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BYZANTINE FAULT TOLERANT COORDINATION FOR

WEB SERVICES ATOMIC TRANSACTIONS

HONGLEI ZHANG

ABSTRACT

This thesis describes a Byzantine Fault Tolerant Coordination framework for

Web Service Atomic Transaction (WS-AT). In the framework, all core services, in-

cluding transaction activation, registration, and completion & distributed commit,

are replicated and protected by Byzantine fault tolerance mechanisms. The tradi-

tional Two-Phase Commit (2PC) protocol is extended by a Byzantine fault tolerant

version that can tolerate arbitrary faults on the coordinator and the initiator sides,

and some types of malicious faults on the participant side. To achieve Byzantine

fault tolerance in an efficient manner, and to limit the types of malicious behaviors

of the coordinator, a novel decision certificate is introduced. The decision certificate

includes a signed copy of the participants’ vote records, and it is piggybacked with all

decision notifications to the participants for each participant to verify the legitimacy

of the decision.

The Byzantine Fault Tolerance (BFT) mechanisms, together with the extended

two-phase commit protocol, have been incorporated into an open-source framework

supporting the standard Web services atomic transactions specification. Performance

characterizations of the framework show that the implementation is fairly efficient.

v



Such a Byzantine fault tolerant coordination framework can be useful for many trans-

actional Web services that require a high degree of security and dependability.
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CHAPTER I

INTRODUCTION

In recent years, we have seen a wide-adoption of the Web services technology

by major players on the Internet, such as IBM, Microsoft, Google, and Amazon.

The Web services technology has become an extremely powerful tool to enable the

large-scale enterprise applications and systems integrations, which makes it possible

to achieve automated business-to-business interactions without human intervention.

Most of the Web services are transactional, in which most of them require a high

degree of security and dependability. Furthermore, a particular concern is the data

consistency among the participants of atomic transactions.

The Two-Phase Commit (2PC) protocol [1] is a standard distributed commit

protocol [2] used in the distributed transactions [4, 21, 22] to achieve atomicity of

the actions taken by the participants. However, the 2PC protocol is designed with

the assumptions that the coordinator and the participants are only subject to benign

faults and that the coordinator can be recovered quickly. Consequently, this protocol

does not work if the coordinator is subject to arbitrary faults, also referred to as

Byzantine faults [3], because a faulty coordinator might send the conflicting decisions

1
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to different participants to prevent them from terminating the transaction atomically

(i.e., some participants may commit the transaction, while others abort it). There

are also a number of system-level works on fault tolerant TP monitors, such as [12,

15]. However, they all use a benign fault model. Such systems do not work if the

coordinator is subject to intrusion attacks. We have yet to see other system-level

work on Byzantine fault tolerant TP monitors.

The problem of BFT distributed commit for atomic transactions has been of

research interest in the past two decades [4, 18]. Mohan et al. in [4] first studied

this problem and provided a solution by integrating the Byzantine agreement and the

2PC protocol. Most concretely, the second phase of the 2PC protocol is replaced by a

Byzantine agreement phase. This can prevent the faulty coordinator from disseminat-

ing conflicting messages to different participants without being detected. However,

this approach is not practical because of three main deficiencies. First, it involves all

members of the root cluster in the Byzantine agreement phase for each transaction.

Therefore, the overhead of reaching a Byzantine agreement could be high if the size

of the cluster is large. Second, this method can only protect the members in the root

cluster, but not the subordinate coordinators and the participants outside. Third, it

requires the participants in the root cluster to have the knowledge about all other

participants in the same cluster, which prevents dynamic propagation of the transac-

tion. Our work, on the other hand, requires a Byzantine agreement only among the

coordinator replicas and hence, allows dynamic propagation of transactions. Rother-

mel et al. [18] addressed the challenges of ensuring atomic distributed commit in

open systems where participants may be compromised. However, [18] assumes that

the root coordinator is trusted. This assumption negates the necessity to replicate

the coordinator for Byzantine fault tolerance. Apparently, this assumption is not

applicable to Web services applications.
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The work closest to ours is Thema [16], which is a BFT framework [19, 20,

27] for generic multi-tiered Web services. Even though some of the mechanisms

are identical, our work contains specific mechanisms to ensure atomic transaction

commitment.

In this thesis, we carefully analyze the threats to atomic commitment of dis-

tributed transactions and evaluate strategies to mitigate such threats. The Byzantine

agreement is only carried out among the coordinator replicas, which avoids the prob-

lems in [4]. The Byzantine agreement algorithm used in our framework is adapted

from the Byzantine Fault Tolerance (BFT) algorithm described in [5] because of its

efficiency. That BFT algorithm is originally designed to ensure completely ordered

atomic multicast for requests to a replicated state server. A number of modifications

to the algorithm have been made so that it fits the problem of atomic distributed

commit. The most crucial change is made to the first phase of the BFT algorithm,

where the primary coordinator replica is required to use a decision certificate, which is

a collection of the registration records and the votes it has collected from the partici-

pants, to back its decision on the transaction’s outcome. The use of such a certificate

is essential to enable a correct backup coordinator replica to verify the primary’s

proposal. This also limits the methods that a faulty replica can use to hinder atomic

distributed commit of a transaction.



CHAPTER II

BACKGROUND

This chapter will provide readers with the necessary background knowledge to

better understand my thesis.

2.1 Web Services Technology

2.1.1 Web Services

In this section, we introduce the concept of the Web services and the basic

building blocks of the Web services platform. There is no universal definition for

the term Web services; in fact its interpretation varies drastically. Web services

can be loosely defined as any type of services offered over the World Wide Web.

However, only the services enabled by the Web services technology are referred to

as Web services by many researchers and practitioners. In this chapter, we use the

latter interpretation. The Web services technology refers to the set of standards

that enable automated machine-to-machine interactions over the Web. The corner

stones of the Web services technology include eXtensible Markup Language (XML)

4
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[6], HyperText Transfer Protocol (HTTP), Simple Object Access Protocol (SOAP) [7],

Web Services Description Language (WSDL) [8], and Universal Description, Discovery

and Integration (UDDI) [9]. From an architectural point of view, the Web services

platform consists of Web services providers, Web services consumers, and the UDDI

registries that broker the providers and the consumers, as shown in Figure 1.

Figure 1: The Web Service Architecture

2.1.2 Web Service Technology standards

eXtensible Markup Language

XML is designed to facilitate self-contained, structured data representation and

transfer over the Internet. It allows users to define their own tags, making it easily

extensible. XML messages enable different applications to communicate with each

other over the network using a variety of transport-level protocols such as HTTP and

SMTP. To invoke a Web service, a user only needs to send an XML request message

to the Web services provider. The provider will then send an XML reply message

back containing the results requested by the user. Typically, the XML messages must

conform to the SOAP standard.
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Simple Object Access Protocol

SOAP, a communication protocol for exchanging messages over the Internet,

provides a standard modular packaging model, a data encoding method and a way

to perform remote procedure calls (RPCs) [26]. SOAP is easy to use and is easily

extensible due to its use of XML as its message format. Like many public-domain

application-level protocols, such as SMTP, a SOAP message contains a SOAP Envelop

and a SOAP Body. A SOAP message often contains an optional SOAP Header

element and a Fault element if an error is encountered by the sender of the SOAP

message.

Web Service Description Language

WSDL provides a structured approach to describe a Web service based on an

abstract model. For each Web service, the corresponding WSDL document specifies

the available operations, the messages involved in these operations, and a set of

endpoints to reach the Web service. WSDL is also extensible through the use of XML.

In particular, it enables the binding of multiple different communication protocols and

message formats.

Universal Discovery Description and Integration

The UDDI registry service acts like yellow pages for business providers and con-

sumers. Business owners can publish their Web services to the UDDI registry; their

partners and consumers can then locate the Web services in need and obtain detailed

information by searching the registry. There are three main components in UDDI,

commonly referred to as White Pages, Yellow Pages and Green Pages. The White

Pages provide Web service provider’s information, such as name, address, contact

information and identifiers. The Yellow Pages describe industrial categories based
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on standard taxonomies. The Green Pages detailed present technical information

regarding the Web services. The UDDI also support several methods of searching,

e.g., search by service provider’s location, by specified service types, etc...

2.2 Web-Service Atomic Transaction

2.2.1 Web-Service Atomic Transaction Specification

WS-Atomic Transaction builds on top of the Web-Service Coordination, which

defines an extensible framework providing service protocols to coordinate activities in

the distributed applications. At the end of each transaction, the coordinator will be

asked to commit the proposed result. This commitment has “all-or-nothing” property.

If they all vote “yes”, which means the transaction has been executed successfully,

then the coordinator commits the action and upon final agreement, the tentative

transactions will be visible to all others. Otherwise, if even one participant votes to

abort or does not response to the transaction, then the coordinator has to abort. This

abort decision will make the tentative transaction appears as it had never happened.

