
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

ETD Archive 

2013 

Moving Horizon Estimation with Dynamic Programming Moving Horizon Estimation with Dynamic Programming 

Mohan Kumar Ramalingam 
Cleveland State University 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive 

 Part of the Biomedical Engineering and Bioengineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Ramalingam, Mohan Kumar, "Moving Horizon Estimation with Dynamic Programming" (2013). ETD 
Archive. 815. 
https://engagedscholarship.csuohio.edu/etdarchive/815 

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for 
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/229?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/815?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


MOVING HORIZON ESTIMATION WITH DYNAMIC

PROGRAMMING

MOHAN KUMAR RAMALINGAM

Bachelor of Technology in Chemical Engineering

Anna University, Chennai, India

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December 2013



We hereby approve this thesis of

MOHAN KUMAR RAMALINGAM

Candidate for the Master of Science in Chemical Engineering degree for the

Department of Chemical and Biomedical Engineering

and the CLEVELAND STATE UNIVERSITY

College of Graduate Studies

Thesis Committee Chairperson, Dr. Sridhar Ungarala

Chemical and Biomedical Engineering & Date

Dr. Rolf Lustig

Chemical and Biomedical Engineering & Date

Dr. Jorge Gatica

Chemical and Biomedical Engineering & Date

Student’s Date of Defense: December 3, 2013



Dedicated to my dear Mom and Dad



ACKNOWLEDGMENTS

I would like to thank a number of people who have encouraged me in the

completion of my thesis.

First and foremost, I would like to give my sincere thanks and regards to my

advisor Dr. Sridhar Ungarala, who has given his heart and soul in encouraging and

motivating me right throughout the completion of this thesis. He has showed a lot of

patience and I sincerely owe him a all of my gratitude for everything he has done.

I would like to thank my thesis committee members Dr. Jorge Gatica who

had laid the basis of my programming skills and Dr. Rolf Lustig for his guidance

throughout this work.

I would also love to give my thanks to the whole of the Department of Chem-

ical and Biomedical Engineering and its staffs, including Ms. Becky Laird and Ms.

Darlene Montgomery.

My hearty thanks to all my friends at the university along with my thesis group

and my friends back home who have provided me with as much support as possible.

All thanks are undone if my parents and God are not thanked whole heartedly.

They have helped me so much that my thanks wont do much good.

iv



MOVING HORIZON ESTIMATION WITH DYNAMIC

PROGRAMMING

MOHAN KUMAR RAMALINGAM

ABSTRACT

Moving Horizon Estimation(MHE) is a optimization based strategy to state

estimation. It involves computation of arrival cost, a penalty term, based on the MHE

cost function. Minimization of this arrival cost is done through various methods. All

these methods use nonlinear programming optimization technique which gives the

estimate. The main idea of MHE revolves around minimizing the estimation cost

function. The cost function is dependent on prediction error computation from data

and arrival cost summarization. The major issue that hampers the MHE is choosing

the arrival cost for ensuring stability of the overall estimation and computational

time. In order to attain this stability, this thesis incorporates dynamic programming

algorithm to estimate MHE cost function. Dynamic programming is an algorithm

for solving complex problems. The MHE cost function algorithm has been modified

based on dynamic programming algorithm in order to ensure stability of the overall

estimation. In order to apply this algorithm, a specific non-linear filter, particle filter

is used for the initialization of MHE. The reason of using particle filter for initializa-

tion of MHE is due to fact that dynamic programming algorithm works on principle

of samples and particle filter provides the samples. A comparison of mean squared
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error(MSE) using the nonlinear programming optimization and dynamic program-

ming optimization is verified for the proposed theory of using dynamic programming

algorithm in estimation of cost function.
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CHAPTER I

INTRODUCTION

At present the competitive nature of this ever growing market trend seizes to

amaze everyone. The increase in importance of quality of every product and the other

environmental issues have given rise to the need of improving the performance of the

existing chemical processes.

Therefore in order to improve the performance, knowledge on the actual state

of the system is required. The heart of any chemical engineering, or generally en-

gineering and sciences deals with observation or measurement and process or state.

This information is obtained from processes by collecting a set of data or by an al-

ready existing model. The model is given to estimate, on the basis of given initial

knowledge of the system. But finding an accurate model may be a difficult problem

in any application.

The essential need of improving performance on any system requires attaining

reliable and complete information about the process. The main idea of estimation is

because of the fact that in almost all realistic situations, the observations under study

are contaminated with disturbances or errors. Observations always contain some type
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of error, it is necessary to correct the values. So there is a need for certain methods to

filter out the disturbances in order to arrive at the result. The errors are of two types,

random and systematic errors. Small errors that are due to the normal fluctuation of

the process or random variant inherent in instrument or sensor operations are called

random errors. In this thesis, all supporting examples correspond to random errors.

Systematic errors are large errors due to wrong calibration or malfunction of the

instruments which occur occasionally.

Interest in more detailed knowledge on the state of the system leads to state

estimation. In simple terms, state of the process is a variable which determines the

behavior of the system. If the system is without any errors, then knowledge on the

state of the system at a particular time is enough to predict the state at the future

time instant.

All physical systems are modeled so as to perform certain functions. In order

to determine whether a system is performing properly, the engineer must know what

the system is doing at any time instant. In navigation, the state consists of position

and velocity of the craft. In a batch reactor, the state consists of concentrations,

partial pressures, temperature, mole fractions, etc. In an AC electric power system,

the state consists of voltages and phase angles at network nodes. Therefore, in order

to determine these states the engineer builds an observation or measurement device.

The observation or measurement device can be sensors or other distributed control

systems. Here in this thesis, the measurements are considered to be obtained from

sensor devices and are generally contaminated by random errors called noise.

The physical system is modeled by a finite dimensional Markov process, the

output of a stochastic differential or difference equation. The state estimation in a

batch reactor system is an example for dynamic model representation in this thesis.

The Bayesian or probabilistic view of filtering is used. That is explained later in

2



Bayesian state estimation.

In general, at a given time point or step, an estimate can be arrived from

the measurement and the model of the system using any filtering methods existing,

given, its initial conditions. Often in practical estimation problems a reliance of

any one, that is, either the measurement or the state model can provide estimate

with insufficient accuracy. Therefore, it is of considerable practical interest to have

knowledge on optimal strategies that can be used to combine both the measurement

and state model in wide range of estimation problems. In order to determine the

optimal estimation strategy, satisfying a minimum variance estimate for a wide range

of problems is the topic of interest today.

The main goal of state estimation is to redefine the state of the system in

derivative form, from process measurements and model. The role of state estimators

is to understand the complexity of the state of the system and thereby, use different

filtering and smoothing techniques available in hand to estimate the system. For

instance, estimation done to predict the future is called filtering and estimation done

to retrace the past is called smoothing. This thesis mainly works on estimation

through filtering techniques. One of best known examples to give a hint on filtering

is weather predictions. Prediction of weather for a future time is done through one

of the filtering techniques.

When the description of system is known, either linear or nonlinear, the state

estimator needs to estimate the system that will minimize the error between the true

state and the estimated state. This leads to the optimal estimation problem which

is solved by the Kalman filter. The Kalman filter(KF) has been implemented in

literally thousands of applications since its inception in the early 1960s. It was found

and named after R.E. Kalman. This was the first step in filtering applicable for linear

systems, which further led to many other filtering techniques applicable for nonlinear

3



systems.

This thesis covers some basic information on some of the existing nonlinear

filters and focuses on Moving Horizon Estimation(MHE).
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CHAPTER II

Literature Review

State estimation is an active research field having a wide range of application.

There are many state estimation techniques and algorithms one of which is Bayesian

state estimation which is based on probabilistic approach.

Bayesian state estimation is an important method, of all the estimation tech-

niques, because of the following reasons [1]:

• They preserve information as they are based on the probability axioms

• They give the probability density function (pdf) of the state conditioned on the

available observations or measurements

With the available pdf, the state of the system can be estimated along with the

uncertainties. One of the earliest Bayesian state estimation algorithm was for linear

systems, which is known as the Kalman filter. It was developed by Kalman and Bucy

in 1960 [2]. Since then, the KF has had a wide range of applications and was always a

subject for research and analysis. The KF is a set of mathematical equations through

which the state of the process can be estimated recursively. The estimation of the
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past, present and future states of the process are obtained using the filter. However,

one limitation is that, KF is applicable only for linear systems.

Later, several modifications were made on the KF technique in order to make

it applicable for nonlinear systems. One of the modified estimation techniques is

called the extended Kalman filter(EKF) [3]. The EKF is a widely used Bayesian

state estimation algorithm for nonlinear systems. However, it has its limitations.

