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SCAFFOLD COMPOSITION AND ARCHITECTURE CRITICALLY REGULATE 

EXTRACELLULAR MATRIX SYNTHESIS BY CARDIOMYOCYTES 

 

ARSELA GISHTO 

 

ABSTRACT 

 

Heart failure accounts for over 5 million cases in the U.S. A major onset of this is 

myocardial infarction, which causes the myocardium to loose cardiomyocytes and 

transform into a scar tissue.  Given that the adult infarcted cardiac tissue has a limited 

ability to regenerate, alternative methods to restore the damaged area need to be 

developed. The goal of these approaches is to design an optimal scaffold that can retain 

and deliver cardiomyocytes at the site of damaged myocardium. This tissue engineering 

approach would allow cardiac reconstruction by replacing the lost cardiomyocytes, 

delivering the required biomolecules, as well as remodeling the extracellular matrix 

(ECM). In this study we investigate the effects of a variety of ECM substrates on the 

attachment, survival and ECM production by cardiomyocytes. We cultured rat 

cardiomyocytes for 21 days in eleven different substrates, including nanofiber coated 

plates and 3D hydrogels. Cell attachment and survival rates were analyzed both 

quantitatively and qualitatively. ELISA and fluorometric assays were performed to 

quantify the synthesis and release of ECM protein molecules by the cells under various 

culture conditions. The matrix protein deposition was also qualitatively analyzed using 

immunofluorescence staining and imaging. Finally, the production of MMPs-2, 9 and 
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TIMP-1 by these cells was quantified and correlated to matrix synthesis under respective 

culture conditions. The observations of this study were that the total protein content 

quantified within PCL nanofiber scaffolds was significantly higher compared to that 

within hydrogels. Collagen concentration played an important role in cardiomyocyte 

survival. Among all cases tested, 2 mg/ml collagen-I (CI-2) provided the highest cell 

survival rate. Additionally, laminin-coated PCL nanofiber scaffold provided the most 

suitable environment for cardiomyocytes to result in the highest number of beating 

cardiomyocytes. However, the maximum beating frequencies were noted in cells cultured 

on collagen I and collagen IV coated scaffolds. Taken together, our results suggest that 

3D scaffold composition and architecture influences cardiomyocyte phenotype and 

matrix protein synthesis, with significant applications in cardiac tissue engineering and 

regeneration. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 

            Cardiovascular disease (CVD) is the leading cause of mortality in the United 

States and it accounts for over 30% of deaths each year. According to the American Heart 

Association (AHA), 83.6 million adults suffer from at least one type of CVD in America. 

Besides this enormous number of patients diagnosed with CVD, there is an increase of 

28% in treatment procedures in the recent years. This has resulted in a decline of death 

rate linked to CVD by 32.7% in a 10 year period (1999-2009). However, the cost 

attributed to CVD remains drastically high, over $300 billion. The major contributors to 

CVD are hypertension, diabetes mellitus, obesity, increased levels of cholesterol and 

myocardial infarction (MI). MI is the leading cause of this high CVD mortality rate. 

Approximately 7.6 million of MI cases occur in the U.S. every year
1
.  

           MI occurs as a result of ischemia, not enough blood and oxygen supplied to the 

myocardium. The infarcted myocardium suffers irreversible damages and loses its cells 

permanently. The cardiac muscle then transforms into a scar tissue which leads in an 

(ECM) reconstruction, loss of cardiac function, and eventually heart failure. The 
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myocardium does not have the ability to regenerate itself and replace the lost 

cardiomyocytes. Therefore alternative methods need to be developed to reconstruct the 

damaged cardiac tissue and its contractile function. One approach to repair the damaged 

myocardium is to replace the lost cardiomyocytes by delivering the required 

biomolecules, as well as remodeling the ECM. This tissue engineering approach allows 

the delivery of cardiomyocytes by placing a scaffold that mimics the natural cardiac 

micro-environment into the infarcted site. During this myocardial regeneration process, 

the scaffold needs to be physically and chemically suitable for cardiac myocytes 

attachment and survival
2,3

.   

Previous studies have shown that a 3-dimensional (3D) scaffold provides 

advantages in cell attachment and proliferation. Additionally, the chemical composition 

of the scaffold has a significant role in cell alignment and survival rate. Various types of 

synthetic [polycaprolactone (PCL), PCL\gelatin (PG), polyglycolic acid (PGA)] and 

biological scaffolds (gelatin, matrigel
TM

, laminin, collagen) have been developed and 

tested in vitro
3-6

. The synthetic 3D scaffolds can allow for an electrical communication 

and synchronized beating between cardiomyocytes
7
. Previous studies have shown that 

aligned nano-fiber scaffolds provide better mechanical properties compared to random 

non-aligned ones
3
. However these 3D scaffolds need to provide biocompatibility with the 

cardiac myocytes for higher tissue restoration results. To increase the biocompatibility, 

the polymer nanofibers can be combined with naturally occurring proteins. Furthermore 

ECM proteins fused together in a 3D architecture can simulate a suitable cardiac 

substrate. These tissue engineering approaches can be developed more with a better 

understanding of the ECM composites produced by cardiomyocytes. Unfortunately, there 
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is no reported data in literature which analyzed the amounts of ECM proteins synthesized 

and deposited by cardiomyocytes within various scaffolds.  

To overcome these limitations, we designed this study with the following goals. The 

primary objective of this research is to study and understand the effects of scaffold 

composition, stiffness and architecture on cardiomyocyte attachment and survival. 

Additionally, the second aim of this study is to investigate the role of 3D scaffold 

characteristics on extracellular matrix synthesis and deposition by cardiomyocytes. The 

matrix molecules quantified in this project are hyaluronic acid (HA), elastin, sGAGs, 

LOX, MMPs-2 and 9, TIMP-1.  

This thesis is organized as follows: 

 Chapter II provides an overview of the structure and function of the cardiac 

muscle and its extracelluar matrix organization. Also, it provides a summary of the MI 

treatment options that are available and in progress, accompanied by a discussion of their 

limitations.  

 Chapter III describes the experimental procedures used for the in vitro culturing 

of cardiomyocytes in a variety of 3D biological scaffolds composed of ECM proteins 

(collagen types I and IV, laminin, fibronectin) and biodegradable nanofiber scaffolds 

(PCL) coated with the ECM proteins. Furthermore, this chapter provides a detailed 

description of the quantitative (ELISA and fluorometric assays) and qualitative 

(immunofluorescence staining and imaging) analysis of cell survival data and ECM 

molecules synthesized and released by the cardiomyocytes.  

 Chapter IV announces the results obtained from the experiments described in 

Chapter III and their interpretation. 
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 Chapter V provides conclusions drawn from the results on Chapter IV and an 

overview of how the knowledge gained on 3D scaffold composition and matrix synthesis 

by cardiomyocytes can be used to design a suitable scaffold that optimizes the attachment 

and survival of cardiomyocytes and improves the cardiac function in cases of MI.    
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CHAPTER II 

 

BACKGROUND 

 

 

2.1 Myocardium organization and myocardial infarction 

 

Myocardium is the intermediate layer of the cardiac muscle bordered by 

endocardium and epicardium (Figure 2.1 A). The myocardium is composed of contractile 

cardiomyocytes assembled in a 3 dimensional fiber network and interstitial space 

occupied by fibroblasts, endothelial cells, blood vessels, and ECM. Each individual 

cardiac myocyte is surrounded and supported by endomysium, a structure of 

fibrocollagenous connective tissue as shown in Figure 2.1 B. Perimysium, a connective 

tissue network that encircles bundles of myocytes, supports the shearing forces and 

alignment between them (Figure 2.1 B). Any damages in the myocardium reflect in 

changes in these supporting extracellular matrices
8
. An irreversible damage of the cardiac 

muscle can be caused by myocardial infarction (MI), also known as heart attack. MI is 

caused by a coronary artery blockage due to plaque build-up and thrombosis, blocking 
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blood flow to the muscle. The restriction of blood and oxygen supplied to the 

myocardium results in cardiomyocyte death, which unfortunately are difficult to replace 

or regenerate.   

 

Figure 2.1 (A) Cardiac muscle composed of endocardium, myocardium and epicardium. 

(B) 3D structure of cardiomyocytes surrounded by endomysium and perimysium
8
.  

 

 

During MI, the number of cardiomyocytes is drastically reduced in the infarcted 

area which results in a reduction of cardiac function
9
. The cell death in MI is followed by 

an inflammatory response caused by the migration of macrophages, monocytes, and 

neutrophils to the damaged area of the myocardium. This damage continues and expands 

with the production of matrix metalloproteinases that have the ability to degrade the 

ECM and could lead to an increase of irregular and disorganized collagen deposition. The 

ECM changes result in a non-elastic matrix trapping the cardiomyocytes and causing 

misalignment and impairment of electrical conductivity between the cells, causing a 

continuance in cell death. The lack of blood supply to the myocardium during acute MI 
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causes permanent necrosis and ECM remodeling. This is followed by the formation of 

scar tissue in the myocardium damaged area and eventually resulting in heart failure
10

. 

Figure 2.2 shows the disturbance occurring in cellular level of the myocardium during 

MI. Studies has shown the presence of poly(ADP-ribose) polymerases (PARPs) during 

MI, which are activated during ischemia and continue to be deposited during MI
11

. 

PARPs are responsible for the activation of inflammatory pathways and draining of 

cellular energetic pools which lead to cell necrosis
11

. The inhibition of PARPs can be a 

first step in delaying and preventing chronic MI damages that can be life threatening. The 

infarcted zone needs to be treated and repaired properly to allow regain of normal 

physiology
11

.  