Each WS-Atomic Transaction is modeled to have three actors, An Initiator (a

special participant), A Coordinator and a few Participants.

The Initiator is responsible to start and terminate a transaction.

The Coordinator provides the following services:

Activation Service: At the beginning of a transaction, the initiator invokes the

Activation Service to create a coordinator object, which will then generate a new

coordination context for the transaction and return it to the initiator. The coordina-

tion context contains a unique transaction identifier and an endpoint reference [23]

for Registration Service. This coordination context will be included in all request

messages within the transaction boundary.
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Registration Service: All participants including the initiator will register their

endpoint references for other associated participant-side services. These endpoint

references will be used by the coordinator to contact them during the two-phase

commit protocol.

Coordinator Service: This service is responsible for propagating messages in

the 2PC protocol to ensure atomic commit of a distributed transaction. This service

will be invoked when it receives a request from the Completion Service and then it

will start the 2PC with all participants excluding the initiator. The participants have

obtained the endpoint reference of the Coordinator Service during the registration

step.

Completion Service: This service is used to manage the distributed commits by

the start notification from the transaction initiator. The Completion service, together

with the CompletionInitiator service on the participant side, implements the WS-AT

completion protocol. The endpoint reference of the Completion Service is returned

to the initiator during the registration step, the same as Coordinator Service.

The following services are from Participants.

CompletionInitiator Service: This service is provided by the transaction initia-

tor to start a distributed commit and to obtain the final outcome of the transaction,

as a part of the Completion protocol.

Participant Service: This service is invoked by the coordinator to solicit votes

from, and to send the transaction outcome to the participants according to the two-

phase commit protocol.

The WS-AomicTransaction specification defines two protocols, Completion

protocol and Two-Phase Commit (2PC) protocol.
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Completion Protocol

The completion protocol occurs between the initiator and the coordinator to

initiate a commit action by sending requests to the coordinator to either commit

or abort the transaction and signal the final result. The commit request is sent

to the coordinator when requested by the initiator. An instance of the Two-Phase

Commit (2PC) protocol to carry out the agreement for the atomic transaction will

then be launched by the coordinator. After the 2PC, a notification of the final

outcome of the transaction will be sent to the initiator by the coordinator accordingly

(i.e., Committed or Aborted). However, if the request from the initiator is Rollback

instead, the coordinator will then abort the transaction directly. Figure 2 below shows

the completion protocol in an abstract manner.

Figure 2: WS-AT Completion Protocol

Two-Phase Commit (2PC) Protocol

The Two-phase commit protocol occurs between the coordinator and the par-

ticipants. It is used to coordinate registered participants to reach the agreement on

the outcome either Commit or Abort the transaction and also to notify all participants
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accordingly. It contains two phases, the prepare phase and the commit phase. Dur-

ing the first phase, i.e. the prepare phase, the coordinator sends a Prepare request

to all registered participants soliciting their votes. When the coordinator receives

votes from all participants or the request time expires, the second phase, i.e. commit

phase, begins to notify all the participants with the final outcome of the distributed

transaction.

Figure 3: WS-AT 2PC Protocol

2PC protocol has two variants, one is Volatile 2PC used for volatile resources

(i.e. a cache) and the other one is Durable 2PC, used on durable resources (i.e. a

database). Participants need to register in the appropriate protocol, possibly more

than one, before the transaction starts. A participant registers with several protocols

by sending several registration messages. Upon receiving a Commit request from

initiator in the completion protocol, the coordinator begins the prepare phase for each

participant registered in the Volatile 2PC protocol. Each participant that receives

the request must respond before the Coordinator starts the prepare phase in the

Durable 2PC. Further participants may continuously register with the Coordinator,
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but all registrations must be completed prior to beginning of the prepare phase for the

Durable 2PC. The coordinator initiates the prepare phase handling for the Durable

2PC protocol by sending out a “Prepare” messages to all participants registered in the

Durable 2PC upon completion of the first phase of the Volatile 2PC. All responses

must be received before the protocol goes down to the next phase, in which the

coordinator will issue the Commit notification to all participants for both the Volatile

and the Durable 2PC protocols if all of the feedbacks are positive. If there are any

negative votes, even only one, the coordinator has to abort the transaction. After the

correct participants receive the Commit notifications, they will commit or abort the

transaction and send the acknowledgement back accordingly to the Coordinator.

2.2.2 Web-Service Atomic Transaction Model

Nowadays, the web service is becoming more and more complicated. A web

service may be supported by another provided by different companies or organizations.

For users, they only need to send a request to the composite Web service through a

Web browser (such as Internet Explorer or Firefox Web Browser) or directly invoke the

service through application software which stands alone at the client side. To achieve

consistent outcome, the one who receives the request should start the distributed

transaction to commit interactions. This is the scenario we consider. Figure 4 shows

an example of the detailed steps of a distributed transaction supported by WS-AT.

Figure 4 shows a travel reservation example coordinated by WS-Atomic Trans-

action. In this example, a client contacts a Travel Agent to make travel arrangements

on behalf of the client. The Agent, which acts as the completion initiator, is re-

sponsible for making reservations for the flight and hotel in the context of an atomic

distributed transaction. We assume that the Agent relies on a Flight reservation Web

service and a Hotel reservation Web service to book the plane ticket and the hotel
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room for the traveler. We also assume that these two Web services are managed by

different servers in different locations.

Figure 4: Travel Agent Example Coordinated by WS-AT

To begin this transaction, the client will send a request to the initiator (step

1). The initiator will then invoke the Activation Service on the Coordinator which

will create a unique coordination context for the transaction (step 2) containing the

Endpoint References of the Registration Service. After the Activation Service, the

initiator will receive the transaction context (step 3). In the next step, the initiator

will register the Completion Initiator Service with the Coordinator so that the Co-

ordinator could inform the Initiator once it receives the outcome of the transaction

(steps 4 and 5). Now the booking service, offered by the initiator, will carry out the

reservations for the plane ticket and the hotel room (steps 6 and 10). The flight and

hotel booking Web services must register their participant endpoint references with

the coordinator (steps 7 & 8 and 11 & 12). After the registration step, these services
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will send their responses for the reservation requests (steps 9 and 13). Subsequently,

the initiator will ask the Completion Service to commit the transaction (steps 14 -

17). Finally, the Travel Agent will send the result back to the client (step 18).

2.3 Byzantine Fault Tolerance

2.3.1 Byzantine Fault

Byzantine, from 5th century to 15th century, is the hoary Roman Empire, which

is the city of Constantinople today. In 1453 AD, there was a well known tale that

took place within the Byzantine Empire. The city was under siege and there were

several powerful Ottoman battalions coped outside an enemy city on different sides

poised for the next attack. Each division was commanded by a general, and all

commanders would communicate with each other using a messenger service. Because

the fortifications of this enemy city were as firm as a rock, no battalion could success

by itself. The only way to win this war was to carry out the attack by several, possibly

all, of battalions together. Otherwise they should all retreat together. It was apparent

that a partial attack would incur heavy losses and infuriate the Grand Sultan, so the

generals commanding different camps had to reach the same decision and agree upon

the same plan of actions by communicating with other generals. Using the messenger

service of the Ottoman Army, the generals were be able share their thinks through

messages within an hour. And the receiver was able to certify the identity of the

sender and preserve the correct content of the original messages. If all of the generals

were loyal, they would be able to reach the same decision fairly quickly. However,

some of the generals were treacherous, and they tried to confuse others so that no

agreement could be reached. As a result, some of generals would attack while others

withdrew. Thus, an insufficient army launched the attack, and unsurprisingly there
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were heavy losses nearing annihilation for the Byzantine Army.

This is the classic coordination problem now known as the Byzantine Generals

Problems. In computer networks, some machines may fall into an arbitrary failure

state much like the faulty generals that prohibit others to achieve an agreement.

We call this type of failures the Byzantine Faults. The solution to tolerate Byzantine

Faults is known as the Byzantine Agreement which describes a way to allow the correct

sections to reach an agreement or achieve coordination despite faulty messages.

2.3.2 Byzantine Fault Tolerance

Byzantine fault tolerance refers to the capability of a system to tolerate Byzan-

tine faults. It can be achieved by replicating the server and ensuring all server replicas

reach an agreement on the input despite Byzantine faulty replicas. Such an agreement

is often referred to as the Byzantine agreement.