It is only reliable for systems that are almost linear [5], [7]. Chemical engineering

systems are always highly nonlinear, hence other novel methods have been used in

place of the EKF. The unscented Kalman filter(UKF) and particle filter(PF) are

examples of state estimation techniques that are applicable for nonlinear systems of

higher order [7], [8], [10]. State estimation for nonlinear dynamic systems is still an

active research area.

Moving horizon estimation is an efficient method for state estimation for con-

strained, linear and nonlinear systems. MHE has gained a lot of interest because

it is proved to be performing superior to traditional state estimation filters such as

EKF [13]. The advantage of MHE is that it handles complex nonlinear dynamic mod-

els. The disadvantage is that it requires on-line solutions of dynamic optimization

problems which results in computational delays [15].

MHE minimizes the estimation cost function defined on a moving window,

which involves a finite number of time steps. The cost function comprises of two

parts: a stage cost and an arrival cost. Initially, an approach was proposed which

involves the numerical solution of the measurement observation problem based on

Newton’s method [16]. Similar optimization based techniques were developed [17]

and [18] for continuous time dynamic systems. MHE estimation for nonlinear systems

under discrete time intervals was developed by Michalska and Mayne [19]. Recently,

advancements have been made for MHE in linear, nonlinear and hybrid systems.
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The constraints on the system are taken into account and the solution for nonlinear

programming are obtained at each time step [20]. This approach requires exact on-line

minimization of a nonlinear cost function. The possibility of practical applications

are less. This is the main drawback of MHE.

The unscented Kalman filter, particle filter and cell filter(CF) are the three

different sampling methods that were proposed for obtaining the arrival cost for

MHE [21]. Instead of approximating the arrival cost using a Gaussian assumption,

another method using the numerical approximation of the state probability density

function provided by the PF and CF are considered. It is shown that, the arrival cost

parameters can be accurately computed and updated by sampling based methods

without using linearization. The Gaussian assumption is replaced by kernel density

estimation [21].

In this research thesis, the arrival cost of the MHE is computed using the

dynamic programming . Dynamic programming is a recursive method for solving

sequential decision problems, which is used to find optimal decisions. It is also known

as backward induction. A number of researchers have worked on this topic, especially

in the field of economics. R. Bellman [22] is one of the most credited researcher

who identified the common structure underlying the sequential decision problems

and proved the use of backward induction in solving the sequential decision problems

with uncertainty. He is the person who defined backward induction in a new term

called dynamic programming. The use of dynamic programming in computing the

arrival cost of MHE is explained in the following chapters.
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CHAPTER III

Scope of Thesis

3.1 Aim

The scope of this thesis is to improve the already existing method of opti-

mization strategy in moving horizon estimation. The main idea behind this strategy

is to improve the stability of arrival cost estimation, computational time and Mean

Squared Error(MSE) value which will be later discussed.

3.2 Hypothesis

One of the optimization strategies that have been used often in moving horizon

estimation is an inbuilt matlab nonlinear programming (NLP) algorithm. Using this

algorithm, the optimization of the cost function takes place by which we evaluate the

estimate. In order to enhance or improve the optimization strategy, it is hypothesized

that dynamic programming algorithm can be used in place of the already existing

optimization strategy.

8



3.3 Specific Aims

Aim 1 : To explain moving horizon estimation through NLP

A clear understanding of MHE will be achieved in the following chapters.

This involves initialization of MHE through different nonlinear filters, arrival cost

estimation and optimization. Focus will be made on the arrival cost estimation and

optimization. An algorithm will be exhibited which will further be implemented in

several mathematical examples.

Aim 2 : To implement dynamic programming in moving horizon estimation

The concept of dynamic programming will be clearly explained in regards to

certain mathematical examples. An algorithm for dynamic programming will be

explained. The concept of dynamic programming will be implemented in the opti-

mization of cost function for MHE. The new MHE algorithm will be explained.

Aim 3 : To provide an example and make a detailed analysis

A mathematical example will be presented. The modified MHE algorithm

which implements the concept of dynamic programming will be explained through

the example. A comparison between the original MHE and the modified MHE will

be made and a detailed analysis will be presented. The advantages and disadvantages

of one algorithm over the other will be critically analyzed.

9



CHAPTER IV

Layout

The different chapters in this thesis are laid out as follows:

In chapter 5 the concept of state estimation is introduced and a brief description

about the state and measurement of the system are explained.

Chapter 6 gives an introduction to different linear and nonlinear filters. The un-

derlying phenomenon behind the development of these filters is explained. A general

problem statement from which the state and measurement are derived is explained

with respect to both linear and nonlinear system. Kalman filter, extended Kalman

filter, unscented Kalman filter and particle filter are some of the filters explained in

detail.

Chapter 7 deals with the topic of interest in the thesis, moving horizon estima-

tion, an optimization filtering technique used in nonlinear systems. It also explains

sub topics like initialization strategies, arrival Cost and optimization. The method of

least squares is introduced.

Chapter 8 explains dynamic programming an optimization technique. This

chapter also explains principle of optimality and its algorithm. Also, certain basic

10



examples in order to understand the optimization strategy are provided. Finally its

advantages and disadvantages are explained.

In chapter 9 a mathematical nonlinear system is considered as an example.

The performance of the nonlinear filters with respect to moving horizon estimation

are illustrated with plots and performance curves.

In chapter 10 the concept of dynamic programming is implemented in MHE

and the performance of existing and modified algorithm is explained through the

mathematical example. A comparison is made between those two algorithms exten-

sively.

Chapter 11 is the conclusion of the thesis in which, the extent to which each

aim in the scope of the thesis is achieved, is explained in detail.
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CHAPTER V

State Estimation

State estimation is a branch of systems engineering, that deals with estimating

the values, based on measured/empirical data that has a random component. Obser-

vations are not always predictable but they are distributed at random. In estimation

theory, one aims to guess the underlying distribution of random observations from the

data. In particular, the known measurements model of the system is used to obtain

the estimate. A point estimate gives a good approximation for the true value.

State estimation determines the current state of a complex system such as

location of a spacecraft, temperature, batch reactors, robotics, given, the observa-

tions from the system sensors. In the past, state estimation has always been used

in diagnosis, detecting and identifying faults when they occur, but, safe and effec-

tive autonomous control of system requires estimating all aspects of system state.

In addition, estimating continuous system parameters has also become increasingly

important.

State estimation is critical for a number of reasons: accurate state estimates

make way for much easier control of states of the system, and allow selection of better

12



control aided actions. Finally, state estimation can provide prognostic information,

identifying components or systems that are likely to fail soon and should be repaired,

replaced, changing density, volume etc.

A key aspect of state estimation is that it is rarely certain. There is inevitably

some ambiguity in the sensor data received from a system, and it is of great use to

have a state estimate that represents this uncertainty explicitly [4]. This is for several

reasons: firstly, a probability distribution representing the uncertainty can summarize

all the measurements or observations received by the state estimator so far, making

it easier for the state estimate to update. Secondly, this probabilistic representation

is of use in decision making by allowing the effects of planned future actions to be

evaluated in states that have low probability rather than only in the most likely state.

Finally, probabilistic information is of use for prediction and maintenance, providing

information about state of the system involved at the necessary point.

Before going in detail to model formulation a brief introduction on probability:

Probability is the estimation of occurrence of an event based on its likelihood/chance.

The value of probability of any event is between 0 and 1. The higher the degree of

probability, the higher is the chance of event happening. The important probability

principle which is used a lot in filtering techniques is conditional probability. Condi-

tional probability is occurrence of event A given the occurrence of other event B. It

is mathematically shown as,

p(A|B) =
p(B|A)p(A)

p(B)
(5.1)

The problem statement of state estimation is given as a time variant of mea-

surement and dynamic model of the system. What is the most likely state of the

system given these measurements and system model? The problem here is usually
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formulated probabilistically, that is, calculated as,

x̂k|k = argmax
xk

p(xk|y0, ..., yk) (5.2)

in which xk and yk are the state and measurement respectively, at time tk, and, x̂k|k

is the a posteriori state estimate of x at time tk, given all measurements till time tk.

There are many systems. One is linear, unconstrained, with additive Gaussian

noise that can be solved using the Kalman filter which provides a closed-form solution

to Eq. 5.2. The other one is constrained, nonlinear for which the solution can be

arrived through nonlinear filters. For addressing the nonlinear system there are many

filtration techniques like extended Kalman filter, unscented Kalman filter, particle

filter, moving horizon estimation, etc.,

14



CHAPTER VI

Linear and Nonlinear Filters

6.1 Introduction

Estimation of the state of the system from noisy measurements is a necessary

element in model-based applications. Linear filters process time-varying measure-

ments to evaluate the state of the system, subject to the constraint of linearity. This

results from system composed models or algorithms classified as having a linear mod-

els which is expressed in the form of ordinary differential equations (ODE). Most

filters implemented in analog electronics, in digital signal processing, or in chemical

mathematical systems are classified as causal, time invariant, and linear.

