerant protocol that allows a set of 

distributed servers, exchanging messages via asynchronous communication, to totally 

order client requests in the benign-fault, crash-recovery model. One server is referred 

as leader who coordination the transaction. If the leader crashes or becomes 

unreachable, a view change occurs, allowing progress to resume in the new view 

under the reign of the new leader. Paxos requires at least 2f+1 server to tolerate f 

faulty servers.  Only one reply is required to be delivered to the client due to the 

servers are not Byzantine.
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In normal case operation, there is a single leader which is used to 

communicate with the rest of servers. Paxos uses two asynchronous communication 

rounds to globally order the client updates. The leader assign a sequence number to 

the client and proposes this assignment to the rest of servers in the first round. In the 

second round, any server agreed on the proposal will send an acknowledgment to the 

rest of servers. When a server receives acknowledgment from the majority of replicas, 

in other word, the majority servers have accepted the proposal – the server orders the 

corresponding update.

2.3.2  Threshold digital signatures

Another well-known fault tolerant protocol is threshold digital signature which 

often be referred as threshold cryptography that distributes trust among a group of 

participants to protect information (e.g. Threshold secret sharing [28]) or computation 

(e.g. Threshold digital signatures [29]).This mechanism is prompted by 

Fragmentation-Replication-Scattering (FRS) which initially designed to provide 

intrusion tolerance for file systems and was later ex-tended to object-based systems. A 

(k, n) threshold digital signature scheme allows a set of servers to generate a digital 

signature as a single logical despite (k-1) Byzantine faults. It divides a private key 

into n shares, each owned by a server, such that any set of k servers can pool their 

shares to generate a valid threshold signature on a message, m, while any set of less 

than k servers is unable to do so. Each server uses its key share to generate a partial 

signature on m and sends the partial signature to a combiner server, which combines 
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the partial signatures into a threshold signature on m. The threshold signature is 

verified using the public key corresponding to the divided private key.

RSA shoup scheme [29], a representative example of practical threshold 

signatures, allows participant to generate threshold signatures based on the standard 

RSA digital signature. It provides verifiable secret sharing (i.e., the ability to confirm 

that a signature share was generated using a valid private key share), which is critical 

in achieving robust signature generation in Byzantine environment.
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CHAPTER III

BYZANTINE FAULT TOLERANCE  FOR 

NONDETERMINISTIC APPLICATIONS

          

In this chapter, we first, describe the system model of ND-BFT, including its 

operation, communication model and cryptography techniques. Then, we present the 

threat analysis to show the importance of our protocol. After that, we provide a 

systematic classification of replica nondeterminism and illustrate each solution for 

different type of replica nondeterminism.

3.1  System Model

In this section, we present an overview of the system model which will be 

used in following chapters. This model defines the operations provided by the system, 

14



assumptions on node failures and the communications infrastructure, and the 

cryptographic primitives available for use by the ND-BFT protocol.

3.1.1  Operations

ND-BFT provides support for the execution of general operations. These are 

distinct from simple reads and blind writes to services state, as provided by some 

previous protocols. Reads and writes only allow directly reading or overwriting 

objects at the server. General operations, however, allow for the execution of complex 

operations that may depend on current state at the server, and provide a far more 

power interface.

All operations should be deterministic, e.g., given a serialized order over a set 

of operations, each replica should obtain the same result in running each operation, 

provided they have the same application state, which is the purpose of this protocol.

3.1.2  Failure Model

Our system consists of a set C= {c1… ,cn} of client processes and a set R= 

{r1,…,r3f+1} of 3f +1 server processes. Server processes are known as replicas 

throughout this thesis, as they replicate the server application for reliability.

Servers are categorized into either correct server or faulty server. A correct 

process is constrained to obey its specification, and follow the ND-BFT protocol 

precisely. Faulty processes may deviate arbitrarily from their specification: we 

assume a Byzantine failure model where nodes may adopt any malicious or arbitrary 
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behaviors. The difference between fail benignly (fail-stop) and those suffering from 

Byzantine fault is not described in this thesis.

The correct system operation is able to tolerate up to f simultaneously faulty 

replicas. Transient failures are considered to last until a replica is repaired and has 

reestablished a copy of the most recent system state. No guarantees are offered 

beyond failures, and the system may halt or return incorrect responses to client 

operations.

The number of faulty clients is not considered in this thesis.  It is assumed that 

application-level access control is implemented to restrict clients write to modify only 

application state for which they have permission. A malicious client is able to execute 

arbitrary write operations on data it has permission to access, but cannot affect other 

application data nor put the system in an inconsistent state.

3.1.3  Communication Model

The communication model in this thesis is assumed as an asynchronous 

distributed system where nodes are connected by Ethernet. We place very weak safety 

assumptions on this network – it may fail to deliver messages, delay them, duplicate 

them, corrupt them, deliver them out of order, or forward the contents of messages to 

other entities. There are no bounds on message delays, or on the time to process and 

execute operations. We assume that the network is fully connected; given a node 

identifier, any node can attempt to contact the former directly by sending it a message.

For liveness, we require the use of fair links; if a client keeps retransmitting a 

request to a correct server, the reply to that request will eventually be received. 
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Liveness for the BFT module used by ND-BFT also requires the liveness conditions 

assumed by the BFT protocol. Notably, we assume that message delays do not 

increase exponentially for the lifetime of the system, ensuring that protocol timeouts 

are eventually higher than message delays. These assumptions above are not required 

for liveness that the message delay is not guaranteed based on those assumption.

3.1.4  Cryptography

Our protocol requires highly cryptography to ensure its correctness. Clients 

and replicas must be able to authenticate their communications to prevent forgeries. 

We assume that nodes can use unforgeable digital signatures to authenticate 

messages, using a public key signature schemes such as DSA. We assume a message 

m signed by node n as <m> and no node can send <m>, either directly or as part of 

another message, for any value of m, unless it is repeating a previous message or 

known n’s private key. Any node can verify the integrity of a signature by the 

message m and n’s public key.

We assume that the public keys for each node are known statically by all 

clients and replicas, or available through a trusted key distribution authority. Private 

keys must remain confidential, through the use of a secure cryptographic co-processor 

or otherwise. If the private key of a node is hacked, then the node is considered faulty.

The security of the communication between pairs of nodes, despite message 

transmission on untrusted links, is guaranteed by using Message Authentication 

Codes (MACs). Each pair of node shares a secret session key, established via key 
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exchange using public key cryptography. The notation <m>ux,y is used to describe a 

message authenticated using the symmetric key shared by nodes x and y.

