
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2012

A Coding Enabled Anonymity Network
Saikrishna Gumudavally
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Gumudavally, Saikrishna, "A Coding Enabled Anonymity Network" (2012). ETD Archive. 804.
https://engagedscholarship.csuohio.edu/etdarchive/804

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/804?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F804&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

A CODING ENABLED ANONYMITY NETWORK

SAIKRISHNA GUMUDAVALLY

Bachelor of Technology (B.Tech)

Electronics and Communication Engineering(E.C.E)

Jawaharlal Nehru Technological University,India

May, 2007

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

January 2012

This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Ye Zhu

Department/Date

Dr. Chansu Yu

Department/Date

Dr. Wenbing Zhao

Department/Date

To my Parents and Friends

ACKNOWLEDGMENTS

I would like to thank committee members Dr. Chansu Yu, Dr. Wenbing Zhao

for their support. I am thankful to Dr. Zhu for giving me an opportunity to work in

Network Security and Privacy research group.

I would like to thank my research group members for their support. Special

thanks to my family and friends for their moral support.

A CODING ENABLED ANONYMITY NETWORK

SAIKRISHNA GUMUDAVALLY

ABSTRACT

An onion routing based anonymous communication system is developed to ad-

dress timing analysis attacks, a common limitation of many contemporary anonymous

systems including Tor. Timing analysis based attacks gained importance because sim-

ple payload check and packet inspection attacks are avoided by encrypting packets.

Timing information gathered at one part of the network is correlated with information

gathered at other parts to break the anonymity. Network coding, a recently developed

packet forwarding technique, is used to disrupt timing attacks. The system uses a

multicast tree of onion routers (OR) through which the packets are relayed to desired

destinations. Packets from different users are grouped and linearly transformed over

a finite field before forwarding them into the multicast tree. Encoding/transforming

the packets evenly spreads the information among all encoded output packets making

them equally important and informative. The system creates similar traffic pattern

on all the links of the tree. Since the traffic pattern for all the ORs in the tree is

similar, it becomes difficult to launch timing attacks. Extensive experiments are car-

ried out for TCP communications using the Network Simulator-2 for different sizes

of the multicast tree and probability of detecting a communication is equal to the

probability detection through a random guess, equal to 1/n, where n is number of

ORs in last layer of the multicast tree. By increasing the number of leaf ORs in the

tree decreases the detection probability and increase the degree of anonymity.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION . 1

II. RELATED WORK . 4

2.1 Anonymous Communication Systems 4

2.2 Possible Attacks on Current Systems 5

2.3 Network Coding Techniques . 6

III. GOALS . 8

IV. THREAT MODEL . 10

4.1 Capability of Adversary . 10

4.2 Assumptions . 11

V. DESIGN . 12

5.1 Design Overview . 12

5.2 Packet Format . 14

5.2.1 Control Packet . 14

5.2.2 Relay Packet . 15

5.3 Tree Construction . 16

5.3.1 Establishing Connections Between the OPs and the Root 17

5.3.2 Extending the Tree to Layer 1 18

vi

5.3.3 Transferring the Root Layer Key for Layer 1 22

5.3.4 Extending the Tree to the 2nd Layer 23

5.3.5 Transferring the Root Layer Key to the 2nd Layer ORs . . 26

5.4 Return Path . 27

5.5 Boot Up . 30

5.6 Addition of a New OP . 30

5.7 Forwarding Techniques . 30

5.7.1 Packet Based Forwarding 31

5.7.2 Link Based Forwarding 31

5.7.3 Binary Coding Based Forwarding 32

VI. THEORETICAL ANALYSIS . 33

6.1 Detection Rate . 33

6.2 Decoding Probability . 34

6.2.1 Packet Based Forwarding 34

6.2.2 Binary Coding Based Forwarding 35

6.3 Through-put Calculation . 37

VII. PERFORMANCE EVALUATION . 39

7.1 Packet Based Forwarding . 40

7.1.1 Loss Probability . 40

7.1.2 Throughput Variations 41

7.2 Link Based Forwarding . 46

7.2.1 By Varying Generation Size 46

7.2.2 By Varying Number of Layers 46

7.2.3 By Varying Number of ORs per Layer(n) 46

7.3 Binary Coding Based Forwarding 50

7.3.1 Loss Probability . 50

vii

7.3.2 Throughput Variations 50

VIII. POSSIBLE ATTACKS . 55

IX. CONCLUSION . 58

BIBLIOGRAPHY . 59

viii

LIST OF TABLES

Table Page

I Key Notation . 16

ix

LIST OF FIGURES

Figure Page

1 Network Coding Example . 2

2 Overview . 13

3 Control Packet . 14

4 Relay Packet . 15

5 Creating Circuits . 18

6 Multicast Tree Extending to Layer 1 19

7 Packet Exchanged during Key Transfer 23

8 Multicast Tree Extending to New Layer 23

9 Multicast Tree Extending to New Layer 25

10 Transferring the root Layer Key to Layer 2 26

11 Reverse Traffic Path . 28

12 Multicast Tree after Grouping . 29

13 Comparison of Theoretical and Practical Values of Loss Probability . 41

14 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and layers = 4, 12, 20 43

15 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and gs = 5, 10 44

16 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for gs =5 and layers = 4, 12, 20 45

17 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and layers = 4, 12, 20 47

x

18 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and gs = 5, 10 48

19 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for gs =5 and layers = 4, 12, 20 49

20 Comparison of Theoretical and Practical Values of Loss Probability . 51

21 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and layers = 4, 12, 20 52

22 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for n =15, 20 and gs = 5, 10 53

23 Comparison of Theoretical and Practical Values of Throughput and

Detection Rate for gs =5 and layers = 4, 12, 20 54

xi

CHAPTER I

INTRODUCTION

Most contemporary anonymous systems are built on the concept of onion rout-

ing. Onion routing has been widely accepted from the time that was initially intro-

duced by Chaum [5]. In onion routing, first the data is repeatedly encrypted with the

public keys of intermmediate nodes called the mixes then when the traffic is routed

through these mixes, each mix decrypts a layer of encryption and delays the traffic

before forwarding the data to the next hop. For applications which require lower

latency for better QoS such as web browsing, anonymous sytems such as TOR are

often used. Since oinon layer of encrytion hide the destination and payload, many

flow based attacks are developed. These attacks use timing information gathered at

different parts of the network to break anonymity. Contemporary systems are vulner-

able to timing attacks where the adversary tries to relate/link the traffic by collecting

packet timings or by inducing specific delay patterns or even counting the packets on

both ends of the communication [10]. Even systems like Tor are vulnerable to such a

strong adversary.

We use the novel concept of network coding to defend against timing attacks.

1

2

A node forwards a linear combination of the incoming packets on the outgoing links.

In network coding, the packets are linearly transformed over a finite field [32]. In

network coding routing scheme, the intermediate nodes in the route to the final

destination have more importance and responsibilities when compared to the tradi-

tional store and forward routing schemes. The intermediate nodes not only buffer

the incoming packets as usual but also combine/encode them with existing packets

before forwarding. An encoded packet contains a trace of information from all the

original packets used during the encoding process. A node has to solve the linearly

encoded data to get actual information. It has been applied to applications such as

P2P [6,12], wireless network [17,31] and unicast communication [34]. Network coding

is more robust to link failures and node failures, because the information is evenly

spread throughout the encoded packets making them equally important [12]. Figure

1 is an example of network coding. The incoming packets denoted by X, Y and Z are

linearly encoded to produce output O1, O2 and O3. The set of coefficients used for

linear transformations is called encoding vector. For output O1, the encoding vector

is [2 3 2].

X

O2=X+Y+Z

O3=X+5Y+2Z

Y

Z

O1=2X+3Y+2Z

Figure 1: Network Coding Example

The destination has to collect sufficient encoded packets in order to begin

decoding. For pratical implementation of this scheme, the original data packets are

batched into groups called generations, and only packets belonging to same generation

are encoded and decoded together [33]. In the proposed system, packets from different

users are combined and transmitted over a multicast tree containing layers of onion

routers (OR). The root OR of the multicast tree groups the available packets into

3

generations and forms the random linear combinations. The encoded packets are

repeatedly encrypted by the root and then transferred from one layer to another in

the multicast tree. On receiving a packet, an intermediate OR decrypts a layer of

encryption and randomly selects an OR in the next layer to forward the packet. An

encoded packet contains a trace of information from all the original packets, so it

cannot be linked to any particular user, and all the ORs in the tree receive similar

amount of traffic making it difficult for an adversary to launch timing attacks. The

users run a program called onion proxy (OP). An OP helps in tree contruction and

relaying data.

The rest of the paper is organized as follows. In Chapter 2 gives a review on the

related works to the proposed system. In Chapter 3 goals are summurized. Chapter

4 describes the threat model and assumptions made. Chapter 5 deals with the design

and implementation of the system. Theoretical analysis of performance evaluation

parameters are explained in 6. Performance of the proposed system is evaluated in

Chapter 7 and conclude with Chapter 9.

CHAPTER II

RELATED WORK

2.1 Anonymous Communication Systems

Chaum [5] initially introduced the idea of using public key cryptography to

hide the source and destination of a communication. The messages are repeatedly

encrypted with the public keys of the mixes in the path to the destination. When the

encrypted messages are routed through these mixes, each mix will decrypts a layer of

encryption and introduce a random delay before relaying to the next hop. Any inter-

mediate node (Mix) has no knowledge about the complete route except the previous

and next hop. Since its introduction many anonymous systems have been proposed

that use the concept of onion routing. Tor [7], the second generation onion router,

is a low latency anonymous system which incrementaly builds circuits along the net-

work and the traffic is routed through these circuits. Tor provides perfect forward

secrecy by using TLS encrytion and also provides additional features such as con-

gestion control and integrity checking. Anonymous systems like Maxminion [10] and

Mixmaster [29] are built on the concept of onion routing, but provide anonymity using

4

5

timed dynamic pool batching which introduce large latencies to disrupt timing anal-

ysis attacks. Such large delays are not viable for some applications like web browsing

where delay decreases the QoS. Tarzan [9] and Morphmix [23] provide anonymous

communication for P2P overlays by trying to hide the origin of the traffic. Every

node acts as a relay as well as generates its own traffic. Both these methods are

based on onion type layered encryption. The concept of crowds introduced in [22],

concentrates on hiding the origin of the traffic. Each member of the crowd is equally

probable to be the initiator of the traffic. The larger the crowd, the greater the degree

of anonymity. In crowds, more control is needed over the browser in order to pro-

vide a higher degree of anonymity. Anonymizer [1] and JAP [3] provide anonymity

by aggregating the traffic from different users. Anonymizer uses a single hop proxy

where as JAP uses a distributed trust system. JAP builds fixed circuits involving

series of mixes called the cascade, through which traffic is relayed. In [16], a method

of anonymous communication has been proposed which makes use of network coding

technique to scramble the message and transfer the pieces of the message along dis-

joint paths. Here the anonymity and the confidentially provided are slightly weaker

than in systems that use public key cryptography.