The state of a system, for example, a sample material is defined by specifying

the values of all the variables describing the system. If the system is a sample of a

pure substance this would mean specifying the values of the temperature, pressure,

volume, and the number of moles of the substance. Consider a batch reactor, where

the state of the system is the mole fraction of components involved in the reactor.

The measurements or observations are the function of state of the system that are
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measured through control devices. The state of the system is evaluated from the

measurements. For example, in the batch reactor process, the temperature is the

measurement variable in the system. The system is described as a mathematical

model. The state and measurement of the system are described in the model as an

ordinary differential equation, with mass and energy balances of the system taken into

account. The error that is added to the system model is called the noise variance.

The general concept of linear filtering is also used in statistics, data analysis,

and chemical engineering among other fields and technologies. This includes non

causal filters and filters in more than one dimension such as used in image processing;

those filters are subject to different constraints leading to different design methods.

Linear systems with Gaussian noise can be evaluated through Kalman filter an op-

timal estimate filter. Given, the knowledge about distributions of the initial state,

disturbance, and measurement noise, the Kalman filter provides a recursive solution

to the real-time, minimum-variance estimation problem. But, in general, not all sys-

tems that exist in reality are linear. Majority of the systems are nonlinear. Kalman

filter, as such, can only be used for linear constrained and unconstrained systems.

Therefore, a necessity for solving nonlinear system arises and the Kalman filter was

improvised, in order to estimate the nonlinear systems.

Nonlinear filters have many applications, especially in the removal of certain

types of noise that are not additive. Indeed, all radio receivers use nonlinear filters to

convert kilo to giga-hertz signals to the audio frequency range; and all digital signal

processing depends on nonlinear filters. However, nonlinear filters are considerably

harder to use and design than linear ones, because the most powerful mathematical

tools cannot be used on them. Considering the processes today, majority of them are

nonlinear systems. The need for understanding the nonlinear systems are essential

in order to estimate them using nonlinear filtering theory.The performance of these
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nonlinear filters are entirely dependent on approximations made through development

of Kalman filter. The approximations made on the linear filtering theory is always

accompanied by some degree of uncertainty. Some examples of the nonlinear filters

are extended Kalman filter and unscented Kalman filter which are a result of the

approximations made on Kalman filter. In case of the extended Kalman filter the

nonlinear functions are linearized using Jacobian [6]. In unscented Kalman filter the

choice of sigma points are made over the pdf are used [9]. These nonlinear filters use

mean as their estimate and it is called minimum a posteriori estimate.

In case of a particle filter the estimate can either be the mean median or mode

of the probability density function. Here a set of particles are sampled out of the pdf,

whose initial mean and covariance are known [11]. This filter works on the principle of

importance density. There are special cases of particle filter one of which is bootstrap

filtering where, the transition prior is assumed to be the importance density [10]. All

these filters work on the principle of Bayesian estimation.

6.2 Bayesian State Estimation

The roots of Bayesian state estimation lie in the Bayes theorem. The Bayesian

estimation is widely used and powerful among state estimation because they are

rigorously based on the probability axioms and therefore preserve information.

The Bayes theorem:

p(x|y) =
p(y|x)p(x)

p(y)
(6.1)

Consider x to be a model variable - for example the state of the dynamic system

like concentration, partial pressure and mole fraction, y to be observed variable - for

example the output from sensor also called measurement like pressure, temperature,

pH [1].
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• p(x) is the probability distribution of the state of the system which is indepen-

dent of the measurement. This is called the prior of x.

• p(y) is the probability distribution of the measurement of the system which

is called the marginal probability or the evidence. It is generally known as a

normalization factor.

• p(x|y) is the probability distribution of the state of the system given the mea-

surements in hand. This is termed as the posterior of the system. This is the

estimate of the system which is under consideration.

• p(y|x) is the likelihood of the system based on the condition that the given

model is true.

6.3 Problem Statement

Consider the state of a dynamic system model, [21]

xk+1 = f(xk) + wk (6.2)

where f is a linear or nonlinear function given the system model, xk is the state

of the system for any time k and wk is the state noise vector distributed according

to Gaussian probability density function N(0, Q). The measurement/observation is

given by

yk+1 = h(xk+1) + vk+1 (6.3)

where h is a linear or nonlinear function given the observation model of the state

of the system, y is the measurement/observation of the system model and vk is the

measurement noise vector distributed according to the Gaussian probability density

function N(0, R). The initial conditions or the initial probability density function
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of the state vector is a Gaussian probability density function N(x̂0, P̂0) given the

fact there are no measurements yet. The x̂0 is the mean at time k = 0 ,P̂0 is the

initial covariance at time k = 0. The problem statement mentioned here is general,

and is applicable for all above known filters. The process noise covariance Q and

measurement noise covariance R change with time but here it is considered to be

constant.

6.4 Linear Filter - Kalman Filter

When the description of system is linear, the state estimator needs to estimate

the system that will minimize the error between the true state and the estimated

state. This leads to the optimal estimation problem which is solved by the Kalman

filter. Kalman filter was found it 1960 and named after R.E.Kalman. The Kalman

filter has wide range of applications. The optimal estimate filter existing until date

for all linear systems is Kalman filter. The optimal estimate infers parameters of

interest from indirect, inaccurate and uncertain observations. It is recursive so that

new measurements can be processed as they arrive [2]. The Kalman Filter addresses

the general problem of estimating the state x, for a discrete time varying linear model,

which are expressed in the form of difference equations

xk+1 = Axk + wk (6.4)

yk+1 = Hxk+1 + vk+1 (6.5)

From this it is understood that these equations resemble the problem state-

ment. The two functions f and h are linear and hence represented as constants,

multiplied to the the state vector. The noise variables w and v are additive. As-

suming noise is Gaussian, the Kalman filter minimizes the mean square error of the

estimated parameters.
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The Kalman filter works in two steps:

• The current state and error noise covariances are used to project forward through

the state model in order to estimate the predicted mean and covariances. This

is called as the a priori estimate.

• When the measurement comes in, incorporating them back in the a priori esti-

mate results in the a posteriori estimate.

Thus, the estimation algorithm resembles that of predictor - corrector algo-

rithm. The predict phase is defined by the time update equations where the state

and error noise covariance are projected forward.

x̂−k+1 = Ax̂k (6.6)

P−k+1 = APkA
T +Q (6.7)

After projecting forward, the a priori estimate is obtained and using this measurement

update equations are updated.

x̂k+1 = x̂−k+1 +Kk+1(yk+1 −Hx̂−k+1) (6.8)

Pk+1 = (I −Kk+1H)P−k+1 (6.9)

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +R)−1 (6.10)

where K is the Kalman gain which minimizes the a posteriori error covariance,

I is the identity matrix and Pk+1 is the error covariance. Fig. 1 shows the recursive

solution that follows for given time steps.

The importance and reliability of Kalman filter is based on the good results in

practice due to optimality and structure. It is one of the convenient form for online

real time processing.
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Figure 1: Kalman Filter Cycle

6.5 Nonlinear Filter - Extended Kalman Filter

When the system model is nonlinear, linear filters fails to perform therefore

several modifications were made on the linear filter algorithm to adapt to nonlinear

models. One of the first basic nonlinear filter which works on Bayesian state estima-

tion is extended Kalman filter. It is similar to the Taylor series expansion, linearizing

the nonlinear system through partial derivatives or Jacobian. Thus, the problem

statement, in Eq. 6.2 and Eq. 6.3, containing the function f and h are linearized

using the Jacobian [6]. The same algorithm as in the Kalman filter is followed after

the approximations made on the nonlinear equations.

The state and measurement model are the same as mentioned in the problem

statement, in Eq. 6.2 and Eq. 6.3, where, the function f and h are nonlinear functions

on the the state vector. Since it is similar to Kalman filter, there are two phases,
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prediction phase and correction phase. Prediction is done through process model,

x̄k+1 = f(x̂k) (6.11)

P̄k+1 = FkPkF
T
k +Q (6.12)

Here Fk is the Jacobian of the function of the state equation. This is also called

as the linearization of the process model at x̂k. After projecting forward the a priori

estimate is obtained, using which the update is done through measurement update

equations. The update phase is as shown below:

x̂k+1 = x̂−k+1 +Kk+1(yk+1 −H(x̂−k+1)) (6.13)

Pk+1 = (I −Kk+1H)P−k+1 (6.14)

The Kalman gain is given as,

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +R)−1 (6.15)

The linearization of the measurement model through Jacobian of function H

takes place in the update stage.