A collision-resistant hash function is assumed in our protocol that that any 

node can compute a digest hm of message m, and it is impossible to find two distinct 

messages m and m’ such that hm=hm’. The hash function is used to avoid sending full 

copies of data in messages for verification purposes, instead using the digest for 

verification.

Our cryptographic assumptions are probabilistic, but there exist signature 

schemes and hash functions for which they are believed to hold with very high 

probability. Therefore, we assume they hold with probability 1.0 in remainder of this 

thesis. To avoid replay attacks, we tag certain messages with nonce that are signed in 

replies. 

3.2  Threat Analysis

This section explains the importance of replica consistency and the necessarily 

to import our protocol to tackle nondeterministic data.

Byzantine fault tolerance system, which based on state machine replications, 

must be deterministic to maintain the consistency of the system [12]. However, 

practical applications always contain some forms of nondeterminism. For example, 

the time-last-modified in a distributed file system is set by reading the server's local 

clock; if this were done in-dependently at each replica, the states of non-faulty 

replicas would diverge.  When such applications are replicated to achieve fault and 
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intrusion tolerance, their nondeterministic behavior must be tackled to ensure the 

replicas consistency or totality.

The most difficult challenging for a software designer to designing a 

distributed application is the consistency of the disseminated information, and the 

control over the dissemination of that information. Therefore, the designer of a 

distributed system would wish for a transport layer that provides a guaranteed 

delivery-and-consistency of messages sent to multiple targets. Have such layer, most 

distributed applications become much easier to implement and maintain. Thus, the 

problem of consistency has received considerable attention when designing a 

distributed system. MIT-BFT framework [18] strongly relies on the total ordering of 

the message passed by each replica during its three phases. The total ordering of 

messages requires a consensus decision. Without the guarantee of the consistency of 

message in MIT-BFT framework, each replica might receives different request 

command at the same phrase that the system would have conflicting operations which 

may cause the crash of the entire system. 

3.3  Type of Replica Nondeterminism

In the Byzantine fault tolerance algorithm [18] only one type of replica 

nondeterminism behavior has been recognized. In this section, we analysis different 

replica nondeterminism and classify them into three categories. Furthermore, we 

mainly focus on two types of replica nondeterminism and divide them into four types 

in order for us to build model to tackle their replica nondeterminism.
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 Wrappable nondeterminism. A type of replica nondeterminism that can be 

simply controlled by an infrastructure-provided or application-provided 

wrapper function, without explicit inter-replica coordination. For instance, 

information such as hostnames, process ids, file descriptors, etc. can be 

determined group-wise. Another situation is when all replicas are 

implemented according to the same abstract specification, in which case, a 

wrapper function can be used to translate between the local state and the 

group-wise abstract state, as described in [19].

 Per-determinable non-determinism.  A type of replica nondeterminism 

whose value can be known before the execution of the request and it 

requires inter-replica coordination to ensure replica consistency.

 Post-determinable non-determinism. A type of replica nondeterminism 

whose values can only be recorded after the request is submitted for 

execution and the nondeterministic values won’t be completed until the end 

of the execution. It also requires inter-replica coordination to ensure replica 

consistency.

In this thesis, we merely focus on last two type of replicas nondeterminism 

since the wrappable replica non-determinism has been fully studied by [19] and can 

be tackled by wrapper function without inter replica coordination.

We further classify the replica nondeterminism into two following types based 

on whether a replica can verify the nondeterministic values proposed (or recorded) by 

another replica.
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 Verifiable non-determinism. This type of replica nondeterminism whose 

values can be verified by other replicas.

 Non-verifiable non-determinism. This type of replica non-determinism whose 

values can not be fully verified by other replicas which means a replica might 

be able to partially verify some nondeterminism values proposed by another 

replica. This feature would help to reduce the impact of a faulty replica.

In order to implement current application or to develop new application to 

efficiently handle each type of replica nondeterminism, we classification gives fours 

types of replica nondeterminism of our interests:

 Verifiable pre-determinable non-determinism (VPRE).  Previous study treated 

clock-related operations as this type of operation. However, strictly speaking, 

it is not possible for a replica to verify deterministically another replica's 

proposal for the current clock value without imposing stronger restriction on 

the synchrony of the distributed system (i.g., bounds on message propagation 

and request execution). 

 Non-verifiable per-determinable non-determinism (NPRE). This type of non-

determinism is exhibited as on-line gaming applications, such as Blackjack 

and Texas Hold'em. These application requires highly randomness to ensure 

the integrity of services [4], for instance, the card distributed to each player 

must be unpredictable. Such application depends on the use of good secure 

random number generators. For the security proposes, it is essential to make 

one's choice of a random number unpredictable, let alone verifiable by other 

replicas.
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 Verifiable post-determinable non-determinism (VPOST). We have yet to 

identify a commonly used application that exhibits this type of non-

determinism. We include this type for completeness.

 Non-verifiable post-determinable non-determinism (NPOST). This type of 

non-determinism is exhibited, in general, in all multi-threaded applications. 

Ideally, the replicas should collectively determine the set of nondeterministic 

values to prevent a single faulty replica from compromising the integrity of 

other replicas [10]. However, it is not clear if it is always feasible for replicas 

to apply a deterministic algorithm to decide on a common set of values from 

those reported by individual replicas, in case of multi-threading. Furthermore, 

it would require a test execution of every request at every replica, which might 

be too expensive to be practical. Therefore, our current solution is to reply on 

the information reported by a single replica (i.e., the primary replica) and to 

employ additional recovery mechanisms to minimize the impact of faulty of 

replica.

3.4  Solution for each type of replica non-determinism

In this section, we present the extensions of current BFT framework in 

handling all common types of replica nondeterminism. The unified framework 

requires closely coordination between BFT algorithm and the application be 

replicated. Comparing with the APIs used in BFT framework [18], the following 

server upcalls (i.e., callback functions registered by the server application) are 

modified:
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Replica upcalls:

int propose_value(Seqno seqno, Byz_req *req, int *ndet_type, Byz_buffer 
*ndet);

Here seqno is the sequence number assigned to the client's REQUEST, req is 

request message, ndet_type is the type of replica nondeterminism when executing 

client's REQUEST, and ndet is a pointer to the buffer that stores the nondeterministic 

values. This function returns appropriate values to indicate if the call successful. Both 

ndet_type and ndet are out-parameters, which mean the application is expected to set 

their values.