The most efficient Byzantine agreement algorithm reported so far was due

to Castro and Liskov (referred to as the BFT algorithm). The BFT algorithm is

executed by at least 3f + 1 server replicas to tolerate up to f Byzantine faults. One

of the replicas is designated as the primary while the rest are backups. The normal

operation of the BFT algorithm involves three phases, normally called the pre-prepare

phase, the prepare phase and the commit phase. During the first phase, pre-prepare

phase, the primary multicasts a pre-prepare message containing the client’s request,

the current view and a sequence number assigned to the request to all backups. A

backup verifies the request message and the ordering information. If the backup

accepts the message, it multicasts a prepare message to all other replicas containing

the ordering information and the digest of the ordered requests. This starts the

second phase, the prepare phase. A replica waits until it has collected 2f matching

prepare messages from different replicas before it multicasts a commit message to
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other replicas, which starts the third phase (commit phase). The commit phase ends

when a replica has received 2f +1 matching commit messages from different replicas.

At this point, the request message has been totally ordered and it is ready to be

delivered to the server application.

The BFT algorithm is implemented in our Byzantine Fault Tolerant Coordi-

nation for Web Services Atomic Transactions system. To avoid the possible confusion

between the two phases (the prepare phase and the commit/abort phase) in the Two-

Phase Commit (2PC) protocol, we refer the three phases in the BFT algorithm as

BA-pre-prepare, BA-prepare, and BA-commit phases in this thesis.



CHAPTER III

BYZANTINE FAULT TOLERANT

COORDINATION FOR WEB SERVICES

ATOMIC TRANSACTIONS

3.1 System Model

The basic web service system model we considered is a composite Web service

as described in section 2.1.1. The end users only need to invoke these services. The

distributed transactions, which are used to coordinate the interactions with other

Web services, are hidden from the users. The end users will only see the final results

when the distributed transactions have been completed.

We use the flat distributed transaction model for simplicity, and implement

the WS-AT framework in our system to support the distributed transaction for con-

sistency.

The Service provider, who first accepts the request of the client, acts as the

initiator. The responsibilities of the initiator are to start and terminate a transaction,

16
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and to also propagate the operations to all other attending participants. The initiator

is a special participant, but we will not separate the initiator from the participants

unless it is necessary. The only different between the initiator and the participants

in our system is that the initiator is replicated to tolerate faults, but for simplicity’s

sake, we did not replicate participants. Because the initiator is stateless, we only

need 2f + 1 initiator replicas to handle up to f Byzantine faulty initiator replicas.

Figure 5 shows the framework of the initiator and the participants (there are only

two participants in the figure but can be more).

Figure 5: Framework of Initiator and Participants

In our system, the transaction coordinator runs separately from the initiator

and the participants. The set of services on the coordinator side runs on the same

address space and it is replicated on different machines possibly on many different

locations. We use 3f + 1 coordinator replicas working together to tolerate up to f

Byzantine faulty nodes. Figure 6 shows the framework of the coordinator.

This system is a kind of primary-backup mechanism, which means there will

always be a primary replica and several backups. To ensure that the system can be

still functional when the primary fails, we must pick another as the primary within

the replicas in case the current one is faulty. This progress is called view change and
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Figure 6: Framework of the Coordinator

we denote a view as v to identify who is the primary. We also allocate a unique ID i,

which varies from 0 to 3f , to every replica. In each view v, one replica, whose ID i

satisfies i = v mod (3f + 1), serves as the primary. If it fails, the next one i + 1 will

be selected.

At the beginning of each transaction, a coordinator object is created and the

lifespan of this object is the same as the corresponding transaction. When the trans-

action has been completed, the Coordinator of the transaction will cease to exist.

During the activation service, we enable an adjusted BFT distributed commit algo-

rithm, which has one more round, to broadcast the collection of message digests. The

activation service will be introduced in more detail in section 3.3.

Before each distributed transaction, all correct coordinator replicas need to

have the acknowledgments about the registration of the involved participants to en-

sure that the result of distributed transaction comes from the registered participants

set. Furthermore, when the participants receive the message propagated with a reg-

istration request from the initiator, they have to register with at least f + 1 correct

coordinator replicas and then send the reply back to the initiator. If the participant

crashes during the registration or before the transaction propagated to itself, either

no reply or an exception will be thrown back. Sequentially, the initiator will abort

the transaction.
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Figure 7 shows the sequence relationship among the main components of the

system. The same sequence number means they are taking place at the same time in

parallel.

Figure 7: System Framework

We use the Public key algorithm in our system to sign the transaction messages.

All messages in the transaction are digitally signed. If confidentiality is needed,

messages can be further encrypted. All coordinator replicas and participants have a

key pair, a public key and a private key. In this key pair, the private key should be

kept secret by the owner and nobody can get it. The public key is well known to others

who want to send a signed message to the key owner. I will not go into detail about

the digital signature and the encryption algorithms, but we will make the assumption

that the encryptions and the digital signatures cannot be broken sufficiently with the

current computing power.
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3.2 Threat Analysis

Most frequently, all the replicas of the initiator and the coordinator, we be-

lieve, should be under the “correct” condition. However, the word “correct” here has

different meanings for different actors. We say that the participants are “correct”

as long as they are not in the Byzantine Faults. They may, however, fall into the

non-malicious faults categories such as a crash or other performance problems. For

the coordinator and initiator replicas, we say that they are “correct” only when they

faithfully execute all operations and carry out good results accordingly throughout

their entire lifetime.

Based on the definition of the “correct” stated above, the coordinator and the

initiator replicas are subject to Byzantine Faults which means our system can tolerate

arbitrary faulty replicas. On the other hand, for the participants, we have to rule

out some forms of the Byzantine faulty behaviors. A Byzantine faulty participant

can always vote to commit a transaction but actually abort the transaction locally

or vote to abort the transaction but commit it locally. These situations are beyond

the scope of any distributed commit protocols. Rather, they should be addressed by

business accountability and non-repudiation techniques. Other forms of Byzantine

faults on the participants, such as sending conflicting votes to different coordinator

replicas, can be tolerated.

Now, let’s take a look at what the faulty parties can impose in order to better

tolerate them. Here we enumerate the threats from the Byzantine faulty coordinator

replicas and participants.

If coordinator replicas are considered in Byzantine Faults, they can perform

some of the following hostile operations:

• Refuse to execute a part of or the whole service request with the intent to block

the execution of a distributed transaction. The faulty coordinator replica can
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do this simply by not responding.

• Abort the transactions despite having received all yes-votes from participants.

To do this, the faulty coordinator replica omits one or more digitally signed yes-

votes and pretends those participants did not respond until the timer expires.

Please note that the faulty coordinator cannot fake a commit decision if it has

not received yes-votes from every participant.

• Send conflicting decisions to different participants. The faulty coordinator repli-

cas can send back some correct commit responses and some faked abort decisions

after they have already received all yes-votes because it is obliged to piggyback

all yes-votes with a correct commit decision. At the same time, they can fake

an abort decision by omitting some votes. The intention is to corrupt data

integrity of correct participants.

• Execute the distributed commit protocol correctly for some transactions exactly

the same as the correct coordinator.

As a Byzantine faulty participant, it can perform some of the following faulty

operations:

• Refuse to execute a part of or the whole distributed commit protocol by not

sending or responding, this can cause the involved transactions to abort.

• Vote abort but internally prepare or commit the transaction.

• Vote commit but internally abort the transaction.

As you can see, a faulty participant cannot disrupt the consistency of correct

participants as long as the coordinator is correct. To deter malicious participants,

the coordinator keeps an auditing log and records all votes from all participants. The
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logged information can be used to hold a faulty participant accountable for providing

fake information. For example, if a participant refused to ship a product that it has

promised to, the user and other participants can sue it using the logged vote record

from that participant.

Furthermore, for our system, we assume that the coordinator replicas and the

participants fail independently. This means that the failed coordinator replicas will

not collude with any of the failed participants, this includes the initiator. We do,

however, allow failed coordinator replicas to collude amongst each other.

3.3 Byzantine Fault Tolerant Transaction Activa-

tion

After analyzing what the faulty parties can impose, let’s start how to tolerate

them by using our system. Three main parts, BFT Transaction Activation, BFT

Registration, and BFT Transaction Completion and Propagation are needed.

Figure 8 shows the details of the BFT Activation service.

The client sends a request to the initiator, which has already been replicated,

to start a new transaction. The request is in the form of <CREQ, o, t, c> σc,

where CREQ represents: the request from the client, o represents: the operations

client wanted by the client, t represents: the monotonically increasing timestamp,

c represents: the id of the client, and σc represents: the signature of the client.