2.2 Possible Attacks on Current Systems

Since the development of the onion routing technique which avoids simple pay-

load comparison attacks, many flow based anonymity attacks have been proposed.

These attacks make use of timing information to relate the traffic flows. An adver-

sary who is observing the traffic, gathers the timing information and uses various

techniques to relate the traces obtained [24]. A more powerful adversary can induce

distinct delays into the traffic and observes traffic pattern at other parts of the net-

work for such distinct patterns [7]. In [35] and [36], flow separation methods are

6

proposed which make use of the Blind Source Separation algorithm which separates

the flows from the mixed traffic of a mixer into individual flows. Once the flows are

separated various techniques can be applied to relate and detect the traffic.

2.3 Network Coding Techniques

We use the technique of network coding to overcome the above mentioned

possible attacks. Network coding provides an opportunity to fully utilize network

capacity and has the potential to increase the throughput while being robust to lossy

links [19] and node failures. In network coding, the intermediate nodes not only buffer

the incoming packets as usual but also combine/encode them with existing packets

before forwarding. Network coding requires nodes to have high computational power

to perform the tasks like encoding and decoding [8]. In a network, the broadcast

capacity is limited by the minimum cut between the sender and the receiver. This

maximum capacity is not attainable by traditional forwarding schemes however with

network coding this maximum can be reached [2]. In [32], a network coding algorithm

is developed for time varying cyclic networks based on the max-flow min-cut theorem

produces minimum possible delay while achieving broadcast capacity. Information is

considered as a vector over a finite field on which each node applies a linear transfor-

mation before forwarding and it has been proven that for the linear transformation

a finite symbol size is sufficient to have linear coding for multicast purpose [32]. A

framework is developed in [18] to apply network coding to arbitrary networks to

achieve network capacity. Network capacity can be achieved with high probability by

randomly selecting the linear mapping of inputs to form the output [15, 18, 32]. The

upper bound on the failure to decode is in the order of the inverse of the finite field

size of random variables used for coding. In conclusion, using a larger field size for

encoding significantly reduces the probability of failure [14].

7

“Avalanche” is a network coding mechanism for large scale content distribution

[12]. It solves almost all of the issues in the current file swarming mechanisms such

as rare blocks, load on servers and eliminates the need to increase network resources

in order to provide better file sharing services. This system takes advantage of the

uniform distribution of information among all the encoded packets to eliminate the

rare blocks problem. In P2P networks, network coding helps in faster file transfer

with little CPU overhead and is able to provide better service to all the peers in a

topology including the the peers that are behind NAT and firewalls [11]. A practical

implementation of the network coding technique is provided in [33]. Here the packets

are grouped into generations and only the packets from the same generation can

be encoded and decoded together. By buffering the packets, it deals with random

link loss and synchronization problems caused by congestion delay. Attaching the

encoding vector along with the block sent out makes it robust and helps in extraction

of the original blocks. Encoding vecor is a series of coefficients used during encoding

process. Network coding by default provides some light weight security because the

adversary needs to obtain sufficient encoded packets before retrieving actual data

which in some cases might be difficult for an adversary who has limited access and

control over the network. Confidentiality can be provided by simply encrypting the

encoding vector to counter malicious modifications done by the intermediate nodes

[30]. Secure network coding methods have been proposed in [4] and [28], to tackle

wiretappers while providing perfect forward secrecy.

CHAPTER III

GOALS

As described in Section 2, many timing-based anonymity attacks have been

proposed to compromise existing anonymity networks. Clearly, a novel network ar-

chitecture for anonymous communication is needed to defend against these attacks.

In addition to the goal of providing improved anonymity, the new network architec-

ture should satisfy the following requirements: (1) It must provide sender anonymity

and receiver anonymity [21]. (2) It is capable of providing low-latency communica-

tion services. Because of the popularity of Internet applications which require low

latency such as web browsing and VoIP, low latency is a must for usable anonymity

networks. (3) Simple and proven anonymizing techniques should be included in the

new anonymity network architecture to avoid previous pitfalls. In this paper, the

onion-based layered encryption previously implemented and verified in Onion Rout-

ing [13, 26, 27] and Tor [7] are extended for the coding-enabled anonymity network

architecture,1 since the onion-based layered encryption can hide source and destina-

tion address information from intermediate nodes to protect anonymity even when

1We believe the new architecture without the onion-based layered encryption is possible. We
plan to investigate in our future work.

8

9

some intermediate nodes are compromised.

We do not include defense against end-to-end timing-based traffic analysis as

one of our design goals. End-to-end timing-based traffic analysis, such as correlating

traffic flows entering and leaving an anonymity network, can effectively link com-

munication parties. These end-to-end traffic analysis attacks are not considered as

in previous studies [7], because these attacks are based on traffic flow information

collected outside an anonymity network. In Section 8, we introduce a possible coun-

termeasure for these end-to-end traffic analysis attacks.

In this paper, we do not base the new anonymity network architecture on

peer-to-peer network structure such as Tarzan [9] because of known problems of peer-

to-peer structure used for anonymity [9, 23].

CHAPTER IV

THREAT MODEL

4.1 Capability of Adversary

The main goal of the system is to provide anonymous communication for both

source and the destination pair. It is assumed that the adversary has control over

some parts of the network. The adversary here has access to some parts of network

and can observe and modify the traffic on all the links in those parts. All the links

between OR’s are TLS encrypted which provides perfect forward secrecy, thus any

modifications to the data transferred can be detected. The adversary can launch

traffic analysis attacks by correlating the timing information of the packets. The

adversary can match the traffic patterns by causing distinct delays or disrupting

the traffic [7]. The adversary has the capacity to build the traffic pattern of the

packets emerging from a particular user and try to match with the traffic patterns

collected from other parts of the network, thus identifying the communication. The

adversary might also run an OR that is corrupted or malicious. The attacker can

launch Denial of Service attack on trustworthy OR’s and divert the traffic to a group

10

11

of OR controlled by it [7]. The malicious OR can also give false information like

available bandwidth to the directory servers so that it is included in the multicast

tree. By doing so, it can launch the attacks where it drops the packets and not

forward as instructed and to see where in the network the traffic halts or packets

are sent to a group controlled by the adversary when the key has been compromised.

Here a faulty OR can disrupt only the traffic that pass through it and cannot effect

traffic on other links. By performing the above mention activities the adversary can

only disrupt the traffic but cannot decrease the anonymity of the system.

4.2 Assumptions

Not all nodes can be compromised at the same time and the adversary cannot

have access to all parts of the network thus end to end timing analysis cannot be

performed. All the packets are end to end encrypted for higer secrecy is needed. It

is also assumed that all the OR’s provide correct information about their public keys

as they are used during the tree construction phase. An OR in the tree has only

knowledge of previous layer ORs and next layer ORs. The root OR has access to

multiple IP. This is a reasonable assumption considering the popularity of VPN [16].

CHAPTER V

DESIGN

Onion routing is the most commonly used technique in anonymous communi-

cation. The proposed system is built on the widely accepted low latency anonymous

system called Tor [7]. The proposed packet forwarding system combines the concept

of onion routing with the recently developed network coding technique to avoid tim-

ing analysis attacks, while inheriting the onion routing immunity towards many other

attacks.

5.1 Design Overview

Users run a program called the Onion Proxy which helps in communicating

with the onion routers. A group of Onion Proxies/users (OPs) come together to build

a multicast tree of ORs. The multicast tree is used by all the OPs involved in tree

construction to anonymize their traffic. The multicast tree contains layers of onion

routers. The multicast tree of ORs is constructed layer by layer and each OP chooses

an OR of choice to be included in a layer. An OR in a layer is connected to every

12

13

OR in the next layer. The leaf ORs of the tree are called the exit ORs and the last

layer is called the exit layer. OPs connect to the tree through the root of the tree.

After the multicast tree construction, packets from different users (OPs) are

collected and encoded by the root of the tree before forwarding them in the tree. The

group of packets that are encoded together is given a name denoted by Generation

Sequence Number . The number of packets in this group is given by the Generation

Size gs. The root OR in Figure 2 encodes the packets from user A and user B. The

A

B

Layer 1

Root OR

Exit Layer

Encode

Encrypt

Forward Decrypt

Forward

Decrypt

Decode

Forward

D

C

T=0 T=1
T=2

T=2

Forward

Figure 2: Overview

root repeatedly encrypts the encoded packets with the keys it shares with the ORs in

each layer of the multicast tree. The keys used by the root OR for layer encryption are

formed and shared during the tree construction process. The hashed box represents

the encoded packet and circles around it represent layer encryption. The root forwards

the encoded and encrypted packets to first layer of the multicast tree. Packets are

forwarded from one layer to the next. When an OR receives a packet, it decrypt a

layer and then select an OR in the next layer to send the packet. A layer of encryption

is decrypted at each layer of the multicast tree. Last layer of encryption is decrypted

by exit ORs. Since all layers of encryption are now removed, the exit ORs gets the

encoded packets. The exit ORs then decode the encoded packets that belong to the

same generation. The decoding process starts only if exit OR has received sufficient

encoded packets of that generation or gs encoded packets. The decoded packets are

14

forwarded to actual destination by the exit ORs, here server C and server D. It can

be seen that all the exit ORs receive the packets at the similar time and also receive

similar amount of traffic. Thus making it difficult for an adversery to link an encoded

packet to a either user A or user B. Depending on the context, OP and the root

OR use different types of packets for the tree construction. The packet format is a

modified version of the packet format used in Tor. Additional header fields are added

to accommodate the needs of encoding and decoding involved in network coding. The

tree construction is based on Tor circuit formation. Like in Tor each onion router

maintains an identity key for signing the TLS certificates and other onion keys to

decrypt packets from the root OR of the tree.

5.2 Packet Format

The ORs and OPs communicate with each other over TLS links using packets

of length determined by the OPs. There are two types of packets used in this scheme

of data forwarding. They are control packets and relay packets.

5.2.1 Control Packet

A control packet carries different types of commands. When an OR receives

a control packet it would act according to the command in the packet. The packet

format for the control packet of length 512 bytes is shown in the Figure 3 and ex-

planantion of each field follows.���� �� ��� ����	
� �
ytes

2 1byte

Figure 3: Control Packet

15

Circuit identifier is a local value; it changes from one hop to another. It is the

mutually agreed name given to the link between the sender and the receiver of this

packet. The CMD field indicates the command a packet carries. The commands in

a control packet are create, created, group, grouped, change and changed . A create

packet is sent out to build a circuit between the sending OR and the receiver of the

packet. A created packet is used as an acknowledgment for a create packet. The

receiver of a group packet recognizes the sender as an OR in the previous layer of the

tree. A grouped packet is used as an acknowledgment for a received group packet. A

change packet is used to transfer keys from the root to a newly formed layer of ORs.

