
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

ETD Archive 

2014 

Electrostatically Controlled Enzymatic Reaction, Metabolic Electrostatically Controlled Enzymatic Reaction, Metabolic 

Processes and Microbial Generation of Electric Power Processes and Microbial Generation of Electric Power 

Yang Song 
Cleveland State University 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive 

 Part of the Electrical and Computer Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Song, Yang, "Electrostatically Controlled Enzymatic Reaction, Metabolic Processes and Microbial 
Generation of Electric Power" (2014). ETD Archive. 829. 
https://engagedscholarship.csuohio.edu/etdarchive/829 

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for 
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/829?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


 

 

ELECTROSTATICALLY CONTROLLED ENZYMATIC REACTION, 

METABOLIC PROCESSES AND MICROBIAL GENERATION OF 

ELECTRIC POWER 

 

 

 

YANG SONG 

 

 

 

 

Bachelor of Electrical Engineering 

Nankai University 

July, 2011 

 

 

 

 

submitted in partial fulfillment of requirements for the degree 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

at the 

CLEVELAND STATE UNIVERSITY 

May, 2014 



 

 

We hereby approve this thesis for 
 

Yang Song 
 

Candidate for the Master of Science in Electrical Engineering degree for the  
 

Department of Electrical and Computer Engineering  
 

and the CLEVELAND STATE UNIVERSITY  
 

College of Graduate Studies  
 
 
 

_________________________________________________________________ 
 

Thesis Chairperson, SiuTung Yau     
 
 

_____________________________________________ 
Electrical and Computer Engineering Department & Date 

 
 
 
 
_________________________________________________________________ 

 
Thesis Committee Member, Fuqin Xiong   

 
_____________________________________________ 

Electrical and Computer Engineering Department & Date 
 
 
 
 

_________________________________________________________________ 
 

Thesis Committee Member, Lili Dong    
 
 
 

_____________________________________________ 
Electrical and Computer Engineering Department & Date 

 
Student’s Date of Defense:  (4/18/2014)    

 



 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to Dr. SiuTung Yau, my academic 

advisor, for introducing me to the broad and interesting world of biosensors and 

nanotechnology, patiently guiding me through the entire thesis research, the opportunity 

to touch the edging techniques in the biosensor and microbial fuel cell. 

I would like to offer my special thanks to Dr Fuqin Xiong and Dr Lili Dong for 

serving on my thesis committee and providing invaluable advices for my thesis. 

I would like to take this opportunity to thank to Jiapeng Wang for his help in the 

composition of this thesis. 

I would also like to thank to my family and friends for their support and 

encouragement throughout my study. 



 

 iv 

ELECTROSTATICALLY CONTROLLED ENZYMATIC REACTION, 

METABOLIC PROCESSES AND MICROBIAL GENERATION OF 

ELECTRIC POWER 

YANG SONG 

 

 

ABSTRACT 

 

This thesis shows that electric fields can be used to control electron transport in 

biological systems and improve the performance of biological devices using an external 

gating voltage.  It has recently been shown that an ultrasensitive detection method based 

on electric field effect can be used to control the kinetics of enzymatic conversion of 

glucose. The first part of the thesis is a mechanistic study of the enzyme catalyzed 

conversion of glucose to gluconolactone using the field effect enzymatic detection 

(FEED) technique. Use of a voltage controlled enzymatic system decreased electrons 

tunnel between electrode and active center of glucose oxidase (GOx) to 13mM, as 

compared with normal status (56mM). The catalytic constant of glucose molecules was 

also increased to 870S-1. A high concentration of PBS in the system would induce more 
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electrical charges which will induce a stronger electrical field. The results indicate that 

electrostatic field effect can be used to improve the activity of a redox enzyme 

immobilized on an electrode by setting up electric field on the interface. 

Next, the FEED technique is applied to the metabolism of glucose by yeast cells. A 

transistor-like electrochemical device is constructed to control the glucose metabolism 

process. Finally, the FEED is used to enhance the performance of yeast-based  microbial 

fuel cell.  
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CHAPTER I 

INTRODUCTION 

1.1 Electrostatically controlled biological systems 

Electron transfer (ET) is a fundamental process responsible for important 

biological phenomena such as photosynthesis, respiration and metabolism [1]. Effectively 

controlled electron transfer is one of the important regulation mechanisms in biology and 

biomolecular machines [2, 3], whereas efficiently controlled kinetics of biological 

catalysis reaction is an essential requirement for viable renewable and green energy 

processes [4].  Electrons in biological systems transfer between active sites, which are 

embedment with insulating polypeptide networks. Therefore, the rate of ET in biological 

systems is absolutely low [5].  Recently, an electrostatic technique has been used to 

control the rate of ET in different kinds of biological system. 

1.2 FEED technique 

The technique, field-effect enzymatic detection (FEED), is based on modifying the 

conventional three-electrode electrochemical cell with additional gating electrodes for 

applying a gating voltage VG between the gating electrode and the working electrode [5], 
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upon which a redox enzyme is immobilized. VG induces an electric field that penetrates 

the enzyme and lowers the energy barrier between the electrode and the enzyme’s active 

site, allowing more electrons to be transferred to result in VG-controlled current 

amplification [5]. The current amplification provided by FEED has been applied to 

glucose biosensors to detect glucose on the zepto-molar level [6]. The research included 

in this thesis is on three aspects of FEED as described in the following sections. 

Fig 1-1 shows the basic structure of FEED system. When the VG is positive, the VG 

will induce the ions at the interface between enzyme and solution. Fig 1-2 shows net 

interfacial charge distribution. The induced ions could set up electric field across activity 

center which is embedment with polypeptide groups [5]. The polypeptide groups result in 

low level of interfacial electron transfer rate between active site and electrode [9]. Fig 1-3 

is the schematic description of the induced electric field forming at enzyme-electrode 

interface [7, 10]. When quantum state is in equilibrium, no electron can transfer between 

activity center and electrode, since the energy of quantum state of active site, Ered, is 

lower than the Fermi energy. The electron transfer rate (Ket) depends on the distance (d) 

between electrode and active site of GOx, which is shown as Ket∝ exp(-βd) [11]. From 

the equation, Ket was also related with the attenuation coefficient, β, which depends on 

the square root of height of electron tunnel barrier. When VG is increasing, the induced 

electric field can lower the effective height of electron tunnel barrier, resulting in 

reducing the value of attenuation coefficient β and enhancing electron transfer rate Ket 

[10, 11].  
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1.3 Elucidation of FEED mechanism 

In addition to providing signal amplification in biosensors, the FEED technique can 

be used to ET at general biological-inorganic interface.  However, the mechanism of the 

ET process has to be studied. This research includes a series of experiments performed to 

elucidate the mechanism of FEED. These experiments were performed using the system 

of an electrode and glucose oxidase, the enzyme that catalyzes the oxidation of glucose 

[12]. Then, the kinetics of the enzymatic conversion of glucose to gluconolactone was 

characterized with VG as the parameter [13].  The results of this study showed FEED can 

be used in other biological-inorganic systems. 