Check replica non-determinism:

int check_value(Seqno seqno, Byz_req *req, int *ndet_type, Byz_buffer 

*ndet)

This function is used to check the type of replica nondeterminism, which is 

invoked when a replica want to verify the type of replica nondeterminism and the 

nondeterministic values received from the primary. The parameters in this function 

are the same as those in propose_value() function. The different between two function 

is the parameters ndet_type and ndet in this function are in-parameters, which means 

the information is passed to the application. The verification result is returned to the 

caller in the return value.

Replica execute:

int execute(Byz_req *req, Byz_rep *rep, Byz_vuffer *ndet, int cid, bool ro)

In execute() function the signature is not modified, but the interpretation of 

one of its parameters is changed. Parameter req is REQUEST message, rep is REPLY 
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message to be generated by the replica, ndet is originally defined as a pointer to the 

nondeterministic values obtained from the primary replica and to be used by all 

replicas, i.e., it is intended to be used as in-parameter. It is not reinterpreted as an in-

out parameter which is depending on the type of replica non-determinism, for 

instance, the parameter might be changed from in-parameter to out-parameter when a 

replica has post-determinable nondeterminism and the function is invoked at the 

primary replica.

Figure 3: System Architecture

The replica nondeterminism we classified in previous section are defined in 

the form of four constant integer values as below:

 VERIFIABLE_PRE_DETERMINABLE

 NONVERIFIABLE_PRE_DETERMINABLE

 VERIFIABLE_POST_DETERMINABLE

 NONVERIFIABLE_POST_DETERMINABLE

The BFT algorithm is modified in following ways: when the client's 

REQUEST arrives at the primary, if it is ready to order the message (when the 
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number of ordered but not-yet executed message is smaller than the window 

threshold), the primary invokes the propose_value() callback function registered by 

the application layer. The application supplies the type of replica nondeterminism that 

would be involved in the execution of the request, and if applicable, the 

nondeterministic values. Depending on the type of replica nondeterminism returned 

by the application, the modified BFT algorithm operates differently according to the 

mechanisms described from section 3.4.1 through section 3.4.4.

We introduce two extra-phases: PRE-PREPARE-UPDATE, a phase before the 

PREPARE and POST-COMMIT phase, a phase after COMMIT phase into the new 

algorithm to handle replica nondeterminism in the modified BFT algorithm. We 

introduce two new types of control message, PRE_PREPARE_UPDATE message 

and POST_COMMIT message accordingly. The PRE_PREPARE_UPDATE message 

is used in PRE-PREPARE-UPDATE phase for the replicas to reach the Byzantine 

agreement on the collection of the nondeterministic values contributed by different 

replicas when non-verifiable pre-determinable non-determinism is present. The 

POST_COMMIT message is used in POST-COMMIT phase for the replicas to reach 

athe Byzantine agreement on the nondeterministic values recorded by the primary 

after it has executed a REQUEST message when post-determinable non-determinism 

is present.

3.4.1  Verifiable Pre-determinable Non-determinism(VPRE)

If the type of replica nondeterminism at primary is VPRE, the primary calls 

propose_value() function in its ndet parameter to propose the nondeterministic types 
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and values. Then it includes the nondeterministic information into the 

PRE_PREPARE message, and multicast the message to all replicas. 

When the replica receives the PRE_PREPARE message, it calls check_value() 

function to pass the nondeterministic information to upper layer. Then it verifies the 

following information:

 The type of replica nondeterminism for the client's REQUEST is consistent 

with what is reported by the primary replica.

 The nondeterministic values proposed by the primary is consistent with its 

own values(not necessarily identical)

If the verification succeed, the replica will verify the nondeterminism type and 

value proposed by the primary. After that, it accepts the REQUEST and the ordering 

information, and it logs the PRE_PREPARE message and multi cast PREPARE 

message to all other replicas. The following steps work the same as the original BFT 

framework. On the other hand, if the verification fails, the replica will receive an error 

code returned by check_value() function. The replica will then suspect the primary. 

We illustrate the normal case operation in handling VPRE in Figure 4.
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Figure 4: Solution to handle Verifiable Pre-Determinable Non-determinism

3.4.2  Non-Verifiable Pre-determinable Non-determinism(NPRE)

If the type of replica nondeterminism at primary is NPRE, that the replica 

cannot verify other replicas' nondeterministic value for this type of nondeterminism, 

consequently, the propose_value() function is called by the primary to propose its 

share of nondeterministic values in ndet parameter. The nondeterministic information 

is included in PRE_PREPARE message and the primary multicasts the message to all 

replicas.

27



When the replica receives the PRE_PREPARE message, it verifies the 

REQUEST message and ordering information from the primary. Since for this type of 

replica nondeterminism, the replica is not able to verify other replicas' 

nondeterministic value, the replica, for this type of replica nondeterminism, will only 

verify the nondeterministic type if the verification of REQUEST and ordering 

information is succeed. After the verification of the nondeterministic value in 

PRE_PREPARE message, the replica enters into PRE_PREPARE_UPDATE phase 

by building and sending the PRE_PREPARE_UPDATE message 

<PRE_PREPARE_UPDATE, v, n, d, t, b> to the primary, where v indicates the view 

number in which the message is being sent, n is the sequence number, d is the request 

message's digest, t is type of replica nondeterminism, and b is the value of replica 

nondeterminism.

After the primary collect at least 2f valid PRE_PREPARE_UPDATE message 

from different replica, it start to build PREPARE message, including 2f+1 (including 

the primary itself) sets of nondeterministic values, each message is protected by the 

proposer's digital signature or authenticator. The following steps operate according to 

the original BFT model, except that the PREPARE and COMMIT message also carry 

the digest of the nondeterministic values, and the 2f+1 set of nondeterministic values 

are delivered to the application layer as part of the execute() call. We illustrate the 

normal case operation in handling NPRE in Figure 5.
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Figure 5: Solution to handle Non-Verifiable Pre-Determinable Nondeterminism 

While we have described the mechanism to be used to handle this type of 

replica nondeterminism, it is necessarily for us to further discuss the type of 

applications that exhibit such replica nondeterminism and how our mechanism can be 

used to improve the security and dependability of such applications.