A changed packet is used as an acknowledgement for a received change packet.

5.2.2 Relay Packet

The relay packets are used to transfer end to end information [7]. The relay

packets have additional header fields when compared to the control packets. The

format is shown in Figure 4.� � � � � � ���� ���	
��� �� ����� ���
LEN

���
GSQ ENC

VEC

������� ���	

Figure 4: Relay Packet

Circuit identifier field serves the same purpose as mentioned before. The relay

header field length denotes the length of the packet, CRC is a checksum used to check

packet integrity and CMD byte is used to indicate the type of the relay command.

The relay commands are extend (used to extend an existing connection), extended

(sent out when an extension is succesfully completed), keychange (used to broadcast

the layer key for a particular layer), keychanged (reply to keychange packet sent after

successful transfer of the layer key). GSQ denotes the Generation Sequence Number

16

Table I: Key Notation
Notation Owner Purpose
PKi ORi Public key of node i. It is used to send encrypt packets to ORi.

Exampe: PK11 denotes public key of the onion router OR11

PKT
i ORi Public Key of ORi, used for tree construction and key sharing.

T denotes that the key is specific to this tree. Also referred to as tree
public key of ORi.

PKT
SLi

Root (S) Public Key of the root OR used for key sharing with the

ith layer of the tree. This key is used by the root to transfer layer key to the
ith layer of the multicast tree. Also referred to as
tree public key of S for ith layer. Li denotes ith layer.

KS
Li

Root (S) Symmetric key S shares with all the ORs in the ith layer.
Used for layer encryption by the root OR. Also referred to as
the root layer key for the ith layer.

KOP
Li

Onion Proxy (OP) Symmetric key all the OPs shares with all the OR in
the ith layer. Used to encrypt information to be sent to the ith layer of
the tree from the OPs. Also referred to as OP layer key for ith layer.

KS
OPi

OP and S Symmetric key shared between the ith OP denoted by OPi

and the root S.

PKT
Ei

Exit OR of ORi Public key of the exit OR on the tree whose root OR is ORi

to which the packet belongs and encoding vector is the series of linear coefficients

that were used during the encoding process by the root to generate that packet. The

relay cells are iteratively encrypted by the root with the keys it shares with the ORs

in the intermediate layers of the tree.

The OPs, the root and the intermmediate ORs communicate with each other

using the relay and the control packets. Different keys are used to encrypt these

packets depending upon the source, destination and other parties invloved in the

communication. Various keys used and their notations are given in the Table I.

5.3 Tree Construction

The proposed system makes use of a multicast tree of onion routers to anonymize

traffic. When an OP wants to anonymize its communication, it connects to the root

of the multicast tree and multiple OPs connect to the root. The root of the multicast

tree will combine/encode the packets from different OPs and forward them in the

tree. The root of the tree is also responsible for the layer encryption of the encoded

packets. The root repeatedly encrypts the encoded packets with the symmetric keys

17

shared with the ORs in each layer of the tree.

To begin the multicast tree construction, each OP negotiates a symmetric key

with the root. This key is used to encrypt the packets exchanged between the root

and the OP.

The tree is constructed incrementally, one layer at a time. The OPs decide

the ORs that are to be included in a layer of the tree. After connecting to the root,

each OP chooses an OR that will be in the 1st layer of the tree. Each OP sends out

a relay extend packet to the root, instructing it to include the chosen OR in the first

layer. The root forms a set of control packets for the chosen ORs to make them part

of the tree. These control packets contain information about the tree and keys used

for encryption. After forming the 1st layer, the OPs will send relay extend packets

to the 1st layer ORs instructing them to extend the tree to the next layer. The OPs

follow a similar procedure of instructing the last layer to extend the tree to a new

layer until a tree of required size is formed. The root of the tree shares a symmetric

key with each layer of the tree. Whenever the ith layer is added to the tree, the root

S forms the root layer key KS
Li and shares it with the ORs in the newly formed ith

layer, denoted by Li. The encoded packets are layer encrypted by the the root using

these shared keys.

5.3.1 Establishing Connections Between the OPs and the

Root

To build a muticast tree with the OR S as the root, all the OPs need to

establish a connection with the OR S. An OP sends a create packet to establish a

connection and to negotiate a symmetric key with the root. This key is used by an

OP to encrypt any packet sent to the root. This key is denoted by KOPi

S , shared

between an Onion Proxy OPi and the root S.

18

The packets exchanged between the root S and an onion proxy OPi during

this phase are depicted in Figure 5. To create a new connection, OPi sends a create

packet along with the first half of Diffie-Hellman handshake P x in the payload to the

root S. The root S responds with a created packet. The payload contains the second

half of Diffie-Hellman key exchange P y and the hash of the key formed. After the

exchange of create and created packets, OPi and the root S have both the halves

of key exchange algorithm, so they can form KOPi

S . In Figure 5, the packets are

numbered according to the order of events.

OPi S

{ }
SPK

xPGCreate ,

[] T
S

yOP
S L

i PKPKHGCreated
1

,,,
1

2

Figure 5: Creating Circuits

G is the circuit identifier. Circuit identifier is a unique name given to the

link between two ORs or an OR and an OP. The payload of the created packet also

contains PKT
SL1

, the tree public key of the root S used for the key transfer from the

1st layer ORs denoted by L1 to the root. PKT
SL1

will be sent by the OPs to the ORs

that will be included in the 1st layer of the tree. H is the hash function. All the OPs

exchange create and created packets with the root to form the symmetric key.

5.3.2 Extending the Tree to Layer 1

After connecting with the root, the OPs extend the tree to the 1st layer by

sending out relay extend packets to the root. Each OP chooses an OR to be a part

of the 1st layer, so the number of ORs per layer n in the multicast tree is equal to the

number of OPs connected to the root. Each OP sends to the root an extend packet

which contains the identity of the chosen OR and the keys used for encrypting future

packets from the OPs destined for the 1st layer ORs. The root copies the payload of

an extend packet into a group packet. The group packets are forwarded to all the

19

S

OR
11

OR

[]
1111

,,,,

11
1 1

1
1

1 OP
S

L
KPK

T
S

OP
x

OP
x

OP
L FlagPKRRK

Extend
GRelay

[]
2121

,,,,

12
2 2

1
2

1 OP
S

L
KPK

T
S

OP
x

OP
x

OP
L FlagPKRRK

Extend
GRelay

OP
1

OP

[]
111

,,,,4 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[]
121

,,,,7 2
1

2
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
1

111 11
1

11 ,,,4

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
2

112 12
2

12 ,,,7

[]{ }
123

111
,,,1 1

11 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[]
111

,,,,5 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[]
111

,,,,6 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
1

111 11
1

11 ,,,5

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
1

111 11
1

11 ,,,6

[]
121

,,,,8 2
1

2
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[]
121

,,,,8 2
1

2
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

1

1

4

2

2

2

2

2

2

3

3

S OR
12

OR
13

[]
3131

,,,,

13
3 3

1
3

1 OP
S

L
KPK

T
S

OP
x

OP
x

OP
L FlagPKRRK

Extend
GRelay

OP
2

OP
3

[]
131

,,,,10 3
1

3
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGroup

L

x1

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
3

113 13
3

13 ,,,10

[]{ }
323

113
,,,3 3

13 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[]{ }
223

112
,,,2 2

12 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
2

112 12
2

12 ,,,8

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
2

112 12
2

12 ,,,9

[]
131

,,,,11 3
1

3
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGroup

L

[]
131

,,,,12 3
1

3
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
3

113 13
3

13 ,,,11

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

1
3

113 13
3

13 ,,,12

1

4

4

2

2

2

3

3

3

3

3

3

Figure 6: Multicast Tree Extending to Layer 1

ORs mentioned in the extend packets. An OR responds to a group packet with a

grouped packet. A grouped packet contains confirmation of receipt by the chosen OR

in the payload. A grouped packet is converted to a relay extended packet by the root

and forwarded to the OPs.

For simplicity of explanation, as an example, consider the extend packet sent

by OP1 in the Figure 6. It is

Relay G1
{

Extend OR11

[

KOP
L1 , ROP1

1 , ROP1

2 , PKT
SL1

, F lag
]

PK11

}

K
OP1

S

.

G1 is the circuit identifier. As mentioned, KOPi

S is used to encrypt any packet ex-

changed between OPi and the root S. Here the extend packet is encrypted with

KOP1

S . Extend OR11 indicates that OP1 wants the onion router OR11 to be included

in 1st layer of the tree. The payload is encrypted with the public key PK11 of the

onion router OR11, so that only the onion router OR11 will be able to retrive the

information. KOP
L1 is a symmetric key created by the OPs to encrypt all of the future

20

packets destined to the 1st layer ORs denoted L1. All the OPs use the same OP layer

key KOP
L1 in their extend packets for the 1st layer. To form KOP

L1 , all the OPs exchange

a series of messages that contain contributions from each OP towards the formation

of KOP
L1 [25]. We assume these contributions are exchanged between the OPs before

the formation of the extend packets. ROP1

1 and ROP1

2 are a pair of random numbers

generated by OP1. ROP1

1 will be a part of the reply as a confirmation of receipt by

the intended OR and ROP1

2 will be used to encrypt the payload of the reply packet.

PKT
SL1

, the tree public key of the root is used to transfer keys between the root S

and the 1st layer ORs. The flag value can either be 0 or 1 depending on whether

OR11 is the intermmediate OR or an exit OR.

The root S copies the payload of the extend packets into the group packets.

For the 1st layer construction, each extend packet is converted to n group packets.

These n group packets are forwarded by the root S to the chosen OR using different

IP addresses. Each of these n group packets sent to an OR contain different circuit

identifiers but the same payload. Same set of IP addresses are used to send group

packets to each of the ORs mentioned in the extend packets. We make use of multiple

IP addresses so that the root would appear like any other layer in the multicast tree.

The number of multiple IP addresses used by the root to connect to each OR in the

1st layer is equal to number of ORs per layer n. The ORs receiving the group packets

consider the senders as the previous layer ORs. In the example given, the root S has

multiple connections with the onion routers OR11, OR12 and OR13. There are three

connections between the root S and each of the onion routers OR11, OR12 and OR13,

giving a total of nine connections between the first layer and the root S.

An OR replies to a group packet with a grouped packet. Depending upon the

flag and the keys received in the group packets, OR11 will form the payload of the

grouped packets. The payload of the grouped packet sent out by OR11 contains

21

[

PKT
E11

, PKT
11, ROP1

1

]

R
OP1

2

,
[

PKT
11

]

PKT
SL1

Random number ROP1

1 is obtained from the group packets received by OR11. Including

ROP1

1 in the reply packet serves as a confirmation that the tree was extended to OR11.