 

     

Figure 2.2 Immunofluorescence staining of myocardium for Poly(ADP-ribose) (PAR), an 

indicator of PARP activation. The healthy myocardium shows normal cells not stained for 

PAR. The area at risk (AAR) of MI shows severely distressed cells and PAR staining. 

Infarcted area shows necrotic myocytes with abundant PAR staining
11

.  
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2.2 Surgical and pharmacological approaches for MI treatment 

 

Due to the enormous number of CVD and heart failure cases, considerable 

research has been done for cardiac repair and cardiac muscle regeneration over the past 

decades. The primary option in decreasing MI prevalence is their prevention by 

controlling the underlying risks. In patients suffering from hypertension, high levels of 

cholesterol, obesity, diabetes mellitus, and/or that are genetically prone to cardiac issues, 

it is essential that they take the proper medications and follow the right lifestyle to keep 

their conditions under control. Other options to treat cardiac diseases and prevent further 

damages include drug delivery, use of certain devices and surgery. Depending on the 

factor that caused the cardiac dysfunction, the treatment options can vary.  

Drug delivery is a method used to provide the required medications in the right 

dosage to treat certain conditions. Angiotensin-converting enzyme (ACE) inhibitor is one 

type of medication that can be used in cases of left ventricular systolic dysfunction or 

after the occurrence of acute MI to prevent or help manage heart failure
12

. However this 

medication has many side effects such as renal insufficiency and hypertension. It can be 

combined with diuretic drugs to control fluid accumulation in patients with congestive 

heart failure. A wider range of cardiovascular conditions can be treated with beta-blocker 

medications that can reduce and prevent further symptoms when inhibited in the right 

dosage. A few other examples of drugs used in cardiac dysfunctions are nitrates, anti-

thrombotic agents and nesiritide
12

.  

In cases of coronary artery disease, stents can be inserted to enlarge the blocked 

blood vessels. This procedure is known as angioplasty, but not always applicable in 
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vessels of smaller sizes. However, bypass surgery can be used as another treatment option 

by placing biological or synthetic vascular grafts in the damaged zone. This procedure 

has many limitations such as incompatibility issues
13

. Pacemakers are other devices that 

are used in cases of heart failure to normalize the heart rate and function. Although the 

placement of a pacemaker can cause dyssynchrony and further the damage, this can be 

resolved by using a bi-ventricular pacemaker. In cases of severe heart failure, the 

pacemakers are combined with defibrillators. However, they cannot be used within 40 

days of the occurrence of myocardial infarction
12

. Although pharmacological and surgical 

approaches contribute to improvements in cardiac output and functionality, they do not 

replace, restore or regenerate lost cells and tissue within the damaged or diseased region 

of the heart.  

Heart transplantation is the last option that can be used in cases of end-stage heart 

failure. If the previously discussed treatment options prove to be unsuccessful, the 

transplantation of a new heart is the only left choice. However, there are a few issues 

linked with this option. One is the problem of finding a heart donor and the main issue is 

the rejection of a new foreign heart by the patient. This has led to a significant death rate 

within the first year after surgery. Despite their clinical usage and relevance, the above-

mentioned treatment methods have many limitations; hence alternative strategies need to 

be developed for cardiac repair
12

.   

 

2.3. Tissue engineering approaches  

 

The goal of current tissue engineering approaches is to improve biocompatibilities 

of prosthetic devices and grafts, and to design and develop biomaterials and cell delivery 
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options for cardiac repair and regeneration. Numerous studies have been done so far in 

the areas of suitable scaffold development, cell transplantation and stem cell based 

therapies, which can be used for treatment of MI. When myocardial damage has 

occurred, the main concern is to prevent the infarcted zone from enlarging which could 

lead to heart failure. Figure 2.3 presents an overview of some techniques investigated for 

potential MI treatment. These tissue engineering approaches can be categorized into in 

vitro and in situ techniques. Cellular cardiomyoplasty is an in situ technique where cells 

are injected directly in the infarcted myocardium. This was the initial focus of research, 

which eventually was expanded to include cell culture, stem cell differentiation and 

scaffold development. These approaches were performed in vitro and then optimized for 

in situ delivery and implantation in the damaged myocardial area
10

.      

 

Figure 2.3 Three different treatment options for myocardial infarction. Polymer meshes 

sutured around the heart to (a) prevent further damage in the left ventricular (LV) (b) 

maintain the structure of LV. (c) Cultured cells on a biomaterial scaffold in vitro and 

implanted onto the epicardial surface (d) A biomaterial injected in situ (e) A scaffold 

injected in situ delivering cells, growth factors
10

. 
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 A study conducted by Kelly et al. was the first to place a poly(propylene) Marlex 

mesh in the infarcted zone in the left ventricular (LV) to prevent the enlargement of tissue 

damage
14

. This approach was expanded further to demonstrate that the reason this patch 

could restrain the infarction was due to the blocking of metalloproteinases (MMPs) from 

being activated in the surrounding areas by serving as a gate around the infarcted zone of 

the myocardium. However, this approach did not change the increased volume of LV 

during infarction and scar tissue formation. Another polyester mesh has been fabricated 

and used by many research groups as a cardiac support device (CSD). In contrary from 

the previous mesh, this CSD can be placed to support both ventricles. This method has 

been shown to reduce the levels of MMPs, cardiac hypertrophy and LV volume but result 

in right ventricular (RV) dysfunction. Despite their relative benefits, the drawbacks of 

these techniques include surgery for implantation, lack of repair and regeneration of the 

damaged tissue, and failure to improve cardiac function
10

.  

A possible better approach toward myocardial repair is the development of 3D 

biomimetic scaffolds suitable for cell attachment and survival. These scaffolds could be 

composed of various biodegradable materials; biological, synthetic or a combination of 

both.  

 

2.3.1. 2D  substrates 

 

In the 1980’s, significant research was done in understanding the role of the ECM 

proteins as cell seeding substrates that can be used in myocardial regeneration. Studies 

showed that cardiomyocytes could attach and proliferate on 2 dimensional (2D) 

substrates of collagen (type I, II, III, IV, and V), laminin and fibronectin. Adult 
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cardiomyocytes attachment was higher on laminin and collagen type IV, whereas 

neonatal cardiomyocytes attached better to fibronectin
5,15,16

. Since ECM proteins are part 

of the native cardiac tissue, they are naturally biocompatible and suitable as cell seeding 

scaffolds needed for myocardial regeneration. This is shown by Bird et al. by comparing 

cardiomyocyte attachment on several 2D substrates. They cultured the cells on plates 

coated with 0.1% gelatin, 4% Fetal bovine serum (FBS), ECM (collagen I, IV), matrigel, 

laminin and poly-L-lysine. Also they used uncoated plates as control. The results showed 

that laminin and collagen IV provided the highest cell attachment and maintaining their 

structure for adult cardiomyocytes. The cells cultured on uncoated plates completely lost 

their sarcomere organization
2
.    

To further understand the role of ECM proteins in myocardial repair. Boateng et 

al. studied the cell attachment of cardiomyocytes and cardiac fibroblasts on RGD (Arg-

Gly-Asp peptide
17) and YIGSR (peptide in β-chain of laminin) synthetic peptides versus 

fibronectin and laminin where they naturally occur. The results showed that these 

synthetic peptides provided the same cell attachment as fibronectin and laminin. However 

they could not support sarcomere formation without the presence of the native ECM 

proteins
18

. Although these substrates provide cell survival and are biocompatible, they do 

not provide long term regeneration and can cause more damage with time. Also these 

scaffolds are 2D and do not provide the best support for cell morphology and contractile 

properties. Hence, 3D scaffolds might be a better option
19

.  

 

2.3.2. 3D scaffolds     

 

Collagen is among the main proteins used in scaffolds preparation. Given that 
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collagen is a native protein of the cardiac tissue, it is tested in developing various 

scaffolds for cell culture
20

. Evans et al. created a 3D tubular scaffold composed of aligned 

collagen I fibers to study the development of cardiomyocytes. The cells aligned with the 

shape of the scaffold resembling neonatal phenotype and they expressed their contractile 

properties
21

. Collagen scaffold is proven to be a suitable environment for stem cell 

differentiation
20

. However, the 3D scaffolds need to be developed further to become more 

suitable for in vivo transplantation. They need to not only provide survival conditions for 

the cells but also enhance their cardiac morphology and withstand their mechanical load. 

Therefore, another tissue engineering approach for creating suitable scaffolds for 

myocardial repair is being developed by incorporating nanofiber polymers.          

Electrospun nano-fibers are being increasingly used to create scaffolds of 

biodegradable polymers, so as to mimic natural cardiac ECM features. This tissue 

engineering approach provides an essential opportunity of myocardial regeneration. Shin 

et al. cultured rat cardiomyocytes in vitro in a five layer scaffold composed of PCL 

nanofiber resembling an ECM structure. This scaffold was suspended on wire rings 

functioning as passive loads. The cells survived for 14 days and expressed cardiac 

properties. They started beating upon 3 days of seeding, gained synchronization and 

expressed cardiac proteins (α-myosin heavy chain, troponin I and connexin 43). 

However, the cardiomyocytes seeded in the innermost layers in this PCL mesh do not 

have the same access to fresh growth medium and might not have survived. Another 

limitation of this study is that the thickness of suspended wire ring is not appropriate for 

clinical applications
7
. In separate studies, it has been shown that the coating of PCL 

nanofibers with collagen can improve cell attachment and proliferation. A study 
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conducted by Zhang et al. compared two 3D scaffolds made of collagen and PCL 

nanofibers using two different techniques. The first was a composite of PCL fibers coated 

individually with collagen (Collagen-r-PCL) using a coaxial electrospun technique. The 

other scaffold was regular electrospun PCL fibers coated with collagen (collagen-coated 

PCL). Collagen-r-PCL showed a significant higher percentage of cell (fibroblasts) 

proliferation in in vitro culturing. However the limitation of this study is that the pore size 

of the Collagen-r-PCL scaffold might affect cell migration
6
.  