6.5.1 Advantages and Disadvantages

Unlike Kalman filter, extended Kalman filter is not the optimal estimator. It

is optimal only when the measurement and state transition model are linear. The

extended Kalman filter is one of the standard techniques in nonlinear estimation with

wide range of applications. It estimates the state of a nonlinear dynamic system, also,

it estimates parameters for nonlinear system identification like learning the weights of

a neural network, and dual estimation like the expectation maximization algorithm

where estimation of both state and parameter takes place simultaneously [8]. Here,

in this thesis, only state estimation is considered.

22



When propagated through the first-order linearization of the nonlinear system,

the state function is approximated. This can cause large errors depending on the

nonlinearity of the system model. The large errors are on the posterior mean and

covariance in the transformed function, which results in sub-optimal performance

and divergence of the filter. Thus leading to one of the major flaws of linearizing the

nonlinear system. The next nonlinear filter, unscented Kalman filter, addresses this

problem.

6.6 Nonlinear Filter - Unscented Kalman Filter

When nonlinearity of state and measurement models are higher, at some in-

stances, extended Kalman filter fails. The unscented Kalman filter(UKF) addresses

these problems. The UKF linearizes a nonlinear function of a random variable through

a linear regression between 2n + 1 points drawn from the prior distribution of the

random variable. This technique tends to be more accurate than Taylor series lin-

earization [8].

The state distribution of extended Kalman filter is propagated analytically

through the first-order linearization of the nonlinear system, due to which, the poste-

rior mean and covariance could be corrupted. UKF overcomes this problem by using

a deterministic sampling approach.

Unscented Kalman filter works on unscented transformation. When nonlinear

transformation takes place, unscented transformation is the method to calculate the

statistics of a random variable in which transformation occurs [7]. The mean and

covariance of the system are propagated through the state and measurement model.

Eq. 6.2 and Eq. 6.3 are the problem statements which are mentioned earlier. From

the given data, 2n + 1 sigma points (n is the size of the state vector), called Xi, are

deterministically selected along with their associated weights Wi. The sigma points

23



are obtained from,

X0 = x̂0 (6.16)

Xi = x̂0 + (
√

(n+ λ)Px)i i = 1, ..., n (6.17)

Xi = x̂0 − (
√

(n+ λ)Px)i−n i = n+ 1, ..., 2n (6.18)

The associated weights are evaluated as,

W0 = λ/(n+ λ) (6.19)

W
(m)
0 = λ/(n+ λ) + (1− α2 + β) (6.20)

W
(c)
i = W

(m)
i = 1/{2(n+ λ)} i = 1, ..., 2n (6.21)

where, λ is a scaling parameter, given as, α2(n + κ) − n. α is the spread of

the sigma points which is a small positive number in general. κ is another scaling

parameter set to 0. β is equal to 2 in case of Gaussian distributions. These sigma

points are also propagated through the nonlinear function. From this,the mean and

covariance which are approximated using a weighted sample mean and covariance of

the posterior sigma points are obtained.

ŷ ≈
2n∑
i=0

W
(m)
i Yi (6.22)

Py ≈
2n∑
i=0

W
(c)
i {Yi − ŷ}{Yi − ŷ}T (6.23)

The Kalman filters update phase follows, where the Kalman gain and the a

posteriori estimate are determined.

6.6.1 Predict phase

The predict phase includes two steps : one is choosing of sigma points and the

other is propagation of sigma points.
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x̂k|k−1 =
2n∑
i=0

Wm
i X

i
k|k−1 (6.24)

Pk|k−1 =
2n∑
i=0

W c
i [X i

k|k−1 − X̂k|k−1][X
i
k|k−1 − X̂k|k−1]

T (6.25)

6.6.2 Update phase

The final stage is updating the sigma points. With the mean and covariance of

the measurement noise given, the sigma vectors are propagated through the nonlinear

function.

γik = h(X i
k|k−1), i = 0, ....2n (6.26)

To get the predicted measurement and covariance,

Ŷk =
2n∑
i=0

Wm
i γ

i
k (6.27)

Py,k =
2n∑
i=0

W c
i [γik − Ŷk][γik − Ŷk]T (6.28)

The state and the measurement cross covariance matrix is,

Px,k =
2n∑
i=0

W c
i [X i

k|k−1 − X̂k|k−1][γ
i
k − Ŷk]T (6.29)

The Kalman gain is given as,

Kk = Py,kykP
−1
y,k (6.30)

X̂k|k = X̂k|k−1 +Kk(Yk − Ŷk) (6.31)

Pk|k = Pk|k−1 −KkPy,kK
T
k (6.32)

The UKF is a faster algorithm as compared to EKF which involves lot of

derivatives and reduces error in mean evaluation [9].
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6.7 Nonlinear Filter - Particle Filter

Particle filter follows sequential Monte Carlo methods. A particular number

of samples are chosen from the probability density function with initial mean and

covariance. The samples are propagated through the system model, that is, the

state and measurement equation Eq. 6.2 and Eq. 6.3, which are already shown in

the problem statement. The assumption made in particle filtering is that a set of

N samples and its corresponding weights represent the posterior probability density

function.

There are many particle filter algorithms, but the most basic one for under-

standing and also the easiest algorithm for application purpose is the bootstrap par-

ticle filtering approach. For any particle filter there are two basic steps that needs

importance: importance sampling and resampling [11].

Estimation of properties of a particular probability density function, by gen-

erating samples from a different probability density function is called importance

sampling [10]. Consider p(x) as a probability density function from which it is diffi-

cult to draw samples. Consider another density q(x) which is easily sampled, on the

condition p(x) ∝ q(x). The N samples are drawn from another density q(x), which

is called the importance density. The associated weights, are given as

wi ∝ p(xi)

q(xi)
(6.33)

where, q(xi) is the importance density [10]. The posterior density becomes:

p(x) ≈
N∑
i=1

wiδ(x− xi) (6.34)

The next time step is evaluated based on samples in hand. The weights are

updated by,

wi
k ∝

p(xi0:k|y1:k)

q(x0:k|y1:k)
(6.35)
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The importance density is chosen such that,

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1) (6.36)

The posterior density can be calculated as,

p(x0:k|y1:k) =
p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)

p(yk|y1:k−1)
(6.37)

=
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
× p(x0:k−1|y1:k−1) (6.38)

∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1) (6.39)

The weight update equation is calculated as:

wi
k ∝

p(yk|xik)p(xik|xik−1)p(xi0:k−1|y1:k−1)
q(xik|xi0:k−1, y1:k)q(x0 : k − 1)i|y1:k−1)

(6.40)

= wi
k−1

p(yk|xik)p(xik|xik−1)
q(xik|xi0:k−1, y1:k)

(6.41)

In case of a bootstrap particle filter, the transition density is considered to

be the importance density, one kind of an assumption in choosing the importance

density [10]. The assumptions are:

q(xk|x0:k−1, y1:k) = q(xk|xk−1, yk) (6.42)

Thus weights are:

wi
k ∝ wi

k−1
p(yk|xik)p(xik|xik−1)
q(xik|xik−1, yk)

(6.43)

Thus the posterior density:

p(xk|y1:k) ≈
N∑
i+1

wi
kδ(xk − xik) (6.44)
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The choice of an importance density is very important and must be chosen in

such a way that it minimizes the covariance.

After importance sampling knowledge, knowledge on resampling is required.

There are many resampling techniques like stratified resampling, residual resampling,

etc. The samples are taken from a distribution. So, depending on the original prob-

ability density function some might fall out of contention. So, as long as there are

samples that are not part of the distribution there exists higher probability of degen-

eracy [11]. This situation tells that at infinite time steps there will be some samples

losing weights and after n iterations there is a possibility of just one sample to remain.

When the samples are not important they need to be removed and replaced by sam-

ples with larger weights. Particle filter completely depends on the choice of samples.

What resampling does is, removing the samples with less weight and replicating the

samples with larger weight according to the importance weights. The Fig. 2 shows

the importance of choosing the right important density. Poor choice of importance

density may lead to little or no overlap of the transition prior with the likelihood.

