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AERODYNAMIC MEASUREMENTS OF A VARIABLE-SPEED POWER-TURBINE 

BLADE SECTION IN A TRANSONIC TURBINE CASCADE 

ASHLIE B. FLEGEL 

ABSTRACT 

The purpose of this thesis is to document the impact of incidence angle and 

Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D 

section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic 

measurements were obtained in a transonic linear cascade at NASA Glenn Research 

Center in Cleveland, OH. Steady-state data were obtained for ten incidence angles 

ranging from +15.8° to −51.0°. At each angle, data were acquired at five flow conditions 

with the exit Reynolds number (based on axial chord) varying over an order-of-

magnitude from 2.12 × 10
5
 to 2.12 × 10

6
. Data were obtained at the design exit Mach 

number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the 

lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired 

using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord 

downstream of the blade trailing edge plane. The survey spanned three blade passages. 

Additionally, three-dimensional half-span flow fields were examined with additional 

probe survey data acquired at 26 span locations for two key incidence angles of +5.8° and 

−36.7°. Survey data near the endwall were acquired with a three-hole boundary-layer 

probe. The data were integrated to determine average exit total-pressure and flow angle 

as functions of incidence and flow conditions. The data set also includes blade static 

pressures measured on four spanwise planes and endwall static pressures.  
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NOMENCLATURE 

Cps static pressure coefficient, Cps=(   ̅ ) (      ̅ ) 

Cpt total-pressure coefficient, Cpt=(       ) (      ̅ ) 

Cx blade axial chord [in] 

H blade span [in] 

i  incidence angle, i = β1 – inlet metal angle (34.2°) 

M Mach number 

N power-turbine shaft speed [rpm] 

N* N/N100%, fraction of 100% speed 

PR pressure ratio, PR = Pt,1/ 2P  

PS pressure surface 

P  area-averaged static-pressure 

Ps static pressure 

Pt total pressure 

tP  area-averaged total-pressure 

Re Reynolds number, Re = ρ2U2Cx/µ 

Reb baseline exit Reynolds number, Reb = 5.30×10
5
 

S blade pitch [in] 

SS    suction surface 

Tu turbulence intensity, Tu =√      

U total mean velocity [ft/s] 

U mean velocity [ft/s], U = (Ux, Uy, Uz) 

u fluctuating velocity, u = (ux, uy, uz) 



x 
 

x chordwise (axial) coordinate [in] 

y pitchwise (tangential) coordinate [in] 

z spanwise coordinate [in] 

Zw Zweifel coefficient, Zw =
  

  
     ̅ (          ̅ ) 

β relative flow angle, pitch angle [deg.], β = tan
-1

(Uy / Ux) 



2  angle of mass-averaged velocity components 

Δβ2 departure angle from trailing edge mean camber line 

γ yaw angle [deg.], γ = tan
-1

(Uz / Ux) 

δ1 boundary-layer displacement thickness [in.] 

δ2 momentum thickness [in.] 

δ99 boundary layer thickness [in.] 

µ dynamic viscosity 

ρ density 

τ probe time constant [s] 

ω loss coefficient, ω =(      ̅ ) (      ̅ ) 

ωc loss coefficient, ωc= ω (Re/Reb)
1/2 

 

Subscripts 

1      cascade inlet value 

2      cascade exit value 

i isentropic value 

s  streamwise component 

t total condition 
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CHAPTER I 

INTRODUCTION 

 

 The aerodynamic effects of large incidence and Reynolds number variations on a 

2-D midspan section of a variable speed power turbine (VSPT) blade are investigated in 

this study. Downstream midspan total-pressure, exit flow angles, and blade loading 

measurements were acquired for ten incidence angles and at five flow conditions each. 

This dataset is important for understanding the aerodynamic challenges of a VSPT 

application for a Large-Civil Tilt-Rotor (LCTR). Detailed 3-D half-span flowfield 

measurements were acquired for two incidence angles corresponding to the LCTR points 

of cruise and takeoff. Because admitting transitional flow on the blade surface was of 

importance for this study, all the tests were conducted with low inlet turbulence.   