This request has been sent to all initiator replicas. The initiator replica accepts

the request only if the request messages are properly signed by the client and the

timestamp t is not smaller than any of the other requests from the same client. After

validating that the correct request has been received, the initiator replicas send the

activation messages to the primary replica of the activation service to invoke the BFT
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Figure 8: BFT Activation Service

algorithm. The activation request is in the form of <ACTIV ATION , v, c, t, k>

σk, where ACTIV ATION represents: this is an activation request, v represents:

view number, c represents: client id, t represents: timestamp, k represents: initiator

replica id, and σk represents: The signature of the initiator replica. By using this

BFT algorithm, the activation service can handle up to (T − 1)/2 faults if the service

has a total of T replicas (including the primary). Different from the pre-prepare

phase of the BFT algorithm, two more transactions (one round between the primary

replica and others) are added in. After the primary replicas receive the activation

request, it multicast a BA-pre-prepare messages to all other backups. The form of the

BA-pre-prepare message is <BA-PRE-PREPARE, v, r, uuidp, p> σp, where BA-

PRE-PREPARE represents: this is a BA-pre-prepare request, v represents: view

number, r represents: contents of the activation request, p represents: the id of the

primary replica, uuidp represents: a universally unique identifier (UUID) proposed
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by the primary, which is used to generate a identical transaction id to identify the

transaction and its coordinator object, and σp represents: the signature of the primary

replica of the coordinator. For more security [25], the UUID should be generated from

a high entropy source. However, this raises a problem. The activation is inherently

nondeterministic, since the UUID from one replica cannot be verified by another, this

calls for a collective determination of the UUID for the transaction and it is achieved

during the BA-pre-prepare phase.

After receiving the BA-pre-prepare message from the primary replica, each

backup will verify the authenticity of the message before accepting it. The verifi-

cation process includes validating the signature of the message, confirming that it

is in view v for transaction t and r is a correct activation request. If the message

passes verification and the backup has not received the same request before, then the

message will be accepted. However, different from the traditional BFT pre-prepare

phase, the backup will not go to the prepare phase immediately, instead, it will send

a BA-pre-prepare-reply back to all other replicas that contains the digests of the

BA-pre-prepare message. This BA-pre-prepare-reply has the form of <BA-PRE-

PREPARE-REPLY , v, d, uuidi, i> σi, where BA-PRE-PREPARE-REPLY

represents the type of the message is BA-PRE-PREPARE-REPLY, v represents the

current view number, d represents the digest of the BA-pre-prepare message, i repre-

sents the replica id, uuidi represents replica i’s proposed universally unique identifier,

and σi represents the signature of the entire message. The primary accepts the BA-

pre-prepare-reply messages if they are properly signed by the sender, they are in the

right view for transaction t, and have the correct digests. After the primary gets 2f

valid replies from different backups, it will send out a BA-pre-prepare-update message

in the form of <BA-PRE-PREPARE-UPDATE, v, d, U , p> σp, where BA-PRE-

PREPARE-UPDATE represents the type of the message, v represents the current
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view number, d represents the digest of the BA-pre-prepare-reply message, U repre-

sents the collection of 2f digests of the BA-pre-prepare-reply from other 2f replicas,

p represents the primary id, and σp represents the signature of the message. We say

a BA-pre-prepare-update message is valid only when the signature is correct, it is in

view v, the digest d matches the digest of the BA-pre-prepare-reply message and all

digests in collection U are correct.

Upon getting BA-pre-prepare-update message from primary, the progress goes

down to the BA-prepare phase and from here the rest of the process are the same as

the traditional BFT algorithm except that the focus is placed on the agreement upon

the outcome instead of the total ordering. The BA-prepare message has the form of

<BA-PREPARE, v, d, uuid, i> σi, where v represents the current view number, d

represents the digest of the BA-pre-prepare message, i represents the replica id, and

σi represents the signature of the message. This uuid is the final UUID calculated

based on 2f backups’ proposed UUID. There may be multiple computation methods

but we use a very simple one which just calculate the average as the final UUID. The

replica will check all parameters in the message to verify its correctness.

When the replica (including the primary) has received 2f valid BA-prepare

messages from the different replicas (including the one from itself), it will multicast

a BA-commit message out in the form <BA-COMMIT , v, d, uuid, i> σi, where

BA-COMMIT represents the message type is BA-commit, v represents the current

view number, d represents the digest of the BA-prepare message, uuid represents

the universally unique identifier, i represents the replica id, and σi represents the

signature of this BA-commit message. Like every step before, the receiver must

validate message first. The validation for a BA-commit message should include view

number v, digest d, final UUID and the signature.

When a replica gets 2f +1 matching BA-commit messages from different repli-
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cas (including the one from itself), it computes the transaction identification which

we call tid by using the uuid and creates a new coordinator object for the transaction

request with the tid, then sends back the activation response to all replicas of the

initiator. The response message has the form <ACTIV ATION -RESPONSE, c, t,

C, i> σi, where c represents the client id, t represents the timestamp, C represents

the context of the transaction, i represents the replica id number, and σi represents

the signature of message.

The initiator replica logs the activation response after verification. The mes-

sage will be accepted if f + 1 matching messages from different activation service

replicas are received.

3.4 Byzantine Fault Tolerant Registration

Each participant has to go through the registration process so that the coor-

dinator replicas have the acknowledgment about who is involved in the transaction

to ensure that the atomic transaction can be executed correctly. No doubt running a

Byzantine agreement algorithm for each registering participant can help coordinator

replicas to reach an agreement. But it is too costly to be practical. So we defer

the Byzantine agreement to the distributed commit stage on the participants set and

combine it with that for the consistent transaction outcome. Figure 9 shows the

details of the registration service.

The registration service will be done the normal way. Please notice that,

because we have several initiator replicas, the participant only accepts the request

after it gets at least f + 1 matching messages. This prevents the progress from the

faulty initiator replica because we will have at least 1 correct request from the loyal

initiator backup since we only have at most f faulty replicas.

To register, a participant sends the request to all replicas of the registration
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Figure 9: BFT Registration Service

service and accepts the reply from them not earlier than 2f+1 acknowledgments back.

We assume that there are at most f faulty replicas. To tolerate f faulty ones, we need

at least f +1 correct replicas to accept the registration. After successful registration,

participant will execute the initiator’s request and send a normal response to the

initiator replicas. If the initiator replicas get an exception or no response from the

participant at all, the transaction will be aborted. The initiator, as a participant, has

to do the registration as well.

3.5 Byzantine Fault Tolerant Transaction Comple-

tion and Propagation

Comparing against the 2PC protocol, we have two main differences. The first

one is that we have an additional round on the coordinator side in order to reach

an agreement on the transaction outcome. The second is that the decision from

the coordinator replica to the participants is queued until we can get at least f + 1
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identical decision messages. Because we assume that there are f faulty coordinator

replicas, if we can reach the same decision messages from more than f nodes, parts

or all of these decision messages must come from the loyal coordinator replicas.

The initiator, as in the normal atomic transactions, is responsible for starting

and terminating a distributed commit for a transaction. When the initiator has

completed all operations within a transaction, it will send the commit or rollback

request to a coordinator replica based on whether the operations were successful or

not. The coordinator replica will accept the request after it has received at least f +1

matching requests from the different initiator replicas. Upon receiving the commit

request, the primary will invoke the Byzantine Fault Tolerance Algorithm starting

from the first phase of the 2PC. However, if the request is to rollback, this phase of

the 2PC is skipped. For all requests, other steps next to the first phase are needed to

reach the agreement on the outcome and inform all initiator replicas of final results.

The completion service and propagation are shown in Figure 10. Figure 11

shows the details about the Byzantine agreement algorithm used in the completion

service, which contains three phases as described before.

The first phase of the BFT distributed commit protocol is the Prepare phase

of the 2PC. During this phase, the coordinator replicas send a Prepare request to

every participant registered with the coordinator. In this request, the coordinator

contains the request which was sent from and also signed by the initiator. When

the participant gets the request, it starts the signature verification. Furthermore, if

the participant knows the public key of the initiator, he will continuously check the

signature of the original request. If not, this step is ignored. Based on the result of

the verification, the participant makes the decision to accept the request or not. If

there are any problems during the verification, the request will be discarded. This

can help us protect the participants from faulty requests, which may come from the
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Figure 10: BFT Completion and Coordination Services (1) 2PC

Figure 11: BFT Completion and Coordination Services (2) BFT Mechanisms
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faulty coordinator replicas, because the faulty coordinator replicas may try to confuse

participants by sending the different requests to them.

After the prepare phase, all correct coordinator replicas begin the Byzantine

agreement algorithm to reach the consistent outcome. There are three phases in

the Byzantine agreement algorithm, just like the BFT algorithm for activation ser-

vice, which are the BA-pre-prepare phase, the BA-prepare phase and the BA-commit

phase. The algorithm starts with BA-pre-prepare phase. The primary coordina-

tor replica sends his decision, which contains a set of records from all participants,

to all other replicas. The BA-pre-prepare message is in the form of <BA-PRE-

PREPARE, v, t, o, C> σp, in which BA-PRE-PREPARE represents it is the

BA-pre-prepare message, v represents the view number, t represents the transaction

id, o represents the sender’s decision about the outcome, C represents the decision

certification, and σp represents the signature of the primary. The unique transaction

id is used to avoid the faulty replica reusing the message. When other replicas get

the BA-pre-prepare message, they will first verify the following four parts:

−Verify the signature σp. And check the view number v and the transaction id t.