In general, the algorithm followed in particle filter can be explained in three

steps:

1. Initialization phase - Consider a set of N random samples/particles {xik−1 :

i− 1, ..., N} from the conditional probability density function: p(xk−1|y1:k−1)

2. Predict phase - propagation of N values {vik−1 : i = 1, ..., N}, using the density

function of process noise vk−1, generation of new sample points {xik|k−1 : i =

1, ..., N} using: xik|k−1 = f(xik−1, v
i
k−1)

3. Update phase - assign each a weight of xik|k−1 with the measurement yk, the cal-

culated weight: wi
k =

p(yk|xi
k|k−1

)∑N
i=1 p(yk|xi

k|k−1
)
, the posterior probability density function

is p(xk|yk) =
∑N

i=1w
i
kδ(xk − xik|k−1)
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Figure 2: Poor choice of importance density: little overlap between transition prior
and likelihood

There are other nonlinear state estimation technique like moving horizon esti-

mation and cell filter etc. This thesis is mainly focused on moving horizon estimation

which is discussed in the next chapter.
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CHAPTER VII

Method of Least Squares and Moving

Horizon Estimation

7.1 Background

As explained in literature review, some of the filters that were developed ear-

lier are Kalman filter, extended Kalman filter, unscented Kalman filter, particle filter.

One of the latest and robust technique is moving horizon estimation. MHE is formu-

lated from least squares estimation. The nonlinearity and prior knowledge of mea-

surements can be addressed by considering them as a least squares problem, which

is how MHE has been formulated. This makes MHE a stable and reliable mode of

approach towards nonlinear systems.

The current challenges in state estimation are handling nonlinear system dy-

namics, allowing non-Gaussian distributions for noise parameters and constraints.

MHE is one filter that can cope with all these challenges.
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7.2 Least Squares

Least squares is a mathematical solving technique which is used in cases where,

the number of unknown parameters in a set of equation is more than the number of

equation itself. The method of least squares when applied to general state estimation

problems offers the advantages of being able to incorporate nonlinear models. In case

of MHE, as the number of measurements grows, the size of the optimization increases

too. The least squares objective can be modified to employ the fixed size fixed size

moving window.

7.3 Introduction to MHE

Moving horizon estimation is one of the nonlinear filters which follows mode

estimate or maximum a posteriori estimate. As the name suggests the estimation is

done based on a horizon that is propagated through time steps. A fixed horizon of

measurements are taken into consideration at the beginning. The fixed horizon rep-

resents a particular horizon chosen of any length, given the time steps. This horizon

moves in time for the next data set of points by discarding the past measurement and

taking in new measurement. This follows for complete set of data. In each data set

of the horizon, the optimization of the cost takes place where estimate is obtained.

This is done through mode estimation.

Moving horizon estimation is an optimization approach to state estimation. It

is one of the nonlinear filtering techniques that have been evolved recently and used

for on-line estimation. All filters that were explained in the previous chapters are

minimum variance estimate, meaning, the estimate depends on the mean of the pdf

where as moving horizon estimation depends on the mode of the pdf, this is called as

maximum a posteriori estimate [15]. The estimation is done as follows:
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• Initialization of moving horizon estimation is done through any of the exist-

ing nonlinear filters. The nonlinear filters predict the mean and covariance of

the system model, given, its state and measurement and also the initial condi-

tions. Using the predicted mean and covariance the MHE cost function can be

evaluated.

• The cost function of the MHE consists of two parts arrival cost and stage cost.

Arrival cost can also be called as a penalty term and it is the error caused in

the predicted mean and covariance. Depending on the nonlinear filter used it

varies and it causes poor initialization to optimization. Stage cost is evaluated

based on the noise covariance in the state and measurement models.

• The optimization of the cost function or the objective function, through nonlin-

ear programming algorithm, is used in MHE. The optimization strategy mini-

mizes the cost and using this evaluates the a posteriori estimate.

The number of measurements increases with every time step, along with which

the size of optimization also increases. In order to have the size of optimization

constant, the least squares objective is employed for a fixed horizon, in which the

number of measurements always remains a constant.

In moving horizon estimation how horizon movement takes place is that, when

the first set of measurements are processed, the set is appended by discarding the

earliest measurement which is shown in Fig. 3.

Approximation of conditional pdf is of importance in MHE. Assuming the

conditional pdf to be uniform density is one way, as it takes into account only mea-

surement information of the most recent horizon and the past is discarded. In order to

compensate for this lack of information there is need for bigger horizon lengths. This

is done because, the choice of horizon length is of at most importance to determine
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Figure 3: Moving Horizon Strategy: The horizon length and the movement of the
horizon window

how well MHE works [15]. If the conditional pdf is inconsistent with measurement

then horizon length needs to be large enough to overcome them [21].

In Fig. 3 the horizon length is considered to be 5 time steps. The movement

of horizon window with respect to each time step is explained in terms of the three

boxes accordingly. This also shows how the measurements are discarded at each time

step.

Given the system model, that is, the state and measurement equation as spec-

ified in the problem statement, the steps involved in moving horizon estimation are

specified in Fig. 4.

In Fig. 4 the first step is obtaining the system model. The nonlinear filter

is initialized with the system parameters.The cost function is evaluated and finally
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Figure 4: Steps in MHE Algorithm: System model propagation in the nonlinear filter,
evaluating the cost function and optimization

the cost is optimized. The obtained estimate is again considered for initialization.

This algorithm gives the basic approach of MHE. The state estimator, given any

system model has to use any one of the approximate non-linear filter to propagate

and update two parameters of the probability density function, the mean and the

covariance. Using this mean and covariance evaluate the penalty term known as

arrival cost from the moving horizon estimation objective function.
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7.4 Cost

The two costs that are calculated for optimizing in moving horizon estimation

are stage cost and arrival cost [21]. The negative logarithm of the probability density

function is the cost function of the moving horizon estimation that is minimized for

the state estimates,

min
xm

k∑
j=k−m+1

||yj − h(xj)||2R−1 +
k−1∑

j=k−m+1

||xj+1 − f(xj)||2Q−1 + Γ(xk−m+1) (7.1)

The summations together are called the stage costs and the last term Γ(.) is called

as the penalty term or the arrival cost. The stage cost is the uncertainty caused in

the system state and measurement. The arrival cost is the uncertainty in the a priori

estimate, that is, the mean and covariance.

7.5 Initialization of Moving Horizon Estimation

Moving horizon estimation requires other nonlinear filters in order to provide

the mean and covariance. These filters are required to propagate the mean and

covariance through the system and measurement equation. Thus, the predicted mean

and covariance are obtained. This is important in calculating the arrival cost.

Initialization through extended Kalman filter has some concerns when the non-

linearity is high due to its already explained disadvantages caused through Taylor’s

series expansion. The deterministic sampling method UKF uses sampled sigma points

and associated weights to represent state of the system. Since linearization is avoided

in UKF, significant results are demonstrated when compared to EKF. Particle filter is

a sampling based approach, where the sample size is large, which is a good motivator

for MHE. Also, mean and covariance converge independent of the state, which again

is good for arrival cost estimation.
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7.6 Arrival Cost

The most commonly used arrival cost approximation in moving horizon imple-

mentation is that a priori probability density function at the start of the horizon is

a multi variate Gaussian, which can be represented by the first two moments. The

arrival cost is expressed as

Γ(xk−m+1) = ||xk−m+1 − x̃k−m+1||2P̃−1
k−m+1

(7.2)

To know more about how a particular nonlinear filter affects the computation

of arrival cost, computing the arrival cost using extended Kalman filter is explained.

7.6.1 Arrival cost using Extended Kalman Filter

The extended Kalman filter is explained briefly in Chapter 2 from which it

is understood that the mean and covariance determined from the update phase is

the conditional mean and covariance. Those from predict stage are the predicted

mean and covariance. Always, extended Kalman filter is prone to show divergence

in estimation, which may result in poor arrival cost. Similarly,the arrival cost can be

computed using other existing nonlinear filters.

7.7 Optimization

Once the predicted mean and covariance are obtained, the cost is evaluated,

given the objective function, through a matlab nonlinear programming algorithm

called the unconstrained algorithm. There are two matlab in-built functions, one is

fminunc and other is fminsearch.

The traditional MHE algorithm is explained in this chapter. In order to opti-

mize the cost function, a technique called dynamic programming is to be understood.
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The following chapters explain dynamic programming in detail.
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CHAPTER VIII

Dynamic Programming

8.1 Background to Dynamic Programming

There are some disadvantages when implementing MHE. One of those disad-

vantages is when using particle filter for initialization of MHE, where the cost function

needs to be optimized. As the sample size of the particle filter increases, the non-

linearity increases too and degeneracy becomes an issue. In order to simplify the

optimization strategy, modifications are made to the algorithm of MHE. One of the

best ways is to look for new algorithms for optimization strategy. There are two

possible methods, one using kernel density estimation and the other using dynamic

programming. This thesis focuses on choosing dynamic programming. The reason

behind the choice is the simplicity and also the convenience in optimizing the cost

function.

The goal here is to find another way to optimize the approach as well as increase

the sample size and decrease the computational time. Dynamic programming has

been widely used for solving complex problems. The nonlinearity of the system tends
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to be in those lines of complexity, whereby, the need for dynamic programming is

highly essential.