1.4 Controlled glucose metabolism 

FEED has been applied to the yeast-electrode system to show the feasibility of 

controlling the kinetics of cellular glucose metabolic processes at the surface of an 

electrode. Glucose metabolism in cells generates energy for living systems to sustain 

biological functions [14]. Controlling cellular glucose metabolism has important 

implications in cancer research and synthesis of biofuels [15-17]. This work shows that 

the glucose consumption in yeast cells that was in contact with an electrode could be 

controlled by VG. The observation that the glucose consumption qualitatively correlates 

to the production of the end products of glucose metabolism such as ethanol and ATP 

indicates that the entire process was glucose metabolism whose kinetics was controlled 

by applying a voltage at an insulated gating electrode. The results show a possible role 

for electrostatic means in several metabolism-related areas. 
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1.5 Improved performance of microbial fuel cell 

Microbial fuel cell (MFCs) can convert different kind of substrate and fuel into 

electric power [18-21].The FEED technique was also applied to yeast-based microbial 

fuel cell (MFCs) to improve its performance. This work shows that applying a gating 

voltage to the anode of a MFC where yeast is immobilized enhances the ET into the 

anode so that the performance of the MFC in terms of the open-circuit voltage (OCV), 

the polarization curve and the power curve was improved. Since the improved 

performance did not occur at the cost of extra energy spent on the fuel cell, the 

electrostatic method appears to be a viable way to boost up the output of MFCs.  The 

method is applicable to generic MFCs.  This work indicates that the applied voltage 

functions as an additional operation parameter and should be considered in the design of 

biofuel cells. 
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Fig 1-1 Cross-sectional view of experimental setup. Redox molecule whose active center 
is showed by the small point inside a molecule, is immobilized on the working electrode. 
The gating electrodes are represented by the circular structures, which consist of a copper 
wire (the blue circles) and a thin layer of insulator (the shaded shells) (Choi and Yau, 
2009). 
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Fig 1-2 ion-formed electric field at connector between enzyme and acceptor. The brown 
arrow indicates the direction of electron transfer and the red arrow indicates the direction 
of the induced electric field(Choi and Yau,2009) 
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Fig 1-3 Energy state of interface between enzyme and electrode. Ered and Eox are 
respectively the most probable energies for the occupied and unoccupied quantum states 
of the active site (Tans and Verschueren, 1998). 
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CHAPTER II 

VOLTAGE CONTROLLED ENZYME CATALYZED GLUCOSE-

GLUCONOLACTONE CONVERSION 

2.1 Summary 

A detailed study on the voltage-controlled enzymatic catalysis of the glucose-

gluconolactone conversion using the FEED technique has been performed. The 

conversion of glucose to gluconolactone occurring at an enzyme-immobilized working 

electrode was confirmed using mass spectrometry.   Electrochemical studies showed that 

the glucose oxidation current depends on the gating voltage VG and the ion concentration 

of the sample solution.  Additionally, the depletion of glucose in the sample also showed 

a dependence on VG. FEED was used to detect H2O2 on the zepto-molar level in order to 

show that the ultrasensitive detection capability is a general feature of the technique. 

These results, while providing evidence for the proposed mechanism of FEED, indicate 

that VG controls the conversion process. The effect of VG on the glucose-gluconolactone 

conversion was demonstrated by the observed VG-dependent kinetic parameters of the 

conversion process.  The results of our electrochemical measurements, while being used 

to elucidate the mechanism of FEED, provide insights into the kinetics of the conversion.  
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It was shown that the conversion kinetics could be manipulated using a gating voltage. 

2.2 Method and Materials 

2.2.1 Detection system and operation 

Fig 2-1 showed the schematic field effect detector system layout. This system is 

made with three electrode electrochemical cell which is modified by a gating electrode 

[1]. The gating electrode is used to apply VG to the working electrode where immobilized 

redox enzymes. Pyrolysis graphite electrode (PG, GE Advanced coop) was used as the 

working electrode which had an area of 0.5mm*0.5mm and coating with mask. The GOx 

immobilized electrodes were prepared by deposited one drop (1mL) of GOx (Sigma 

Aldrich) on the PG electrode surface and incubated at 27°C for 5 hours, and then washed 

by demonized water. Then dry them at 27°C. The enzyme immobilization method can be 

used for glucose oxidase or MP-11[2], which suggests that the activity of glucose oxidase 

can be preserved through this method. Cyclic voltammetry was performed using GOx 

immobilized electrode to show VG effect on GOx induced oxidation of glucose. A 

conventional three electrode cell was powered by the Cyclic Voltammetry measurement 

(CH660C). An Ag/AgCl electrode functioned as reference electrode and platinum wire 

was used as counter electrode. The gating electrode, which was made of 0.5 mm diameter 

copper wire with an insulator thin, have formed a U-turn structure and was attached to the 

surface of working electrode in order to suspend the molecules of GOx. The scan rate of 

the Cyclic Voltammetry system was set as 25mV/s and every detection experiments must 

be processed for at least five times to reach a reliable result. All the experiments were 

carried out at 27°C.  
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2.2.2 Reagents 

GOx (EC 1.1.3.4) and D(+)-glucose were purchased from Sigma Aldrich. All the 

chemicals were analytical grade without any purification. Deionized water was obtained 

using a Direct-QTm5 Millipore system. Phosphate buffer solution (PBS) was prepared 

using deionizer water and diluted with KH2PO4 and Na2HPO4, then was adjusted PH with 

0.1M H3PO4 and NaOH. GOx was dissolved in 0.1M PBS and concentration was 

10mg/ml.   