For applications such as online poker games [4], the source of replica 

nondeterminism is the most crucial state that should be protected since such values 

are used as the seeds for the pseudo-random number generator to generate a random 

number for the operations, such as shuffling cards. Such application replies on highly 
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randomness of their values to maintain the integrity of the system. The process of 

retrieving such nondeterministic values is often referred as entropy gathering (entropy 

is defined as a measurement of the randomness of the data). The value can be 

obtained either from hardware device, such as Geiger counter that counts the number 

of radioactive decays detected, or using software solution, such as through sampling 

keyboard or mouse events in a computer[14]. On the other hand, if such values are not 

obtained from a high-entropy source, they might be predictable since the pseudo 

random number generator is not truly random [14], and once seed is known, 

consequently the output data from random number generator would also be known. In 

practical, if the server of online poker game is compromised, and the seed which used 

to generate the random number, or in another word the seed used to shuffle the cards 

would be discovered by the person who hacked into the server. And he/she would be 

able to cheat in the game.

Here we assume that a faulty replica cannot transmit the confidential state to 

its colluding clients in real time. This can be achieved by using an application-level 

gateway, or a privacy firewall as described by Yin [3], to block illegal replies. A 

compromised replica may, however, replace a high entropy source to which it 

retrieves the nondeterministic values with a deterministic algorithm, and convey such 

algorithm via out-of-band covert channels to its colluding clients.

To counter such threats, such applications must be replicated using Byzantine 

fault tolerant algorithm. Furthermore, each replica uses different methodology to 

generate its nondeterministic values. In which case, a replica is in no position to verify 

the non-deterministic values proposed by another replica. Ideally, a replica should not 
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even know how other replicas generate their nondeterministic values, let alone to 

verify them.

For each operation that requires nondeterministic input, the replicas should 

collectively determine the input by applying the mechanism described in this section 

which is essential in the entire operation, because otherwise, a single replica might be 

able to compromise the whole service (despite the fact that there are at least 3f+1 

replicas employed), which would jeopardize the intent of applying Byzantine fault 

tolerance to such applications.

3.4.3  Verifiable Post-determinable Non-determinism(VPOST)

If the type of replica nondeterminism at primary is VPOST that the 

nondeterministic value cannot be known before the execution of the request, the 

primary, under this circumstance, only includes the nondeterministic type in the 

PRE_PREPARE message without enclose any nondeterministic values. Then, the 

primary multicasts the message to all replicas.

When the replica receives the PRE_PREPARE message, it verifies the 

REQUEST message and the ordering information. If the verification succeed, the 

replica will confirm the nondeterministic type associated with the REQUEST 

message. The protocol then proceed to the COMMIT phase as usual. Otherwise, the 

replica suspect the primary. 

On receiving the returned parameters, it enters POST-COMMIT phase by 

building POST_COMMIT message< <POST_COMMIT, v, n, d, t, b>,m>, where m is 

the REQUEST message from client, b is the post-determined non-deterministic 
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values, d is the digest of the REPLY. The primary, first, stores the in-formation into 

the postnd log, and then it multicast the message to all replicas and sends the REPLY 

message back to the client. 

  The replica will deliver REQUEST message if the Byzantine agreement on the 

nondeterministic values for the REQUEST has been reached. If fail to reach the agreement, 

or the verification of nondeterministic value is incorrect, the replica will suspect the 

primary. Furthermore, the replica will suspect the primary if the REPLY does not match 

with the REPLY's digest from the primary. However, despite the result of the comparison, 

the replica produces the same REPLY using the same set of nondeterministic values. The 

detailed processes describe as follow: when the replica receives the POST_ COMMIT 

message from the primary, it checks the received nondeterministic values through the 

check_value() upcall. If the verification succeed, the replica re-multicasts the 

POST_COMMIT message with its own signature or authenticator to the rest of the 

replicas. Otherwise, the replica suspects the primary. When a replica receives at least 2f 

POST_COMMIT messages, which its nondeterministic values matches with other 

replicas', it delivers the REQUEST message through the execute() upcall together with the 

verified non-deterministic values. The replica then sends the REPLY to the client while the 

execute() call returns.

A POST-COMMIT phase is required for the primary to disseminate the 

information in the postnd log to duplicate the information and for all correct replicas 

to ensure that they have received the same set of values for the corresponding 

REQUEST. Unlike the PRE-PREPARE-UPDATE phase for controlling NPRE, the 

POST-COMMIT phase involves with the entire steps needed for correct replicas to 
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reach the Byzantine agreement on the nondeterministic values. It requires three 

rounds of message exchange similar to those used to determine the ordering of the 

requests under normal case operations. For NPRE, the PREPARE and COMMIT 

phase are needed for the correct replicas to reach byzantine agreement on the 

nondeterministic values. The nondeterministic values are integrated into the 

corresponding request message. Due to the ordering information for the corresponding 

request has already been decided, we could not do so for post-determinable 

nondeterminism. We illustrate the normal case operation in handling VPOST in 

Figure 6.
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Figure 6: Solution to handle Verifiable Post-determinable Nondeterminism

3.4.4  Non-Verifiable Post-determinable Non-determinism(NPOST)

If the type of replica nondeterminism at the primary is NPOST, the way to 

handle such replica nondeterminism involves with the similar step as the way to 
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handle VPOST as those described in previous section until the replica deliver the 

REQUEST with post-determined nondeterministic values, as shown in Figure 6.

When the primary invokes the execute() upcalls and receives the REPLY and 

non-deterministic values. It enters the POST-COMMIT phase by sending the REPLY 

to the client. And then, it builds and multicast a POST_COMMIT message with 

following information:

 The identity information for the REQUEST message such as the sequence 

number assigned to the message, the view number, and the digest of the 

message.

 The recorded nondeterministic values.

 The digest of the REPLY message.

When replica receives the POST_COMMIT messages, it verifies the 

REQUEST information and re-multicast the message with its own signature or 

authenticator to all replicas. Until the replica has collected at least 2f 

POST_COMMIT messages which match with nondeterministic values from other 

replicas, it prepares for the execution of the REQUEST message.

We must realize that a malicious primary may cause the confusion of the 

replicas or block them from providing useful services to corresponding clients by 

disseminating a wrong set of nondeterministic values. For instance, if the 

nondeterministic data contains thread ordering information, a malicious primary can 

arrange the ordering in such a way that it may lead to the crash of the replicas (e.g., if 

the primary knows the existence of a software bug that leads to a segmentation fault), 

or it may cause a deadlock at the replica (it is possible for a replica to perform a 
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deadlock analysis before it follows the primary's ordering to prevent this from 

happening).

Since in general the replica cannot completely verify the correctness of the 

nondeterministic values until it actually executes the request, it is important for a 

replica to launch a separate monitoring process before invoking the execute() call. If 

the replica runs into a deadlock or a crash failure, the monitoring process can restart 

the replica and suspect the primary.