If the flag value in the received group packets is set then PKT
E11

represents the public

key of the exit OR in the tree for which the onion router OR11 is the root, E11 denotes

the exit OR in the tree for which the onion router OR11 is the root. If the flag value

is zero then PKT
E11

will be replaced by padding bits. PKT
E11

is needed by the OP to

form the return address. Detailed explanation about the use of PKT
E11

is presented

in section 5-C. PKT
11, the tree public key of the onion router OR11, is included twice

in the grouped packet because only the root and OP1 need to know this information.

PKT
11 is used by the root to encrypt the root layer key shared between the root S

and layer 1 ORs during the key exchange process. PKT
11 is used by OP1 to encrypt

any data sent to the onion router OR11. Since the root has no information about the

random number ROP1

2 used to encrypt the reply, PKT
11 has to be encrypted seperately

using PKT
SL1

so that the root will be able to retrive it. If PKT
11 is made public then

other ORs which select the OR S as their exit OR can relate the exit OR public key

given to them with this information.

When the grouped packets are received by the root S it retrives tree public

keys (example PKT
11) from the payload and copies the rest into an extended packet

and forwards it to the OPs. The extended packet is broadcasted to all the OPs

but only OP1 will be able to verify the extended packet. The extended packets are

broadcasted because the root cannot relate an extend packet to the corresponding

extended packet. Since OP1 knows ROP1

2 , it can decrypt the extended packet for

confirmation and verification that the tree was extended to the onion router OR11.

The root S will also include PKT
SL2

, the root public key for layer 2 denoted by L2, in

the payload of the extended packet, so that this key can be included in the extend

22

packets for layer 2.

If an OP does not receive any reply packet for the extend packet sent out,

then it would send an Unsuccessfull packet to the root. The root broadcasts a resend

packet to all of the OPs. A resend packet indicates to the OPs that the tree extension

could not be completed successfully.

5.3.3 Transferring the Root Layer Key for Layer 1

The root shares a unique symmetric key with each layer of the multicast tree.

These keys are used by the root to form the onion layers of encryption. After the

1st layer of the tree is formed, the root S forms a root layer key KS
L1 for layer 1 ORs

denoted by L1. This layer key is forwarded to all of the ORs in the 1st layer. To

transfer the root layer key to layer 1 ORs, the root S forms a change packet. The

payload contains blocks of the root layer key and a random number. Each block

contains the root layer key and a random number. Each block is encrypted with

the public key of an OR in the 1st layer. The root OR gets the public keys of the

ORs from the grouped packets. Figure 7 shows the packets exchanged with the onion

router OR11 during the key transfer process. The onion router OR11 replies a change

packet with a changed packet.
{

KS
L1, R

S
a

}

PKT
11

is an encrypted block formed by the

root for OR11 and can only be decrypted by the onion router OR11. RS
a is a the

random number chosen by the root S.
[

RS
a

]

KS
L1

can only be formed by OR11 thus

serving as a confirmation of receipt. The payload of the changed packet sent by OR11

contains
[

RS
a

]

KS
L1

confirming that layer key is received by the intended OR.

KS
L1 is shared between all of the ORs in the 1st layer and the root S. All future

packets from the root to the 1st layer ORs are encrypted using this key and vice versa.

The root S exchanges similar packets with all the ORs in 1st layer of the tree.

23

{ } { } { } TTT PK
S
c

S
LPK

S
b

S
LPK

S
a

S
L RKRKRKChange

131211
,,,,, 111

[] S
LK

S
aRChanged

1
S OR

11

1 �
Figure 7: Packet Exchanged during Key Transfer

S OR
11

[]
11

212
,,,,

21
1 1

1
1

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

OP
1

OP2

OR��
OR22

[]
21

222
,,,,

22
2 2

1
2

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

[]
23Extend

������	
������
�
� �� � ��� 	
Linear

Combination

of A, B and C

[]{ }
131

121
,,,1 1

21 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[]{ }
232

122
,,,1 2

22 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[]
212

,,,,13 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
1

121 21
1

21 ,,,13

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
2

122 22
2

22 ,,,14

[]
222

,,,,14 2
1

2
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

1

1

6

6

2

2

3

3

4

4

OP
3

OR
33

[]
31

232
,,,,

23
3 3

1
3

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

[]
232

3
1

3
115

PK

T
S

OP
y

OP
y

OP
L FlagPKRRKGGroup

L
++++Linear

Combination

of A, B and C

Linear

Combination

of X, Y and Z

[]{ }
333

123
,,,1 3

23 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay [] [] T

LS
OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
1

123 23
1

23 ,,,15

1

6

2

3

4

5

Figure 8: Multicast Tree Extending to New Layer

5.3.4 Extending the Tree to the 2nd Layer

As mentioned earlier, the OPs send the extend packets to the last layer for

extending the tree to a new layer. To build the 2nd layer, the OPs send extend

packets to the 1st layer ORs. An onion proxy OPi encrypts the extend packet with

KOP
L1 , the key OPs share with the layer 1 ORs and with KOPi

S , the key it shares with

the root. The OPs encrypt the extend packets with KOP
L1 so that the root will not be

able to view its contents. The packets exchanged during this process are depicted in

Figure 8 and Figure 9.

The root S will decrypt the packets it receives from the OPs with the respective

24

shared keys. In the example given, the decrypted packets are denoted by A, B and C

A =
{

Extend 21
[

KOP
L2 , ROP1

3 , ROP1

4 , PKT
SL2

, F lag
]

PK21

}

KOP
L1

B =
{

Extend 22
[

KOP
L2 , ROP2

3 , ROP2

4 , PKT
SL2

, F lag
]

PK22

}

KOP
L1

C =
{

Extend 23
[

KOP
L2 , ROP3

3 , ROP3

4 , PKT
SL2

, F lag
]

PK22

}

KOP
L1

The root S will form the linear combinations of A, B and C. The encoded packets are

layer encrypted with the layer keys which the root shares with each layer and in this

case its KS
L1. When the onion routers OR11, OR12 and OR13 get three such coded

packets, they can decrypt the layer encryption by the root S and then decode to get

A, B and C. The ORs in the 1st layer know KOP
L1 , so they can decrypt the encryption

done by the OPs, to get extend packets. As shown in Figure 8, the onion router

OR11 converts the extend packets into group packets and forwards them to the ORs

mentioned in the extend packets. In the example, the onion router OR11 will send

out the group packets to onion routers OR21, OR22 and OR23. OR12 and OR13 will

do the same as OR11. Each of these 2nd layer ORs gets the required keys and other

information from the group packets and reply with the grouped packets along with a

confirmation of receipt in the payload. The structure of a grouped packet is discussed

in chapter 5.3.2 and the detailed contents of the packets exchanged can be viewed in

Figure 8.

When the onion router OR11 receives a reply from all of the 2nd layer ORs, it

converts the grouped packets to extended packets. As shown in Figure 9 each OR

in the 1st layer receives the grouped packets with the same payload from the onion

router OR21. Since the contents in the payload of the group packets received by the

onion router OR21 are the same, the reply sent to the onion routers OR11, OR12 and

OR13 will also be the same. In other words, a grouped packet from the onion router

OR21 to the onion router OR11 will have the same payload as a grouped packet from

the onion router OR21 to the onion router OR12. So all of the ORs in layer 1 will

25

S

OR
11

[]
11

212
,,,,

21
1 1

1
1

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

OP
1

OP2
OR��[]

21
222

,,,,

22
2 2

1
2

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

23Extend

�������	
������	�	 �� � ��� �
Linear

Combination

of A, B and C

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
1

121 21
1

21 ,,,16

[]{ }
131

121
,,,1 1

21 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay

[]{ }
232

122
,,,1 2

22 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay OR��

Linear

Combination�� �� � ��� �
Linear

Combination�� �� � ��� �
[]

212
,,,,13 1

1
1

1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[]
212

,,,,16 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
1

121 21
1

21 ,,,13

6

1

1

6

2

2

4

4
5

5

3

3

OP
3

[]
31

232
,,,,

23
3 3

1
3

1
OP
S

OP
L

L

K
KPK

T
S

OP
y

OP
y

OP
L FlagPKRRK

Extend
GRelay

Linear

Combination

of A, B and C

Linear

Combination�� �� � ��� �[]{ }
333

123
,,,1 3

23 OP
S

LOP
x PK

T
SR

OP
x

TT
E PKRPKPKExtendedGRelay OR

13

[]
212

,,,,17 1
1

1
1 PK

T
S

OP
x

OP
x

OP
L FlagPKRRKGGroup

L

[] [] T
LS

OP
x

PK
T

R

OP
x

TT
E PKRPKPKGGrouped

2
1

121 21
1

21 ,,,17

1

6

2

4

5

3

Figure 9: Multicast Tree Extending to New Layer

form identical extended packets. These packets are denoted as X, Y and Z.

X = Extended
[

PKT
E21

+ PKT
21 + ROP1

1

]

R
OP1

x1

+
[

PKT
21

]

PKT
SL2

Y = Extended
[

PKT
E22

+ PKT
22 + ROP2

1

]

R
OP2

x1

+
[

PKT
22

]

PKT
SL2

Z = Extended
[

PKT
E23

+ PKT
23 + ROP3

1

]

R
OP3

x1

+
[

PKT
23

]

PKT
SL2

All of the ORs in layer 1 form a linear combination of X, Y and Z. The encoded packet

is encrypted with KS
L1 before relaying back to the root on one of the links connected

to previous layer. The root will receive 3 such encoded packets, one from each OR

in the 1st layer. The root will decrypt and decode the packets to get the extended

packets. The extended packets are relayed back to the OPs as mentioned before.

This is the only instance when an intermediate OR will encode data. Encoding helps

in reducing the number of replies sent back to the root OR.

26

S OR
11

[] [] []{ }
S
L

S
L

S
L

S
L KK

S
fK

S
eK

S
d RRRKeychanged

1111
,,

{ } { } { } TTT
PK

S
f

S
LPK

S
e

S
LPK

S
d

S
L RKRKRKChange

232221
,,,,, 222

OR��{ } { } { }{ }
S
L

TTT

KPK

S
f

S
LPK

S
e

S
LPK

S
d

S
L RKRKRKKeychange

1232221
,,,,, 222

{ } S
LK

S
dRChanged

2

1 � ��
Figure 10: Transferring the root Layer Key to Layer 2

5.3.5 Transferring the Root Layer Key to the 2nd Layer ORs

As explained earlier, after extending to the ith layer in the multicast tree, the

root creates the root layer key KS
Li for the ith layer denoted by Li. This layer key is

shared with all the ORs in the ith layer. The root uses this key for layer encryption.

The root will use the tree public key of each OR in the ith layer (example PKT
21) to

encrypt KS
Li during key transfer. To transfer the key, the root forms a keychange

packet. The payload of a keychange packet contains blocks of the new root layer key

and a random number.