2.2.3 Mass spectrometry and Glucose Meter 

Mass spectrometry experiments were performed using GOx immobilized electrode 

with glucose solution under chronoamperometry model at 0.8V potential. The 

electrospray ionization mass spectrometric experiments were conducted to analyze 

glucose samples with an applied bio-system (Foster City, CA) Q-Star Elite TOF mass 

spectrometer and with the TurboIon spray source equipment. Glucose samples, which 

contained the same amount of glucose and C-13 labeled heavy isotope, were diluted with 

same volume of 10% ammonium acetate and 90% acetonitrile.  The equipment injected 

glucose sample at a consent rate (10mL/min-1). The data was analyzed using the software 

from the Analysis bio-system program. The Breeze Glucose Meter integrated with test 

strips, one kind of commercial blood glucose devices for measuring the glucose 

concentration in the blood sample, was used to measure the glucose concentration in our 

experiments. The measuring range of this particular instrument is 20-650mgdL-1.  
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2.3 Results 

2.3.1 Mass spectrometry results 

Fig 2-2(a) has shown the mass spectrometry results of glucose samples.  The mass 

and charge ratios (m/z ratios) of deprotonated glucose and deprotonated heavy isotopes 

equal to 179 and 185, respectively. Fig 2-2(b) shows the results of mass spectrometry 

after 300s of chronoamperometry. The m/z ratios of gluconic acid and acid of heavy 

isotope are 195 and 201, with the intensity height 600 and 700, respectively. Additionally, 

the intensity height of glucose line and heavy isotope line decreased from 5000 to 2500. 

Thus, the result of mass spectrometry showed that glucose-gluconolactone conversion did 

happen at GOx immobilized electrode. 

2.3.2 Electrostatically controlled glucose oxidization current 

The process of glucose-gluconolactone conversion process is attributed to 

oxidation of glucose catalyzed by GOx. These stable glucose oxidation currents are due 

to the redox of active site of GOx [3, 4]. The results of Cyclic Voltammetry 

measurements (CVs) were shown by Fig 2-3. CV1,CV2 and CV3 are the currents of 

control experiments got in the bare electrodes in 10mM glucose with VG=0V, 0.1V and -

0.1V. CV4 is the glucose oxidation current with VG=0V in the 10mM glucose solution. 

These stable glucose oxidation currents were to the results of oxidation glucose of GOx. 

And CV5, CV6 and CV7 are the glucose oxidization currents in 10mM glucose solution 

with different values of VG. CV5 and CV6 indicate that the glucose oxidation current 

increased progressively when positive value of VG was increasing. However, CV7 shows 

that glucose oxidation current became less than CV4 when the polarity of VG was 

reversed. The increase in glucose oxidation current was attributed to the reducing height 
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of electron tunnel barrier [5-6], whereas the decreasing in glucose oxidation current was 

due to increase height of electron tunnel barrier.  

The VG dependent glucose oxidation currents in different ion concentration of PBS 

(Fig 2-4) provided more evidence for mechanism shown in Fig 1-2 and Fig 1-3. The CV2 

and CV3 can show the glucose oxidation current happened progressively increasing when 

concentration of PBS was increased. The increasing glucose oxidation currents are due to 

the fact that induced ions on the enzyme-solution interface can set up electric field to 

control height of electron tunnel barrier. As the ion concentration of PBS was increasing, 

more ions were induced to set up stronger electrical field, resulting in a lower height of 

electron tunnel barrier. 

2.3.3 FEED controlled glucose consumption  

Fig 2-5 shows the glucose concentration changing at different value of VG under 

aerobic condition using GOx immobilized electrode. Curve-1 shows the gradual 

decreasing in glucose concentration during the period of 700s at VG=0V, which 

decreased by 14% of the initial glucose and used as reference one. Curve-2 to curve-5 

suggested that with the increasing positive value of VG, the glucose consumption rate will 

increase gradually at first and then will approach to a constant rate.  

Curve-6 and curve-7 proves that the glucose consumption rate will slower down 

with a negative VG. This trend also corresponds to the theoretical mechanism shown in 

Fig1-2 and Fig1-3.  

The different glucose consumption rates indicate that the speed of glucose-

gluconolactone catalyzed conversion can be controlled by VG. 
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2.3.4 FEED controlled glucose calibration curves for different glucose concentration 

Fig 2-6 shows the VG dependent glucose calibration curves obtained from the 

anodic/oxidation current on the CVs at 0.8V under different values of VG by using GOx 

immobilized electrode in different concentration of glucose solution. The current roughly 

changes as a linear response to the glucose concentrations. The nonlinearity is probably 

the result of enzymatic reaction under close-saturation kinetics condition.   

 

2.4 Discussion 

It can be predicted that VG induced ions could set up electric field at enzyme-

solution interface from the observation of the VG dependent glucose oxidation current 

corresponding to the ion concentration of PBS. In order to exhibit electrostatically effect 

on glucose oxidation on GOx immobilization electrode, the VG controlled kinetics of 

glucose-gluconolactone conversion processes were estimated by VG dependent glucose 

calibration curves in Fig 2-6. The two kinetics constants of glucose-gluconolactone 

conversion can be changed by VG (Fig2-7). Therefore, the kinetics of glucose-

gluconolactone conversion will be influenced by VG. 

There are two parameters involved in the kinetics of the glucose-gluconlactone 

conversion happened at enzyme-electrode interface, Kcat and Km [7]. Kcat, the turnover 

number is the maximum number of substrate converted per second per active center; 

whereas Km is the Michaelis constant indicating the amount of glucose for the half 

conversion speed [7]. Since Km is obtained by GOx immobilized electrode, it indicates 

the catalytic efficiency of GOx immobilized on electrode. The lineweaver-burk equation 
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[8] is shown as, 

1
𝐼𝑜𝑥� = {𝑘𝑚′ /(𝑛𝐹𝐴𝑘𝑐𝑎𝑡Γ[𝑔𝑙𝑢𝑐𝑜𝑠𝑒]) + 1/𝑛𝐹𝐴𝑘𝑐𝑎𝑡Γ}                       (1) 

Where, Iox is the glucose oxidation current measured at Vcell=0.8V, F is Faraday constant, 

n is electron transfer in the reaction, Γ is the electrode’s surface coverage by GOx and A 

is the electrode surface area. As 1/Iox is a linear dependence on 1/[glucose], the Kcat and 

Km are obtained from the slop and vertical intercept of lineweaver-burk equation. The 

number of electron transfer in the reaction, n can be obtained using Laviron Equation, 

Iox= (nFQv) / (4RT), where Q is the charge of an electron, v is electrochemistry scan rate 

and F is Faraday constant [8]. So Γ can be estimated by using the equation      Γ = 

(4IoxRT) / (n2F2Av) at room temperature with v=25VS-1 and n=2.2 [9]. By using 1mm2 of 

electrode surface area, T can be calculated to be 1.125x10-11 molcm-2. The value of T is 

shown the one monolayer layer as the size of glucose oxidase is 6x5.2x7.7 nm. 