The use of collagen in coating nanofiber composites (poly-lactide-co-ε-

caprolactone) has resulted in increase of cell attachment and proliferation as well
19

. On 

the other hand, the uncoated nanofiber composites do not support cell attachment, 

according to Zong et al. They conducted a study using scaffolds composed of poly-L-

lactide (PLLA), polyglycolide-based (PLGA) and a composite of PLLA, PLGA and 

polyethylene glycol (PEG). Rat cardiomyocytes cultured in vitro on these scaffolds 

expressed a better attachment and proliferation in the PLLA scaffold compared to the 

composite ones
22

. Many other polymers were used and tested in vitro and in vivo but they 

have encountered biological (necrosis) and mechanical issues (stiffness, mechanical 

unstable) mostly in vivo
19

. However, an improvement is seen when using aligned 

nanofibers in developing a scaffold. They provide better mechanical properties and better 

resemble the native cardiac ECM. Kai et al. cultured cardiomyocytes on non-aligned PCL 

nanofibers, aligned ones, random PCL/gelatin (PG) nanofibers and aligned ones. The 

study showed that aligned PG fibers favored cell attachment and their alignment. 

However, for long term repair of the myocardium the scaffold should be composed of the 

natural ECM molecules
3
. Hence, the 3D architecture of cardiomyocytes and the 
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surrounding ECM needs to be deeply understood.  

 

2.3.3. In vivo studies 

 

Many in vivo tests have been done to investigate the outcomes of various 

scaffolds in myocardial repair. Gelatin and alginate were used in scaffolds seeded with 

cardiomyocytes and implanted in the MI area. The studies showed that the cells survived 

and cardiac function was improved to a certain level
10

. However, the scaffolds should 

mimic the natural cardiac environment in porosity, pore size, alignment, texture, 

composition, etc. to provide the necessary support for cardiomyocytes and long term 

cardiac function improvement. Fibrin sealant (a mixture of blood derived adhesives 

mainly fibrin and thrombin,
23

) is a hydrogel that has been injected directly in the 

infarcted area of the myocardium containing bone marrow cells and proved to increase 

vascular formation in the damaged tissue
24

. Similar results were gained from injecting 

matrigel directly to the tissue
19

. Alginate gel is another injectable material that was tested 

in vivo and showed cardiac improvement
25

. These materials help maintain shape of the 

myocardium, induce angiogenesis (neocapillary formation) and deliver cells or growth 

factors. Additional hydrogels that have similar properties in cardiac tissue repair are 

collagen, fibrinogen, gelatin, chitosan, hyaluronic acid to name a few
19

. Poly(ethylene) 

glycol (PEG) can be a suitable hydrogel for myocardium regeneration due to its 

viscoelastic properties and the fact that its physical and mechanical properties can be 

easily adopted during its polymerization. Dobner et al. performed an in vivo study using 

PEG hydrogel immediately following MI. This hydrogel provided myocardial remodeling 

initially but it did not provide long term repair
26,27

.  



 

16 

 

Many other in vivo studies tested different hydrogels for their ability to help repair 

the infarcted myocardium. Zimmerman et al. cultured cardiomyocytes within a 3D gel 

composed of collagen type I, matrigel and growth medium of 1-4 mm thickness. This 

scaffold was transplanted in the rat heart and performed contractions up to 18 days by 

improving the cardiac function. However the drawback of this study is that this 

engineered heart tissue experienced a decrease in thickness due to probably necrosis 

being developed within the artificial tissue
10,28

. The 3D scaffolds need to be developed 

further to become more suitable for in vivo transplantation. They need to not only provide 

survival conditions for the cells but also enhance their cardiac morphology and withstand 

their mechanical load.       

Despite the wealth of information obtained from such studies, there is a 

significant dearth of data in the field of cardiac tissue engineering, specifically on the role 

of microenvironment on ECM protein synthesis and deposition by cardiomyocytes. How 

do the scaffold properties and characteristics influence matrix production by 

cardiomyocytes? What is the composition of the proteins deposited? Are any 

inflammatory and matrix-degrading enzymes released by cardiomyocytes? Obtaining 

information on these questions is not only crucial to understand cardiomyocyte biology in 

vivo, but also to develop tissue engineering and regenerative medicine based approaches 

to successfully integrate implanted cardiomyocytes with the native tissue.  

 

 

2.4 Myocardial extracellular matrix 

 

Cardiomyocytes compose 70-75% of the myocardium volume and are embedded 
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in a 3D ECM network of macromolecules. The macromolecules of this matrix are 

categorized into sarcomeric proteins, collagenous, glycoproteins, and GAGs. The 

sarcomeric proteins (actin, actinin, desmin, and filamin) are synthesized within the 

sarcomeres (basic unit of myocytes) that are linked to the subcellular structures via the 

help of other proteins such as fibronectin. Fibronectin is a glycoprotein similar to laminin 

and has been shown to improve cell attachment. The ECM proteins are essential in 

maintaining myocardial structure by providing mechanical support and tensile strength to 

the tissue
14,15,29-31

. Figure 2.4 shows the structure of the main ECM proteins, collagens, 

laminin and fibronectin present in the cardiac tissue.  

 

                                      

 

Figure 2.4 The architecture of the main proteins found in the cardiac tissue
31

. 
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Collagens  

 

The major and most abundant protein in ECM is collagen which plays an 

important role in providing structure, support and tensile strength in the ECM and blood 

vessels. Collagen is presented in many different forms in the cardiac matrix where type I 

comprises 80% of the total collagen. Type III accounts for 12% and the remaining of the 

collagen volume constitutes of types IV, V, and VI. The collagens have a triple helix 

structure constructed with α-chains. The various combinations of the α-chains result in 

the different collagen types. For instance, collagen I is composed of two α-1 chains and 

one α-2 chain. The triple helix structure of collagen is held stable by the bonds that the 

hydroxylated amino acids of proline and lysine (hydroxyproline and hydroxylysine) 

form. Collagen I, III and V are fibrillar proteins forming collagenous aggregates to create 

collagen fibers. These proteins are found throughout the tissue providing structure and 

connecting cardiomyocytes together and to other tissue components such as fibroblasts 

and blood vessels. In the cardiac tissue collagen I and III is synthesized by fibroblasts 

whereas collagen IV is synthesized by cardiomyocytes. Collagen IV is found abundantly 

in the basement membrane of cardiomyocytes and is oriented perpendicular to the other 

collagen fibers resulting in a flexible matrix supporting network
29-34

.  

 

Glycoproteins 

 

Glycoproteins are a crucial part of the ECM. They regulate cell function, help in 

cell migration, attachment and proliferation. Fibronectin and laminin are two main 

glycoproteins that been shown to provide great attachment for cardiomyocytes
14,15,32

.    
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Fibronectin is a major ECM molecule with a high molecular weight. As shown in 

Figure 2.5 A, fibronectin is a dimer composed of two polypeptide chains. This molecule 

contains multiple binding sites; it binds to integrins on cellular surfaces and other matrix 

molecules such as collagen and heparin. Additionally, fibronectin is present in the ECM 

in the form of fibrils which are formed on cell surfaces. Fibronectin has a role in cell 

organization and regulating cell function
30,32,35

. It is found in abundance in the cardiac 

tissue in the endomysium
31

 and it is synthesized in the myocardium by fibroblasts 

following MI
34

.        

Another glycoprotein, fibrillin has similar properties with fibronectin. Fibrillin is 

the major component of microfibrils and can bind to integrins and other matrix 

macromolecules (proteoglycans). The main component of this glycoprotein is cystine and 

three isoforms are known up to date. An important role of fibrillin is that it mediates the 

assembly of elastic fibers
36

.         

Laminin is another major glycoprotein that is essential in ECM. Specifically, this 

protein is found in the basal laminae of the ECM associated with collagen IV. The 

molecule of laminin is built by the combination of three polypeptides (α, β and γ; Figure 

2.5 B) resulting in a large number of laminin isoforms. Additionally, laminin has the 

ability to self-assemble. Similar to fibronectin, this protein has many binding sites for cell 

surface molecules and other matrix components such as perlecan (heparan sulfated 

proteoglycan) and nidogen. Thus, laminin plays a role in cell organization as well
31,32

.        
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Figure 2.5 Structure of ECM molecules. (A) Fibronectin dimer; polypeptides linked by 

disulfide bonds. (B) Laminin composed of three different polypeptides chains linked by 

disulfide bonds. (C) Sulfated repeating disaccharide unit of GAGs. (D) Non-sulfated 

GAG disaccharide unit
32

. (E) Elastic fiber assembly: (1) tropoelastin cross-linked by 

LOX to form elastin polymer, (2) elastin polymer on the cell surface, (3) elastin polymers 

transferred to microfibrils through integrins, (4) larger elastin polymer formation, (5) 

Elastin polymer cross-linked by LOX to form final elastin protein
36

.  

                  

(A) (B) 

(C) (D) 

(E) 
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Glycosaminoglycans 

 

Glycosaminoglycans (GAGs) are anionic polysaccharides present in the ECM. 

They are hydrophilic chains with many disaccharide units. GAGs are divided in two main 

groups, sulfates GAGs (sGAGs) and non-sulfated GAGs, depending on whether one of 

the sugars is sulfated or not. GAGs are further categorized in four groups; hyaluronan, 

chondroitin sulfate, heparan sulfate, and keratan sulfate, based on the type of sugars, 

sulfate groups, and their bonding. Figure 2.5 C shows a structure comparison between 

sulfated and non-sulfated GAGs. The hyaluronan GAGs known as hyaluronic acid (HA) 

lack the sulfated sugar in its disaccharide unit as seen in Figure 2.5 D. 