 In this chapter, the motivation behind a VSPT will be discussed. The VSPT is a 

key driver in allowing efficient operation of a LCTR. The VSPT will allow the main rotor 

speeds to vary from 100% at takeoff to 54% at cruise. At these large speed variations, 

incidence angle and Reynolds number effects are important. In a review of the literature 

it will be discovered that little experimental data exists that covers a large applicable 
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range of incidence angles at engine relevant Reynolds and Mach numbers. The chapter 

will conclude with discussion of the scope of this thesis.   

 

Motivation 

The Rotary Wing Project of the NASA Fundamental Aeronautics Program is 

investing in technology to enable civil rotor craft use to help relieve airport congestion 

and enhance airspace throughput capacity. One concept vehicle of interest is the Large 

Civil Tilt-Rotor (LCTR). The LCTR is an economically competitive rotary-wing vehicle 

with both VTOL and Mach 0.5 cruise capability (Johnson et al. [1] and Acree et al. [2]). 

In order to minimize mission fuel burn, it has been found that the main rotor speeds must 

vary from 100% N* at takeoff to 54% N* at cruise in order to optimize the propulsive 

efficiency at cruise. In order to accommodate this large speed variation, a variable gear-

ratio (two-speed) transmission can be used (Stevens et al. [3]), which introduces 

complexities such as gear shifting during flight and additional weight of the transmission. 

Another approach is to use a variable speed power turbine (VSPT) (D’Angelo [4] and 

Welch [5]).  

There are several challenges associated with the VSPT technology which include 

attainment of high turbine efficiency at high work factors, management of loss levels 

over a large (40°-60°) incidence variation in all blade rows, and operation at low 

Reynolds numbers (transitional flow) (Welch [5]). Understanding the loss levels due to 

incidence and effects of transitional flow are the two challenges which are the focus of 

this thesis. These challenges stem from the consideration of two key LCTR mission 

points: 2,000 ft takeoff/hover and 28,000 ft Mach 0.5 cruise. At takeoff, the main rotor 
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and VSPT operate at 100% N*, while at cruise the rotors and VSPT are slowed to 54% 

N*. The engine requirements for an LCTR were established in a previous study [6]. In 

that study, it was found that as the main rotor shaft is reduced by nearly 54% from take-

off to cruise speed the corrected flows do not change significantly and the flow 

coefficient essentially doubles. The nearly constant corrected flow rates and 40% 

corrected speed change lead to incidence angle swings of 40° and 60° in all turbine blade 

and vane rows downstream of the first vane, including any required exit guide vane row. 

The study also indicated that the unit Reynolds numbers (in
-1

) at the aft-stage rotor exit of 

the VSPT for the LCTR application varies between 0.45×10
5
<Re/Cx [in

−1
] < 0.75×10

5
 

from takeoff to cruise. This is a range in which transitional flow may impact 

performance.  

 

Literature Review 

Several studies have been reported in the literature that address challenges 

relevant to variable-speed power turbines. With respect to the Reynolds number effects 

on the blade losses, this has been well documented in the open literature for Low Pressure 

Turbine (LPT) applications. Hourmouziadis [7], Haselbach [8], and Gier et al. [9] 

considered the impact of Reynolds number lapse on LPT blade row performance. 

Halstead et al. [10] and Coull et al. [11] addressed the sensitivity of the transitional flow 

fields to deterministic unsteadiness associated with upstream wakes. This thesis does not 

explore the impact of wake passing on blade row performance. All tests were carried out 

in a steady-state cascade. 
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The effects of a wide range incidence on blade loading and downstream wakes for 

a wide range of engine relevant flow conditions are scarce in the open literature. Some 

studies addressing incidence effects will now be discussed. Yamamoto and Nousse [12] 

conducted exhaustive tests in a low speed cascade looking at the impact of incidence on 

the 3-D flow field and losses over a 60.5° incidence range (−53.3° < i < +7.2°)for five 

discrete angle settings. Five-hole pressure probe surveys were conducted on 15-16 axial 

planes downstream and upstream of the blade row and between blade passages from hub 

to midspan. This study only examined the incidence effects at one Reynolds number 

condition. The authors noted that Reynolds number will influence the boundary layer 

thicknesses at the inlet endwall and blade surface. There will also be changes in the 

turbulence level as the velocity is varied. In Yamamoto and Nousse’s [12] study, the 

chordwise development of the secondary flows and total-pressure fields were provided 

for the five incidence angles tested.  The authors noted that the front part of the blade is 

very sensitive to incidence and that the front loading decreases with decreasing incidence. 