As shown in Figure 10, the payload of the keychange packet contains blocks of

the root layer key for the 2nd layer KS
L2 and a random number. Each block is encrypted

with the tree public key of an OR in the 2nd layer. The keychange packet is forwarded

to a randomly chosen first layer OR, in example given it is OR11. The onion router

OR11 copies the payload of the keychange packet to a change packet and forwards

it to all of the ORs in the 2nd layer. The onion router OR21 replies with a changed

packet and includes receipt confirmation in the payload. The onion router OR11 will

receive similar confirmations from all of the ORs in the 2nd layer. A keychanged

packet is relayed back to the root after all of the confirmations are received. The

payload of the keychanged packet contains all the confirmations received from all the

2nd layer ORs.

To extend the tree to a new layer, the OPs instruct the last layer ORs to

extend the tree to another layer. The root transfers the root layer key for the new

27

layer after the tree extension. The number of layers in the tree are decided by the

OPs. The root encodes and encrypts the packets that it receives from the OPs and

when an intermmediate OR receives a packet, it decrypts a layer of encryption and

forwards it on a randomly picked next layer OR. The packets are forwarded from

one layer to another layer and finally reach the exit layer. When an exit OR receives

gs packets of a particular generation, it can decode to get the actual data. After it

obtains the decoded information, an exit OR forwards the data to the destination.

The path taken by reply data is discussed in chapter 5.4. In case there is only a single

OP connected to the root OR, then there would be only one OR per layer. Packets

cannot be encoded because there is only one source available. However the packets

will be encrypted and relayed as before. The exit OR in the forward direction would

still be the root in the reverse direction.

5.4 Return Path

The reply data from a destination is routed back to the OP using a different

tree. The exit OR in the forward direction of traffic would be the root of the tree

for the reply traffic. To use an already constructed tree for reverse traffic, an OP

has to obtain the public key of an exit OR. An OP obtains this information from the

extended packet. During the tree construction, when an OP extends the connection

to an exit OR, it will set the flag in the extend packet to 1. When an OR receives

a group packet with the flag equal to 1, then it includes the public key of the exit

OR of its own tree in the grouped packets. An OP forms the return address by

encrypting its address with the given public key. The return address is included in

the data packets sent by the OP. The structure of the packet and the path taken by

a packet sent by an OP is shown in the Figure 11.

In the example shown in the Figure 11, the exit OR chosen by an onion proxy

28

������� ����
	
�
��
 ����

OR
31
’

{ } { }{ }
131

1

31
,,,

OP
S

TT
E KPK

OP
EPK KDataDOP

{ } { } TT
E PK

OP
EPK KDataDOP

3131

1,,,

DataD,

DataReply

{ } { } 1
31

, OP
E

T
E KPK dataReplyOP

{ } 1OP
EKdataReply

1

2 3

4
5

6�
S

DOR
31

Figure 11: Reverse Traffic Path

OP1 is OR31. OR31′ is the exit OR in the tree for which OR31 is the root. PKT
E31

is

the public key of onion router OR31′ . OP1 will use the public key of OR31′ to form

the return address {OP1}PKT
E31

. An OP encrypts a data packet with the tree public

key of the exit OR. In the example, a data packet from the OP1 is encrypted with

PKT
31. An OP includes the address of the destination, data and a key to encrypt the

reply data from the destination in the payload of a data packet. After decoding a

generation, the onion router OR31 can decrypt
{

D, Data, KOP1

E

}

PKT
31

to get the final

destination denoted by D. The onion router OR31 will forward Data to the final

destination D. The reply data from D is encrypted with KOP1

E . KOP1

E is a symmetric

key formed by OP1 and it is sent to exit OR denoted by E to encrypt the reply data

from a destination. The return address {OP}PKT
E31

is attached to the reply data.

The reply packet formed by OR31 is encoded along with other packets available with

OR31 and is sent along the tree for which OR31 is the root and OR31′ is one of the

exit OR. The return address can be decrypted only by the onion router OR31′ . When

the onion router OR31′ decrypts the return address to get the identity of the OP, it

will forward the encrypted reply data to the OP.

29

D
1

OR’
31

OR’
32

OR’
33

OR’
23

OR’
22

OR’
21

OR’
13

OR’
12

OR’
11

OR
31

S

OR
11

OR
12

OR
13

OR
23

OR
22

OR
21

OR
33

OR
32

OP
1

OP
2

OP
3

D
3

D
2

Figure 12: Multicast Tree after Grouping

An already constructed tree is used for return traffic because an OP cannot

construct a new tree for the return traffic. For an OP to construct a tree, it has to

connect to the root of the tree and send control packets for the tree construction. But

if an OP connects to an exit OR to construct the tree, the exit OR would be able

identify the OP and can relate the traffic. For example, if OP connects to the onion

router OR31 to construct a tree with OR31 as the root OR for return traffic then the

onion router OR31 knows that OP will use it as an exit OR in another tree and will

be using its tree for reverse traffic. So to avoid this an already constructed tree is

used for return traffic. The complete topology is as shown in the Figure 12.

30

5.5 Boot Up

When a system is booting up and there are no trees, the Directory Server (DS)

helps in the tree construction. Every node that enters the network is supposed be the

root of a tree. If there are no OPs available, the DS would randomly select a few ORs

already in the network which send control packets to the currently entering OR and

help in tree construction. When the OPs are available and ready to send packets, the

initially constructed tree is torn down and a new tree is constructed.

5.6 Addition of a New OP

When a new OP opts to join the group of OPs using a tree then a new tree

needs to be constructed. Since the addition of a new OP requires changes to all of

the previous session keys and a new OR needs to be added to each layer, it is easier

to form a new tree rather than adding ORs to the old tree. The old tree will not be

torn down until the new tree is completely constructed. To join a tree, an OP sends

a create packet to the root. The root will reply with a created packet. It sends a

notification of new tree construction to all other OPs through a new packet. The

root OR broadcasts this packet to all the OPs. On receiving new packet all the OPs

reply with the create packets. And the new tree is constructed as already discussed.

5.7 Forwarding Techniques

The root waits for gs packets to be received from the OPs before it starts

encoding the incoming packets (gs packets). The root OR forms the onion layers

of encryption after forming the random linear combination of the packets received.

Every OR when it receives a packet peels one layer of the onion encryption and

forwards it to an OR in the next layer of the tree. The key used for layer decryption

31

is the key it shares with root and is same for all the ORs in that layer. The next layer

OR is selected based on the algorithm being followed to select the next layer OR. We

propose two algorithms; they are packet based and link based.

5.7.1 Packet Based Forwarding

In packet based forwarding, whenever a packet arrives at the intermediate OR

it will remove a layer of encryption and forward it to a randomly selection OR in

the next layer of the tree. There is no duplication of the packets at the intermediate

nodes. The exit node will only be able to decode if it receives gs encoded packets

from the previous layer. Because of random forwarding not all exit layer nodes will

receive gs packets. There is a possibility that an exit node will receive less than gs

packets of a particular generation. The probability that an exit layer node will be

able to decode a generation is given by Equation 5.1

N−gs
∑

i=0

CN
gs+i (n − 1)

N−gs−i

nN
(5.1)

Where value of n denotes the number of OR’s per layer, gs denotes generation

size and N denotes the number of unique and linearly independent packets formed

by the root for the generation.

5.7.2 Link Based Forwarding

In link based forwarding when the packets of a particular generation arrive at

an OR, it will forward the packet to next layer OR such that it will not send two

packets of same generation to the same OR and no two ORs will recieve same packet.

An OR on receiving a packet first decrypts a layer of the onion encryption and the

forwards the packet to next layer while satisfying the following conditions

32

• A packet cannot be sent to more than one OR. There will not be any duplicate

copy at any time in the multicast tree.

• If there are n OR’s per layer in the tree then every OR will receive n packets from

previous layer, one from each OR in previous layer for a particular generation.

In this scheme of data forwarding the decoding probability is one because the

exit layer will have at least gs packets, if it is assumed that n >= gs. Always

number of ORs in each layer (n) must be greater than or equal to gs size so that

each exit layer OR will receive at least gs packets for decoding a generation.

In link based forwarding, a seperate onion is formed for the header field GSQ

because the intermediate ORs need to know the changes in GSQ.

5.7.3 Binary Coding Based Forwarding

In this scheme, each forwarding OR in the network will generate a random

binary vector. The forwarding OR will combine received packets using the binary

vector and forward combined packets. Since the coding vectors are generated ran-

domly, there may be duplicate packets with the same encoding vectors. Because of

these duplicate packets, the exit nodes may not have enough innovative packets for

decoding. Decoding probability for binary coding based forwarding in discussed in

Section 6.2.2

CHAPTER VI

THEORETICAL ANALYSIS

6.1 Detection Rate

Many of the existing anonymous communication systems suffer from timing

analysis attack. In timing attacks, an adversery collects timings information from

one part of the network and correlates with the information gathered at another

part. To emulate such attacks packet timing information of a flow of interest is

matched with the timing information collected at the exit layer ORs. To match the

timing information collected mutual information concept is used. mutual information

calculated between the input flow and the actual output flow is higher than mutual

information calculated between the input flow and all other output flows then we

can link the traffic thus detect the communication. Entropy calculated using mutual

information is used as an indicator of communication detection. As mentioned, the

detection rate should be equal to a random guess which is 1/n and entropy should be

equal to log2n In network coding, any encoded packet cannot linked to a particular

original packet. An encoded packet contains a trace from all the original packets.

33

34

Since the root of the multicast tree encodes packets from different OPs, the resultant

coded traffic cannot be linked to a particular OP and this combined with random

packet forwarding beacuse of which all the ORs receive similar traffic makes it difficult

to launch timings attacks.

6.2 Decoding Probability

6.2.1 Packet Based Forwarding

In a link based packet forwarding, the probability that a particular exit node

will decode is 1 if gs <= n. Every OR will receive n packets from previous layer,

one packet from each OR in the previous layer. The exit layer OR will decode once

it receives gs packets belonging to a particular generation. But in the packet based

forwarding, the decoding probability might be a value less than 1. On receiving a

packet, an intermmediate OR forwards it to a randomly selected next layer OR. The

random selection is independent of previous selections for packets belonging to the

same or a different generation. Due to random forwarding there is a possibility that

an exit OR might not receive gs packets that belong to the same generation.

Theorem 1 The probability that an exit OR will decode a particular generation is

given by

N−gs
∑

i=0

CN
gs+i (n − 1)

N−gs−i

nN
(6.1)

Proof N is the total number of encoded packets of a generation produced by root

OR. Total number of ways N different packets distributed among n exit nodes is

given by nN , which is represented by T . The chances that a particular exit layer OR

35

will receive at least gs packets of a generation from N is given by F . So

F =

N−gs
∑

i=0

CN
gs+i × (n − 1)N−gs−i ,

and

T = nN .

The probability that a exit layer OR will decode a generation is given by P = F/T .

Therefore

P =

N−gs
∑

i=0

CN
gs+i (n − 1)

N−gs−i

nN
.