−Verify it is the first time the BA-pre-prepare message was received in view v for

transaction t.

−Verify that all records in C are properly signed, the transaction id matches the cur-

rent transaction, and the decision o is identical to the registration and vote results.

Note that a backup does not insist on receiving a decision certificate identical

to its local copy. This is because a correct primary might have received a registration

from a participant which the backup has not, or the primary and backups might

have received different votes from some Byzantine faulty participants, or the primary

might have received a vote that a backup has not received if the sending participant

crashed right after it has sent its vote to the primary.
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If the registration records in C are different from the local records, the replica,

as the receiver, has to update its registration list by asking the missing information

from the primary.

If the replica accepts the message, it logs the accepted message and is ready to

go to the BA-prepare phase. This state is called the BA-pre-prepared state. Other-

wise, if the verification fails, the message will be discarded and the replica will suspect

this primary because it believes that the current primary is faulty from its point of

view. He has to invoke a view change to select a new primary instead of the faulty

one.

After the BA-pre-prepare phase, the replica gets a proposed decision from the

primary. It goes to the BA-prepare phase and multicast the BA-prepare message to all

other replicas including the primary. The message is in the form <BA-PREPARE, v,

t, d, o, i> σi, where BA-PREPARE represents the type of the message, v represents

the view number, t represents the transaction number, d represents the digest of the

decision certification C, o represents the sender’s proposed decision, i represents the

replica’s id and σi represents the signature of the message.

The receiver will check the prepare message using the following steps:

−Check the signature, view number and the transaction id first.

−Check that whether the proposed decision o is the same as the one received from

the BA-pre-prepare message.

−Check that whether the digest d matches the decision certification digest in the

BA-pre-prepare message.

After the replica collects 2f accepted BA-prepare messages from the different

replicas, it can make the decision for transaction t, which means this replica has

reached the BA-prepared state.

A BA-prepared replica will continue to the BA-commit phase by multicasting
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the BA-commit message, which is in the form of <BA-COMMIT , v, t, d, o, i> σi.

v, t, d, o, i and σi have the same meaning as in the BA-prepare message. So when

the coordinator replicas get the BA-commit request, the same verification methods

for BA-prepare messages will be used to ensure validity. If the coordinator replica

i could get 2f + 1 matching BA-commit messages from different backups (including

the one from itself), then we know that at least f +1 correct coordinator replicas will

reply with the consistent final decision to the participants, since there are at most f

faulty ones. Now the coordinator replica has reached the BA-committed state and

the Byzantine agreement algorithm has been completed. In the next step, this replica

will send the final decision to all registered participants through the Commit phase.

When the coordinator replicas receive the Committed replies from all participants,

it will notify the initiator that the distributed commit progress has been completed.

Then the initiator replicas will send this reply to the client.

However if one replica cannot reach the BA-committed state until timeout or

it gets an invalid message from the primary, this replica has to invoke a view change

by sending the view change request to all replicas. The view change message is in the

form of <V IEW -CHANGE, v+1, t, P , i> σi, where V IEW -CHANGE represents

the quest type, v + 1 represents the preferred new view number, t represents the

transaction id, and P represents the current state of the replica i. If the replica i

reaches different states, then P contains different information. For BA-pre-prepared,

P includes <v, t, o, C>. If the replica has reached BA-prepared state, P includes

<v, t, o, C> and 2f matching BA-prepared messages from the different replicas. If

state of replica i is still before BA-pre-prepared for transaction t, the current state

information only contains his own decision certificate C.

When the correct replica receives the view change request from other replicas,

the current view will not be changed immediately, instead, it will wait for at least
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f + 1 view change requests from different replicas before making the decision to

multicast its view change request to all other replicas for view v+1 to protect against

unnecessary view changes.

After the new primary gets at least 2f + 1 valid view change requests for view

v + 1 (including the one from itself), it takes care of the new view and notifies all

other replicas with the new view message in the form of <NEW -V IEW , v + 1, V ,

t, o, C>. In this new view notification, V is a collection of 2f + 1 tuples for new

view v + 1 from other replicas. Each tuple has two parameters <i, d> which means

the view change request is from replica i and the request digest is d. The o and C in

the new view notification have the same meaning as before, o is the decision and C is

the decision certificate. These two parameters have different contents depends on the

following rules. If the view change message includes a valid BA-prepare message and

all records are consistent, then the primary must fail after successfully completing first

two phases of the BFT distributed commit protocol. The decision will be accepted

by the new primary and the whole transaction will move down to the BA-commit

phase. Otherwise, the new primary rebuilds a set of registration records from the

received view change messages. This new set may be identical to, or be a superset

of, the registration set known to the new primary prior to the view change. The

new primary then rebuilds a set of vote records in a similar manner. It is possible

that conflicting vote records are found from the same participant (i.e., a participant

sent a “prepared” vote to one coordinator replica, while it sent an “aborted” vote

to some other replicas), in which case, a decision has to be made on the direction of

the transaction t. In this work, we choose to take the “prepared” vote to maximize

the commit rate. A new decision certificate will be constructed and a decision for t’s

outcome is proposed accordingly. They will be included in the new view message for

view v + 1.
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If a replica gets a new view change message, validation with the same steps

used by the primary, is still needed. If a replica accepts the view change, it has to

update the information about the endpoint references for the participants. Then the

progress will continue to work as usual.



CHAPTER IV

IMPLEMENTATION AND

PERFORMANCE EVALUATION

Our Byzantine Fault Tolerant WS-AT Coordination framework is built on top

of the Kandula project from apache.org. The Kandula project is an open-source im-

plementation of Web Service Coordination Specification [17] and Web Service Atomic

Transaction Specifications [10] (we introduced in section 2.2.1) based on Axis in the

Java programming language. Our framework also used some other Apache Web ser-

vices projects, including WSS4J (an implementation of the Web Services Security

Specification) [5], and Apache Axis (the SOAP Engine) [3]. Most of the BFT WS-AT

Coordination mechanisms are implemented in terms of Axis handlers that can be

plugged into the framework without affecting other components. Parts of Kandula

code is modified to enable higher level control of its internal state and to enable the

Byzantine agreement algorithm and voting mechanism. In this section, we first intro-

duce the technical details about the framework implementation including Multicaster,

Piggybacking, Voter and Vote Collector, Byzantine Agreement Agents, and Security

35
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handler.

4.1 Byzantine Fault Tolerant Coordination Frame-

work for WS-AT

4.1.1 Multicaster

To enable message exchanges among the replicas and between the clients and

the replicas, multicaster is needed. The Multicaster is responsible to ensure reliable

multicast of a message to a group of receivers. This Multicaster carries out the

multicast by using multiple Point-to-Point messages on top of the SOAP protocol for

maximum interoperability.

On the sending side, a thread pool is used to concurrently send the multiple

messages to their destinations to achieve good performance, because the HTTP server

synchronously waits for the response after it sends out a request. The thread pool is

used here so that each time a message has been sent out to a target it can be handled

by a different thread. In this case, the HTTP server in a different thread can wait there

until a reply has been received or the timer has timed out. We named the two parts

of the Multicaster in our framework as MyHTTPSender, which is used to execute the

high level processing such as creating a thread pool and finding the address of the

destination, and MyHTTPSenderWorker, which is responsible for sending the SOAP

message out and waiting for the reply. The flowchart of the Multicaster is shown in

Figure 12.

Again, the Multicaster is used to send the same messages to all replicas of

initiator or coordinator. After getting a message to be sent by the Multicaster,

the thread pool is created first. Then based on different requests, the destination

addresses for the replicas are found and the targets’ URLs are assembled. Finally, a
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Figure 12: Multicaster Flowchart
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thread pool is created to send out these messages separately.

For simplicity, our implementation of the reliable Multicaster will use a static

membership provided by a configuration file.

4.1.2 Piggybacking

In the 2PC protocol, the coordinator might send three different requests to

the participants: prepare, commit and abort. The participants will vote by prepared,

committed and aborted based on their decisions. From the beginning of the Byzantine

agreement algorithm, all votes have to be piggybacked onto the message header to

restrict what a faulty coordinator replica can do to compromise the atomicity. A

similar piggybacking idea is first mentioned in [4].

In our framework, the piggyback is realized by two main function methods,

i.e., PiggybackVoteWithDecision() and VerifyDecisionWithPiggybackedVotes(). The

method PiggybackVoteWithDecision() is used to insert the vote records into the

SOAP message header, and VerifyDecisionWithPiggybackedVotes() is responsible for

extracting the piggybacked vote records from the SOAP message and returning a

vector containing all reconstructed vote messages for further progress if it goes well.

If there are any problems occur during verification, the returned vector will be null.

Figure 13 shows the details about the piggybacking.