The total pressure contours indicate two loss regions, one located on the suction surface 

where it is insensitive to incidence and on the pressure surface near the leading edge 

which increases with increasing negative incidence. The authors observed the endwall 

effects related to incidence and found that as incidence increases; the flow migrates 

towards the suction surface. This is consistent with Hodson and Dominy’s [13] findings 

which show the low momentum endwall flow accumulating on the blade suction surface. 

The losses due to the suction side and pressure side leg of the horseshoe vortex and 

passage vortex was observed. The intersection of the horseshoe and passage vortex 

moves from suction to pressure side as the incidence increases. The cascade incidence 
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influences the passage vortex and horseshoe vortex intersection which rotates in the same 

direction. 

Moustapha et al. [14] have summarized previous work related to profile and 

secondary flow losses at design and off-design incidence conditions. In addition to 

Moustapha et al.’s [14] valuable review of available cascade data with wide ranges of 

incidence angle testing, they noted that blade rows with high inlet Mach numbers would 

likely be more sensitive to inlet gas angle changes. They also noted the lack of data in the 

open literature related to the impact of compressibility, leading edge geometry, and axial 

loading schedule on incidence losses.  

Joinini et al. [15] examined the impact of leading edge geometry—in particular, 

metal angle selection—on midspan incidence loss. They noted that detailed experimental 

data for off-design incidence, particularly in transonic flow conditions, were sparse in the 

open literature, and highlighted the importance of such data for CFD validation.  

Turbulence effects play a role in the losses of a turbine cascade as examined in 

Hoheisel et al. [16]. Measurements were made on three blade geometries; one was front-

loaded and two were aft-loaded blading. Tests were conducted in a seven blade linear 

cascade.  The authors noted that it is the boundary layer transition that determines the 

losses on turbine cascades. It is essential to have velocity distributions with the laminar-

turbulence transition point as far downstream as possible. The two factors affecting 

transition behavior are the pressure gradient on the blade surface and the free stream 

turbulence levels. The laminar separation bubble influenced the boundary layer 

transition; its size was reduced with increasing Reynolds number and turbulence. The aft-

loaded blading performed better in terms of loss at the different incidence levels at Tu = 
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5%. The most front-loaded blade performed more poorly at positive incidence but 

retained lower loss levels at negative incidence. 

Corriveau and Sjolander [17] provided midspan profile losses, loading 

distributions, and base pressure measurements for a series of HPT airfoils with front-, 

mid-, and aft-loading. The linear cascade tests were conducted over a wide range of LPT-

relevant Mach numbers and at Reynolds numbers from 0.4 to 1.0 × 10
6
.  While the results 

illustrated superior loss performance for aft-loaded blades, lower loss levels were 

achieved at off-design incidence with the mid-loaded blading. 

 

Scope of Work 

The objective of this thesis is to advance the understanding of the aerodynamic 

effects of large incidence angle and Reynolds number variations with the development of 

an extensive cascade dataset that addresses the key VSPT challenges. The NASA 

Transonic Linear Cascade Facility was used to assess the performance of a VSPT blade 

section at design and off-design inlet flow angles over an engine-relevant range of Mach 

and Reynolds numbers.  

Chapter II contains descriptions of the experimental facility and of the 

instrumentation used during this study. While the facility boasts many capabilities that 

made it desirable to test the VSPT blade geometry, modifications had to be made in order 

to span the desired incidence range. After discussing the facility, a description of the 

instrumentation will be given. This will highlight the features of obtaining measurements 

of the inlet boundary layer, inlet turbulence, and exit flow features.  
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 In Chapter III a description of the current experiment will be given. The 2-D 

extruded midspan section of the VSPT blade geometry will be described. This chapter 

will also discuss the test configuration and the test matrix.  

 Chapter IV will present the results of the aerodynamic measurements acquired for 

ten incidence angles at five flow conditions. The chapter will begin with looking at the 

three-dimensional flowfield measurements for the take-off (i = −36.7°) and cruise (i= 

+5.8°) angles. These data, along with the blade loadings, will show the influence of 

secondary flows on the blade loading. Pitchwise integrated averages of the half-span data 

are shown as well. The 2-D midspan total-pressure and exit pitch angle measurements for 

all ten incidence angles varying from i = +15.8° to i= −51.0° will then be presented. 

Averaged midspan total pressures were used to establish profile loss buckets.  