6.2.2 Binary Coding Based Forwarding

An exit OR has to receive gs linearly independent packets of a generation to

start decoding. Since the linear cofficients are choosen from GF(2) field the total

number of linear combinations of gs original packets is given by 2gs. An encoded

packet is termed dependent if the encoding vector in that packet is a linear com-

bination of already received linearly independent encoding vectors. In other words

when an encoding vector in a packet can be formed by linear combination of encoding

vectors previous received then the packet does not bring any new information or is

not innovative thus does not contribute to decoding the generation.

Every exit OR receives n packets for a generation. For successfull decoding an

exit OR should recive gs independent encoding vectors or should not receive more

than n − gs dependent packets. So the threshold on number of dependent packets

an exit OR can receive is n − gs. If an exit OR receives more dependent packets

than this value then it will not be able to decode that generation. The probability of

an exit OR receiving gs independent encoding vectors is the sum of all probabilities

where the number of received dependent packets is less than or to equal n − gs.

36

Theorem 1 The probability that an exit OR will be able to decode a generation is

given by

P =
((

1 − 20

2gs

)(

1 − 21

2gs

)

...
(

1 − 2gs−1

2gs

))

(

1 +

(

gs−1
∑

i=0

2i

2gs

)

+

(

gs−1
∑

i=0

2i

2gs ∗

(

gs−1
∑

j=0

2j

2gs

))

+ ...(n − gs)terms

)

(6.2)

Proof The probability that an encoding vector in an incoming packet is linearly in-

dependent depends on number of previously received linearly independent encoding

vectors of the same generation. If m is the number of already received linearly in-

dependent encoding vectors then the number of linearly dependent vectors that can

be formed from these m vectors is 2m. So probability that an incoming packet has

a linearly dependent encoding vector or an encoding vector from these 2m depen-

dent vectors is 2m

2gs . As an example, the probability that the first packet received

by an exit OR is linearly independent is
(

1 − 20

2gs

)

. By continuing, the probabil-

ity that even the second packet received by an exit is also linearly independent is
(

1 − 20

2gs

)(

1 − 21

2gs

)

and probability that the second packet is dependent on the first

packet is
(

1 − 20

2gs

)(

21

2gs

)

. Probability that gs out of gs packet received are linearly

independent is
(

1 − 20

2gs

)(

1 − 21

2gs

)

....
(

1 − 2gs−1

2gs

)

.

The above probability is the perfect case. But we can receive upto n − gs

dependent packets. As an example, the probability for the first packet to be linearly

dependent is 20

2gs . By continuing further, probability that even the second packet re-

ceived is dependent is
(

20

2gs

)(

20

2gs

)

and probability that the second packet received

by an exit is linearly independent is
(

20

2gs

)(

1 − 20

2gs

)

. Probability that first packet

received is linearly dependent and the next gs packets received are linearly indepen-

dent is
(

20

2gs

)(

1 − 20

2gs

)(

1 − 21

2gs

)

.....
(

1 − 2gs−1

2gs

)

. Probability that first and second

37

packet received are linearly dependent and the rest of gs packets received are linearly

independent is
(

20

2gs

)(

20

2gs

)(

1 − 20

2gs

)(

1 − 21

2gs

)

.....
(

1 − 2gs−1

2gs

)

. Extending the exam-

ple even further, the probability that first packet received is linearly independent but

the second and third packets received are linearly dependent and the rest of gs − 1

packets received are linearly independent is
(

1 − 20

2gs

)(

21

2gs

)(

1 − 21

2gs

)(

22

2gs

)(

1 − 22

2gs

)

.....
(

1 − 2gs−1

2gs

)

. Thus when we generalise

the above example for n ORs per layer, then the probability of decoding a generation

at an exit OR is given by summation of all the probabilities where number of received

linearly dependent packets is less than n − gs, which is
((

1 − 20

2gs

)(

1 − 21

2gs

)

...
(

1 − 2gs−1

2gs

))

(

1 +

(

gs−1
∑

i=0

2i

2gs

)

+

(

gs−1
∑

i=0

2i

2gs ∗

(

gs−1
∑

j=0

2j

2gs

))

+ ...(n − gs)terms

)

6.3 Through-put Calculation

In [20] the authors have developed an analytical formula for the steady state

throughput calculation of a TCP communication. It is widely accepted and used.

The TCP throughput is determined by the probability of a packet being lost, the

round trip time and time out value. The value of the throughput is limited by the

maximum possible congestion window size. The formula is given in Equation 6.3.

B (p) ≈ min

W max
RTT

,

1

RTT
√

2bp

3
+ T0 min

(

1, 3
√

3bp

8

)

p (1 + 32p2)

(6.3)

RTT is the round trip time, W max is the maximum size of the congestion

window, To is the timeout value, b is the number packets that are acknowledged

by an ACK and p is the probability that a packet will be lost during the commu-

38

nication. We compare the theatrically calculated values of through-put B(p) using

Equation 6.3 against the practically obtained value. The throughput model developed

in [20] for a TCP communication takes into account congestion avoidance behavior,

retransmissions, timeouts and is valid for entire range of p.

CHAPTER VII

PERFORMANCE EVALUATION

We implement the proposed scheme using Network Simulator-2, which is an

event based simulator built using C++ blocks. Extensive experiments are performed

for various values of generation size (gs), number of ORs per layer (n) and number

of layers (nl) in the multicast tree. By varying these parameters, we calculated

delay, throughput and detection rate of a TCP communication. We studied the

influence of varying the generation size and size of multicast tree on the performance

metrics discussed in Chapter 6. The delay, throughput and detection rate of the

communication calculated from the experiments are compared to the theoretically

calculated values as explained in Chapter 6. The experiments are conducted over

TCP connections. A Galois field of size 28 is used by the root for the random linear

transformation of the incoming packets from the OPs. All the links in the topology

are of 10 Mb capacity and delay on each link is 10 ms unless otherwise specified.

Each simulation is carried out for 60 minutes. All the links between the intermediate

OR’s have on/off cross traffic with burst rate 5 Mbit/s, average burst time 500 ms

and average idle time 500 ms. The size and other parameters of the multicast tree

39

40

for reverse traffic is same as multicast tree in the forward direction.

7.1 Packet Based Forwarding

7.1.1 Loss Probability

Decoding a generation of encoded packets takes place only after an exit OR

has collected gs packets of that generation. Since the packets are randomly forwarded

from one OR to another in the next layer, there is a possibility that an exit OR might

not receive gs packets of a generation. If the generation cannot be decoded, the exit

OR is not be able to retrieve the original packet and it is lost.

Figure 13(a) shows the variations of loss probability by varying the generation

size from 5 to 10. The decoding probability decreases with increase in gs with other

parameters kept constant because more number of encoded packets are needed by an

exit OR to start decoding. When decoding probability is high, the loss probability

is less. Figure 13(a) indicates that as gs increases, the loss probability increases.

Experimently obtained values are compared to the values calculated from equation

5.1. The loss probability in the experiments is obtained by the ratio of number

of generations that could be decoded to number of different generations that were

received by an exit OR.

The decoding probability increases with increase in number of ORs per layer

n because there are more number of encoded packets of a generation in the tree,

there is a greater chance that an exit OR will receive atleast gs encoded packets

of a generation, thus decreasing the loss probability. This explains the decrease in

loss probability with increase in n, as shown in Figure 13(b). Number of layers

in the multicast tree do not effect the decoding probability because the packets are

forwarded from one layer to another and decoding probability depends on distribution

41

of encoded packets among the exit layer ORs. So even if number of layers are varied

the decoding probability remains the same.

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Generation Size (gs)

L
o

s
s
 P

ro
b

a
b

il
it
y

n=10, Theoritical
n=10, nl=4, Practical
n=15, Theoritical
n=15, nl=4, Practical

10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

ORs per Layer (n)

L
o
s
s
 P

ro
b
a
b
il
it
y

gs=5, nl=4, Practical
gs=5, Theoritical

(a) layers =4 (b) gs =5

Figure 13: Comparison of Theoretical and Practical Values of Loss Probability

7.1.2 Throughput Variations

By Varying Generation Size

The experimently calculated throughput values are compared to theoritical

values calculated from Equation 6.3. Figure 14(a) shows throughput variations when

gs is increased from 5 to 10. The throughput decreases with increase in generation

size because as gs increases, more number of encoded packets are required by an exit

ORs to decode. As gs increases with other parameters kept constant, the decoding

probability decreases as suggested by Equation 5.1. This will lead to increase in loss

probability, which decreases the throughput as suggested in Equation 6.3. It can be

seen that rate of throughput decrease is less for n = 20 than n = 15 because more

number of encoded packets of a generation are present in tree when n is greater.

The effectiveness of an anonymous communication system is determined by

the rate at which the communication is detected. The detection scheme used here is

42

based on timing analysis and is discussed in Section 6.1. The detection rate of a com-

munication using the proposed system is obtained using entropy which is calculated

by applying the concept of mutual information and correlation on the packet timings

gathered at the sender and the exit ORs. Figure 14(b) and Figure 14(c) show that the

entropy values calculated from correlation and entropy values calculated from mutual

information technique. The timing information of a flow of interest is compared with

the timing information of aggregate flow at each exit OR. It can be seen that entropy

calculated from experiments are almost equal to the entropy of equal distribution

indicating that all the exit ORs received similar amount of traffic. So the probability

of detecting the traffic is equal to probability of a random guess. As the number of

exit ORs increases, the entropy increases which decreases the probability of detection.

The probability of detection is less for n = 20 compared to n = 15.

By Varying Number of Layers

The round trip time increases with number of layers because the hop count

increases with layers in the multicast tree. When the number of hops (delay) increases,

the throughput of a TCP communication decreases as suggested by the Equation 6.3

and this explains the dip in the value of throughput in the Figure 15(a) for increase

in number of layers (nl) from 4 to 20. In Figure 15(b) and Figure 15(c) it can be seen

that varying nl in the multicast tree does not change the detection rate because the

detection rate depends on the number of ORs in the layer rather than the number of

layers itself. So n =15 has a different detection rate from n =20.