     The hydrophilic property of GAGs causes them to expand in the form of gels and 

hence occupy a larger volume. This property is beneficial is resisting compressive forces 

in the myocardial ECM. Another property of GAGs is to covalently bond to other 

proteins forming a structure known as proteoglycans, except of HA. Furthermore, GAGs 

play an important role in regulating growth factor signaling activities or serving as co-

receptors
30,32,37

.   

 

Elastin  

 

Elastin is an essential ECM protein which confers elastic properties to blood 

vessels, among other functions. This protein is composed of cross-linked soluble 

monomers (tropoelastin) forming an insoluble protein mediated by the enzyme lysyl 

oxidase (LOX) (Figure 2.5 E). Elastin is assembled into fibers in the muscle tissue with 

the assistance of microfibrils, mainly fibrillin. Elastin is majorly synthesized during the 



 

22 

 

neonatal developing stages and a significant decrease is noticed in adult stages. This 

protein is very important in regulating blood flow due to the elasticity it provides in blood 

vessels bearing the mechanical pressure during cardiac cycle. It is shown that elastin 

regulates vascular smooth muscle cell proliferation and morphology in damaged cardiac 

tissue and prevents their deformation with the help of collagen. Hence, in cases of 

myocardial infarction the up regulation of elastin is needed to retain shape
36, 38,-40

.     

           

Matrix metalloproteinases and their inhibitors 

 

 Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that 

degrade ECM proteins such as collagen, laminin and fibronectin. They are upregulated in 

the myocardium during an infarction. Their expression is increased after cardiomyocyte 

death to provide room for inflammatory cells. MMPs (1, 2, 3, 8, 9, and 13) degrade the 

ECM and the elevated collagen production by breaking down collagen cross-links. 

Furthermore, the synthesis of tissue inhibitors of metalloproteinases (TIMPs) is increased 

to protect the surrounding non-damaged tissue. These protease-specific TIMPs bind to 

the activated proteases during the inflammatory phase. However, during scar tissue   

formation MMP-9 and TIMPs are decreased drastically
32,34

. 

.    
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CHAPTER III 

 

MATERIALS AND METHODS 

 

 

3.1 Scaffold preparation  

 

3D hydrogel scaffolds 

 

Six types of 3D hydrogel scaffolds with various compositions were prepared to 

evaluate the production and synthesis of ECM proteins by cardiomyocytes, as shown in 

Study I of Table3.1 below. Rat-tail derived type-I collagen (3.84 mg/ml; BD Biosciences, 

Bedford, MA) was mixed with the appropriate volume of sterile 10 PBS, DI water and 1 

N NaOH according to established protocols, to create collagen-I gels with concentrations 

of 1.2 mg/ml, 2 mg/ml and 3 mg/ml as detailed below. 

To prepare 10 ml of 1.2 mg/ml collagen I, 3.125 ml of collagen I with initial 

concentration of 3.84 mg/ml was mixed with 1 ml 10 PBS, 71.9 µl of 1N NaOH and 5.8 

ml DI water. To prepare 10 ml of 2 mg/ml collagen I, 5.2 ml of collagen I with initial 

concentration of 3.84 mg/ml was mixed with 1 ml 10 PBS, 119.6 µl of 1N NaOH and 

3.68 ml DI water. To prepare 10 ml of 3 mg/ml collagen I, 7.8125 ml of collagen I with 
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initial concentration of 3.84 mg/ml was mixed with 1 ml 10 PBS, 179.7 µl of 1N NaOH 

and 1 ml DI water.  

Collagen-I at 2 mg/ml concentration was mixed with 5% type-IV collagen (0.3 

mg/ml; human-derived; Sigma-Aldrich, St. Louis, MO), 5% laminin (1 mg/ml; mouse-

derived; Sigma-Aldrich) or 5% fibronectin (1 MG; Sigma-Aldrich) to prepare respective 

gels identified in Table 3.1 as detailed below. To prepare collagen-I with 5% type-IV 

collagen, 5 ml of collagen-I 2 mg/ml was mixed with 833 µl collagen-IV. To prepare 

collagen-I with 5% laminin, 5 ml of collagen-I 2 mg/ml was mixed with 250 µl laminin. 

To prepare collagen-I with 5% fibronectin, 5 ml of collagen-I 2 mg/ml was mixed with 

250 µl fibronectin.  

 

    Table 3.1 Scaffold compositions with respective notations. 
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Protein-coated PCL nanofiber scaffolds  

 

Aligned polycaprolactone (PCL) nanofiber matrices (Nanofiber Solutions, 

Columbus, OH) were coated with ECM proteins such as collagen-I, collagen-IV, laminin 

and fibronectin. Non-coated fibers served as controls. Fiber matrices (fiber diameter ~ 

700 nm; scaffold thickness ~ 20 microns) were placed within 24-well plates prior to 

coating with ECM proteins. Collagen-I and laminin solutions were prepared at 50 µg/ml 

concentration each in 0.02 N acetic acid and DI water, respectively. Collagen-IV and 

fibronectin were mixed with DI water each for a final concentration of 0.005% and 10 

µg/ml, respectively. Collagen-I solution was added to the PCL nanofiber matrices (Study 

II in Table 3.1) and incubated at 37 ºC for 1 h. After incubation, the solution was 

aspirated and wells were washed with DI water. Similarly, collagen-IV, laminin and 

fibronectin were added on the respective wells, left overnight at room temperature (RT), 

washed with 1 PBS, and stored. 

 

 3.2 Rat cardiomyocytes culture  

 

            Neonatal rat ventricular cardiomyocytes (R-CM) (4.0  10
6
) were purchased from 

Lonza (Walkersville, MD) and cultured using the supplied medium (RCGM Bulletkit + 

5-bromo-2'-deoxyuridine) in accordance with the provided protocol. The growth medium 

kit consisted of rat cardiomyocytes basal medium (RCBM), fetal bovine serum, horse 

serum, and gentamicin/amphotericin-B antibiotic, which were mixed and sterile-filtered. 

5-bromo-2'-deoxyuridine (BrdU) stock solution was reconstituted in 1 ml of basal 

medium (40 mM) and sterile-filtered. The thawed cells were gently transferred from the 

cryovial into a 15 ml sterile tube, and 2 ml of pre-warmed R-CM media was added 
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immediately drop-wise onto the cells while rotating the tube. A 10μl aliquot of the cell 

suspension was mixed with an equal volume of Trypan Blue and the viable cells were 

counted using a hemocytometer.  

 

Cell culture on 3D hydrogel scaffolds 

 

            R-CM were seeded within two different sets of scaffolds as explained in Table 1: 

collagen based hydrogels and protein-coated PCL nanofiber scaffolds. Cardiomyocytes 

were seeded within hydrogels at a density of ~ 26,000 cells/ well in 48-well culture plates 

(Greiner Bio One, Monroe, NC). The gel-laden plates were incubated at 37 ºC for 30 min 

to allow for gel polymerization. Similarly, cells were seeded on protein-coated nanofiber 

plates at the same seeding density and allowed to attach. In both the cases, four hours 

after seeding, media was changed with fresh media. For every scaffold type listed in 

Table 1, at least n = 6 wells were cultured to perform each assay detailed in section 2.3. 

Cell cultures were performed for 21 days with media changed every three days. The 

pooled media was collected and stored at – 20 °C for biochemical assay analysis. At the 

end of 21 days, the cell matrices were detached from respective wells by incubating them 

with 1 trypsin-EDTA and processed for further analysis. 

 

3.3 Live/Dead Viability/Cytotoxicity assay 

 

 

The Live/Dead Viability/Cytotoxicity Kit was purchased from Life Technologies 

(Grand Island, NY) to perform the viability assay for R-CM survival rate. Initially, the 2 

mM EthD-1 stock solution (Component B) was mixed with 1 PBS to create a 4 μM 

EthD-1 solution. This solution was mixed with 4 mM calcein AM stock solution 
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(Component A) at a 2:1 ratio in accordance with the provided protocol. This EthD1 + 

calcein AM solution was vortexed to provide a thorough mixture. At the end of 21 days, 

the media was carefully removed from the R-CM cultures (n = 3/hydrogel) and washed 

with 1 PBS. Furthermore, they were incubated at 37ºC, 5% CO2 with the EthD-1 + 

calcein AM solution. The number of living cells was quantified to achieve the total cell 

count and survival rate of R-CM, using Zeiss Axiovert A1 florescence microscope.   