Dynamic programming examines the possible ways of solving a complex prob-

lem and arrives at the best possible solution available. Dynamic programming splits

the complex problem into simpler subproblems in order to evaluate the problem easily,

as well as, arrive at the best possible solution.

8.2 Introduction to Dynamic Programming

Dynamic programming is an algorithm for efficiently solving a broad range of

search and optimization problems, which exhibit the characteristics of overlapping

subproblems and optimal substructure. A problem is said to have overlapping sub-

problems if it can be broken down into subproblems, which are reused multiple times.

This is closely related to recursion. A problem is said to have optimal substructure

if the global optimal solution can be constructed from local optimal solution to sub-

problems. In simpler terms, it is the method to solve complex problems by reducing

them to simpler subproblems. It follows the principle of optimality where the initial

decision is not important. Despite this all remaining decisions need to be optimal.

Depending on the recurrence relations there are two methods: forward approach

and backward approach, depending on which optimization is done in backward and

forward direction respectively [22]. The dynamic programming is an optimization

strategy that can be helpful in replacing the already existing optimization in moving

horizon estimation. Dynamic programming can minimize as well as maximize any

given function. This idea comes from the implementation of dynamic programming

in least squares estimation. The cost function of moving horizon estimation is similar

to the least squares. Therefore it can be implemented in optimizing the cost function

in moving horizon estimation.
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This method cannot be applicable for all existing moving horizon estimation

because moving horizon estimation requires the nonlinear filter to evaluate the pre-

dicted mean and covariance. In order to implement dynamic programming, the sam-

ples or particles at a particular time step of the estimation along with the mean and

covariance of the predict phase. So, to initialize moving horizon estimation, a nonlin-

ear filter such as particle filter in necessary. For this method, at every time step there

are particles and length of horizon gives room for structure of dynamic programming.

In order to see the difference, consider the factorial function, defined as follows

deffactorial(n) : (8.1)

ifn == 0 : return1 (8.2)

returnn ∗ factorial(n− 1) (8.3)

Thus, in order to calculate factorial(n) calculating the subproblem factorial(n−

1) is necessary. This problem does not exhibit overlapping subproblems, since facto-

rial is called, exactly once for each positive integer less than n. A problem is said to

have optimal substructure if the globally optimal solution can be constructed from

locally optimal solutions to subproblems. The general form of problem in which opti-

mal substructure plays a role is as represented. Consider a collection of objects called

A. For each object o in A we have a ”cost”, c(o). The aim is to find the subset of A

with the maximum (or minimum) cost, perhaps subject to certain constraints. The

brute-force method would be to generate every subset of A, calculate the cost, and

then find the maximum (or minimum) among those values. The more the number of

elements the harder it becomes to compute the cost.
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8.3 Principle of Optimality and Algorithm

The concept of principle of optimality is as follows. Whatever the initial state

the remaining decisions must be optimal, with regard to the state, following from

the first decision. No matter what the first decision is, if it is removed, all other

remaining decisions need to be optimal. There are two approaches in solving dynamic

programming problem, forward and backward approach and in order to obtain the

solution it is solved in the opposite direction of the recursive problem statement.

Depending on the approach, the solution algorithm can be written in four steps [22]:

• Initialization: For 1 ≤ i ≤ N

δ1(i) = log f(x
(i)
1 ) + log g(y1|x(i)1 ) (8.4)

• Recursion: For 2 ≤ k ≤ t and 1 ≤ j ≤ N

δk(j) = log g(yk|x(j)k ) + max
i

[δk−1(i) + log f(x
(j)
k |x

(i)
k−1)] (8.5)

ψk(j) = argmax
i

[δk−1(i) + log f(x
(j)
k |x

(i)
k−1)] (8.6)

• Termination:

it = argmax
i
δt(i)x̂

MAP
t (t) = xitt (8.7)

• Backtracking: For k = t− 1, t− 2, ..., 1

ik = ψk+1(ik+1)x̂
MAP
k (t) = xikk (8.8)

The computational complexity of this algorithm can develop to huge orders.

The optimization here can be both minimization and maximization of the given ob-

jective function.
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Figure 5: Example 1: S, A, B, T are different points, the distance between them is
the number shown, the shortest distance between S and T is to be found

8.4 Examples

Fig. 5 is an example for implementation of dynamic programming. In the

example, finding the shortest path from S to T is the goal. Out of the many ways,

assuming the shortest path to be 1 + 4 + 5 = 10 is usual. But the shortest path found

using algorithm is 1 + 2 + 5 = 8

The example in Fig. 6 can be elaborated as follows. This figure represents a

traveling sales man, traveling from S to T, in the shortest path. Since it is forward

approach the solution will be obtained in the backward direction. The goal of sales-

man is to start from point S and reach T in the shortest possible, covering all other

intermediate points.

From the Fig. 7 it is deterministically shown that shortest distances from A

to T, B to T, C to T defines what the shortest distance is from S to T.

d(S, T ) = min[1 + d(A, T ), 2 + d(B, T ), 5 + d(C, T )] (8.9)
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Figure 6: Traveling Sales Man Problem: the shortest distance between S and T is
found using DP

d(A, T ) = min[(4 + d(D,T )), (11 + d(E, T ))] (8.10)

= min[(4 + 18), (11 + 13)] = 22 (8.11)

d(B, T ) = min[(9 + d(D,T )), (5 + d(E, T )), (16 + d(F, T ))] (8.12)

= min[(9 + 18), (5 + 13), (16 + 2)] = 18 (8.13)

d(C, T ) = min[2 + d(F, T )] = 2 + 2 = 4 (8.14)

d(S, T ) = min[(1 + d(A, T )), (2 + d(B, T )), (5 + d(C, T ))] (8.15)

= min[(1 + 22), (2 + 18), (5 + 4)] = 9 (8.16)

Here d(A,T) is the distance from A to T. It is calculated by finding the min-

imum distance from A through D and E, which is explained by the Fig. 8. The

d(B,T) and d(C,T) are obtained through the same minimization optimization of dis-

tance. This finally minimizes the distance from S to T. Here, the backward approach

is used. Firstly, the minimum distance to reach A, B, C are obtained. Therefore,
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Figure 7: Dynamic Programming Approach

Figure 8: Dynamic Programming d(A,T)

evaluating the minimum distance from these points to S, gives the overall minimum

distance between S and T.

8.5 Advantages and Disadvantages

Dynamic programming computes recurrences efficiently by storing partial re-

sults. Thus, dynamic programming can only be efficient when there are not too many

partial results to compute.

There are n! permutations of an n-element set. Dynamic programming cannot

store the best solution for each sub permutation. (There are 2n subsets of an n-
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element set)

There are two main disadvantages of dynamic programming: one is the curse

of dimensionality, as the size of the problem increases, the increase in computation

complexity occurs and the other is the menace of expanding grid, by which estimation

of number of variables increases, so storage of those in a computer becomes a problem.
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CHAPTER IX

Examples

9.1 Introduction

To provide a concrete evidence as to how these filters work, certain examples

need to be illustrated and solved. The comparison of these filters can be made by

finding the mean squared error(MSE) value. The MSE can be evaluated as

MSE =
1

N × n

N∑
i=1

(xi − x̂i)2. (9.1)

where N is the number of time steps, n is the dimension of state vector, xi is the

simulated value and x̂i is the estimated value from the filters.

9.2 Example 1

A challenging example and bench mark problem in nonlinear estimation re-

search is given in Eq. 9.2 and Eq. 9.3 . The dynamic model and measurement
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equation of the nonlinear system is given as

xk+1 =
xk
2

+
25xk

1 + x2k
+ 8cos(1.2k) + wk (9.2)

yk =
x2k
20

+ νk (9.3)

where wk has mean 0 and process noise covariance Q = 10 and νk has mean

0 and measurement noise covariance R = 1. The important aim here is to have a

look at how each filter works depending on which their performance can be analyzed.

Therefore, for initialization of moving horizon estimation we use nonlinear filters. Due

to approximations, extended Kalman filter, as well as unscented Kalman filter are not

suitable for moving horizon estimation initialization. The filter initial condition is

x̂0 = 1 same as the true initial condition, the variance, P̂0 = 1 and time steps N=64.

9.2.1 Model and Measurement

The true initial conditions are used in order to create the working model.

The Fig. 9 represents a plot between time and simulated values of state model. A

comparison between these values and estimated values obtained from the filter will

be made in following sections.

The Fig. 10 is a plot between time and measurement values.