If the replica can successfully complete the execute() upcall, it compares the 

digest of its own REPLY message with that received from the primary. If those two 

do not match, the replica suspects the primary. Regardless of the comparison result, 

the replica sends the REPLY message to the client. It is safe to do so because if all 

correct replicas produce the similar REPLY using the same set of nondeterministic 

values(even if they might be different with the set actually used by the primary 

replica, which implies that the primary is lying and suspicious), the result is valid.

A good example of this type of replica non-determinism is that of multi-

threaded applications [13]. When such applications are replicated, we must ensure 

different threads access the shared data in the same order, otherwise, the state of 

different replicas may diverge. Due to the complexity and dynamic nature of multi-

threaded applications, it is virtually impossible to pre-impose an access ordering 

before the execution of a REQUEST. The only practical solution appears to be 

executing a REQUEST at one replica, recording the access ordering of threads on 

shared data, and propagating the ordering information to other replicas so that they 
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follow the same thread ordering, as described above. We illustrate the normal case 

operation in handling NPOST in Figure 7.

Figure 7: Solution to handle Non-Verifiable Post-determinable Non-determinism

3.5  Proof of Correctness

In this section we provide a proof of correctness of our mechanisms.
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Theorem 1: If a correct replica delivers a  REQUEST m with a set 

of nondeterministic data in view v, then no other correct replica 

delivers m with a different set of nondeterministic data, and all such 

correct replicas use, or record (at the primary), the same set of 

nondeterministic data during its execution for m.

For VPRE, the primary replica proposes the nondeterministic data which 

combine with the agreement on it is carried out together with the REQUEST. At the 

end of the three-phase BFT algorithm, if some correct replicas agree on the ordering 

of the REQUEST, they reach an agreement on the nondeterministic data as well. For 

NPRE, the nondeterministic information is determined by the PRE-PREPARE-

UPDATE phase, and it is followed by three phase BFT algorithm. The correct replica 

commits both the REQUEST m itself and reach the agreement on the associated 

nondeterministic data. For both VPRE and NPRE, when the REQUEST m is 

delivered at a correct replica, the non-deterministic data have been agree-upon are 

also delivered and used for execution.

For VPOST and NPOST, the three-phase BFT algorithm agrees on the non-

deterministic data among correct replicas during the POST-COMMIT phase. When a 

correct replica receives the REQUEST m, it also receives the nondeterministic data 

accompanied with m. A correct primary must log the nondeterministic data during the 

execution of m, and have disseminated the data to replicas during POST-COMMIT 

phase. Therefore, the same nondeterministic data are used for execution at the correct 

client and other correct replicas.
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CHAPTER IV

IMPLEMENTATION AND PERFORMANCE 

EVALUATION

4.1  Implementation

Our Byzantine fault tolerance for nondeterministicmapplication framework is 

built by implementing MIT-BFT framework. Th open-source library from MIT. We 

referred our implemented library as ND-BFT. And ourThe framework itself is 

composed as a generic prog library with a simply interface. Section 4.1 describes the 

library's implementation implementation of ND-BFTpresents its interface. To test our 

ND-BFT library in real world application and for future research purposes, we 

developed a poker game and used our imphe poker game with our ND-BFT library, 

which described in section 4.3.
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4.1.1  Library

ND-BFT library uses a connection model of communication. The 

communication among each node is implemented using TCP, and multicast to the 

group of replicas is implemented using TCP over IP multicast. The IP multicast group 

contains all replicas while clients are not members of the multicast group. Replicas 

and clients are structured as a set of handlers that containing a handler for each 

message type and a handler for each timer. The handling loop works as following: 

Replicas and clients wait in a select call for a message to arrive or for a timer deadline 

to be reached and then they call the appropriate handler. The handler performs 

computations similar to the correspond action in the formalization, and then it invokes 

any methods corresponding to internal actions whose pre-conditions become true.

The SFS cryptography library is used to implement the public-key crypto-

system with a 1024-bit modulus to establish 128-bit session keys. All messages are 

authenticated using message authentication codes computed using these keys and 

UMAC32. Message digests are computed using MD5.

For our new protocol, the public-key cryptography encryption and decryption 

are implemented to sign and verify the PRE_PREPARE_UPDATE and 

POST_COMMIT messages. These signatures are non-existentially forgeable even 

with an adaptive chosen message attack. MD5 still provide adequate security and it 

can be replaced easily by more secure hash function at the expense of some 

performance degradation. 
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In previous section we described our protocol messages at a logical level 

without specifying the size and layout of the different fields. While it is premature to 

specify the detailed format of protocol messages without further experimentation, but 

to understand the performance results in the next two chapters, it is important to 

describe the format of PRE-PREPARE-UPDATE and POST-COMMIT, we also 

describe the format of REQUEST and REPLY message in Figure 8 for the better 

understand of the normal case operation. 
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Figure 8: Message Format

The REQUEST header includes a MD5 digest of the string obtained by 

combined by the client identifier, cid, the REQUEST identifier, rid, and the operation 

being requested, op. It also includes the identifier of the designated replier. The flags 
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in the REQUEST header indicates whether to use the read-only optimization and 

whether the REQUEST contains a signature or an authenticator. In the normal case, 

all requests contain authenticators. In addition to the header, the REQUEST message 

includes a variable size payload and an authenticator. In the normal case, all 

REQUEST messages contain authenticators. The authenticator is composed of a 64-

bit nonce, and n 64-bit UMAC32 tags that authenticate the REQUEST header. When 

a replica receives a REQUEST, it checks if the corresponding MAC in the 

authenticator and the digest in the header are correct.

The PRE_PREPARE_UPDATE message is assigned by the replicas when 

encounter VPRE. The PRE_PREPARE_UPDATE header is composed of a view 

number v,  a sequence number n and an MD5 digest d of the 

PRE_PREPARE_UPDATE payload, the REQUEST message’s id, a buffer that can 

be filled with nondeterministic choice, and a number of bytes in the nondeterministic 

values associated with the batch. The following payload includes the type of replica 

nondeterminism. Additionally, the message includes an authenticator with a nonce, 

and n-1 UMAC32 tags that authenticate the PRE_PREPARE_UPDATE header.

The POST_COMMIT message is used to handle VPOST and NPOST. The 

POST_COMMIT header includes the view number v, the sequence number n, MD5 

digest d of the POST_COMMIT payload, the replica's id, choice, ndetsz, and the 

number of bytes in request inlined in the message, ireqsz. The variable size payload 

includes the requests that are inlined, ireqs, and the nondeterministic choices, ndet. 