 

3.4 Biochemical analysis 

 

 

            To characterize the ECM synthesized by the cardiomyocytes, several assays 

described in the following subsections were performed. These assay were conducted on 

cell matrix samples (n = 3 for each scaffold) and pooled media samples (n = 3 per case) 

from hydrogels and PCL nanofiber scaffolds (n = 3 for each case). At the end of the 21 

day culture, the cell matrices were detached from respective wells by incubating them 

with Trypsin 1 for 8-10 minutes. The cell suspensions were transferred to 2 ml 

microcentrifuge tubes and centrifuged gently at 2800-3000 rpm for 10-12 minutes. The 

supernatant was discarded and the pellet was resuspended in 100-300 μl 1 PBS, 

depending on the assay, and stored in -20 °C for further biochemical processing. The 

spent media was collected from each well over the 21 day culture period and stored at -20 

°C. These pooled media was aliquoted in 2 ml centrifuge tubes and centrifuged at 12000 

rpm for 15 min. The supernatant was discarded and the pellet was homogeneously 

suspended in 100-300 µl 1 PBS. The samples were stored in -20 °C until further use.         
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BCA assay for total protein synthesis  

 

The total amount of protein synthesized by R-CM was quantified using Pierce 

BCA Protein Assay kit (Thermo Scientific, Rockford, IL). The cell matrix and pooled 

media samples stored at -20 °C, were thawed and 25 µl of each sample were pipetted in a 

96-well plate (Greiner Bio One, Monroe, NC). Standards of 25 µg/ml, 125 µg/ml, 250 

µg/ml, 500 µg/ml, 750 µg/ml, 1000 µg/ml, 1500 µg/ml and 2000 µg/ml were prepared 

according to the provided protocol and pipetted in the 96-well plate. Additionally, 200 µl 

of BCA working solution (WR) was added to each well and mixed on a mechanical 

shaker for 30 sec. This BCA WR contains bicinchoninic acid (BCA) which contributes in 

the colorimetric capture of Cu
1+ 

reduced from Cu
2+ 

by the total protein present in the 

sample. Furthermore, the microplate was incubated at 37 °C for 30 min and cooled at RT 

measuring the absorbance at 562 nm on an Epoch
TM

 microplate spectrophotometer (Bio-

Tek, Winooski, VT). The amount of protein measured was normalized to the total count 

of attached and survived cells. 

 

sGAG assay 

 

The sGAG Assay (Kamiya Biomedical Company, Seattle, WA) was used to 

quantify the amount of sulfated glycosaminoglycans deposited in the cell matrix and the 

pooled media under the various culture cases. A volume of 50 µl in duplicate of 

standards, blanks, controls, and samples was diluted with 50 µl of 8M Guanidine-HCl 

(GuHCl) and incubated for 15 min at RT. A diluent composed of 0.3% H2SO4 and 0.75% 

Triton X-100 (SAT) was added to each vial (50µl), mixed and incubated at RT for 15 

min. Furthermore, 750 µl of Alcian Blue working solution was used in each vial to allow 
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the dye Alcian blue at a low pH, to bind to the sGAGs. The vials were incubated 

overnight at 4°C and the following day they were centrifuged at 12000g for 15 min. The 

supernatant was carefully removed using a syringe and the pellet was suspended in      

500 µl DMSO solution and mixed on a mechanical shaker for 15 minutes. The 

centrifugation was repeated at 12000 g for 15 minutes and the supernatant was discarded. 

Finally, 500 µl of Gu-Prop (4M GuHCl + 33% 1-propanol + 0.25% Triton X-100) was 

used to dissolve the pellet. The samples were loaded on a 96-well plate and the 

absorbance was read at 620 nm using the microplate spectrophotometer. The data were 

normalized to the corresponding total cell counts. 

 

Hyaluronic acid assay 

 

The amount of hyaluronic acid (HA) synthesized in the cell matrix as well as 

released in the pooled media was quantified using HA-ELISA kit (Echelon, Salt Lake 

City, UT). This assay is based on the quantitative enzyme-linked immunoassay technique 

where HA binds to a specific enzyme-linked antibody. A volume of 100 µl samples and 

standards were pipetted in the provided 96-well incubation plate. The same amount of 1 

HA diluent was pipetted serving as a zero HA control, whereas 150 µl of diluent was used 

as a blank control. The diluted HA Working Detector (50 µl) was added to all wells 

except the blank ones. The plate was gently mixed and incubated for an hour at 37 °C. 

After incubation, 100 µl solution was transferred from each well to corresponding wells 

in the pre-coated HA detection plate. The plate was incubated for 30 min at 4 °C. 

Following incubation, the plate was washed four times with 1 wash concentrate and it 

was inverted on absorbent paper to assure total removal of the wash concentrate. An 
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amount of 100 µl of working enzyme was added to each well, mixed by gently tapping on 

the plate and incubated for 30 min at 37 °C. The washing procedure was repeated after 

incubation and 100 µl of working substrate solution was added to each well. The 

detection plate was incubated in dark at RT for 15 min and the absorbance was measured 

at 405 nm every 15 min until the ratio between the zero HA control and 1600 ng/ml HA 

standard is higher than 3. This ratio indicates that incubation is complete and stop 

solution is added to each well. The data were normalized the respective cell counts. 

 

Fastin elastin assay 

 

The amount of tropoelastin produced in cell matrix and in pooled media, was 

quantified using Fastin Elastin Assay (Accurate Scientific Corp, Westbury, NY, USA). 

The samples stored at -20 °C were thawed and processed further to convert the insoluble 

elastin into soluble α-elastin form. Therefore the samples were heated at approximately 

100 ºC with 1 M oxalic acid for 1 h. The samples were transferred to 2 ml 

microcentrifuge tubes and an equal volume of elastin precipitating reagent was added. 

Additionally, a 1:1 ratio of elastin precipitating reagent was added in blanks and 

standards (12.5 µl, 25 µl, and 50 µl). All samples and standards were run in duplicate and 

in accordance to the Fastin elastin assay protocol. Further, each tube was vortexed and for 

15 min the reagent was allowed to help precipitate the elastin. The tubes were centrifuged 

at 10,000g for 10 min and the supernatant was discarded. The elastin precipitate was 

suspended in 1 ml dye reagent and homogeneously mixed. The dye reagent was left to 

bind to elastin for a period of 90 min on a mechanical shaker. Following this process, the 

tubes were centrifuged at 10,000g for 10 minutes and the supernatant was discarded. Dye 
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dissociation reagent (250 µl) was added to each tube and the pellet was dispersed by 

vortexing twice with a 10 minutes interval. Finally, the volume of each tube was 

transferred in a 96-well microplate and the absorbance was measured at 513 nm with the 

microplate spectrophotometer. The data were normalized to the total cell counts.  

 

LOX functional activity  

 

The activity of LOX in the cell matrix and pooled media was quantified with 

Amplex® Red Hydrogen Peroxide/Peroxidase assay kit (Molecular Probes, Eugene, OR).  

The thawed samples and prepared standards (0, 2, 4, 6, 8, and 10 µM) were pipetted (50 

µl) in a 96-well microplate and the same volume of 50 µl of working solution (100 µM 

Amplex Red reagent, 1:2, 0.2 U/ml Horseradish peroxidase) was added to each well. The 

microplate was incubated in the dark at RT for 30 minutes. During the incubation period 

the working solution complex reacted with hydrogen peroxide (H2O2) released when 

LOX oxidatively deaminates alkyl monoamines and diamines. Following incubation, the 

absorbance of this enzyme activity was measured at 560 nm and final data were 

normalized according to the corresponding cell counts. 

 

Quantification of MMP-2 and TIMP-1 

 

The amount of MMP-2 and TIMP-1 released by R-CM in the spent collected 

media was determined using MMP-2 ELISA and TIMP-1 ELISA assay, respectively 

(Boster Biological Technology Co., Fremont, CA). The same provided protocol 

procedure was followed in both assays. Initially, the samples were diluted 2:1 with 

provided diluent buffer. Further, 100 µl of each sample was pipetted in the corresponding 
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MMP-2 and TIMP-1 specific antibody pre-coated 96-well plates. The respective 

standards were pipetted (100 µl) in the respective plates as well. The microplates were 

covered and incubated at 37 °C for 90 min. Following incubation process, the content 

was removed and they were carefully blotted on absorbent paper without allowing the 

wells to dry. The incubation step was repeated with biotinylated anti-rat MMP-2 and 

biotinylated anti-rat TIMP-1 antibody working solutions (100 µl per well) at 37 °C for an 

hour. The solution was discarded from each plate and the plates were washed three times 

with 1 PBS. The plates were incubated with 1 Avidin-Biotin-Peroxidase Complex 

(ABC) (100 µl/well) for 30 min at RT followed by washing with 1 PBS five times to 

assure the total removal of any residues. TBM color developing agent was added, 90 µl 

per well and the plates were incubated at 37 °C for 25-30 minutes before the reaction was 

terminated with 100 µl of TMB stop solution in each well. The absorbance was 

determined at 450 nm and the sample data were normalized to the total cell count. 

 

Quantification of MMP-9 

 

MMP-9 ELISA assay (R&D Systems, Minneapolis, MN) was used to quantify the 

amount of this metalloproteinase that R-CM released in spent pooled media. This assay is 

based on the quantitative enzyme-linked immunoassay method where the MMP-9 binds 

to a specific monoclonal antibody and a specific enzyme-linked polyclonal antibody, the 

same technique followed by the previously presented MMP-2 and TIMP-1 assays. 

Initially, 50 µl of diluent RD1-34 was pipetted to each well in the provided pre-coated 

96-well plate. The same volume of standards and samples was added to the 

corresponding wells and the covered plate was incubated for two hours at RT. Further, the 
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wells were washed with wash buffer five times and 100 µl of MMP-9 conjugate was 

added to each well. The plate was incubated at RT for another two hours and the washing 

step was repeated after incubation. Substrate solution was added, 100 µl per well, and the 

plate was incubated in the dark at RT for a shorter time of 30 min. Finally, 100 µl of stop 

solution was pipetted to each well and the absorbance was measured at 450 nm and 570 

nm. The second values were subtracted from the first ones according to the protocol and 

the final data was normalized to the total R-CM count.     