9.2.2 Performance of Nonlinear Filters

The performance of EKF and PF are explained through this example. The

Fig. 11 shows the performance of EKF. Here the true simulated values of the state

are expressed as lines and estimated values are expressed as circles. How good the

filter works is dependent on how close enough are the estimated and true values which

is represented as MSE.
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Table I: MSE values of nonlinear filters: extended Kalman filter and particle filter
filter are compared

Nonlinear Filter MSE CPU time in seconds

EKF 2.3E + 08 4.11

PF 2.17E + 01 3.11

The Fig. 12 shows the performance of particle filter for the example. The

particle filter is initiated with 512 samples/particles. Here the true simulated values

are expressed as lines and estimated values are expressed as circles. The performance

is evaluated based on the number of samples needed and how good is the MSE value.

From Fig. 11 and Fig. 12 the performance of the particle filter is better than

EKF. This is further proved by their MSE values obtained over 100 realizations which

is listed in Table I.

Both the EKF anf PF are used for initializing the MHE and the performance

of MHE is recorded.

In Fig. 13 the performance of MHE when initialized with EKF, is shown as

a plot between the time step and the true simulated value, EKF estimate and MHE

initialized with EKF estimate.

In Fig. 14 the performace of MHE when initialized with PF, is shown as a plot

between the time step and the true simulated value, PF estimate and MHE initialized

with PF estimate.

From Fig. 13 and Fig. 14 it is clear that the performance of MHE initialized

through PF is better than initialization through EKF. This is significant from the

fact that MHE initialized through PF estimate is close to the true simulated values.

Thus, it is understood how EKF can be a poor arrival cost initialization when

the nonlinear function is of higher order and how particle filter works effectively.
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Table II: MSE values of PF and EKF initialized MHE: the performance of the flters
are significant from the MSE values

MSE values

Nonlinear Filter MHE - EKF MHE - PF

D = 2 1.95E + 04 3.54E + 01

D = 3 1.64E + 04 3.43E + 01

D = 5 1.41E + 04 3.13E + 01

D = 6 1.32E + 04 3.16E + 01

D = 9 1.25E + 04 3.08E + 01

D = 10 1.23E + 04 3.02E + 01

The Table II gives the MSE values over 100 realizations for different horizon lengths.

As the length of horizon increases the MHE value decreases which shows a better

performance. There cannot be a justification for which filter is better in comparison

to MSE values as one is mean estimate and other is mode estimate.

49



Figure 9: Simulation of the process: simulated values of the state model are plotted
against the discrete time interval
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Figure 10: Simulation of the measurement: simulated values of the measurement
model are plotted against the discrete time interval
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Figure 11: Performance of extended Kalman filter: the simulated values and the
estimated values of the model are plotted against the discrete time interval
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Figure 12: Performance of Particle Filter: the comparison between the simulated and
estimated values of the model are shown which demonstrates the performance of the
filter
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Figure 13: Performance of MHE using EKF initialization, the MHE estimates are
closer to the simulated values
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Figure 14: Performance of MHE using PF initialization
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CHAPTER X

Dynamic Programming in MHE

10.1 Introduction

The main aim of this thesis is to change the optimization strategy already

existing in the MHE algorithm. Instead of using the existing method of Nonlinear

Programming algorithm, use of the dynamic programming algorithm with MHE is

done, but it can be only used with particle filter initialization because only in this non-

linear filter we have samples by which dynamic programming algorithm can perform

its optimization strategy on cost function.

10.2 How it works?

Take a particular horizon length D =5 and now dynamic programming algo-

rithm takes effect. At every time step k there are particles or samples, using which

the optimization is done by the backward solution for forward approach in dynamic

programming. It is explained in Fig. 15.
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Figure 15: Implementation of DP in MHE, the samples close to the estimate are
chosen at each time step using DP algorithm

In Fig. 15 at each time step there are 5 samples considered. Out of the 5

samples at each time point dynamic programming aims at finding the sample which

is closest to the estimate thus minimizing the cost. In this way the estimate which is

closest to the true simulated value is found at each time step.

The plot shown in Fig. 15 indicates how dynamic programming leads to better

optimization strategy.

The MSE values of the particle filter and the DP implemented MHE are tab-

ulated.

From Fig. 16 the performance of MHE with NLP algorithm using PF initial-
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Table III: MSE values of MHE with DP and NLP algorithm using PF initialization:
the modified MHE - DP algorithm generated MSE values are compared with the
original MHE algorithm generated MSE values

MSE values

Nonlinear Filter MHE - DP - PF MHE - PF

D = 2 3.8E + 01 3.54E + 01

D = 3 3.6E + 01 3.43E + 01

D = 5 3.5E + 01 3.13E + 01

D = 6 3.01E + 01 3.16E + 01

D = 9 2.78E + 01 3.08E + 01

D = 10 2.54E + 01 3.02E + 01

ization is compared with the performance of MHE modified with DP algorithm, with

particle filter initialization. In the Fig. 16 the circles represent the estimate value of

MHE modified with DP algorithm and green line represents estimate value of MHE

with NLP and true simulated values are represented in blue line.

In Table III the MSE values are shown. They vary according to the length

of the horizon. Comparing the MSE values of these two algorithm, the performance

of MHE modified through DP algorithm is better than MHE with NLP algorithm

at higher horizon lengths. Even though the performance cannot be determined with

just MSE values alone but for all practical purposes it is expected that the estimated

values are close to the simulated values.
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10.3 Performance

In order to explain more on the results of this modified MHE, there is a need

to analyze the method.

The modified MHE with dynamic programming algorithm incorporated and

can only be used, if MHE is initialized with PF. So, the efficiency of MHE with DP

incorporated algorithm majorly depends on how well PF works in estimating the

initial mean and covariance. PF initialization is based on the assumption that the

random noise error is additive on state and measurement equations.

Consider the example in Eq. 9.2 and Eq. 9.3, the PF can work better if R and

Q values are changed.

Here, the PF has similar difficulties. Hence, at lower horizon lengths the

estimate values are little off than the MHE with NLP algorithm.

Also, the 100 realizations done in order to minimize any error has a different

effect on this method.

The studies are explained in Fig. 17, Fig. 18 and Fig. 19. Fig. 17 is a plot

between number of realizations and MSE for the PF.

Fig. 18 is a plot between number of realizations and MSE for MHE algorithm

with PF initialization.

Fig. 19 is a plot between number of realizations and MSE for the MHE algo-

rithm modified with DP, with PF initialization.

This shows at over 100 realizations in majority of instances PF fails or degen-

eracy occurs which results in higher MSE values. When the horizon lengths are large,

it removes the past data and gives good results.
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Figure 16: Performance of MHE-DP with paricle filter initialization: the modified
MHE algorithm is represented in this performance curve
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Figure 17: MSE vs No. of Realizations for PF

Figure 18: MSE vs No. of Realizations for MHE- PF
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Figure 19: MSE vs No. of Realizations for MHE-DP-PF
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CHAPTER XI

Conclusion

The objective of the thesis is to find an alternative approach to the existing

MHE approach. The optimization of cost function is one of the gray areas in MHE

and there are many number of ways to optimize the cost function. This thesis focuses

on one such method, dynamic programming.

The concept of state estimation, filtering and smoothing are explained briefly

in order to understand the major portion of the thesis. Bayesian state estimation

and probability theory are explained in detail as they are the basis of many existing

filters. Kalman filter, extended Kalman filter, unscented Kalman filter and particle

filter are explained in detail as these filters are the important developments in the

estimation field. The performance of EKF and PF are explained with examples.

The three specific aims of the thesis are achieved. Moving horizon estimation

is explained in detail along with its algorithm and the concept of cost optimization is

also briefly explained. The concept of dynamic programming is also explained with

suitable examples.

The dynamic programming algorithm is implemented in MHE and a new al-
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gorithm is developed which can be implemented instead of the conventional MHE

algorithm. A mathematical example is stated and performance comparison between

the new MHE algorithm and old method is analyzed.