As VG is increasing, Kcat increases while Km decreases (Fig 2-7). Generally, 

enzyme catalyze reaction can be shown as 

𝐸 + 𝑆 
      𝑘−1      
�⎯⎯⎯⎯⎯⎯⎯�
        𝑘1       
�⎯⎯⎯⎯⎯⎯�𝐸𝑆

      𝑘2      
�⎯⎯⎯⎯� 𝐸 + 𝑃                                    (2) 

Where, E is GOx, S is glucose, ES is the enzyme-substrate complex and P is the final 

product [9]. As the final step is the catalytic process, enzyme will be recovered to normal 

site after P is formed. The VG could accelerate the GOx-catalyzed glucose-

gluconolactone conversion (Fig2-7), because electron transfer would happen as the 

second step [10]. The electron transfer rate (Ket) will be enhanced due to VG induced 

electric field, which leads to a higher Kcat (K2) contributing to more glucose conversion 

into gluconolactone at the second step. This will enhance the next conversion step. 
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Therefore, the glucose concentration for half of maximum speed will be lowered 

indicating a higher bio-catalytic efficiency. This capability is useful for other bio-devices. 
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Fig 2-1 Cross-section view of experimental setup (Choi and Yau, 2009). 
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Fig 2-2 Mass spectra showing the glucose – gluconolactone conversion. （ a ） A 
sperctrum showing glucose and 13C6-glucose at t=0s. (b) decreasing in glucose and 3C6-
glucose and production of enzymatic reaction at t=300s (Yau, Xu and Song, 2013). 
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Fig 2-3 The VG-dependence of the glucose oxidation current in 10 mM PBS. CVs 
obtained using GOx immobilized electrode with glucose solution under different 
conditions (Yau, Xu and Song, 2013). 
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Fig 2-4 The oxidation current in different ion concentration. CVs were obtained with 
VG=0.3V by using GOx immobilized electrode in presented of different concentration of 
PBS and 10mM glucose (Yau, Xu and Song, 2013). 
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Fig 2-5 The effect of VG on the time-dependent depletion of glucose in the sample (Yau, 
Xu and Song, 2013). The samples of glucose solution (12.7mM) were processed using 
the electrochemistry system in Fig 2-1(a) at Vcell=0.8V vs. Ag/AgCl for a total time of 
700s. The measurements of the glucose concentration were performed with glucose meter. 
The control experiment was set up using blank graphite electrode. Positive VG can reduce 
the effective height of electron tunnel barrier, resulting in high speed of conversion of 
glucose. The negative VG can increase height of electron tunnel barrier, result in slow 
down the speed of conversion. 
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Fig 2-6 VG-dependent glucose calibration curves (Yau, Xu and Song, 2013). The current 
roughly changes as a linear response to the glucose concentrations. 
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Fig 2-7 The VG-dependent Kcat and Km (Yau, Xu and Song, 2013) 



 

 24 

CHAPTER III 

ELECTROSTATICALLY CONTROLLED METABOLISM OF GLUCOSE IN 

YEAST 

3.1 Summary 

Glucose metabolism process is one important part of cellular processes that convert 

glucose to energy for cell [1, 2]. The recent research on glucose metabolism focuses on 

its important role in the area of metabolic engineering and cell biology [3]. This work 

shows that the glucose consumption of yeast that was in contact with an electrode could 

be controlled using VG. The observation that the glucose consumption qualitatively 

correlates to the production of the end products of glucose metabolism such as ethanol 

and ATP indicates that the entire process was glucose metabolism whose kinetics was 

controlled by applying VG at an insulated gating electrode.  In fact, experimental system 

used in this work is a transistor-like device, whose function is to control the glucose 

metabolism process using VG. The results show a possible role for electrostatic means in 

several metabolism-related areas. 
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3.2 Materials and methods 

3.2.1 Yeast preparation 

Dried baker’s yeast (Saccharomyces cerevisiae) purchased from Sigma Aldrich 

(YSC1) was cultivated for several hours at 30, in medium of deionized water, glucose 

and peptone. 

3.2.2 System construction and operation 

Pyrolysis graphite electrode (PG, GE Advanced coop) was used as the working 

electrode, which had an area of 1mm*1mm, and is coated with mask. The yeast 

immobilized electrodes were prepared by depositing one drop (1mL) of yeast (Sigma 

Aldrich) onto the PG electrode surface and incubating under 27°C for 6 hours. And then 

the electrodes were washed with demonized water and dried at 27°C. A conventional 

three electrode cell was used in the Cyclic Voltammetry measurement (CH660C). An 

Ag/AgCl electrode was used as the reference electrode while platinum wire was used as 

counter electrode. The gating electrode, made by 0.5 mm diameter copper wire with an 

insulator thin, formed U-turn structure and was attached onto the surface of working 

electrode to suspend the yeast cells. PBS solution was prepared using deionizer water and 

diluted with KH2PO4 and Na2HPO4 until PH=6.8. The scan rate of the Cyclic 

Voltammetry system was set as 25mV/s and every data point was obtained by at least 

five duplication experiments. All the experiments were performed at 27°C. 

3.2.3   Glucose, ATP and Ethanol Analyses 

The anaerobic condition was achieved by purging solution with dry N2 for 1 hour. 

Samples of glucose in PBS were processed by the system in Fig 3-1 at room temperature 

using yeast immobilized electrodes at Vcell = 0.6V vs. Ag/AgCl for 1200s. Glucose 



 

26 

concentration was measured every 300s using commercial glucose meter, whose 

measuring range is 20-650mg/dl. Each time 5mL of solution was taken out to be 

measured. The meter was calibrated before use.  

In aerobic glucose metabolism, glucose will be oxidized by glycolysis, Krebs cycle 

and electron transport chain in the presence of oxygen [4]. Adenosine triphosphate (ATP), 

one kind of end products in metabolic process, will be synthesized during metabolism 

process. Luminescence assay of ATP in yeast cell suspended in glucose sample, which 

were electrochemically processed in Fig 3-1, was used to reveal the ATP produced as 

function of VG. The assay of ATP was performed using the BacTiter-Glo Microbial cell 

viability Assay kit. The luminescence was detected using Victor3 Multilabel Plate 

Counter and displayed as relative light units (RLU). The higher the luminescence 

intensity, the higher the concentration of ATP. 

Ebulliometry of electrochemically processed glucose sample was performed to 

monitor the generation of ethanol. The ethanol concentration of sample was measured 

using an ebulliometer at room temperature. The production of ethanol was tested in a 

beaker containing 30mL of glucose solution. A 10mmx10mm carbon cloth was used as 

the working electrode. 100mM glucose solution was processed by the system in Fig3-1 at 

27°C with and without VG 3 hours under anaerobic condition. 