By Varying Number of ORs Per Layer (n)

In Figure 16(a), n is varied from 10 to 25 for 4, 8 and 12 layers in multicast

tree and gs =5. The throughput value increases with increase in the number of ORs

43

5 6 7 8 9 10
0

25

50

75

100

125

150

175

Generation Size (gs)

T
hr

ou
gh

pu
t (

P
kt

s\
S

ec
)

n=15, nl=4, Theoritical
n=15, nl=4, Practical
n=15, nl=12, Theoritical
n=15, nl=12, Practical
n=15, nl=20, Theoritical
n=15, nl=20, Practical

n=20, nl=4, Theoritical
n=20, nl=4, Practical
n=20, nl=12, Theoritical
n=20, nl=12, Practical
n=20, nl=20, Theoritical
n=20, nl=20, Practical

(a) Throughput Variations for n =15, 20 and layers = 4, 12, 20

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generation Size (gs)

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generation Size (gs)

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 14: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and layers = 4, 12, 20

44

4 8 12 16 20
0

50

100

150

Number of Layers (nl)

T
hr

ou
gh

pu
t (

P
kt

\S
ec

)

n=15, gs=5, Theoritical
n=15, gs=5, Practical
n=20, gs=5, Theoritical
n=20, gs=5, Practical

n=15, gs=10, Theoritical
n=15, gs=10, Practical
n=20, gs=10, Theoritical
n=20, gs=10, Practical

(a) Throughput Variations for n =15, 20 and gs = 5, 10

4 6 8 10 12 14 16 18 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n
tr

o
p
y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=10
n=15, Random Guess
n=20, Random Guess

4 8 12 16 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n
tr

o
p
y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=10
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 15: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and gs = 5, 10

45

per layer. This is because as n increases there will be more encoded packets in the

tree and so the loss probability decreases. Increase in decoding probability will lead

to decrease in loss probability, thus increasing the throughput. So n =25 has greater

throughput than n =10 as indicated in the Figure 16(a). In Figure 16(b) and Figure

16(c), the entropy for n =25 is greater than n =10 because the traffic is equally

distributed among larger group of exit ORs.

10 15 20 25
0

50

100

150

ORs per Layer (n)

Th
ro

ug
hp

ut
 (P

kt
\S

ec
)

nl=4, gs=5, Theoritical
nl=4, gs=5, Practical
nl=12, gs=5, Theoritical

nl=12, gs=5, Practical
nl=20, gs=5, Theoritical
nl=20, gs=5, Practical

(a) Throughput Variations for gs =5 and layers = 4, 12, 20

10 15 20 25

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n

tr
o

p
y

nl=4
nl=12
nl=20
Random Guess

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n

tr
o

p
y

nl=4, gs=5
nl=12, gs=5
nl=20, gs=5
Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 16: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for gs =5 and layers = 4, 12, 20

46

7.2 Link Based Forwarding

The link based forwarding is discussed in the section 5 and as mention the

decoding probability of a link based forwarding technique is almost equal to 1.

7.2.1 By Varying Generation Size

Figure 17 shows throughput variations for link based forwarding scheme. It

can be observed that throughput values are uneffected by variation in gs because

when the decoding probability is 1 and loss probability is zero, then the throughput

value is the maximum possible value determined by RTT as suggested by Equation

6.3. Throughput for layers =4 is more than layer =12 because as number of layers

increase, the RTT value increase resulting in decrease of throughput. Figure 17(b)

and Figure 17(c) show entropy values for varying gs in the tree. Since all the ORs in

the exit layer receive similar traffic, the entropy values are almost equal to entropy of

a random guess, indicating that traffic cannot be detected.

7.2.2 By Varying Number of Layers

In Figure 18(a) it can be seen that as number of layers are increasing, the

throughput is decreasing because of increase in RTT with increase in number of hops

to final destination. The entropy values is same for nl = 4 and nl = 8 as shown in

Figure 18(b) and Figure 18(c) because the number of layers do not effect the traffic

distribution among the exit layer ORs and it is effected only by n.

7.2.3 By Varying Number of ORs per Layer(n)

In Figure 19(a) it can been seen that number of ORs per layer does not effect

the throughput. It is because increasing n does not effect the loss probability as it

47

5 6 7 8 9 10
35

55

75

95

115
135
155
175

Generation Size (gs)

T
hr

ou
gp

ut
 (

P
kt

s\
S

ec
)

n=15, nl=4, Theoritical
n=15, nl=4, Practical
n=15, nl=12, Theoritical
n=15, nl=12, Practical
n=15, nl=20, Theoritical
n=15, nl=20, Practical

n=20, nl=4, Theoritical
n=20, nl=4, Practical
n=20, nl=12, Theoritical
n=20, nl=12, Practical
n=20, nl=20, Theoritical
n=20, nl=20, Practical

(a) Throughput Variations for n =15, 20 and layers = 4, 12, 20

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generaion Size (gs)

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generation Size (gs)

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 17: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and layers = 4, 12, 20

48

4 8 12 16 20
25

50

75

100

125

150

175

Number of Layers (nl)

T
hr

ou
gh

pu
t (

P
kt

s\
S

ec
)

n=15, gs=5, Theoritical
n=15, gs=5, Practical
n=20, gs=5, Theoritical
n=20, gs=5, Practical

n=15, gs=10, Theoritical
n=15, gs=10, Practical
n=20, gs=10, Theoritical
n=20, gs=10, Practical

(a) Throughput Variations for n =15, 20 and gs = 5, 10

4 8 12 16 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n

tr
o
p

y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=10
n=15, Random Guess
n=20, Random Guess

4 8 12 16 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n

tr
o
p

y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=20
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 18: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and gs = 5, 10

49

will in case of packet forwarding technique and when the loss probability is zero then

throughput will reach the maximum possible value determined by RTT . In Figure

19(b) and Figure 19(c) the entropy value increases with n, indicating that probability

of detection decreases with increase in the number of ORs per layer because the traffic

is distributed among more ORs.

10 15 20 25
40

60

80

100

120

140

160

ORs per Layer (n)

T
hr

ou
gh

tp
ut

 (
P

kt
/S

ec
)

nl=4,gs=5, Theoritical
nl=4, gs=5, Practical
nl=12, gs=5, Theoritical

nl=12, gs=5, Practical
nl=20, gs=5, Theoritical
nl=20, gs=5, Practical

(a) Throughput Variations for gs =5 and layers = 4, 12, 20

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n
tr

o
p
y

nl=4, gs=5
nl=12, gs=5
nl=20, gs=5
Random Guess

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n

tr
o

p
y

nl=4, gs=5
nl=12, gs=5
nl=20, gs=5
Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 19: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for gs =5 and layers = 4, 12, 20

50

7.3 Binary Coding Based Forwarding

7.3.1 Loss Probability

Decoding a generation of encoded packets takes place only after an exit OR has

collected gs linearly independent encoding vectors of that generation. As suggested

by Equation 6.2, the probability that a generation is decoded by an exit OR depends

on the generation size gs and number of ORs per layer n in the multicast tree.

Figure 20(a) shows the variations of loss probability when generation size in-

creases. The decoding probability decreases with increase in gs because more number

of linearly independent packets are needed by an exit OR to start decoding. When

decoding probability is high, the loss probability is less. Figure 20(a) indicates that as

gs increase the loss probability increases. Experimently obtained values are compared

to the values calculated from equation 6.2.

Since each exit OR receives n packets for a generation, the loss probability

decreases with increase in number of ORs per layer n, as there is a greater chance that

an exit OR will receive gs linearly independent packets. This explains the decrease

in loss probability with increase in n, as shown in Figure 20(b). Number of layers

in the multicast tree do not effect the decoding probability because the packets are

forwarded from one layer to another and decoding probability depends on number

of encoded packets received by the exit layer ORs and generation size. So even if

number of layers are varied the decoding probability remains the same.

7.3.2 Throughput Variations

By Varying Generation Size

The experimently calculated throughput values are compared to theoritical

values calculated from Equation 6.3. Figure 21(a) shows throughput variations when

51

5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generation Size (gs)

L
o
s
s
 P

ro
b
a
b
il
it
y

n=15, nl=4, Theoritical
n=15, nl=4, Practical
n=20, nl=4, Theoritical

n=20, nl=4, Practical
n=10, nl=4, Theoritical
n=10, nl=4, Practical

10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ORs per Layer (n)

L
o
s
s
 P

ro
b
a
b
il
it
y

gs=5, Theoritical
gs=5, nl=4, Practical

(a) layers =4 (b) gs =5

Figure 20: Comparison of Theoretical and Practical Values of Loss Probability

gs is increased from 5 to 10. When other parameters are kept constant, the through-

put decreases with increase in generation size because as gs increases, more number

of linearly independent encoded packets are required by the exit ORs to decode. As

gs increases, the loss probability increases leading to a decrease in throughput as

suggested in Equation 6.3. It can be seen that rate of throughput decrease is less for

n = 20 than n = 15 because loss probability is less for higher value of n.

The detection rate of a communication using the proposed system is obtained

using entropy which is calculated by applying the concept of mutual information

and correlation on the packet timings gathered at the sender and all of the the exit

ORs. Figure 21(b) and Figure 21(c) show the entropy values calculated from entropy

values calculated from mutual information technique and correlation. It can be seen

that entropy calculated from experiments are almost equal to the entropy of equal

distribution indicating that all the exit ORs received similar amount of traffic. So the

probability of detecting the traffic is equal to probability of a random guess which is

1/n. As the number of exit ORs increases, the entropy increases which decreases the

probability of detection. The probability of detection is less for n = 20 compared to

n = 15.

52

5 6 7 8 9 10
0

25

50

75

100

125

150

175175

Generation Size (gs)

Th
ro

ug
hp

ut
 (P

kt
\S

ec
)

n=15, nl=4, Theoritical
n=15, nl=4, Practical
n=15, nl=12, Theoritical
n=15, nl=12, Practical
n=15, nl=20, Theoritical
n=15, nl=20, Practical

n=20, nl=4, Theoritical
n=20, nl=4, Practical
n=20, nl=12, Theoritical
n=20, nl=12, Practical
n=20, nl=20, Theoritical
n=20, nl=20, Practical

(a) Throughput Variations for n =15, 20 and layers = 4, 12, 20

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generation Size (gs)

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

5 6 7 8 9 10

3.9

4

4.1

4.2

4.3

Generation Size

E
n
tr

o
p
y

n=15, nl=4
n=15, nl=12
n=15, nl=20
n=20, nl=4

n=20, nl=12
n=20, nl=20
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 21: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and layers = 4, 12, 20

53

By Varying Number of Layers

The round trip time increases with number of layers because the hop count

increases with layers. When the number of hops (delay) increases, the throughput of

a TCP communication decreases as suggested by the Equation 6.3 and this explains

the dip in the value of throughput in the Figure 22(a) for increase in number of layers

(nl) from 4 to 20 in steps of 4. In Figure 22(b) and Figure 22(c) it can be seen

that varying nl in the multicast tree does not change the detection rate because the

detection rate depends on packet timings and among the ORs in a layer rather than

the number of layers.