The immediate benefit of using piggybacking is to prevent a faulty coordinator

replica from sending conflicting decision messages to different participants without

being detected, (i.e., if some participants voted to abort the transaction, or indeed

has failed or did not respond). This is because a commit decision message must

piggyback with a token containing a complete set of yes-vote and a faulty coordinator

replica cannot find a way to fabricate a yes-vote without knowing the private key of

the corresponding participant. This is true as long as the faulty coordinator does not
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Figure 13: Piggybacking Flowchart

collude with any of the faulty participants, which was our assumption.

Therefore, because of the power limitation of the piggybacking, a faulty coordi-

nator replica can still disseminate conflicting decisions to the participants only when

all participants have voted to commit a transaction. There are only two “legitimate”

ways to do so:

1. The faulty replica can send a commit decision to some participants, but an abort

decision to others by falsely claiming that it did not receive the vote from one

or more participants. In fact, the faulty replica could send the abort decision to

a subset of participants as soon as the distributed commit starts without going

through the first phase.

2. The faulty replica can send a commit decision to some participants, but nothing

at all to some other participants, hoping that the subset of participants that do
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not receive a decision to indefinitely hold valuable resources for the transaction,

or the participants to unilaterally abort the transaction due to a timeout.

Therefore, to tolerate the faulty coordinator and initiator replicas and par-

ticipants and to obtain consistent final outcomes, the Voter & Vote Collector and

the Byzantine Agreement Agents are needed, which will be introduced in next two

sections.

4.1.3 Voter and Vote Collector

In our framework, we use 2PC, which is a kind of voting mechanism [24], to

commit the outcome and to notify participants of the final decision. This voting

mechanism is realized through two parts: 2PC Voter and 2PC Vote Collector. For

each transaction, one voter object for each participant and one vote collector object

for every coordinator replica are created. Both voter and vote collector exist for a

single transaction, and will be destroyed when the transaction is completed. The

lifespan of the voter and vote collector objects are identical to the coordinator object.

The 2PC starts when the coordinator replicas accept the commit request from

the completion initiator. The coordinator replicas send a prepare request to all par-

ticipants piggybacked with the proposed outcome. The participant votes the trans-

action by using the 2PC voter if the request is valid. The voter will compare the

proposed outcome with the records and reply the coordinator with either prepared,

which means the outcome is correct, or abort, which means the outcome mismatch

with the records.

The 2PC Vote Collector is responsible for getting and storing the digitally

signed vote messages from the participants’ voter. Later these vote messages will

be piggybacked with further messages for the Byzantine Agreement, which will be

introduced in the next section.
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4.1.4 Byzantine Agreement Agents

The main focus of our framework is to tolerate the Byzantine Faulty Coor-

dinator and Initiator replicas by using the Byzantine Agreement Agents. In our

framework, there are two different Byzantine Agreement Agents, one for Activation

service and the other one for Coordinator & Completion services, to help us achieve

the goal. Three parts, BA-Sender, BA-Executer and BA-handler, are needed in our

Byzantine Agreement Agents to send, execute and handle the SOAP messages. The

main difference between the two agents for activation service and coordinator & com-

pletion services is that one more round is added in the BA-pre-prepare phase for the

activation service to collect the digests from other coordinator replicas. We call these

two messages BA-pre-prepare-reply and BA-pre-prepare-update.

Byzantine Agreement Agent for Activation Service

The basic idea of the activation service was provided in section 3.3. To im-

plement it, those three parts are needed, BA-Sender, BA-Executer and BA-handler.

Each of them has different responsibilities. A BA-Sender is used to send the messages

out, such as BA-pre-prepare, BA-pre-prepare-update, BA-prepare and BA-commit.

We wrote a sender for each of these four kinds of messages and we call all of these

four senders together as BA-Sender for simplicity. Two of these four, BA- pre-prepare

and BA-pre-prepare-update, are from the primary replica. So only the primary will

invoke sendBapreprepare() and sendBapreprepareupdate(). The first step of BA here

is to check whether the replica itself is current primary or not, which can be done by

using a method named amPrimary() in the config.java file. Because we only enable

the exception of the view change mechanism in our implementation, we did not write

the code that handles view change. In this case, we pick the first replica, whose id is

0, as the primary. Accordingly, the first replica will get true from the feedback of the
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amPrimary() method. At the beginning of sendBapreprepare(), we are not in a hurry

to send out the messages. Instead, we need to judge whether another BA is already

in the process or not. If so, we have to queue the current BA request until all pre-

vious BAs are finished. Otherwise the BA will start by sending out BA-pre-prepare

messages to all other replicas. As the normal backup (except the primary), they

start the Byzantine Agreement operation directly from the BA-pre-prepare Executer

which is named as doBaPrePrepare(). We have to separate this executer into two

parts by judging whether it is primary again, because this executer is used by both

primary and backups to handle the BA-pre-prepare phase. As the primary replica,

it is responsible for collecting the BA-pre-prepare-reply and then sending out the

BA-pre-prepare-update to other backups if it gets 2f replies. On the other hand,

the backups use the doBaPrePrepare() method to take care of both pre-prepare and

pre-prepare-update messages. In doBaPrePrepare(), we invoke another class called

BACertificate() which contains two functions add() and isComplete(). We justify

whether the current progress is completed by calling isComplete(), which will return

true if the valid messages are more than the threshold. Base on the feedback of the

certificate, the progress will either wait for the incoming messages if it is not complete

yet or move down to the next phase if the current phase is done. The BA-pre-prepare

handler (handleBaPrePrepare()) is responsible for handling every new arriving mes-

sage. It uses another function call in BACertificate add() to increase the counter

of the message. Then justify the progress again. If it gets enough messages in the

collection, the doBaPrePrepare() will be waked up from waiting by using notifyAll().

Figure 14 shows the flowchart of the BA-pre-prepare phase for activation service.

In next two phases of the Byzantine agreement, the same three components

BA-Sender, BA-Executer and BA-handler are involved. However, they are not as

complicated as in the BA-pre-prepare phase. There is no need to justify who is the
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Figure 14: Flowchart of BA-Pre-Prepare phase for Activation Service
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primary anymore because the primary and the other replicas will perform the same

operations during the next two phases. The BA-Senders for both of the prepare

phase and the commit phase are responsible for sending the BA-prepare or BA-

commit messages out. BA-Executers set up the timer and make the decision to either

finish that phase or wait for more messages. BA-Handlers are used to take care of

every new message and wake up the Executer from the waiting. Figure 15 and 16

are the flowcharts of these two phases for the Activation service. When we finish the

Byzantine agreement, we need to remove its id from the queue and try to start the

next one if there are more.

Figure 15: Flowchart of BA-prepare phase for Activation Service

The Byzantine Agreement algorithm for Coordinator and Completion Services

is similar to BA for Activation Service, except there is no additional round in the

first phase. Therefore the pre-prepare phase is much simpler than the previous one.

Different from the BA-pre-prepare phase for Activation service, we only use two

parts to implement BA-pre-prepare phase in this Byzantine Agreement Agent, BA-

Sender and BA-Handler, because we don’t need to collect the number of messages.

Every backup will get one BA-pre-prepare message if there is no problem during the
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Figure 16: Flowchart of BA-commit phase for Activation Service

transaction. In the BA-pre-prepare phase, the primary only needs to send out the

BA-pre-prepare messages to all other replicas via BA-sender. As the backups, when

they get the BA-pre-prepare message, the BA-handler is used to get the information

it wants. Figure 17 shows the flowchart of the BA-pre-prepare phase.

In the BA-prepare and BA-commit phases, we also use the same three parts as

in BA for activation service. The BA sender is very simple in both the BA-prepare

phase and the BA-commit phase. The only task of the sender is to find the address

of the destination, construct the message, and then send the message out. Then the

BA-Executer will be used to set up the timer and wait for the notification from the

Handler. If the BA-Handler gets a message and it is still in progress, the handler will

increase the counter by 1 and check whether it has reached the minimum limitation.

If so, the Completed tag is set to true and the Executer is invoked. Because the BA-

prepare and BA-commit phase have very similar sequences, only one figure is drawn

for both phases. Figure 18 is the flowchart of prepare or commit phase.
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Figure 17: BA-pre-prepare Flowchart Coordinator and Completion Service

Figure 18: Flowchart of BA-prepare or BA-Commit phases
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4.1.5 Security Handler

To ensure nonrepudiation, and to prevent impersonation attacks, all messages

between all communicating parties including both requests and responses are pro-

tected with digital signatures. The messages that could not be verified will be dis-

carded at once without further processing. The Security Handler is responsible to

finish all of the work about signing the messages and verifying the signature. This

is the second to the last handler before send out a message (the very last one is the

Sender).

Before we go into the details about the security handler, I want to clarify what

a pivot is. A pivot is the mark point in the message transaction sequence to separate

sending and receiving on the client side, or processing a request and producing a

response on the server side. For the client, sending procedure is before the pivot. For

server, it is inversed.