3.2.4   Cyclic Voltammetry test 

Cyclic   voltammetry (CH Instruments 660C)   was   carried   out using the system 

shown in Fig 3-1 to characterize yeast induced oxidation of glucose [4]. The 

electrochemical test system was consisting with the three electrodes system with a 

volume of 2mL and CH660C workstation. The scan rate was set as 25mV/s and the 
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potentials were set from -400mV to 800 mV. To accurate the result, every experiments 

have been reproduced at least five times. Peaks were observed nearly the point of 200 

mV. 

3.2.5   Scanning electron microscopy 

A field emission scanning electron microscope, Hitachi FM-SEM 5000, was used 

to resolve the image of the immobilized yeast on electrode. 

3.2.6 Nature electrostatic experiments 

To gain more evidence for the natural electrostatic field effect on the glucose 

metabolism processes, the anaerobic glucose metabolism experiments were performed 

using two electrodes system, which consisted of yeast immobilized carbon cloth electrode 

connected with insulator-coating electrode. The two electrodes were applied for 

providing electrostatic effect on the yeast cells. No current was observed between the two 

electrodes. 

3.3 Results 

3.3.1 Electrochemistry of yeast immobilized electrode 

Fig3-2 shows the CVs obtained using yeast immobilized PG electrode with glucose 

solution under different conditions. None redox peaks can be recorded at bare electrode at 

potential from -0.4V to 0.8V. CV1 was obtained in the PBS solution whereas CV2 was 

obtained with glucose added to the PBS solution. CV1 only has one pair of weak redox 

peaks at the potential of 30mV vs. Ag/AgCl. These stable redox peaks were attributed to 

oxidation glucose of yeast. Previous work of CVs of yeast showed similar pattern of 

redox peaks [5].  The redox peaks indicate that it is possible to transfer electrons through 
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the yeast membrane directly [6]. Comparing CV2 to CV1, there is an increasing anodic 

current, indicating a possible oxidation process of glucose in yeast. The electron of 

glucose oxidation can migrate from cell to electrode. CV3 shows the further increase of 

anodic current and enhanced redox peaks caused by the applied positive VG. These 

increases were attributed to the induced electric field between yeast cell and electrode 

resulting in the amplified anode current. 

3.3.2 VG dependent of glucose depletion in yeast metabolism 

Glucose concentration changes with VG under aerobic condition using yeast 

immobilized electrode (Fig3-3). Without applying VG, a gradual decrease of glucose 

concentration is observed (Curve-1) with the increasing positive value of VG, the glucose 

consumption rate will increase gradually at first and then will approach to a constant rate 

(Curve-2, -3, -4). It indicated that the effect of positive VG can increase the glucose 

consumption result in faster decreasing in glucose concentration. Curve 5-7 proved that 

the glucose consumption rate will slower down with a negative VG. A similar 

phenomenon is also observed in anaerobic condition (Fig 3-4). Compared the glucose 

depletion curves between aerobic and anaerobic condition, the anaerobic process has a 

faster consumption rate than those in aerobic process, consisting with its lower energy 

field [7]. In aerobic respiration, yeast can create more energy from one molecule glucose. 

Without oxygen, yeast will resort to fermentation that results in only producing 1/19 of 

energy in aerobic respiration [8]. 

The experimental measurements were conducted in the lag phase of yeast budding 

to avoid yeast reproduction. Before the electrochemical processing, a selected area of 

electrode was imaged by the scanning electron microscopy (SEM, Fig3-5). After 120 min 



 

29 

processing, the images kept the same. It eliminates the explanation that yeast growing 

causes the faster depletion of glucose. 

3.3.3 VG dependent of ATP productions in metabolism 

The intensities of ATP luminescence assay under the aerobic condition are given 

by Fig 3-6. Within 60mins, the concentrations of ATP kept increasing under aerobic 

condition. With a higher VG, the concentration of ATP was also higher. Since the ATP 

production is related to the glucose consumption (Fig 3-3), it can be conclude that the VG 

is the reason for the increasing reaction rate of the glucose metabolism processes.  

Under anaerobic condition, glucose metabolism process in yeast will go through 

fermentation pathway with ATP, CO2 and ethanol as the end products [17].   Fig 3-7, Fig 

3-8 and Fig3-9 are the changes of ATP, ethanol and PH according to the different values 

of VG under anaerobic condition. 

The ATP production in glucose metabolism process and its changing trend under 

different VG are given by Fig 3-7. Without applying the VG, the ATP produced under 

anaerobic condition (Curve-1of Fig 3-7) is less than that under aerobic case (Curve-1of 

Fig 3-6). This difference consists with previous work, which proved that ATP produced 

in aerobic condition is 5 times per mole of glucose more than the ATP produced in 

anaerobic condition [9]. With the increasing positive value of VG, the ATP production 

rate will increase gradually regardless of the anaerobic or aerobic condition (Fig 3-6, Fig 

3-7). It indicates that the positive VG can accelerate the glucose metabolism processes 

resulting in a faster productivity of ATP. On the contrast, a negative VG will reduce the 

ATP productivity (curve-4, curve-5 of Fig 3-6).  

The production efficiencies of ethanol increased gradually with the increasing 



 

30 

positive value of VG (Fig 3-8), whereas the ATP productivity decelerated with a negative 

VG (Fig 3-8).  

As CO2 will be dissolved in the solution to form H2CO3, the presence of CO2 will 

change the PH of glucose solution [10]. The PH decreased from 5.9 to 5.3 as VG 

increased from 0V to 1V (Fig 3-9) due to the increasing CO2 in the glucose metabolism 

process in solution.  

The increasing amounts of productions induced by VG could be elaborated by 

the yeast growing process. However, CVs tests and SEM described above clearly 

demonstrate that glucose was oxidized only by glucose metabolism process not by the 

cell growing.  The ethanol concentration increasing at the batch test also indicated VG 

could enhance the glucose metabolism process. We further examined whether has 

description of mechanism of VG effect that would readily allow revealing realist. 

3.3.4 Nature electrostatic effect on the glucose metabolism 

The increases of the glucose consumption rate (Fig 3-11) and the ethanol 

production rate (Fig 3-12) are consisting with the increasing positive value of VG. These 

patterns are similar to the ones in Fig 3-7 and Fig 3-8. The results prove that the natural 

electrostatic field could influence glucose metabolism. 