Though this method has both its advantages and disadvantages the modified

MHE algorithm can be implemented on nonlinear models due to cost optimization.
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APPENDIX
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1 Matlab files for EKF, PF

Code for EKF

MSE = [];

for count = 1:100

% Initial state

x =1;

n = length(x);

m = 1;

% Number of time steps

N = 64;

t = [1:N];

X = x;

% Noise covariances

Q = 10;

R = 1;

y = (x^2/20);

Y = y;

for k = 2:N

% Non-linear equations

x = 0.5*x + 25*x/(1+x^2) + 8*cos(1.2*(k-1)) + Q^0.5*randn(size(x));

y = (x^2/20) + R^0.5*randn;

X = [X,x];

Y = [Y;y];

end

% ESTIMATION

% EKF
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xf = 1;

Pf = 1;

% Storage

Xf = xf;

% Filter loop

for k = 1:N

F = 1/2 + 25/(1+xf^2)-(50*xf^2)/(1+xf^2)^2;

xf = xf/2 + 25*xf/(1+xf^2)+ 8*cos(1.2*(k-1))+((Q)^0.5)*randn(size(xf));

Pf = (F^2)*Pf + Q;

H = xf/10;

K = (Pf/H)*inv((H^2)*Pf+R);

xf = xf+K*(Y(k)-(xf^2/20));

Pf = Pf-K*H*Pf;

Xf(k) = xf;

end

mse = sum(sum((X-Xf).^2)/R)/(n*N)

MSE = [MSE; mse];

end

m = MEAN(MSE);

plot (t,X,’k-’,t,Xf, ’k*’)

xlabel(’Time step, k’);

ylabel(’Simulated value,Estimated values’);

grid;

title(’EKF’);

legend(’Simulated’,’Estimated’);

Code for PF
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t = [1:64];

n = length(t);

x_i = [1];

x_0 = [1];

P_0 = 1;

u_n = 10;

v_n = 1;

k=1;

Y = zeros(size(v_n,1),n);

X = zeros(size(u_n,1),n);

X(:,1) = 0.5*x_i + 25*x_i/(1+x_i^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

for k = 2:n

X(:,k) = 0.5*X(:,k-1) + 25*X(:,k-1)/(1+X(:,k-1)^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

end

for k = 1:n

Y(k) = X(:,k).^2/20 + v_n^0.5*randn;

end

% Partilce Filter

M = x_0;

P = P_0;

n_particles = 512;

MM_BS = zeros(size(M,1),size(Y,2));

PP_BS = zeros(size(M,1),size(Y,2));

BS_particles =[];

Xh_BS = MM_BS;

SX = M + P^0.5*randn(1,n_particles)
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tt = clock;

for k = 1:size(Y,2)

SX = 0.5*SX + 25*SX./(1+SX.^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn(1,size(SX,2));

SY = SX.^2/20;

w = 1/sqrt(2*pi*v_n) *exp(-(Y(:,k)-SY).^2 / (2 * v_n));

w = w/sum(w);

[ind] = resampleResidual(w);

SX = SX(ind);

BS_particles(:,k) = SX’;

M = mean(SX’);

P = cov(SX’);

MM_BS(:,k) = M’;

PP_BS(:,k) = P;

end

BS_CPUT = etime(clock,tt);

BS_MSE = sum(X-MM_BS).^2/n

plot(t,X,’k-’,t,MM_BS, ’k*’)

xlabel(’Timestep, k’);

ylabel(’Simulated value and Estimate value’);

grid;

title(’PF’);

legend(’Simulate’,’ Estimate’)

Code for MHE-PF

BS_MSE = [];

MHE_MSE1 = [];

MHE_MSE2 = [];
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MHE_MSE3 = [];

for count = 1:100

t = [1:64];

global xf Pf k D u_n v_n Y

n = length(t);

x_i = [1];

x_0 = [1];

P_0 = 1;

u_n = 10;

v_n = 1;

k=1;

Y = zeros(size(v_n,1),n);

X = zeros(size(u_n,1),n);

X(:,1) = 0.5*x_i + 25*x_i/(1+x_i^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

for k = 2:n

X(:,k) = 0.5*X(:,k-1) + 25*X(:,k-1)/(1+X(:,k-1)^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

end

for k = 1:n

Y(k) = X(:,k).^2/20 + v_n^0.5*randn;

end

% Partilce Filter

M = x_0;

P = P_0;

n_particles = 512;

MM_BS = zeros(size(M,1),size(Y,2));

PP_BS = zeros(size(M,1),size(Y,2));
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BS_particles =[];

Xh_BS = MM_BS;

D =2;

SX = M + P^0.5*randn(1,n_particles);

tt = clock;

for k = 1:size(Y,2)

SX = 0.5*SX + 25*SX./(1+SX.^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn(1,size(SX,2));

SY = SX.^2/20;

xf= MEAN(SX);

Pf = VAR(SX);

w = 1/sqrt(2*pi*v_n) *exp(-(Y(:,k)-SY).^2 / (2 * v_n));

w = w/sum(w);

[ind] = resampleResidual(w);

SX = SX(ind);

BS_particles(:,k) = SX’;

M = mean(SX’);

P = cov(SX’);

MM_BS(:,k) = M’;

PP_BS(:,k) = P;

if k >= D

[xmhe,fval] = fminunc(’MHE_PFfunction_cost_SU’, MM_BS(k-D+1:k));

Xmhe(k-D+1:k) = xmhe;

end

end

BS_CPUT = etime(clock,tt)
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bs_MSE = sum((X-MM_BS).^2)/n;

mhe_MSE = sum((X-Xmhe).^2)/n;

BS_MSE(:,count) = bs_MSE;

MHE_MSE(:,count) = mhe_MSE;

end

PFMSE = mean(BS_MSE)

MHEMSE1 = mean(MHE_MSE)

plot(t,X,’k-’,t,MM_BS,’k*’,t, Xmhe, ’ko’)

xlabel(’Timestep, k’);

ylabel(’Simulated value, Estimated value, MHE’);

grid;

title(’MHE - PF’);

legend(’Simulated value’,’ PF estimate’, ’MHE estimate’)

Code for MHE-DP-PF

BS_MSE = [];

MHE_MSE = [];

for count =1:100

t = [1:64];

global xf Pf k D u_n v_n Y

n = length(t);

x_i = [1];

x_0 = [1];

P_0 = 1;

u_n = 10;

v_n = 1;

k=1;
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Y = zeros(size(v_n,1),n);

X = zeros(size(u_n,1),n);

X(:,1) = 0.5*x_i + 25*x_i/(1+x_i^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

for k = 2:n

X(:,k) = 0.5*X(:,k-1) + 25*X(:,k-1)/(1+X(:,k-1)^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn;

end

for k = 1:n

Y(k) = X(:,k).^2/20 + v_n^0.5*randn;

end

f_func = @singlestate;

% Partilce Filter

M = x_0;

P = P_0;

n_particles = 512;

MM_BS = zeros(size(M,1),size(Y,2));

PP_BS = zeros(size(M,1),size(Y,2));

BS_particles =[];

Xh_BS = MM_BS;

D =10;

XPART =[];

SX = M + P^0.5*randn(1,n_particles);

tt = clock;

for k = 1:size(Y,2)

SX = 0.5*SX + 25*SX./(1+SX.^2) + 8*cos(1.2*(k-1)) + u_n^0.5*randn(1,size(SX,2));

SY = SX.^2/20;

xf= MEAN(SX);
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Pf = VAR(SX);

XPART = [XPART, SX’];

if k>=D

Yh = Y(:,k-D+1:k);

[r,c] = size(XPART);

Xpart = XPART(:, c-D+1:c);

aa = (Xpart(:,1) - xf).^2/Pf;

YY = repmat(Yh,n_particles,1);

for i = 1: D

ba(:,i) = (YY(:,i) - Xpart(:,i).^2./20).^2/v_n;

end

bb = aa + ba(:,1);

th =k-D;

for j = 2:D

for i = 1:n_particles

ca = (Xpart(i,j) - feval(f_func,Xpart(:,j-1),th)).^2/u_n;

da = bb(:,j-1) + ca;

[DA, indx] = min(da);

bb(i,j) = ba(i,j) + DA;

phi(i,j) = indx;

th = th+1;

end

end

[ea,I] = min(bb(:,D));

fa(:,D) = Xpart(I,D);

for j = D-1:-1:1
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fa(:,j) = Xpart(phi(I,j+1),j);

Xmhe(:,k-D+1:k) = fa;

end

end

w = 1/sqrt(2*pi*v_n) *exp(-(Y(:,k)-SY).^2 / (2 * v_n));

w = w/sum(w);

[ind] = resampleResidual(w);

SX = SX(ind);

BS_particles(:,k) = SX’;

M = mean(SX’);

P = cov(SX’);

MM_BS(:,k) = M’;

PP_BS(:,k) = P;

end

BS_CPUT = etime(clock,tt);

bs_MSE = (sum(X-MM_BS)).^2/n;

mhe_MSE = (sum(X-Xmhe)).^2/n;

BS_MSE(:,count) = bs_MSE;

MHE_MSE(:,count) = mhe_MSE;

end

PFMSE = mean(BS_MSE)

MHEMSE = mean(MHE_MSE)

plot(t, X,’k-’, t,MM_BS,’k*’ ,t, Xmhe,’ko’)

xlabel(’Timestep,k’);

ylabel(’Simulated value, MHE, MHE - DP ’);

grid;
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title(’MHE-DP-PF, MHE - PF’);

legend(’Simulated value’,’ MHE-PF estimate’, ’MHE-DP-PF estimate’)
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