 

3.5 Immunofluorescence analysis   

 

Immunofluorescence labeling was performed to qualitatively identify the presence 

of elastin, laminin, α-actinin, fibrillin and LOX in the cell matrix (Table 3.2). At the end 

of 21 days the culture wells were washed with 1 PBS and fixed in ice cold 4% 

paraformaldehyde (PFA) for 10 minutes (n = 2 per case). The PFA solution was removed 

and the cultures were washed with ice cold 1 PBS for 5 minutes. They were incubated 

with blocking agent [0.1% Triton-X, 5% goat serum (Sigma-Aldrich), 1X PBS] at RT for 

20 minutes. Primary antibody solutions (1% antibody in 1X PBS, 5% goat serum, 0.1% 

Triton-X) were added directly to the respective cultures that were incubated overnight at 

4 ºC. The culture plates were kept on a mechanical shaker to assure complete antibody 

binding. Primary antibody solutions were removed and culture wells were washed 3 

times with 1 PBS, 5 min per time. Secondary antibody (Table 3.2) solutions (0.4% 

antibody in 1 PBS, 5% goat serum, 0.1% Triton-X) were added and cultures were 

incubated for 20 min in dark at RT. Cultures were washed following the procedure 

mentioned above. At last, 4’,6- diamino-2-phenylindole dihydrochloride (DAPI; Sigma-
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Aldrich) was added to stain the cell nuclei. After removing the DAPI, 1X PBS was added 

to the cell cultures to preserve them while performing florescence imaging using the 

Zeiss Axiovert A1 florescence microscope.   

 

            Table 3.2 Summary of antibodies used for immunofluorescence analysis. 

Primary antibody Host Clonality Concentration 

(v/v) 

Alpha-actinin Rabbit Polyclonal  1;100 

Elastin  Rabbit Polyclonal  1;100 

LOX Rabbit Polyclonal  1;100 

ELR Rabbit Polyclonal  1;100 

Fibrillin Rabbit Polyclonal  1;100 

Primary antibody Host Clonality Concentration 

(v/v) 

Goat anti-Rabbit Goat Polyclonal  1;250 

 

 

 

3.6 Scanning electron microscopy 

 

To visualize the structure of cardiomyocytes alignment along the nanofibers, the 

five cases of nanofiber coated scaffolds were imaged using a scanning electron 

microscopy (SEM). The nanofiber coated layers with attached cells were cut out and 

passed through a graded series of ethanol concentrations to dehydrate the cell matrix. The 

initial ethanol concentration used was 50% and it was increased by 10% up to the final 

concentration of 100%. In each dehydration step, the samples were soaked in ethanol for 

10 minutes. Furthermore, samples were allowed to air dry for 30 minutes and were 

mounted on carbon tape and placed in Sputter machine (SPI sputter model 13131) where 
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they were coated in gold for 2 min. Samples were then imaged in the SEM (Amray 1820 

using a IXRF 500 digital processor) using 10 KeV electron source at 500 and 1250 

magnification.   

 

3.7 Contractile properties of R-CM in PCL nanofiber scaffolds 

 

The ability of R-CM to express their contractile properties was quantified in all 

five various PCL nanofiber scaffolds. Videos of contracting cells were recorded using the 

florescence microscope and Apowersoft Free Screen Recorder. The data was processed to 

quantify the number of beating cells, as well as their frequency across the five different 

cases.   

 

3.8 Statistical analysis 

 

All biochemical data obtained were analyzed using Sigmaplot and with the 

appropriate functions in MS Excel. Statistical significance values between experimental 

conditions were analyzed using Student’s t-test and one-way ANOVA. Variance between 

data was considered significant at p < 0.05.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 

This chapter will present the data obtained from both sets of experiments. As 

described in Chapter III, neonatal rat cardiomyocytes were cultured in vitro for 21 days in 

six different 3D hydrogel scaffolds (CI-1.2, CI-2, CI-3, CI + CIV, CI + Lam, CI + Fib), as 

well as in five different aligned PCL nanofibers coated with the ECM proteins (collagen 

I, collagen IV, laminin, fibronectin) including an uncoated PCL nanofiber plate as control. 

Cell survival rate and ECM synthesis were analyzed both quantitatively and qualitatively 

and are presented in the following sections.  

 

4.1 Hydrogel scaffolds 

  

4.1.1 Live/Dead Viability/Cytotoxicity assay 

 

The viability assay was performed at the end of the 21 day culture period of the rat 

cardiomyocytes. The data for live cell counts are shown in Figure 4.1. Among the three 

concentrations of collagen I tested, 2 mg/ml hydrogel provided the highest survival rate 
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(91±4%), compared to the other two cases. Collagen hydrogels support most of the  

cardiomyocytes to survive and allow them to form a 3D network within the hydrogels 

[41]. Increasing collagen I concentration to 3 mg/ml significantly decreased 

cardiomyocyte survival rate (72%; p < 0.01 for 3 mg/ml vs. 2 mg/ml; p < 0.01 for 3 

mg/ml vs. 1 mg/ml). However, no statistically significant difference in cell survival was 

noticed between 2 mg/ml and 1 mg/ml cases. Likewise, a low cell survival rate (77±4%) 

was seen in 2 mg/ml collagen I scaffolds, mixed with collagen IV. While coating 2mg/ml 

collagen I scaffolds with fibronectin promoted significantly higher cell survival rate 

(88±4%) compared to collagen-IV and laminin-coated scaffolds (p< 0.01 in both the 

cases), no significant differences were noted between collagen-IV and laminin coated 

cases.  Similar effects of fibronectin and laminin 2D substrates on embryonic and 

neonatal cardiomyocyte survival, was reported by Evans at al. Fibronectin 2D substrates, 

collagen I 2D substrates and collagen 3D scaffolds provided over 85% cell survival rate, 

whereas laminin allowed for approximately 55% cell survival
21

. Taken together, these 

results suggest that: 

 collagen concentration plays an important role in cardiomyocyte survival, with 

higher concentration resulting in more stiffness and less porosity, thereby 

decreasing cell survival. An increase in collagen concentration accounts for a 

higher mechanical stiffness (G*)
42

,  and 

 Coating 2 mg/ml collagen scaffolds with ECM proteins may not benefit 

cardiomyocyte survival beyond that offered by un-coated scaffold (e.g., 

fibronectin), and in fact might be detrimental to cell survival (e.g., laminin, 

collagen-IV). However, the reasons for this behavior are not clear at this stage and 
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needs further investigation. 

 

   
 Figure 4.1 The percentage survival rate of rat cardiomyocytes at the end of 21 day 

culture, obtained from Live/Dead Viability assay (n=2). Data was shown as mean ± 

standard error.  

 

 

As shown in previous studies, collagen hydrogels support the majority of seeded 

cardiomyocytes to survive and allow them to form a 3D network within the gels
41

. 

However a higher concentration gel causes a decrease in cell survival
42

. This is due to an 

increase in collagen concentration accounting for a higher mechanical stiffness (G*)
43

.    

 

 

4.1.2 Biochemical analysis  

 

Total protein synthesis and deposition 

 

The total amount of protein synthesized by cardiomyocytes is divided into two 

parts: that deposited within the cell layers in the matrix, and that released in the pooled 

* 
* 

* 
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media (Figure 4.2 A). The results obtained from the BCA assay, were normalized to the 

total cell count obtained from the viability assay. Data suggests that among the three 

different collagen concentrations tested, cardiomyocytes cultured within Cl-2 hydrogel 

released the lowest amount of protein in pooled media (p < 0.001 vs. other two cases). 

However, cells within this scaffold promoted significantly higher amounts of protein 

deposition within cell matrix compared to the other two cases (p < 0.001). Interestingly, 

changing the collagen concentration to 1 or 3 mg/ml, significantly increased the protein 

content collected in the pooled media (1.68- and 1.54 –fold respectively, compared to CI-

2). However, these increases in protein release in pooled media could not be translated 

into gains in matrix deposition. It was noticed that altering the hydrogel stiffness 

significantly decreased the amount of protein deposited in the cell matrix (Fig. 4.2 A). 

Mixing the CI-2 scaffolds with collagen-IV or laminin significantly increased the protein 

synthesis and release into pooled media (p < 0.001 in both the cases compared to CI-2), 

while fibronectin coating did not elicit significant changes (p > 0.1 vs. CI-2). However, 

adding laminin significantly reduced protein deposition within cell matrix (p < 0.01 vs. 

CI-2) to levels noticed in CI-1.2 or CI-3 scaffolds. The protein deposition into matrix 

within fibronectin-mixed scaffolds was the lowest of all the cases (p < 0.01 vs. all the 

other cases), while that in collagen-IV mixed scaffolds was comparable to that in CI-2. 

Taken together, results suggest that collagen concentration (and therefore stiffness) and 

protein addition stimulate varied levels of protein synthesis from rat cardiomyocytes, 

with CI-3 and CI+CIV offering the optimal conditions for higher amounts of protein 

synthesis. 
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Figure 4.2 Protein syntheses by rat cardiomyocytes at the end of 21 day culture (n=3). 

Data was shown as mean ± standard error. (A) Total protein synthesized in cell matrix 

and released in pooled media on a per cell basis, obtained from BCA protein assay. (B) 

Amount of sGAGs synthesized in cell matrix and released in pooled media on a per cell 

basis, obtained from sGAG assay. (C) HA content released in pooled media on a per cell 

basis, obtained by HA ELISA assay. (D) Elastin synthesized in cell matrix and released in 

pooled media on a per cell basis, obtained by Fastin Elastin assay. (E) LOX content 

released in pooled media on a per cell basis, obtained by Amplex® Red Hydrogen 

Peroxide/Peroxidase assay.  
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Sulfated-glycosaminoglycan (sGAG) release and deposition 

 

 

The content of sGAGs produced by rat cardiomyocytes varied through the six 

cases of hydrogel scaffolds (Figure 4.2 B). The data from the sGAG assay were 

normalized to the total cell count within respective cases. It was noted that collagen at 3 

mg/ml was the most conducive scaffold for sGAG synthesis and release into pooled 

medium as well as deposition into matrix layers, followed by 1.2 mg/ml and 2 mg/ml, 

respectively (p < 0.01 for CI-3 vs. CI-1.2 and CI-3 vs. CI-2; p < 0.01 for CI-1.2 vs. CI-2). 