 

3.4 Discussion 

The results have demonstrated that VG can be used to control the kinetics of 

cellular glucose metabolic processes. The observation that the glucose consumption 

qualitatively correlates to the production of the end products of glucose metabolism such 
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as ethanol and ATP indicates that the entire process was glucose metabolism whose 

kinetics was controlled by VG. 

The relation between the VG dependent glucose depletion and the VG dependent 

production of end products reveals that glucose metabolism was controlled by VG. The 

metabolic pathway is equivalent to the channel of field effect transistor (FET) whereas 

the glucose consumption and production of the end products are output quantities (Fig 3-

10).  

Previously, it has been demonstrated by previous works that applying an external 

voltage to a glucose oxidase (GOx) immobilized working electrode of a modified three-

electrode electrochemical cell would result in an enhancement of glucose oxidation 

current. It was explained as the increased electron transfer between the active site of 

enzyme and the electrode as the result of the reducing height of electron tunnel barrier 

[11, 12, our work in chapter II]. The electron tunnel barrier is involving the electron 

transfer pathway between active center of enzyme and electrode [13]. Glucose 

metabolism in yeast involves redox reactions catalyst by different kind of redox enzymes. 

For instance, the reduction of the NAD+ to form NADH by glyceraldehyde-3-phosphate 

dehydrogenases in glycolysis, or by alcohol dehydrogenase for maintaining redox 

balance of cell, either or both processes being influenced by induced electric field [5]. 

The electron will travel from NADH to NADH dehydrogenase (NDI) who is located on 

the electron transport chain in yeast cell (Fig 3-13). The NDI is used to transport the 

electron from FAD activity center to ubiquinone (UBQ) [14].  The VG will induce electric 

field, whose component is opposite to the electron’s transfer movement through enzyme, 

controlling the effective height of barrier so that the electron transfer rate can be 
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increased or decreased [15]. Similar controlled electron transfer also happens in other 

redox enzymes involved in the glucose metabolism, leading to faster production of 

products. The positive VG will totally reduce the height of electron tunnel barrier, while 

the negative VG will increase the electron tunnel barrier to reduce the electron transfer 

rate. The observation will provide evidence for mechanism.  

In the glucose metabolism process, glucose will be catalyzed to ethanol and H2O 

by redox enzymes. The final production depends on the enzyme activity which is 

involved in the redox catalysis processes. The redox enzymes will absorb energy from the 

electric field induced by electrostatic effect to make transition of electron energy level on 

the surface of enzymes [16]. It will break the chemical bounds, resulting in instability of 

enzyme structure. Enzymes will expose more activity sites on the surface, resulting in 

increasing the surface area which involved the catalytic reaction, leading to an increasing 

activity of enzymes. 
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Fig 3-1 Electrostatically controlled system 

 

 

Fig 3-2 CVs showing the yeast-induced oxidation of glucose. 
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Fig 3-3 VG effect on glucose consumption in the aerobic condition 
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Fig 3-4 VG effect on glucose consumption in the anaerobic condition 
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Fig 3-5 SEM image of yeast-immobilized electrode before electrochemical processing 
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Fig 3-6 VG-controlled production of ATP under the aerobic condition 
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Fig 3-7 the VG-controlled production of ATP under the anaerobic condition. Curve-1: the 
gradual increasing in amount of ATP at VG=0V. Curve-2: the gradual increasing in 
amount of ATP at VG=0.5V. Curve-3: the gradual increasing in amount of ATP at VG=-
0.5V 
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Fig 3-8 the VG-controlled generation of ethanol. The produced ethanol corresponding to 
different values of VG under anaerobic condition using yeast immobilized electrode 
during 3 hours. 
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Fig 3-9 the change in pH under the anaerobic condition. PH changing of 
electrochemically processed glucose solution as a result of VG/V within 1 hour. 
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Fig 3-10 Transfer characteristics of the metabolic transistor. The field effect transistor 
(FET) with VG being used to control the output quantity. The characteristics of metabolic 
transistor which has glucose output is derived from the value at 1200s of Curve1 5-7 in 
Fig 3-3 and output from the value at 3h of positive VG value in the Fig 3-9. 
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Fig 3-11 The ethanol production using the two-electrode system without current in the 
entire process 

  



 

44 

 

Fig 3-12 the glucose consumption in the two-electrode system without current in the 
entire process 
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Fig 3-13 Scenario for electron shuttle through enzymes 
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CHAPTER IV 

THE ELECTROSTATICALLY ENHANCED PERFORMANCE OF MICROBIAL 

FUEL CELL 

4.1 Summary 

This work shows that electric fields can control power output of the microbial fuel 

cells (MFCs) -by improving fuel cell efficiency and power density. The yeast was used 

as the catalyst of the MFCs anodes. After applying a voltage of 0.5V to the anode of a 

compact two-chamber microbial fuel cell, we observed an increase of the open circuit 

voltage (OCV) of cell with the range from 0.30V to 0.47V. The gating voltage (VG) 

also extended the operation current and increased power output. The improved 

performance could not show that any of the extra energy spent on the microbial fuel 

cell. The coulombic efficiencies (CEs) -were increased from 6% to 15% by applying 

gating voltage, which suggested that the gating voltage can improve the performance by 

promoting electron shuttle between microorganism and anode. The power density was 

significantly higher than those values obtained for the normal experiments. Because the 

gating voltage lowered electron tunnel barriers resulting in the enhancing electron 

transfer in anode compartment, which leaded to improvements of the performance of 
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MFCs. 

4.2 Materials and methods 

4.2.1 MFC construction and operation 

A type of double-chambers MFCs was operated to use in this work: two-chambers 

cube MFC (C-MFC) (Fig 4-1). This MFC has two glass chambers with a length of 5cm. 

The  liquid volumes of two chambers are all 100 ml, separated by proton exchange 

membrane (PEM). The carbon cloth (non-wet proofed, Tp1-120, Toray, Inc.) was used 

to the anode and cathode with a J-cloth of 10 cm2 for separating. PEM was clipped on 

the center site between anode chamber and cathode chamber, and sealed with a rubber 

ring on each side. Current density was calculated based on the area of the PEM. Make sure 

that the distance between anode electrode and cathode electrode is less than 2cm. 

The lesser distance between two electrodes can reduce internal resistance and increase 

power output [1, 17]. A reference electrode (Ag/AgCl) was located in anode 

chamber. All reactor chambers were tested in room temperature. A voltage source VG 

was applied between the anode and an additional gating electrode, which was formed by 

bending an insulator-coated copper wire. 