The message also includes a corresponding authenticator.
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After the replica executes all the operations in the batch, it sends a reply to the 

client. The reply header includes the view number v, the request identifier, rid, and 

MD5 digest d of the operation result, the identifier of the replica, and the size of the 

result in bytes, ressz. Additionally, the reply message contains the operation result if 

the replica is the designated replier. The other replicas omit the result from the 

REPLY message and set the result size in the header to -1. REPLY message contains 

a single UMAC32 nonce and a tag that authenticates the REPLY header. The client 

checks the MAC in the REPLY it receives. Client also checks the result digest in the 

REPLY with the result.

4.1.2  Interface

The algorithm is implemented as a library with a very simple interface which 

invokes some part of the library on client and some part on replicas. 

On the client side, an initialization procedure is provided by library for the 

client using a configuration file, which contains the public keys, the IP address, and 

the port number of the replicas. The library also provides a procedure, invoke(), and 

which is called to execute an operation. The procedure is responsible for the protocol 

in the client side and returns the result when enough replicas have responded. The 

library also provides a split interface with separate send and receives calls to invoke 

requests.

On the server side, we provide an initialization procedure that takes an 

argument: a configuration file with the public keys and IP addresses of replicas and 

clients, the region of memory where the service state is stored, a procedure to execute 
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requests, and a procedure to compute nondeterministic choices. When our system 

needs to execute an operation, it does an upcall to the execute procedure. The 

argument to this procedure includes a buffer with the requested operation and its 

arguments, req, and a buffer to fill with the operation result, rep. The execute 

procedure execute the operation for the service, using the service state. As the service 

performs the operation, each time it is about to modify the service state, it calls the 

modify procedure to inform the library of the locations about to be modified. When 

the primary receives a request, it selects a non-deterministic value for the request by 

making an upcall to the nondet procedure. The nondeterministic choice associated 

with a REQUEST is also passed as an argument to the execute upcall.

4.1.3  Online Poker Game

We implement one online poker game, very familiar as Texas Holdem poker 

game, a client/server based web application which supports multi-player network 

players, and the ND-BFT library is installed on the server side. The type of replica 

nondeterminism for this application is VPRE Figure 9 shows the architecture of this 

game, as we have described in previous chapter. Because the purpose of creating this 

game is merely to test the performance of our library that running under a practical 

system, this game do not have complex GUI or structure that would slow down the 

system performance. Figure 9 shows the architecture of this game.
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Figure 9: Architecture of online poker game with ND-BFT library

          

The normal operation of our game runs as the following: 

On the client side, the client, first, establish a connection to the servers. And 

then, according to the pre-configured configuration file, which defines the number of 

player. For instance, if the number is 4, so if four clients connect to the servers, then 

the game starts. Each player in the game sends the request to invoke the shuffling 

function in server, and waiting for the reply from server. The player will pick the 

majority reply from servers to make a final decision.

On the server side, each server initiate according to the configuration file 

which also containing the IP address and port number, and then it waiting for enough 

player to join the game. On noticed there are enough players, the server piggybacks 

the acknowledgment information to client and waiting for client's request. On 

46



receiving the request, the server invokes the shuffling function which triggers the ND-

BFT library to handle the nondeterministic values. The execution of the clients' 

request will be used to seed the random number generator to generate a random 

number, and the output of the random number will modules by 52 to have a 

corresponded number as a poker card to the player. 

4.2  Performance Evaluation

The BFT library can be used to implement Byzantine-fault-tolerant systems 

but these systems will not used in practice unless they perform well. This section 

presents results of experiments to evaluate the performance of these systems. These 

results show that these two extra phases we introduced in order to handle replica 

nondeterminism under different circumstances do not degrade performance 

significantly.

The experiments were performed using the setup in section 4.2.1. We describe 

experiments to measure the value. Section 4.2.2 use benchmarks to evaluate the 

performance during the normal case without checkpoint management, view changes 

or recovery. 

We implemented the core mechanisms in C++ and integrated them into the 

BFT framework. The experiments described below are focused on the evaluation of 

the cost for providing Byzantine fault tolerance to nondeterministic applications in the 

BFT layer. The cost associated with recording nondeterministic values, verifying such 

values, and replaying such values in the application layer is not studied in this work.
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4.2.1  Experimental Setup

The experiment consists of 14 nodes running RedHat 8.0 Linux. Of the 14 

computers, 4 of them are equipped with Pentium-4 2.8GHz processors and the rest of 

those computers have Pentium-3 1GHz processors. The computers are connected via a 

16-port Netgear 100Mbps switch. The replicas run on Pentium-4 nodes and clients are 

distributed across the rest of nodes.

4.2.2  Normal Case Operation

The experiment involves end-to-end latency and throughput measurements for 

client-server application under normal operations for different types of replica non-

determinism, including composite types. Because of the experiments limitation, we 

only enable 4 replicas to take care a single Byzantine fault. The rest of the servers act 

as clients, and one server can be used as several clients with different port number. In 

each iteration, each client issues a request to the server replicas and waits for the 

corresponding reply. There is no waiting time between consecutive iterations. The 

size of each request and reply are kept fixed at 1KB. In each run, we measure the total 

elapsed time for 10,000 consecutive iterations at each client. From the measured time, 

we derive the average end-to-end latency for each of the request-reply iteration and 

the system throughput.

Figure 10 and 11 shows the end-to-end latency performance testing of our 

library under the normal case operation with different type of replica nondeterminism. 

Figure 10 shows the result of single type of replica nondeterminism which means the 

replica only containing one type of replica nondeterminism including VPRE, VPOST, 
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NPRE and NPOST. Figure 11 shows the result of composition type of replica 

nondeterminism that the replica containing two types of replica nondeterminism. With 

the increasing complexity construction of real-world applications, they could have 

more than one type of replica nondeterminism. In our experiment we only consider 

the applications involving two type of replica nondeterminism. The composited type 

of replica nondeterminism in our experiment includes VPRE+NPRE, VPRE+VPOST, 

VPRE+NPOST, NPRE+VPOST, NPRE+NPOST and VPOST+NPOST.