Within laminin-coated CI-2 scaffolds, sGAG release into pooled medium remained 

unaffected compared to CI-2 cases (p > 0.1), but no quantifiable sGAG presence was 

noted within cell layers. Within fibronectin and collagen-IV mixed scaffolds, elevated 

levels of sGAG was quantified in both pooled media and matrix, compared to CI-2 gels 

(p < 0.01 vs. CI-2). Taken together, data suggests that CI-3 and CI+CIV scaffolds provide 

optimal environment for sGAG synthesis, release and deposition in the cell layers. 

 

Hyaluronic acid synthesis and release 

 

The HA-ELISA assay was used to detect the content of HA protein in cell matrix 

and in pooled media (Figure 4.2 C), and normalized to cell counts at the end of the 21 

day culture. Among the various collagen concentrations tested, CI-3 appeared to offer a 

better substrate for HA synthesis and release in pooled media (p < 0.01 for CI-3 vs. CI-

1.2 and CI-3 vs. CI-2). Quantifiable HA amounts in cell matrix were not detected in all 

the cases. Similarly, laminin-coating offered a better substrate for HA release compared 

to fibronectin (p < 0.01), although it was not significantly higher than that in collagen-IV 

mixed substrates. Nevertheless, dramatic changes in HA synthesis or release was not 
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noted with changing concentration or protein-coating.  

 

Elastin synthesis, deposition and crosslinking 

 

The results from the Fastin elastin assay are presented in Figure 4.2 D, with the 

amount of tropoelastin (in pooled media) and matrix elastin normalized to the total cell 

count. Among all the scaffolds tested, CI-3 followed by CI+CIV, appeared to offer better 

conditions for elastin production and deposition. The lowest content of tropoelastin in 

both cell matrix and pooled media was assessed in CI-2 hydrogel. These results were in 

broad agreement with trends in the sGAGs and total protein synthesis by rat 

cardiomyocytes cultured within CI-3 and CI+CIV scaffolds.  

 

Lysyl oxidase enzyme activity within pooled media 

 

LOX activity was measured for each case and normalized to the respective cell 

count (Figure 4.2 E). LOX activity in the cell matrix was too low to be accurately 

quantified. The cells cultured in CI + Lam and CI + FIB expressed similar amounts of 

LOX activity in pooled media, but not significantly higher than that in CI-2. However, a 

dramatic decrease in LOX activity was seen in CI + CIV scaffolds. Although no 

significant differences in LOX activity were noted between CI-1.2 and CI-2 cases, it was 

significantly lower in CI-3 scaffolds (p < 0.01 for CI-3 vs. CI-1.2 and CI-3 vs. CI-2).   

 

Quantification of MMPs-2, 9 and TIMP release 

 

 The release of MMP-2 in pooled media was quantified and normalized on a per 

cell basis (Figure 4.3 A). The lowest MMP-2 release was noted in CI- 1.2 hydrogel, and 
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it progressively increased with increasing collagen concentration (p < 0.01 for CI-3 vs. 

CI-1.2 and CI-3 vs. CI-2). Mixing CI-2 scaffolds with collagen IV further increased 

MMP-2 release, compared to pure collagen scaffolds. The presence of fibronectin and 

laminin appeared to further increase MMP production, compared to adding collagen IV. 

Among all the cases tested, the presence of laminin seemed to elicit the highest MMP-2 

release. It was interesting to note that the presence of ECM proteins such as laminin, 

fibronectin and collagen IV promotes higher release of MMP-2 by rat cardiomyocytes. 

 

   
    

Figure 4.3 Quantification of MMPs and TIMP expressed by rat cardiomyocytes at the 

end of 21 day culture (n=3). Data was shown as mean ± standard error. (A) MMP-2 

content in pooled media on a per cell basis obtained by MMP-2 assay. (B) MMP-9 

released in pooled media on a per cell basis obtained by MMP-9 assay. (C) TIMP-1 

content in pooled media on a per cell basis obtained by TIMP-1 assay. 

 

 

(A) (B) 

(C) 
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MMP-9 release by rat cardiomyocytes into pooled media is (Figure 4.3 B) 

exhibited different trends compared to MMP-2 release. Collagen-I at 3 mg/ml 

concentration promoted significantly higher amounts of MMP-9 release, compared to 1.2 

and 2 mg/ml concentrations (p < 0.01 for CI-3 vs. CI-2 and CI-3 vs. CI-1.2). In contrast 

to the trends noted for MMP-2 release, addition of collagen-IV, or laminin or fibronectin 

drastically reduced MMP-9 release (p < 0.01). Among these 3 proteins, fibronectin 

appeared to elicit higher MMP-9 production and release by rat cardiomyocytes. 

 

TIMP-1 synthesis and release by rat cardiomyocytes into pooled media was 

normalized to the respective cell count (Figure 4.3 C). Trends in TIMP-1 release were in 

contrast to that observed for MMP-9, but similar to those of MMP-2 release. The amount 

of TIMP-1 released was in positive correlation to the concentration of collagen I. 

Changing the composition of CI-2 hydrogel by adding 5% collagen IV significantly 

increased the amount of protease released in pooled media. The addition of 5% laminin or 

5% fibronectin, to CI-2 scaffolds, furthered this increase in TIMP-1 production. 

 

4.1.3 Immunofluorescence analysis 

 

The qualitative data obtained from immunofluorescence analysis is presented in 

Figures 4.4 and 4.5. The immunofluorescence labeling confirmed the protein synthesis 

trends noted in different cultures from quantitative ELISA assays for elastin and LOX. 

Immunofluorescence staining was also performed for fibrillin, elastin-laminin receptor 

(ELR), and α-actinin proteins, which confirmed the elastin assembly process in respective 

cases.  
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Figure 4.4 Immunoflourescence images showing staining of rat cardiomyocytes at day 

21 for Elastin, Fibrillin and LOX. (n=2; 40x magnification; scale bar = 40 μm).   
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Figure 4.5 Immunoflourescence images showing the α-Actinin and ELR staining of rat 

cardiomyocytes at day 21. Nuclei are DAPI stained blue. (n=2; 40x magnification; scale 

bar = 40 μm) 
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4.2 PCL nanofiber coated scaffolds  

 

4.2.1 Live/Dead Viability/Cytotoxicity assay 

 

The percentage of survived cells in each type of nanofiber scaffold gathered from 

the viability assay is shown in Figure 4.6. Cardiomyocytes survival on uncoated PCL 

nanofiber plates was significantly lower compared to the protein-coated fiber scaffolds (p 

< 0.01 for PCL vs. other scaffolds). Kai et al. also reported that cardiomyocytes expressed 

higher survival rate in gelatin coated PCL aligned nanofibers compared to uncoated 

ones
3
. Compared to fibronectin, other proteins (laminin, collagen IV and collagen I) 

enhanced cell survival (p < 0.01 for PCL+FIB vs. other three proteins).  

       
Figure 4.6 The percentage survival rate of rat cardiomyocytes at the end of 21 day 

culture, obtained from Live/Dead Viability assay (n=2). Data was shown as mean ± 

standard error.  

 

 

* 
* 

* 

* 



 

48 

 

4.2.2 Biochemical analyses  

 

 

The total amount of protein synthesized by rat cardiomyocytes was quantified and 

normalized on a per cell basis as shown in Figure 4.7 A & B. The cells cultured on PCL 

+ FIB scaffolds synthesized higher amount of protein compared to fibers coated with 

collagen I, collagen IV, or laminin, in both cell matrix and pooled media. Within cell 

matrix, the total protein content in collagen-IV coated fibers was the lowest (p < 0.001), 

while that in fibronectin-coated fiber scaffolds was the highest (p < 0.001), compared to 

other scaffolds. 
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Figure 4.7 Proteins expressed by rat cardiomyocytes at the end of 21 day culture (n=2). 

Data was shown as mean ± standard error. (A) Total protein released in pooled media on 

a per cell basis, obtained from BCA protein assay. (B) Total protein synthesized in cell 
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matrix on a per cell basis, obtained from BCA protein assay. (C) sGAGs synthesized in 

cell matrix and released in pooled media normalized to the total protein amount on a per 

cell basis, obtained from sGAG assay. (D) HA content in cell matrix and released in 

pooled media normalized to the total protein on a per cell basis, obtained by HA ELISA 

assay. (E) Elastin synthesized in cell matrix and released in pooled media normalized to 

the total protein amount on a per cell basis, obtained by Fastin Elastin assay. (F) LOX 

content in cell matrix and released in pooled media normalized to the total protein on a 

per cell basis, obtained by Amplex® Red Hydrogen Peroxide/Peroxidase assay.  

 

 

 

Figure 4.7 C shows the results from sGAG assay, normalized per µg of total 

protein synthesized in respective cases, and further normalized to the total cell count. 

Compared to uncoated fibers, coating with collagen IV or laminin significantly improved 

sGAGs synthesis released into pooled media (p < 0.001 vs. uncoated PCL fibers). 

However, sGAG deposition within cell matrix was significant only within laminin coated 

scaffolds. Compared to all the cases tested, laminin coating drastically increased the 

synthesis of sGAGs in both cell matrix and pooled media (p < 0.001 for laminin vs. all 

other cases). Contrarily, for reasons unclear at this stage, the presence of fibronectin on 

the PCL nanofibers dramatically inhibited the synthesis, release and deposition of sGAGs 

in the cell matrix and in the pooled media, compared to all the other cases.  