4.2.2 Membranes 

NafionTM 117 (DuPont Co., Delaware) was washed in H2O2 (30% v/v) and 

deionized water. Then wash with PBS solution. The PEM should be reserved in the 

water or PBS solution before tests. Each membrane was soaked by PBS solution 

before all tests to make sure expansion of PEM. 

 



 

48 

4.2.3   Operation of MFC 

Saccharomyces cerevisiae (YSC1, Sigma Aldrich) or baker yeast was used as 

biocatalyst for anode. Dried yeast was cultured for 20 hours at 30℃ in the medium 

containing glucose, peptone, 160mM fructose, PH=7. A volume of 80ml of cultured 

medium was mixed with 120 mM glucose by using PBS, then adjusted to PH=7.0 and 

used as the anolyte. Methylene blue at 50mM was added to the anolyte as the mediator. 

The catholyte was 80mL of PBS with 50mM of Potassium ferrocyanide as the mediator. 

Initially, the anolyte was purged with dry nitrogen for 60 min. Then, the anode potential 

and OCV was measured versus Ag/AgCl reference electrode. And cathode potential was 

deduced from the OCV and anode potential. 

4.2.4   Monitoring voltage and power 

The MFC was linked with the external changing resistor (200M Ω) in the circuit. 

The voltage (V) should be continuously recorded using digital multimeter (Keithley 

Instruments 2000, OH) connected to computer while changing the resistor. Current (I), 

power (P=IV) and coulombic efficiency (CE) were calculated from the equation [10]. 

The power density of MFC was calculated by power value divided PEM area. The 

internal resistance of MFC was measured from the slop of plots of V and I by using 

V=Ecell - IRint, where Ecell is the external voltage of the cell.  

4.2.5 Electrochemistry measurement 

Cyclic voltammetry (CH Instruments 660C) was carried out to test reaction 

happened on the yeas t  biofilm. The electrochemical test system was consisting with the 

three electrodes system and CH660C workstation. The Ag/AgCl electrode was used to 

the reference electrode and platinum wire was used to counter electrode. The scan rate of 
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25mV/s and the potentials were from -400 to 800 mV had been recorded in the 

experiments and every detection experiments must be processed for at least five times to 

reach the similar result to obtain. Peaks were obtained in the range of 0 to 200 mV. 

4.2.6 Determination of Fuel cell efficiency 

The microbial fuel cell efficiency is determined by reaction happened in 

anode. The efficiency of glucose metabolism reaction could be shown: Efficiency=G/H, 

where H is enthalpy of glucose, G is Gibbs free energy [2].  And coulombic efficiency 

was calculated as E= (Cp/Ct)x100%, where Cp is total coulombs by the current over time, 

and Ct is the theoretical amount of coulombs that products from glucose [3]. 

4.3 Results 

4.3.1 Cyclic voltammetry of yeast microbial fuel cell 

Under the anaerobic condition, yeast would go through alcohol fermentation 

process during which glucose will be oxidized to alcohol by alcohol dehydrogenase [4]. 

The redox current is coming from NADH which is produced in fermentation process [5]. 

The experiments of the cyclic voltammetry of yeast were carried out with the system 

showing in the Fig4-1 to study the effect of gating voltage. The cyclic voltammetry was 

obtained using yeast immobilized PG electrode in glucose solution under different 

condition (Fig4-2). CV1 was obtained in PBS and CV2 was obtained with glucose added 

to PBS solution. CV1 and CV2 have shown a pair of weak redox peaks at 100mV vs. 

Ag/AgCl (Fig4-2). This phenomenon indicates that there are redox enzymes in cell 

membrane serving as electron shuttles in redox process. In mediated electron transfer in 

fuel cell need redox mediator as electron shuttles to help electron transfer to electrode 
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[6]. Methylene blue (MB), as one kind of lipophilic electron transfer shuttles, is able to 

go through the yeast membrane along with electrons [7]. One pair of peak in CV3 (Fig4-

2) is due to adding mediator, MB, to the anolyte. MB can interact with electron transport 

chain and capture the electrons from the reaction degraded pyruvate resulting in 

increasing redox peaks. When the VG=0.5V and VG=0.7V are applied, the progressively 

enhanced redox peaks were acquired (CV4, CV5, Fig4-2) respecting to electrostatically 

enhanced redox process. Therefore, the VG can cause an increase in the mediated anodic 

current. 

4.3.2 Open circuit voltage changing in the presence of electrostatic effect 

The NAD+/NADH redox couple will determine the potential of anode if there is no 

mediator in anode, even if oxidation process of NADH is very slow. With the present of 

MB in anode, the potential of anode will be determined by the redox reaction of MB [8]. 

From Fig4-3, we can notice that cathode potential was always 0.57V regardless of gating 

voltage. When mediator is present in cathode, the potential of cathode is determined by 

the redox reaction of PF(oxidized) / PF(reduced); and therefore the potential of cathode keep 

positive [9]. With VG=0V, the anode potential was measured to be 0.27V; under the 

condition of VG=0.5V, the anode potential was measured to be 0.1V (Fig4-3). The anode 

potential lowed with the increase of gating voltage, which indicates that the anode 

oxidation reaction was dominated by gating voltage. OCV was increasing at the same 

time (Fig4-3). It indicates that the electrostatical effect can significantly enhance the 

electron transfer from NADH to mediator leading to the drop of the anode potential. 

4.3.3 Fuel cell behavior under loading 

The carbon cloth electrode was exposed in the solution with a great number of 
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surface areas. Small electrode size will lower the power output in MFCs due to limited 

proton conductivity [10]. For researching on the performance of microbial fuel cell under 

different loading, the fuel cell was operated by connecting to an external changing 

resistor and different potential changing across the resistor would be recorded. For each 

test, the fuel cell was running with external resistance for at least 15 min. As the result, 

when the resistance was more than 1K ohms, the potential has decreased significantly 

(Fig4-4). And it has also been observed that the current increased with the decreasing 

load because of the increasing intern resistant losses. Fig 4-4 shows the polarization curve 

(voltage VS current) and the power curve (power VS current) of MFC at different VG 

condition. The applying of VG=0.5V appears to extend the maximum current density of 

MFC from 9.5mA/m2 to 22mA/m2. Both polarization curves show that the activation loss 

is presumable due to the use of mediator. The polarization curves show that the extended 

operation current is accompanied by a reduced concentration loss. VG caused the peak 

power density shifted from 6.5mA/m2 to 14mA/m2 and boosted the maximum of peak 

power from 145mW/m3 to 200mW/m3. The internal impedance is an important factor for 

determining performance of MFC. The polarization curves also show that VG appears to 

reduce the Ohmic loss. 