4 8 12 16 20
0

50

100

150

Number of Layers (nl)

T
hr

ou
gh

pu
t (

P
kt

\S
ec

)

n=15, gs=5, Theoritical
n=15, gs=5, Practical
n=20, gs=5, Theoritical
n=20, gs=5, Practical

n=15, gs=10, Theoritical
n=15, gs=10, Practical
n=20, gs=10, Theoritical
n=20, gs=10, Practical

(a) Throughput Variations for n =15, 20 and gs = 5, 10

4 8 12 16 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n
tr

o
p
y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=10
n=15, Random Guess
n=20, Random Guess

4 8 12 16 20

3.9

4

4.1

4.2

4.3

Number of Layers (nl)

E
n
tr

o
p
y

n=15, gs=5
n=20, gs=5
n=15, gs=10

n=20, gs=10
n=15, Random Guess
n=20, Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 22: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for n =15, 20 and gs = 5, 10

54

By Varying Number of ORs Per Layer (n)

In Figure 23(a), n is varied from 10 to 25 in steps of 5. The throughput

value increases with increase in the number of ORs per layer because an exit OR will

receive n encoded packets and so the probability of receiving gs independent packets

is higher. A tree with n =25 has greater throughput than n =10 as indicated in the

Figure 23(a). In Figure 23(b) and Figure 23(c) the entropy for n =25 is greater than

n =10 because the traffic is equally distributed among larger group of exit ORs.

10 15 20 25
0

50

100

150

ORs per Layer (n)

T
hr

ou
gh

pu
t (

P
kt

\S
ec

)

nl=4, gs=5, Theoritical
nl=4, gs=5, Practical
nl=12, gs=5, Theoritical

nl=12, gs=5, Practical
nl=20, gs=5, Theoritical
nl=20, gs=5, Practical

(a) Throughput Variations for gs =5 and layers = 4, 12, 20

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n

tr
o

p
y

nl=4, gs=5
nl=12, gs=5
nl=20, gs=5
Random Guess

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

ORs per Layer (n)

E
n

tr
o

p
y

nl=4, gs=5
nl=12, gs=5
nl=20, gs=5
Random Guess

(b) Mutual Information Detection Rate (c) Correlation Detection Rate

Figure 23: Comparison of Theoretical and Practical Values of Throughput and De-
tection Rate for gs =5 and layers = 4, 12, 20

CHAPTER VIII

POSSIBLE ATTACKS

We merge the idea of network coding with the concept of onion routing to

disrupt timing attacks while still preserving the important qualities of onion routing

to disrupt many other attacks.

• Packet counting : Using network coding we combine packets from different users

to form a batch/generation and these set of packets are encoded/decoded to-

gether. So simple packet count technique will not reveal any information as

destination will receive more packets as it has to decode after collecting gs

packets to get the actual information.

• Payload Check : Since we are using onion routing, a layer of onion is decrypted

at every hop. So the input packet at a node is not identical to output packet.

The adversary cannot map the input traffic to output traffic just depending on

the payload.

• Finger printing : In order to launch this attack the adversary first creates a

traffic pattern for well known servers depending on the file transfer and compares

55

56

the traffic pattern of a user against database of known server traffic pattern.

Since forward traffic uses different multicast tree from the multicast tree of

reverse traffic, it will be difficult to build the incoming traffic pattern because

of encoding/decoding process and collection of gs packets.

• Compromise the keys: The packets are iteratively encrypted with the session

keys the source OR has established with the intermediate ORs. Even if the

session key of a layer is compromised the adversary cannot get any information

due to other layers of encryption which are not yet decrypted. The effect of

these attacks can be reduced further by periodically changing the session keys.

If the TLS key is compromised then the effect will last only for the life time of

that particular key [7].

• Running a hostile OR: By using network coding we are spreading the informa-

tion equally in all the encoded packets and the destination has to collect gs

packets to decode. Even if the adversary is dropping few packets it will not

affect the communication any anonymity but it will affect the loss probability.

• Introducing timing patterns: The adversary can introduce timing patterns into

the traffic but it will not affect the communication because the destination has

to get gs packets of a generation and does not care about the order or the sender

of those packets (as long as it is previous layer OR). If the packets on a link

are delayed then the destination will decode with the packets it received from

other OR and carry on with the communication.

• Tagging Attacks : By integrity checks we can avoid such attacks where the packet

contents are altered [7].We also use TLS encryption that would identify and

alteration to the encode packets.

57

• End to End timing Correlation These attacks are not a part of design goals.

Such attacks can be avoided by being a part of the anonymous communication

system rather than just a user because the traffic inside the system cannot be

detected.

CHAPTER IX

CONCLUSION

An onion routing based anonymous communication system is presented which

disrupts the timing analysis attacks. The detection rate for different sizes of the

multicast tree is calculated. The probability detecting a communication is equal to

probability of detection through a random guess which is 1/n. Number of OR’s in

the leaf layer can be increased to increase the degree of anonymity. The information

spreading quality of network coding helps to produce similar traffic on all the links.

Since packets from multiple communications can be combined to produce an encoded

output traffic that evenly spreads in the tree, detecting the traffic based on timing

information becomes very difficult. An exit OR just needs to collect any but sufficient

encoded packets to decode and get actual information. The TCP throughput of a

communication using the proposed system is compared with the value obtained from

Equation 6.3. The loss probability in packet based forwarding technique and binary

code based technique can be decreased by increasing the number ORs per layer of

the multicast tree.

58

BIBLIOGRAPHY

[1] The anonymizer. http://www.anonymizer.com.

[2] R. Ahlswede, N. Cai, S. yen Robert Li, R. W. Yeung, S. Member, and S. Member.

Network information flow. IEEE Transactions on Information Theory, 46:1204–

1216, 2000.

[3] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A system for anonymous

and unobservable Internet access. In H. Federrath, editor, Proceedings of Design-

ing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity

and Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, July 2000.

[4] N. Cai and R. Yeung. Secure network coding. In IEEE International Symposium

on Information Theory, July 2002.

[5] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84–90, 1981.

[6] R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramch. Network

coding for distributed storage systems. In In Proc. of IEEE INFOCOM, May

2007.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In Proc. of the 13th USENIX Security Symposium, pages 303–320,

San Diego, CA, August 2004.

[8] C. Fragouli. Abstract network coding: An instant primer.

[9] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network

59

60

layer. In In Proceedings of the 9th ACM Conference on Computer and Commu-

nications Security (CCS 2002, pages 193–206, 2002.

[10] R. D. G. Danezis and N. Mathewson. maxminion: Design of typeiii anonymous

remailer. In IEEE Symposium on Security and Privacy, pages 12–15. IEEE CS,

May 2003.

[11] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive view of a live net-

work coding p2p system. In IMC ’06: Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, pages 177–188, New York, NY, USA, 2006.

ACM.

[12] C. Gkantsidis and P. Rodriguez. Network coding for large scale content distri-

bution. 2005.

[13] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding Routing Information.

In R. Anderson, editor, Proceedings of Information Hiding: First International

Workshop, pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

[14] T. Ho, R. Koetter, M. Mdard, D. R. Karger, and M. Effros. The benefits of

coding over routing in a randomized setting. In In Proceedings of 2003 IEEE

International Symposium on Information Theory, 2003.

[15] T. Ho, M. Mdard, R. Koetter, D. R. Karger, A. Member, M. Effros, S. Member,

S. Member, S. Member, J. Shi, and B. Leong. A random linear network coding

approach to multicast. IEEE Trans. Inform. Theory, 52:4413–4430, 2006.

[16] S. Katti, J. Cohen, and D. Katabi. Information slicing: Anonymity using unreli-

able overlays. In Proceedings of the 4th USENIX Symposium on Network Systems

Design and Implementation (NSDI), April 2007.

61

[17] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. Xors in

the air: practical wireless network coding. SIGCOMM Comput. Commun. Rev.,

36(4):243–254, 2006.

[18] R. Koetter, M. Mdard, and S. Member. An algebraic approach to network coding.

IEEE/ACM Transactions on Networking, 11:782–795, 2003.

[19] D. S. Lun, M. Medard, R. Koetter, and M. Effros. Further Results on Coding

for Reliable Communication over Packet Networks. ArXiv Computer Science

e-prints, Aug. 2005.

[20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp throughput: A

simple model and its empirical validation. Technical report, Amherst, MA, USA,

1998.

[21] A. Pfitzmann and M. Waidner. Networks without user observability. Comput.

Secur., 6(2):158–166, 1987.

[22] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. Tech-

nical report, 1997.

[23] M. Rennhard and B. Plattner. Practical anonymity for the masses with mor-

phmix. In A. Juels, editor, Proceedings of Financial Cryptography (FC ’04),

pages 233–250. Springer-Verlag, LNCS 3110, February 2004.

[24] A. Serjantov and P. Sewell. Passive attack analysis for connection-based

anonymity systems. In In Proceedings of European Symposium on Research in

Computer Security (ESORICS, pages 116–131, 2003.

[25] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.

Parallel and Distributed Systems, IEEE Transactions on, 11(8):769 –780, aug

2000.

62

[26] P. Syverson, M. Reed, and D. Goldschlag. Onion Routing access configurations.

In Proceedings of the DARPA Information Survivability Conference and Exposi-

tion (DISCEX 2000), volume 1, pages 34–40. IEEE CS Press, 2000.

[27] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an Analysis of

Onion Routing Security. In H. Federrath, editor, Proceedings of Designing Pri-

vacy Enhancing Technologies: Workshop on Design Issues in Anonymity and

Unobservability, pages 96–114. Springer-Verlag, LNCS 2009, July 2000.

[28] J. Tan and M. Medrad. Secure network coding with a cost criterion. In Proc.

4th International Symposium on Modeling and Optimization in Mobile Ad Hoc

and Wireless Networks, April 2006.

[29] P. P. U. Moller, L. Cottrell and L. Sassaman. Mixmaster protocol – version 2.

draft, 2003.

[30] J. P. Vilela, L. Lima, and J. Barros. Lightweight security for network coding.

CoRR, abs/0807.0610, 2008.

[31] J. Widmer and J.-Y. Le Boudec. Network coding for efficient communication

in extreme networks. In WDTN ’05: Proceedings of the 2005 ACM SIGCOMM

workshop on Delay-tolerant networking, pages 284–291, New York, NY, USA,

2005. ACM.

[32] S. yen Robert Li, S. Member, R. W. Yeung, and N. Cai. Linear network coding.

IEEE Transactions on Information Theory, 49:371–381, 2003.

[33] P. C. Yunnan, P. A. Chou, Y. Wu, and K. Jain. Practical network coding, 2003.

[34] X. Zhang, G. Neglia, J. Kurose, and D. Towsley. On the benefits of random

linear coding for unicast applications in disruption tolerant networks. pages 1 –

7, april 2006.

63

[35] Y. Zhu and R. Bettati. Unmixing mix traffic. In Proceedings of Privacy Enhanc-

ing Technologies workshop (PET 2005), pages 110–127, May 2005.

[36] Y. Zhu and R. Bettati. Compromising anonymous communication systems using

blind source separation. ACM Trans. Inf. Syst. Secur., 13(1):1–31, 2009.

	Cleveland State University
	EngagedScholarship@CSU
	2012

	A Coding Enabled Anonymity Network
	Saikrishna Gumudavally
	Recommended Citation

	C:/Documents and Settings/Saikrishna/Desktop/thesis_rank/thesis1.dvi