To perform the digital signature and verification, we need the key pairs. This

work has been done before the transaction. We use the keytool utility to generate

the key pairs for clients and servers. For more details, refer to Appendix A.

Detail regarding the security handler (MySecHandler) is shown in Figure 19.

The functions isClient() and getPassPivot() help us judge whether the message is

from the client side or from the server side and whether the progress is beyond the

pivot point or not. Based on the result, we execute the signature or the verifi-

cation corresponding by calling signMessage() or verifySignature() respectively. In

MySecHandler, we use the WSS4J engine, a java programmed security engine, to

perform digital signing and verification.
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Figure 19: Flowchart of the MySecHandler
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4.2 Performance Evaluation

We have implemented the Byzantine Fault Tolerance Distributed Commit in

Web Service Atomic Transaction with the exception of the view change mechanisms

and integrated it into Kandula project in Java programming language, which imple-

ments WS-Coordination and WS-AtomicTransaction frameworks on top of Apache

Axis platform.

For performance evaluation, we assess the runtime overhead of our Byzantine

Fault Tolerance distributed commit protocol during normal operations. All experi-

ments are carried out on 15 Dell servers which are connected in the 100 Mbps Eth-

ernet. These Dell servers equipped a 2.8GHz processors and 1GB memory running

under Suse 10.2 Linux environment.

The test application is the Travel Agent web services application. The client

sends the requests to the Travel Agent for booking the flight ticket and hotel among

the participants within the scope of a distributed transaction. Travel Agent has four

actors as we said before, Client, Initiator, Coordinator and Participants. Because

of the equipments limitation, we only enable 4 coordinator replicas to take care a

single Byzantine fault. Duo to the stateless, we only used 3 machines to replicate the

initiator. For simplicity, the client and the participants are not replicated. All actors

including the replicas are running on the different machines. The client invokes a

travel agent operation on the Agent web service within a loop without any “think”

time between two consecutive calls. 1000 samples are obtained in each run. We

increased the number of the participants to get the comprehensive results.

Figure 20 shows the performance of our Byzantine Fault Tolerant Coordination

of Web Services Atomic Transaction system implemented in the Travel Agent appli-

cation, including the distributed commit latency and the end-to-end latency. This

is the basic performance for only two participants enrolled in the transaction. The
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end-to-end latencies for the operation are measured at both of the client side and the

initiator side. The latency for the transaction activation and distributed commit are

measured at the coordinator replicas sides.

Figure 20: Performance of Our Byzantine Agreement Algorithm

To evaluate the runtime overhead, we compare the performance of our BFT

Coordination of WS-AT system with the standard 2PC used in the WS-AT framework

with 2 participants enrolled in the transaction. Here all messages exchanged over the

network are digitally signed. We compare them from four view points. First one the

whole latency for the standard 2PC and BFT enabled 2PC (our system), which is

shown in figure 21.

Figure 22 and 23 shows the end-to-end latency comparison from both of the

initiator side and the client side.

Obviously, we can see from the previous three figures 21-23 that the latency of

the standard 2PC is much smaller than our system because we enable the BFT. For

the same reason, the throughput of our system will deduct because of the additional

round of Byzantine Agreement algorithm. The last part of the comparison is the

throughput. Figure 24 shows the results. From the comparison, we can see that

the throughput for transactions in our system is about 30% to 40% lower than those
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Figure 21: 2PC Latency Comparison

Figure 22: End-to-End Latency from Initiator Side Comparison
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Figure 23: End-to-End Latency from Client Side Comparison

without replication protection, which is quite moderate considering the complexity of

the BFT mechanisms.

To better evaluate our system, we did several testing which the number of the

participants is increased from 2 to 8. Figure 25 shows the distributed commit latency

parallel comparison for different number of participants.

For the whole point of view, figure 26 shows the latency for the 2PC, which

is much larger than the latency of the Byzantine Agreement Distributed Commit,

because the 2PC is the most costly part in the system.

Figure 27 shows the Byzantine Agreement Activation latency for different num-

ber of the participants. Same as previous testing, the number of the clients is from

1 to 5. While the latency for 2PC is lager with the number of participants, the acti-

vation latency remains constant because the participants are not involved within the

activation.
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Figure 24: 2 Participants End-to-End Throughput Comparison

Figure 25: Distributed Commit Latency Comparison
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Figure 26: 2PC Latency Comparison

Figure 27: BA-Activation End-to-End Latency Comparison
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Figure 28 and 29 show the end-to-end latency from both of the initiator side

and the client side. The number of the participants varies from 2 to 8. As we can

see in the figures, the end-to-end latency for a transaction is lager by about 400-500

ms for each one more participant. This increase is because of the two Byzantine

agreement phases, one for activation and the other for completion and distributed

commit. The latency of 2PC is increased by the same reason but there is only one

round Byzantine agreement algorithm used in the 2PC, so the increase is smaller.

The end-to-end latency both are increased by about 200-400 ms when the number of

participants varies from 2 to 8. This increase is mostly attributed to the introduction

of the Byzantine agreement phase in our protocol. Percentage-wise, the end-to-end

latency, as perceived by an end user, is increased by only 20% to 30%, which is quite

moderate.

Figure 28: Initiator Side End-to-End Latency Comparison

The throughput of the distributed commit service is measured at the initiator

for various numbers of participants and concurrent clients, shown in figure 30.
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Figure 29: Client Side End-to-End Latency Comparison

Figure 30: End-to-End Throughput



CHAPTER V

CONCLUSION AND FUTURE

RESEARCH

5.1 Conclusions

In this thesis, we presented a Byzantine Fault Tolerant Coordination for Web

Services Atomic Transactions system which contains specific mechanisms to ensure

atomic transaction commitment. We carefully analysis the types of Byzantine faults

that might occur in the distributed transactions and identified the subset of faults

that our system can handle. We adapted Castro and Liskov’s BFT algorithm [5] to

achieve the different object – ensure Byzantine agreement on the outcome of trans-

action. In our Byzantine fault tolerance system for distributed coordination of Web

services atomic transactions, we focus on the protection of the basic services and in-

frastructures provided by typical TP monitors against Byzantine faults. By exploiting

the semantics of the distributed coordination services, we are able to adapt Castro

and Liskov’s BFT algorithm [5] to ensure Byzantine agreement on the transaction
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identifiers and the outcome of transactions fairly efficiently. A working prototype is

built on top of an open source distributed coordination framework for Web services.

The measurement results show only moderate runtime overhead considering the com-

plexity of Byzantine fault tolerance. We believe that our work is an important step

towards a highly secure and dependable TP monitor for Web services.

5.2 Future Work

In this thesis, we successfully implement the Byzantine Fault Tolerant Coordi-

nation into the Web service atomic transaction to take care of the Byzantine faults.

Later, we can also use the similar way to the Web Service Business Activity, which

is the other specification based on the WS-Coordination framework for commitment

in long running transactions. Or even in the WS-BA-I protocol.

Later, we can do more work concern the business transactions. We identify

a research directions regarding Web services coordination for business transactions.

WS-BusinessActivity recognized the need for flexible transaction outcomes for busi-

ness activities, its reliance on compensation transactions might limits its use for some

applications. The reservation-based extended transaction protocol [15] seems to be

an excellent candidate to augment the compensation-based approach. The basic idea

of the reservation-based transaction protocol is that any business activity is carried

in two steps. In the first step, a reservation is placed on a set of resources. Depending

on the outcome of the reservation step, the coordinator could choose to confirm some

reservations while cancel the remaining ones. The use of the extra reservation step

eliminates the need for compensation transactions, which could be very expensive

and error prone in practice.
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APPENDIX A

INSTRUCTION FOR KEY PAIR

GENERATION

The keytool utility can generate a key pair. Typically, you must generate two

key-pairs to use on both sides of the communication; therefore, execute the keytool

with the -genkey option twice, and store each distinct key-pair into a separate key-

store.

Step 1: Creating Keystore and Key-Pair

Create two key stores, one for Alice and one for Bob:

>keytool -genkey -alias alice -keyalg RSA -keystore alicekeystore -dname ”cn=alice”

-keypass foobar -validity 365 -storepass foobar

>keytool -genkey -alias bob -keyalg RSA -keystore bobkeystore -dname ”cn=bob” -

keypass foobar -validity 365 -storepass foobar

The preceding commands

• Generate separate key-pairs
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• Store the key-pairs in separate key stores

• Specify that the RSA algorithm is used as the key algorithm. This is impor-

tant because otherwise you will see an ”not an rsa key” runtime error from

bouncycastle library

• Specify passwords for the keys and the key stores

• Specify the alias/name for each key-pair

• Specify the common name (sometimes referred to as the distinguished name)

by which each key-pair will be known within each key store.