 Chapter V will conclude with a summary of the major findings and 

recommendations for future research.  

 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

CHAPTER II 

EXPERIMENTAL FACILITY 

 

 The experimental study was conducted at NASA Glenn Research Center’s 

(GRC) Transonic Turbine Blade Cascade Facility.  This large-scale linear cascade facility 

was desirable for this test because of its adjustable inlet flow angle test section (77° 

range), wide range of flow (Mach and Reynolds number) capabilities, the large-scale 

blades which enable detailed flow field measurements, and the large number of blades 

which would promote better periodicity. Testing in the steady-state, non-rotating cascade 

inherently neglects the rotational effects associated with Coriolis and centrifugal 

acceleration fields, the relative motion of endwalls, and the impact of unsteadiness of 

upstream and downstream blade rows. However, a transonic cascade test of a VSPT 

blade section will allow for the examination of the fundamental physics occurring and 

will serve as an important step towards VSPT technology level advancement. 
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Facility Description 

The NASA GRC Transonic Turbine Blade Cascade Facility is shown in   Fig. 1. 

A detailed facility description is given in Verhoff et al. [18]. Since then, the inlet flow 

boards were modified to improve the inlet flow uniformity as described in Giel et al. [19]. 

The cascade’s large scale and continuous run capability at engine relevant Mach numbers 

and Reynolds numbers have allowed for detailed aerodynamic [20, 21] and heat transfer 

studies [22, 23] on a wide range of turbine blades.  

 

 

Figure 1. Cascade Test Section with Blade Geometry. 

 

The tunnel operates by utilizing inlet air that is supplied by GRC’s 40 psig 

Combustion Air system. Clean, dry, ambient temperature air enters the facility and is 

throttled to a maximum inlet pressure of 14.7 psia under current safety restrictions. This 

restriction is shown as the red dashed line in Fig. 2. The air passes through flow 

conditioning and contraction sections and is directed to the cascade test section by upper 

and lower inlet flow boards. The air is then exhausted through an altitude exhaust system 
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that is maintained at 2 psia. Independent control of the inlet and exhaust valves allows for 

a wide range of engine relevant Mach and Reynolds numbers to be achieved, as shown in 

the facility operating envelope of Fig. 2.   

 

Figure 2. Operating Envelope of NASA Transonic Turbine Cascade. 

 

For this study, the cascade was made up of nominally ten blade passages. The 

blades are attached to a disk that can be rotated to set inlet flow angles (from axial) in the 

range −17° ≤ β1 ≤ +78.8°. This allows for a wide range (96°) of incidence angles to be 

studied. Prior to this test the original facility configuration (see Fig. 3) allowed a 45° 

range in inlet angles from +33.8° ≤ β1 ≤ +78.6°. These angles are typical of HPT (high 

pressure turbine) applications. In the previous chapter it was noted that the VSPT may 
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see incidence swings of 40° to 60°. The blade designs also require lower inlet flow 

turning for more negative incidence. This VSPT requirement resulted in modifications to 

cascade’s exhaust and inlet board configurations as described by McVetta et al. [20]. The 

modifications, shown in Fig. 4, include a new exhaust which extends the length of the top 

of the tunnel and structural supports in the test section in order to accommodate the range 

of the exit angles required for the current tests. As part of the facility modifications, 

unique upper flow board extensions with respective blade suction-side profiling were 

fabricated for five discrete incidence angles in the range of −16.1° ≤  i ≤ −51.0°. For 

these five angles, the upper-most blade was removed and replaced with a flow board 

extension that connected at the blade bolt hole and to the end of the original upper flow 

board. These extensions ensured that the flow was properly directed into the first blade 

passage, the upper and lower flow boards were horizontal, and the flow board hinged 

leading edges were maintained in the same plane normal to the inlet flow. The other 

incidence angles tested outside of this range did not require an upper extension board and 

utilized the original flow board configuration.  

 

 

Figure 3. Original Facility Configuration.        Figure 4. Facility After Modifications.            

                                                                                              Arrows indicate flow boards.  
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Instrumentation Description 

 

Detailed data documenting the inlet characteristics and downstream flowfield 

along three blade passages were acquired by using pneumatic pressure probes, static taps, 

and a hotwire anemometer probe. Details of the instrumentation are discussed below. 