Figure 10: End-to-End Latency of Pure Nondeterminism 

The type of replica nondeterminism and the size of nondeterministic values 

vary in different experiments, except for the throughput measurements, where the 

non-deterministic values are kept at 256 Bytes for each type. Note that log the 

nondeterministic values shown in the horizontal axis in Figure are for each type. That 

means, for composite types, the total size of nondeterministic value is twice times as 

large as those displayed.
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Obviously, we can see from the previous figures that the latency of VPRE 

non-deterministic operation is noticeably smaller than that of other three 

nondeterministic operations. That is because except for VPRE, the handling of other 

types of non-determinism involves with one more phases of message exchanges for 

correct replicas to reach an agreement on the nondeterministic values. As such, as 

shown in Figure 9, the end-to-end latency is noticeably larger, and the throughput is 

smaller, compared with that of VPRE nondeterministic operations. The end-to-end 

latency difference is more significant as the size of nondeterministic values involved 

with each operation increases. Since our system deploys a lightweight fault-tolerant 

protocol, we expect it to achieve performance comparable to existing byzantine fault-

tolerant replication protocol. We compare the throughput performance of original 

protocol where the replicas are deterministic with replica with different type of 

nondeterministic value. From the comparison, we can see that the throughput for 

deterministic replica is slightly higher than our system that handling different type of 

replica nondeterminism, which is acceptable due to the complexity of our 

mechanisms.
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Figure 11:  End-to-End Latency of Composite Nondeterminism
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nondeterministic values received from other replicas, a replica can verify the digests 

provided by the primary replica using its local copies. A replica might not have 

received the values proposed by one or more replicas included in the primary’s 

message, in which case, the replica asks for retransmission of the values.

During the POST-COMMIT phase, which is needed to handle NPOST non-

determinism, the data in the postn log is piggybacked with the PRE_PREPARE 

message for the next REQUEST. This way, the Byzantine agreement for the 

nondeterministic values is reached together with that for the ordering of that 

REQUEST, which reduces the number of messages needed to handle this type of 

replica nondeterminism. Even though the end-to-end latency for a REQUEST 

increases slightly as a restem throughput is significantly improved. To avoid waiting 

indefinitely for the next REQUEST, the primary sets a timer. When the timer expires, 

the primary initiates the Byzantine agreement phases for the nondeterministic values 

in conjunction with a null REQUEST so that the existing mechanisms can be reused.

It may be surprising to see that the end-to-end latency for a REQUEST with 

NPRE is similar to, or slightly larger than, that for a request with NPOST when there 

are large quantity of nondeterministic values. With the above optimization, the PRE-

PREPARE-UPDATE phase involves with at least two large messages (one message 

per replica on its proposed nondeterministic values) while the POST-COMMIT phase 

(needed to handle NPOST) involves with only one large message (sent by the 

primary). Due to the same reason, the throughput for requests with NPOST is higher 

for those with NPRE when  enough concurrent clients are present (so that virtually all 
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post-determinable nondeterministic values are piggybacked with the PRE_PREPARE 

messages for other requests, rather than being sent as separate messages).

Figure 12 shows the result of throughput performance for pure replica non-

determinism. And accordingly Figure 13 shows the throughput for composite replica 

nondeterminism.

Figure 12:  Throughput of Pure Nondeterminism
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Figure 13: Throughput of Composite Nondeterminism

4.2.3  Online Poker Game
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presenting results of experiments that ran with four replicas. We conduct the second 

experiment with seven replicas (may tolerate two faulty replicas).

For comparison purposes, the size of each request and reply still kept at 1KB. 

As we described in previous section, online poker games require a seed to generate a 

random number which always containing NPRE. To exhibit our algorithm could be 

applied on practical applications, we compare the performance between the poker 

game with and without our library; we only wrote code for it to work in the normal 

case. 

Figure 14 present results of the throughput performance comparison between 

the original online poker game and the replicated online poker game, respectively, in 

a configuration with four replicas. The comparison between ND-BFT and NO-REP 

shows that if there are less than four players, the performance of ND-BFT is close to 

the performance of NO-REP. The throughput of ND-BFT increase rapidly when there 

are more than four players in the game. Percentage-wise, the comparison of the 

throughput performance is lowered by 30% to nearly 50%, which indicated that this 

library would be more efficient when running under lightweight environment which 

have a small number of players. 
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Figure 14: Throughput for online poker game (4 replicas)

Figure 15 presents the throughput measured with seven replicas. The average 

throughputs of both mechanisms are lower than the mechanism in previous 

experiment due to the number of replicas is increased. However, it might be 

surprising to find out that the throughput performance for seven replicas ND-BFT are 

very close to the four replicas ND-BFT. This could be helpful information for 

software designers because they can increase the security of their system without 
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than ND-BFT.
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Figure 15: Throughput for online poker game (7 replicas)

There are two conclusions we gain from the experiment. First, our current 

mechanism would be more appropriate to be applied on the games which have small 

number of players. And there are more optimization works need to be done to 

improve the performance of the mechanism to be able to survive in large game which 

have considerable asynchronous network players. Secondly, the result shows that 

improving the resilience of the system by increasing the number of replica from four 

to seven does not degrade performance significantly.   
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CHAPTER V

RELATED WORKS

          

There is a vast body of research in the areas of fault tolerance and state 

machine replication. We present a brief overview of replication protocols to tolerate 

Byzantine fault for on practical istic applications. Our main focus, however, is on 

handling replica nondeterminism problem for Byzantine-fault-tolerant state machine 

replication protocols that provide support for general operations in an asynchronous 

environment.

Replica nondeterminism has been studied extensively under the benign fault 

model. However, there is no systematic classification of the common types of replica 

nondeterminism, therefore less attention has been payed on handling such non-

determinism. [7] did provide a classification of some types of replica nondeterminism. 

However, they largely focused on the types of wrappable nondeterminism and 
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verifiable pre-determinable nondeterminism, except for nondeterminism caused by 

asynchronous interrupts, which we do not address in this work.

The replica nondeterminism caused by multithreading has been studied 

separately from other types of nondeterminism, again, under the benign fault mode 

only, in[5, 6, 11, 15]. However, these studies provided valuable insight on how to 

approach the problem of ensuring the consistency of replicated multithreaded 

applications. It is realized that what matters in achieving replica consistency is to 

control the ordering of different threads on access of shared data. The mechanisms to 

record and to replay such ordering have been developed. So do those for 

checkpointing and restoring the state of multi-threaded applications (for 

example,[21]). Even though the se mechanisms alone are not sufficient to achieve 

Byzantine fault tolerance for multithreaded applications, they can be adapted and used 

towards this goal. In this thesis, we have shown when to record and partially verify 

the ordering, how to propagate the ordering, and how to provision for problems 

encountered when replaying the ordering, all under the Byzantine fault model.