To examine the contents of a keystore, we can execute the keytool utility with

the -list option. For example, to examine the contents created earlier use:

>keytool -list -keystore alicekeystore

After providing the password, the output should be like these:

Enter keystore password: foobar

Keystore type: jks

Keystore provider: SUN

Your keystore contains 1 entry

alice, Nov 25, 2007, keyEntry,

Certificate fingerprint (MD5): 9E:84:0F:0C:D9:B6:B3:6F:31:55:CA:E5:4D:55:C0:BE

Now, look at the bob certificate keystore:
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>keytool -list -keystore bobkeystore

Enter keystore password: foobar

Keystore type: jks Keystore provider: SUN

Your keystore contains 1 entry

bob, Nov 25, 2007, keyEntry,

Certificate fingerprint (MD5): D6:10:24:D5:E4:5F:32:03:19:CA:C6:6B:98:EB:AB:39

To examine a key in detail, you can use the keytool utility to display it to the console

in RFC 1421 format using the -rfc option, as follows:

>keytool -export -keystore alicekeystore -alias alice -storepass foobar -rfc

You’ll see output on the console similar to the following:

—–BEGIN CERTIFICATE—–

MIIBkTCB+wIER0n6VzANBgkqhkiG9w0BAQQFADAQMQ4wDAYDVQQ

DEwVhbGljZTAeFw0wNzExMjUyMjQyMzFaFw0wODExMjQyMjQyMzFa

MBAxDjAMBgNVBAMTBWFsaWNlMIGfMA0GCSqGSIb3DQEBAQUAA

4GNADCBiQKBgQCfWMml4uE9xrlUAwQsbqSdYvnLa9g51KjSQtOBRE/

Uy68rg8zmHoYMB7tdgQDP8MQrTukasHDvmzQuSgTvS/iDkw1ZL9g0BRG

xCDyQuYb4N8VrdAE52pfi57ml/yOspehrPbYKNJuyoKVrM/6SDmMGwL9

/7fzTB7i9zzZWTfqvqwIDAQABMA0GCSqGSIb3DQEBBAUAA4GBACq6Q

A0VJc97yutdVB2G08HuBfycOogHRQCUW6KBGSIe3YtC9ZQH+C3xfaUV

Rr97MkEUtInmNZidmGias7RybKPb9Q7ZDKb4XDzvekl8MWzRaW8eg6gx3

woyFdJHKYSLBFTHsMnffM/VU6jBCjeu/GVdeQDctqyZ4+83x/hK7LJx
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—–END CERTIFICATE—–

Do the same operation for bob’s key store, as follows:

>keytool -export -keystore bobkeystore -alias bob -storepass foobar -rfc

The output:

—–BEGIN CERTIFICATE—–

MIIBjTCB9wIER0n6aDANBgkqhkiG9w0BAQQFADAOMQwwCgYDVQQ

DEwNib2IwHhcNMDcxMTI1MjI0MjQ4WhcNMDgxMTI0MjI0MjQ4WjAO

MQwwCgYDVQQDEwNib2IwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMI

GJAoGBAITUmI5/EJZ4NUNKrtoDZ3lVMys0sNzLFiI5f1BrdHFSdv1rsmn

dFZ+9OZi0xDMOGFtPzCreZdoGUym3y20hX7+UzucLcgecdZhm4zcByNE

GwR2KQ0xzyu9oreiABrIvC0cmU35UDyFPy61stE7YO7GEqc+yspDWh5w

Pejc1Q1KDAgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAGUN/IHUwiN

ULEfTEalvltLhFbyCvagk/e0YksRY7q33kpL49w1WdGOtJgwe+ITE9+Rb2

bBe2InUix+f7EuCj4REoGl55PHQ0OdiKxw8HAuXR9hFDO6o/tgEqD/Mq

rmnNs56m3N67LXTNqtnRIq/i8hRLqwJkL3V0y9uOIT8AstA=

—–END CERTIFICATE—–

Step 2: Self-Signing Certificates

Keys are unusable unless they are signed, but you can use the keytool to self-

sign them (for testing purposes only), as follows:

Self certify the keys for Alice and Bob:

>keytool -selfcert -alias alice -validity 365 -keystore alicekeystore -keypass foobar -

storepass foobar

>keytool -selfcert -alias bob -validity 365 -keystore bobkeystore -keypass foobar -storepass

foobar

Step 3: Exporting Certificates with the Keytool Utility

After generating and self-signing the keys/certificates and storing them in the
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keystores, import each public key into the other key’s keystore. This requires two

steps: exporting the public key to a certificate file and importing the certificate to

the other keystore.

To export the public key to a certificate file, use:

>keytool -export -alias alice -keystore alicekeystore -keypass foobar -storepass foobar

-file alicecert

>keytool -export -alias bob -keystore bobkeystore -keypass foobar -storepass foobar -file

bobcert

You should see the responses:

Certificate stored in file <alicecert>

and

Certificate stored in file <bobcert>

You can also use the keytool utility to display the contents of the certificate file using

the -printcert option, as follows:

>keytool -printcert -file alicecert

The output will look like:

Owner: CN=alice

Issuer: CN=alice

Serial number: 4749fa57

Valid from: Sun Nov 25 17:42:31 EST 2007 until: Mon Nov 24 17:42:31 EST 2008

Certificate fingerprints:

MD5: 9E:84:0F:0C:D9:B6:B3:6F:31:55:CA:E5:4D:55:C0:BE

SHA1: 0E:95:8A:7D:F3:53:99:29:74:A7:32:7B:CC:06:37:46:2D:3F:86:1F

The exported certificate contains the public key and distinguished name given to
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the certificate (in this case, alice).

Step 4: Importing Certificates into Keystores

To import a public certificate into the keystore of the private key, issue the

command:

Import key certificate for Alice into Bob’s keystore, and vice versa:

>keytool -import -keystore alicekeystore -alias bob -keypass foobar -storepass foobar

-file bobcert

>keytool -import -keystore bobkeystore -alias alice -keypass foobar -storepass foobar

-file alicecert

The output looks like:

Owner: CN=alice

Issuer: CN=alice

Serial number: 4749fa57

Valid from: Sun Nov 25 17:42:31 EST 2007 until: Mon Nov 24 17:42:31 EST 2008

Certificate fingerprints:

MD5: 9E:84:0F:0C:D9:B6:B3:6F:31:55:CA:E5:4D:55:C0:BE

SHA1: 0E:95:8A:7D:F3:53:99:29:74:A7:32:7B:CC:06:37:46:2D:3F:86:1F

Answer the following question:

Trust this certificate? [no]: yes

Certificate was added to keystore

Now that the certificate has been imported into the alice key’s keystore, you can

reexamine the contents of the keystore using the keytool utility with the -list option,

for example, to list information of alicekeystore as follows:

>keytool -list -keystore alicekeystore
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Enter keystore password: foobar

After entering your password you’ll see the following output:

Keystore type: jks

Keystore provider: SUN

Your keystore contains 2 entries

alice, Nov 25, 2007, keyEntry,

Certificate fingerprint (MD5): 9E:84:0F:0C:D9:B6:B3:6F:31:55:CA:E5:4D:55:C0:BE

bob, Nov 25, 2007, trustedCertEntry,

Certificate fingerprint (MD5): D6:10:24:D5:E4:5F:32:03:19:CA:C6:6B:98:EB:AB:39

As the preceding examples illustrated, there are now two entries in the alice-

key’s keystore. The first, with the alias alice, is identified as a key entry. The second

entry, with the alias bob, is imported from the certificate file.

At this point you have performed sufficient key management tasks to use the

key pairs to perform WS-Security tasks using the Apache Web Services Security for

Java framework.

Note that one of the keystore is used by the sending side (client) to retrieve the

receiver’s public key certificate. The messages sent to the receiver will be encrypted

using the receiver’s public key. The other keystore is used at the receiving side to

retrieve its own private key to decrypt messages encrypted using its public key.



APPENDIX B

USER GUIDE

Instruction:

1. Unpackage the secure2pc and tomcat-secure2pc.

2. Go to the secure2pc directory and do maven by using this command

>maven

3. Go the secure2pc/src/samples/agent/ directory and build the example by

>ant dist

4. Copy the agent.jar from secure2pc/src/samples/agent/build/ to

tomcat-secure2pc/webapps/axis/WEB-INF/lib/

5. Copy kandula-0.2-SNAPSHOT.jar from secure2pc/target/ to

tomcat-secure2pc/shared/lib/

6. Generate the key pair. Please go to Appendix A for detail.

7. Copy the key store to tomcat-secure2pc/webapps/axis/WEB-INF/classes/

directory and secure-2pc/ws/lib

71
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8. Start tomcat on every nodes by going to tomcat-secure2pc directory and running

>./startup.sh

9. Start the tcp monitor on every nodes.

10. Go to secure2pc/ws/bin/ directory and run >./run.sh test.Tester
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