Pressure Probes: Inlet boundary layer measurements and downstream total-

pressure and exit flow angle data were acquired using a three-hole boundary layer probe 

and a five-hole pitch-yaw probe. The probes are shown in Figure 5. Both are 45° 

forward-facing pyramid probes with the measurement ports located on the shaft 

centerline. For the downstream aerodynamic measurements both probes were installed in 

a survey plane located 7.0% axial-chord downstream of the blade trailing edge in Station 

2. The survey station locations are shown in Fig. 6 and cover three blade passages. Inlet 

boundary layers measurements were measured using the three-hole probe at Station 0, 

which is 0.415 axial-chords upstream of the blade leading edge. The boundary layer 

probe has a flattened probe end and can be traversed to touch the endwall and acquire 

measurements as close as 0.005 inches (0.13 mm) from the endwall surface.  
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Figure 5. Three-Hole B-L Probe (left) and Five-Hole Probe Details. 

 

Figure 6. Blade Geometry and Survey Plane Locations. 
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The five-hole probe was used to measure total-pressure, pitch angle (x-y plane), 

and yaw angle (x-z plane).  For each inlet angle, the five-hole probe was used for midspan 

surveys consisting of 123 pitchwise points spaced non-uniformly over the three passages 

noted in Figure 6.  Pitchwise/spanwise surveys were also taken at the takeoff (i = −36.7°) 

and cruise (i= +5.8°) angles.  The surveys at each immersion consisted of 62 pitchwise 

points spaced uniformly over three passages. The three-hole boundary-layer probe was 

used to measure total pressure and pitch angle only. The half-span 3-D flowfield was 

resolved by using the three-hole probe near the endwall for 0.0 < z/H  ≤ 0.043 with 14 

spanwise points spaced logarithmically.  The five-hole probe was used above this region 

for 0.042 ≤  z/H  ≤ 0.50 with 12 spanwise points spaced uniformly.   

Inlet boundary-layer measurements were acquired using the three-hole probe 

installed in Station 0, located 0.415 axial-chords upstream of the blades. The surveys 

were acquired at two to three pitch locations and consisted of 29 spanwise points.  

Both pressure probes were calibrated using the same method as described in Giel 

et al. [21].  The probes were calibrated in NASA GRC’s Free Jet Calibration Rig (CE-

12). The pitch and yaw angles of the five-hole probe were calibrated over a Mach number 

range from 0.1 to 0.9. The pitch angle was traversed from ± 35° and the yaw ranged from 

± 40°. Similarly, the three-hole probe was calibrated over the same Mach number and 

pitch angle range. During the cascade test, the probe pitch angle coefficient was 

monitored to ensure that it remained well within the angular calibration range 

corresponding to approximately ±40°. When needed, the probe survey was stopped and 

the probe was approximately nulled before resuming.  The overall estimated uncertainty 

in flow angle was ±1.5° and the overall estimated local uncertainty in total-pressure 
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coefficient was ±1.7%, as reported in Giel et al. [21] and scaled for the current definition 

of total-pressure coefficient.  

The time responses for each probe were measured to be: τ5-hole = 0.42s and τ3-hole = 

0.82s. To ensure a 95% time recovery, a three second delay was imposed between the 

time the probe reaches the desired survey location and the initiation of data recording. 

Five readings, taken one second apart, were averaged at each measurement point.  

Static Pressure Measurements: The primary measurement blades 4, 5, and 6, 

shown in Fig. 6, were instrumented with static pressure taps along four spanwise 

locations. Blade 5 was fully instrumented with 44 taps along 10%, 15%, 30%, and 50% 

of span. A pre-test RANS prediction of the blade surface pressure distribution, shown in 

Fig. 7, was used to establish the placement of the Blade 5 static taps. To verify 

periodicity, 20 redundant taps were installed on the suction side of Blade 4 and 16 taps 

were installed on the pressure side of Blade 6. 

 

Figure 7. Blade Static Pressure Tap Locations. 
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The endwall was fully instrumented with approximately 550 static pressure taps 

located both upstream and downstream of the blade row and within each passage (see 

Figure 8). Data from these pressure measurements were used for periodicity checks 

which will be discussed in further detail in Chapter III. 