Under the Byzantine fault model, the main effort on the subject of replica non-

determinism control so far is to cope with wrappable and verifiable pre-determinable 

replica nondeterminism. In[17, 18], Castro and Liskov provided a brief guideline on 

how to deal with the type of nondeterminism that requires collective determination of 

nondeterministic values. The guide is very important and useful, as we have followed 

in this work. However, the guideline is applicable to only a subset of the problems we 

have addressed.
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CHAPTER VI

CONCLUSION AND FUTURE WORKS

The growing reliance of our society on computer demands highly-available 

systems that provide correct service without interruptions. Byzantine faults such as 

software bugs, operator mistakes, and malicious attacks are the major cause of service 

interruptions.  Byzantine fault tolerant algorithms have been invented to handle 

Byzantine faults by replicating servers and making them working in the same order. 

Replica nondeterminism, a problem that would disrupt the consistency of replica does 

not be addressed in Byzantine fault tolerant algorithms. Therefore there are no 

appropriate ways to handle such problem which is obtained by the majority of 

practical applications. This issue must be handled to ensure the total ordering of a 

Byzantine fault tolerant system.
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This thesis presented a classification of common types of replica 

nondeterminism, and the mechanisms to handle them in the context of Byzantine fault 

tolerance. We also described how to integrate our mechanisms into a well-known 

BFT framework. Furthermore, we conducted extensive experiments to evaluate the 

performance of the BFT framework extended with our mechanisms and, for the first 

time, replicate a real online application, online poker game with our library-ND-BFT.

This chapter presents a summary of the main results in the thesis and direction 

for future works.

6.1  Summary

This thesis describes ND-BFT, a state-machine replication algorithm that 

based on Byzantine fault tolerant algorithm that handles replica nondeterminism 

problems occurred during the toleration of Byzantine faults.

BFT algorithms highly reply on replica consistency. BFT is the first state-

machine replication algorithm that works correctly in asynchronous systems with 

Byzantine faults, in addition, it guarantees liveness provided message delays are 

bounded eventually, which require all replica execute the operation in the same order. 

It is a bad assumption that all replicas are deterministic, for instance, some services 

are data and time-last-modified which are set by reading the server's local clock, and 

if each server is in different location, the consistency of the whole system would 

diverge. Therefore, the mechanism to handle such behavior is necessary and needed. 

It is also bad to assume that the replica nondeterminism can be treated in the 

same way. In the research of BFT, Castro and Liskvo simply treat the replica 
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nondeterministic problem by having the primary select the nondeterministic value 

independently or based on values provided by the replicas. The mechanism which 

categorized as wrappable nondeterminism and verifiable pre-determinable 

nondeterminism is indeed adequate for some services such as NFS. However, to 

provide our services in all practical application, a systematic categorization of all 

replica nondeterministic behavior is highly desired.

In this thesis, we categorized the replica nondeterministic into four types: 

VPRE, NPRE, VPOST and NPOST. ND-BFT, a generic program library with a 

simple interface, is based on BFT to provide a complete solution to each type of 

replica nondeterminism to the problem of building real services that tolerate 

Byzantine faults. For example, it includes efficient techniques to garbage collection 

information, to transfer state to bring replica up-to-date, to retransmit messages, and 

to handle services with different type of replica nondeterminism. The thesis presents a 

real service that was implemented using the ND-BFT library: the first Byzantine-

fault-tolerant application that could handle complex replica nondeterministic 

problems.

The ND-BFT library and the corresponding ND-BFT application perform 

well. For example, ND-BFT performs only 13% lower throughput than BFT library 

and ND-BFT poker game performs 24% lower throughput than the nonreplicated 

poker game. Considering the ND-BFT could mask nondeterministic software errors, 

which seems to be the most persistent since they are the hardest to detect, the 

performance reduction is really acceptable. In fact, we always encountered such a 
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software bug while running our system. Our algorithm was able to continue running 

correctly in the presence of such kind of failure. 

Additionally, the benefit of our algorithm can be increased by taking steps to 

increase diversity. One possibility is to have the diversity in the execution 

environment: the replicas can be administered by different people; they can be in 

different geographic locations; can they can have different configurations, for 

instance, run schedulers with different parameters or run different combination of 

services, but the ordering of the system is consistent. Thus the service provided by the 

system is reliable and totally ordered.

6.2  Future Work

We want to conduct deeper research that focusing on improve resilience to 

software bugs and online services, since the increasing popularity of those services 

would definitely bring the attention of hackers who wish to take the advantage by 

hacking or sabotaging those services. Not only online gaming application such as 

Blackjack and Texas Hold'em, but also several independent implementations 

available of operating systems and important services (e.g., file systems, databases, 

and web servers), replicas can run different operating system and different 

implementations of the code for these services. It is necessary to implement a small 

software layer for this to work. This could be simplified by the using existing 

protocols to access important services. There are also some research works on how to 

make this layer works more efficiently.

63



It is possible to improve security by combining our algorithm with other 

existing Byzantine fault tolerance algorithm. For instance, there are some interesting 

issues on using threshold signature techniques to replace BFT algorithm. The adapted 

BFT algorithm consists of three communication rounds (under normal operation) for 

Byzantine agreement and an additional round run at the beginning for key shares 

distribution. The Byzantine agreement algorithm works similar to the BFT algorithm 

except the third round, where each replica generates a partial signature (using its key 

share) to sign the client’s message and piggyback the partial signature to the Commit 

message. Each replica combines the partial signatures into a threshold signature. The 

signature is then mapped into a number to seed the PRNG. Despite the elegance of the 

threshold signature, the algorithm, however, might not be practical in the Internet 

environment. First of all, it depends on a trusted dealer at the beginning to generate a 

key pair, divide the private key into several key shares and it must also be responsible 

for distributing the key shares to all replicas. If the dealer is compromised, the entire 

system can be easily penetrated by the adversary. Meanwhile, the threshold signature 

is computationally expensive, especially when generating the threshold signature (for 

a 1024-bit threshold signature it usually takes 73.9ms on IBM xSeries 330 1U 

rackmount PC with 1.0GHz Pentium III CPUs, 1.5 GB EEC PC133 SDRAM, and two 

36 GB IBM UltraStar 36LZX hard drives)(Rhea et al., 2003). Furthermore, the validity 

on the use of the threshold signature as the seed to the PRNG remains to be proved 

secure. 

This thesis focused on the performance of the ND-BFT library in the normal 

case. It is important to perform an experimental evaluation of the reliability and 
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performance of our library with faults by using fault-injection techniques. The 

difficulty is that attacks are hard to model. Ultimately, we would like to make a real 

service on Internet and develop the modules and tools to record, verify and replay 

nondeterministic values to evaluate ability of our algorithm. 
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