 

 

  HA synthesis was quantified in cell matrix and pooled media and normalized to 

the total protein content within respective cases, and further to cell count, as shown in 

Figure 4.7 D. Collagen IV-coated PCL cultures expressed the highest amount of HA in 

cell matrix and pooled media, compared to controls and all the other cases. The lowest 

HA content was observed in collagen I- and fibronectin- coated fiber scaffolds, lower 

than that compared to controls (p < 0.01 vs. controls). However, no significant 

differences between controls and laminin-coated PCL cultures were noted.  
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The amount of tropoelastin synthesized by rat cardiomyocytes within each type of 

scaffold was normalized to total protein content and further to the cell count within 

respective cases as shown in Figure 4.7 E. Except fibronectin-coated scaffolds where 

significant decrease in both tropoelastin and matrix elastin was noted (p < 0.01 vs. 

controls), significantly higher tropoelastin and matrix elastin amounts were observed in 

all the other three protein coated (collagen I, collagen IV, and laminin) scaffolds. The 

LOX enzyme activity was normalized on a per cell basis and is shown in Figure 4.7 F. 

LOX enzyme activity was higher in collagen IV-coated PCL nanofibers compared to 

controls (p < 0.01). Within the other three protein coated scaffolds, cells deposited a 

significantly lower amount of LOX in the cell matrix and in the pooled media (p < 0.01 

vs. controls). Among all the cases, fibronectin presence seemed to elicit the lowest LOX 

enzyme activity in both cell matrix and pooled media 

 

 

Quantification of MMPs-2, 9 

 

The MMP-2 production was normalized to the total cell count and the total 

protein content and the data is shown in Figure 4.8 A. The presence of collagen I or 

fibronectin on the PCL nanofiber scaffolds decreased the content of MMP-2 collected in 

pooled media compared to uncoated PCL nanofiber scaffold. However, collagen IV and 

laminin increased the content of MMP-2 released in pooled media. Among these proteins, 

collagen I inhibited the amount of MMP-2 in pooled media the most, whereas collagen 

IV promoted its release the most. 

 

A different trend is noticed in the production of MMP-9 as seen in Figure 4.8 B. 
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In all the test cases, where PCL fibers were coated with proteins, significant increase in 

MMP-9 release was noted compared to controls (p < 0.01 vs. controls). Laminin-coated 

PCL scaffolds promoted the highest MMP-9 release in pooled media.  

 

     
Figure 4.8 Quantification of MMPs and TIMP  expressed by rat cardiomyocytes  at the 

end of 21 day culture (n=3). Data was shown as mean ± standard error. (A) MMP-2 

content in pooled media on a per cell basis obtained by MMP-2 assay. (B) MMP-9 

released in pooled media on a per cell basis obtained by MMP-9 assay. (C) TIMP-1 

content in pooled media on a per cell basis obtained by TIMP-1 assay. 

 

 

 

Quantification of TIMP-1 

 

The results of TIMP-1 production are presented in Figure 4.8 C. A trend similar 

to MMP-9 production was observed in this case. Uncoated PCL nanofibers resulted in the 

lowest TIMP-1 content released in pooled media, whereas the ECM proteins expressed 
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drastically higher TIMP-1 content. The order of this increase was as follows, collagen I, 

collagen IV, laminin and fibronectin accounting for the highest TIMP-1 content.  

 

  4.2.3 Immunofluorescence analysis 

 

 Immunohistochemistry data showed positive staining for α-actinin, ELR, Elastin, 

LOX, and Fibrillin proteins, and the data is shown in Figure 4.9 and 4.10.   

                 

Figure 4.9 Immunoflourescence images showing staining of rat cardiomyocytes at day 

21 for Fibrillin, Elastin, and α-actinin. (n=2; 40x magnification; scale bar = 40 μm)   

                               

 

 

 
 

Figure 4.10 Immunoflourescence images showing staining of rat cardiomyocytes at day 

21 for ELR and LOX. (n=2; 40x magnification; scale bar = 40 μm)   
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4.2.4 Scanning electron microscopy 

 

 

SEM images for each type of nanofiber scaffold are presented in Figure 4.11. 

Cardiomyocytes have anchored onto the PCL fibers in each scaffold. While cell body was 

not aligned with fiber structure within controls, collagen I and fibronectin-coated PCL 

cultures, cells seemed perfectly aligned along the longitudinal axis of the fibers within 

laminin and collagen IV-coated nanofibers. This might partially explain the significantly 

higher cells survival within these two scaffolds compared to the controls, collagen IV and 

fibronectin coated cases. 

 

       

Figure 4.11 SEM images of rat cardiomyocytes cultured on PCL nanofiber scaffolds. 

 

 



 

55 

 

4.2.5 Beating cardiomyocytes 

 

The rat cardiomyocytes expressed continuous contractile properties during the 21 

day culture on the PCL nanofibrous scaffolds. The number of beating cells and their 

frequency was quantified and shown in Figure 4.12. The scaffold with uncoated PCL 

nanofibers exhibited the lowest percentage of beating myocytes with the lowest 

frequency. Furthermore, coating of these fibers allowed the cells to contract more and at a 

higher frequency. Although laminin coated PCL nanofiber scaffold provided the most 

suitable environment for cardiomyocytes to exhibit the highest number of beating 

cardiomyocytes, the contracting frequency was low. The highest beating frequencies were 

noted in cells cultured on collagen I and IV coated scaffolds. These contractile properties 

of cardiomyocytes could not be observed within hydrogels.   

 

Figure 4.12 (A) Percentage of beating cardiomyocytes over the 21 day culture in five 

various scaffolds. (B) Average beating frequency of the cardiomyocytes during the 21 day 

culture.  
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

     In this study, we developed and tested six types of 3D hydrogel scaffolds using the 

native proteins of ECM such as, collagen I, collagen IV, laminin and fibronectin. 

Additionally, we tested five different aligned PCL nanofibers scaffolds coated with the 

same proteins, including an uncoated PCL nanofiber plate as control. Although all these 

scaffolds have proved to be suitable for in vitro cardiomyocyte culture by providing cell 

attachment, survival, and cardiac phenotype expression, the amounts of ECM proteins 

synthesized by cardiomyocytes varied from scaffold to scaffold. The following are the 

conclusions from this study. 

 

5.1 Conclusions  

 Among all the hydrogels tested, collagen I at concentration of 2 mg/ml (CI-2) 

provided the highest cell survival rate and the lowest total protein content released 

in pooled media on a per cell basis.  

 The increase of collagen concentration to 3 mg/ml resulted in a stiffer scaffold 
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decreasing cell survival. However collagen 3 mg/ml (CI-3) expressed the highest 

amount of sGAGs and elastin in both cell matrix and pooled media, as well as HA 

content in pooled media.  

 Opposite trends were noticed between elastin and LOX expression in pooled 

media. Given the fact that LOX cross-links tropoelastin monomers to form the 

elastin protein, the soluble tropoelastin collected in pooled media is found in 

higher content in cases where LOX expression is less and vice versa.  

 Overall, the highest total protein amount was synthesized by cardiomyocytes 

cultured in CI + CIV hydrogel.  However, further studies at the genetic level are 

needed to understand how these hydrogels specifically upregulated synthesis and 

deposition of ECM proteins such as elastin, HA and sGAGs. 

 The collagen-I hydrogels (CI-1.2, CI-2 & CI-3) released low content of MMP-2 

and TIMP-1, but drastically higher amounts of MMP-9. The addition of collagen-

IV, or laminin, or fibronectin showed opposite trends by increasing MMP-2, 

TIMP-1 and reducing MMP-9. 

 Protein-coated PCL nanofibers provided better cell survival rate compared to 

uncoated PCL nanofibers, possibly due to lack of binding sites for cellular 

integrins to attach and home in.  

 While fibronectin-coated PCL nanofibers contributed to the highest total protein 

content in matrix as well as pooled media, collagen IV coating had the opposite 

effect. Interestingly, similar trends were noted in the amounts of protein deposited 

in matrix and released in pooled media, for all PCL nanofiber cases.    

 Cells cultured on laminin-coated PCL fibers expressed the largest content of 
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sGAGs and elastin whereas those cultured on collagen IV-coated fibers produced 

the highest amount of HA and LOX. 

 Hydrogels account for a much higher survival rate of cardiomyocytes compared 

to PCL nanofiber coated scaffolds. Among hydrogels, collagen 2 mg/ml is the 

most suitable scaffold for culturing cells (91% survival rate). In the cases of PCL 

nanofiber scaffolds, laminin-coating provided the best cell survival environment 

(42% survival rate). 

 In general, the total protein content quantified within PCL nanofiber scaffolds was 

significantly higher compared to that within hydrogels.  

 While sGAGs released in pooled media was significantly higher within hydrogels 

compared to that in PCL nanofiber coated scaffolds, nanofiber scaffolds facilitated 

higher fraction of sGAGs to be deposited as matrix. However, opposite trends was 

seen in HA synthesis. 

 Elastin synthesis was much higher in protein-coated PCL nanofibers compared to 

hydrogels.  

 TIMP-1 content in pooled media was the highest in fibronectin-coated PCL 

nanofibers, followed closely by laminin. The same outcome was noticed in 

hydrogels containing fibronectin or laminin (CI + FIB, CI + LAM). 

 

5.2 Recommendations 

The following are recommendations for future studies to further understand the effects of 

scaffolds on ECM protein production by cardiomyocytes and develop the most natural 

cardiac mimicking scaffold.   
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 Semi-quantitative Western blot analysis to quantify elastin and LOX proteins 

within pooled media. 

 Enhance synchronized beating of cardiomyocytes within 3D scaffolds. 

 Develop an electrospining setup to produce nanofibers blended with ECM 

proteins. 

 Quantify changes at the transcription-level (genetic level) for ECM protein 

synthesis and deposition within 3D scaffolds. 
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