4.3.4 Fuel cell efficiency 

Coulombic efficiency (CE) was also investigated at different loadings. Fig4-5 

shows the calculated CEs of the MFCs  using cell current. Clearly, under the condition of 

VG=0.5V, the MFC had the highest CE. The applying of VG=0.5V appears to improve 

the Coulombic efficiency of MFC from 6% to 15%. It is a l s o  observed that the 

Coulombic efficiency of the MFCs tended to increase as the current density increasing 
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due to the decrease of the resistance. It indicates that the current flow affects the 

Coulombic efficiency. Since the Coulombic efficiency indicates the actual amount of 

coulombs transferring from substrate to anode, the improved performance of MFCs also 

suggests that there could be more electron transfer between mediator and electrode [10]. 

4.4 Discussion 

In yeast microbial fuel cell, glucose oxidation reaction provides energy [11]. The 

potential of anode and cathode were depended on every redox reaction happening on 

their chambers. The potential of cathode is determined by the redox reaction of PF(oxidized) 

/ PF(reduced) [9]. Also, the redox of glucose will determine the potential of anode. However 

the energy generation is hardly to be extracted from yeast cell due to the difficulties of 

electron transfer processes through yeast cell membrane [5]. On the contrast, mediator 

can pass through cell membrane easily and carry great number of electrons. These 

features provide the promising future that mediator can be used as the electrochemical 

shuttle to make electrons from metabolic biocatalyst [12].   

It has been demonstrated by previous works that applying an external voltage to a 

glucose oxidase (GOx) immobilized working electrode of a modified three-electrode 

electrochemical cell would result in an enhancement of glucose oxidation current [18]. It 

was explained as the increased electron transfer between the active site of GOx and the 

electrode as the result of the reducing height of electron tunnel barrier [13].  Many redox 

reactions catalyzed by different kind of redox enzymes were involved in yeast Glucose 

metabolism. For instance, the reduction of the NAD+ to form NADH by glyceraldehyde-

3-phosphate dehydrogenases in glycolysis, or by alcohol dehydrogenase for maintaining 
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redox balance of cell, either or both processes being influenced by induced electric field 

[15]. The enhanced electron transfer was due to the induced electric field, contributing to 

a rapid recycling of the NAD+/NADH redox couple because of the participation of 

enzyme. Mediators interact with electron transport chain and make electron from 

tricarboxylic acid cycle degradation of pyruvate via the trans-plasma membrane electron 

transfer (tPMET) [16].  The induced field could lower the tunnel barrier of the 

electron transfer process from NADH to mediator, and could also facilitate 

oxidation process of mediator at the electrode; therefore it could enhance the efficiency 

of the final step of transfer electron from yeast cell. This result is evidenced by the lower 

anode potential and by extended MFC operation from 9.5mA/m2 to 22mA/m2 with the 

enhanced coulombic efficiency. 

Concentration losses will happen when transport rate of species from the acceptor 

is limited by the current output. Biomass production was estimated based on anaerobic 

respiration and maintenance energy, but direct measurements are needed in future 

studies to improve substrate mass balances. Some concentration losses are also possible 

due to production or electron accepters.  The fast recycling of NAD+/NADH couple and 

the enhanced electron transfer from NADH to the mediator may cause more reducing 

mediator available to the electrode and therefore will decrease the concentration loss. The 

reduced concentration loss resulting from decreasing the ratio between the oxidized of VG 

and the reducing species at the anode would lead to a drop in the anode potential. When 

applying VG, coulombic efficiency is increased because of the enhanced electron transfer 

from microbe to anode. 

Enhancing electron transfer process from microbe to the anode is essential to 
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improve the performance of MFC. Different methods including direct transfer and the use 

of mediator have been applied to enhance electron transfer. The electrostatically effect 

enhanced performance of MFC was achieved without spending any energy on MFC since 

no current was measure in the additional anode circuit. Therefore, the electrostatically 

effect can be used as a promising method to improve the output. 
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Fig 4-1 Schematic description of additional electrode-anode system 
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Fig 4-2 CVs of yeast-immobilized electrode under different conditions. 
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Fig 4-3 Anode potential, cathode potential and OCV 
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Fig 4-4 Polarization curve and power curve 
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Fig 4-5 Coulombic efficiency of MFC 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This thesis presents a systematic study of field-effect enzymatic detection (FEED) 

technique. The mechanism of the FEED has been studied. It can be predicted that FEED 

induced ions could set up electric field at enzyme-solution interface.  FEED has been 

applied to the yeast-electrode system in order to show the feasibility of controlling the 

kinetics of cellular glucose metabolic processes at the surface of an electrode. And the 

FEED technique was also applied to yeast-based microbial fuel cell (MFCs) to improve 

its performance. 

It has been verified that gating voltage (VG) induced ions could set up electric field 

at enzyme-solution interface from the observation of the VG dependent glucose oxidation 

current corresponding to the ion concentration of phosphate buffer solution. The kinetics 

of the enzymatic conversion of glucose to gluconolactone was characterized by VG as the 

parameter. And in yeast-electrode system, the glucose consumption qualitatively 

correlating to the production of the end products of glucose metabolism such as ethanol 
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and ATP indicates that the entire process was glucose metabolism whose kinetics was 

controlled by VG. In yeast-MFC, FEED could increase the open circuit voltage (OCV) of 

cell with the range from 0.30V to 0.47V and the coulombic efficiencies (CEs) -were 

increased from 6% to 15%. 

5.2 Future work 

In other research field, this FEED technique can be used in cellular glucose 

metabolism. Glucose cellular metabolism involves redox reactions catalyst by different 

kind of redox enzymes. For example, the reduction of the NAD+ to form NADH by 

glyceraldehyde-3-phosphate dehydrogenases in glycolysis or by alcohol dehydrogenase 

for maintaining redox balance of cell, either or both processes are influenced by induced 

electric field [1]. Our work shows a method to control cellular glucose metabolism. VG-

induced electric field can control transfer of electrons due to modulating the height of 

electron tunnel barrier, resulting in an enhanced glucose metabolism process. Previously, 

it has been demonstrated that FEED controlled electron transfer in protein could change 

oxidation current leading to a reorientation of cytochrome C on the electrode [2-4]. In 

biology research area, external controlled electron transfer had been performed [5]. By 

controlling electron transfer rate in metabolism system, it had been issued very most 

important effects [6]. The FEED technique could influence electron transfer through the 

cell membrane [7]. In broader sense, the technology could be applied to improve the 

performance of enzyme-based biosensor or bio-system. 
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