Twelve exit static-pressure taps, located approximately three axial-chords 

downstream of the blades and spanning almost nine blade pitches, were used to set the 

exit Mach number condition. The inlet static pressure was measured by five to six inlet 

static pressure taps, depending on inlet flow angle, located 96.77 mm (3.81 inches) 

upstream of the blade row at Station 0. These inlet taps can be seen in Fig. 8, represented 

by the orange dots at x = −5 inches.  

Additional inlet measurements: Inlet total pressure and temperature were 

measured with two combination Kiel/total-temperature probes located at midspan 

approximately 96.77 mm (3.81 inches) upstream of the blades, just outside the passages 

of interest.  These Kiel probes, shown in Fig. 8 as the blue dots, were used to set the 

tunnel inlet conditions. A third Kiel probe was also used for some of the inlet flow angle 

measurements. 

 

Figure 8. Endwall Instrumentation Configuration. 
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Hotwire Anemometer: A constant temperature single-wire hotwire anemometer 

probe (TSI 1210-T1.5) was used to acquire inlet turbulence intensity measurements. The 

hotwire was installed in Station 0, located approximately 0.415 axial chord upstream of 

the blades (see Fig. 8). The data were acquired at a rate of 92 kHz for 7 seconds. The 

uncertainties in the measurements were calculated to be less than 4% for the mean 

velocities and 5% for the fluctuations using the methodology found in [24]. The 

turbulence intensities, calculated as the normalized root-mean square of the velocity 

fluctuations, ranged from 0.25% to 0.40% [20]. The integral length scale was calculated 

though an autocorrelation technique (e.g., see Coull et al. [25]) and was found to be 

between 1.0 to 1.5 inches. 
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CHAPTER III 

DESCRIPTION OF EXPERIMENT 

Blade Description 

The blade geometry is a scaled 2-D midspan section of the VSPT second stage 

rotor designed by Rolls-Royce. Details of the blade design are documented in [26]. In 

that effort, meanline analyses were used to analyze three and four-stage variable-speed 

power turbines (VSPT) to meet specified engine requirements. A 4-stage turbine was 

selected for additional optimization and a detailed 3-D blade aero design/optimization 

was concentrated on the second rotor of the selected 4-stage meanline design. Rotor 2 

was selected as a representative embedded blade row, both in terms of turning (96° at 

cruise and 53⁰ at takeoff) and incidence-range (42°) requirements between cruise and 

takeoff [26]. The midspan section, which was optimized to minimize loss at the cruise 

condition (i = +5.8°, M2,i = 0.72) and achieve the required incidence range at acceptable 

loss levels, was chosen for this cascade test. The blade has an inlet metal angle of 34.2° 

relative to the axial direction and a scaled axial chord of 180.6 mm (7.109 in). Details of 

the scaled (test) blade are listed in Table I. The cascade of the current test comprised ten 

blade passages (nominally). 
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The design intent blade loading [26] compared to the experimental midspan data 

at two Reynolds number conditions is shown in Fig. 9. As described in [26], the design 

calculation was carried out in 2-D on a code assuming fully turbulent flow whereas the 

midspan of the experiment is influenced by the strong three-dimensionality and 

secondary flow fields in the low aspect ratio cascade (see Fig. 6)  and transitional flow 

effects. The optimum profile from the design is considered to be aft-loaded and has 

notably high uncovered turning (19.5°) with respect to the suction-surface curvature. 

 

Table I. Blade Description 

Geometry Value 
Axial Chord, Cx 

True Chord 

Pitch, S 

Span, H 

Throat Diameter 

Leading Edge Diameter 

Trailing Edge Diameter 

Stagger Angle 

Inlet Metal Angle 

Uncovered Turning 

Exit Metal Angle 

180.57 mm (7.109 inches) 

194.44 mm (7.655 inches) 

130.00 mm (5.119 inches) 

152.40 mm (6.000 inches) 

72.85 mm (2.868 inches) 

15.16 mm (0.597 inches) 

3.30 mm (0.130 inches) 

20.35° 

34.20° 

19.47° 

−55.54° 

 

 

Figure 9. Design Intent and Experimental Data at High and Low Reynolds Numbers 

and Design Exit Mach Number at i = +5.8°. 
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Test Configuration 

Measurements were acquired for ten incidence angles ranging from −46.0° to 

+15.8°. Details of the incidence angles and corresponding Zweifel coefficients are listed 

in Table II. As previously discussed, there are three mission design point angles: takeoff 

(i= −36.7°), cruise (i = +5.8°), and maximum mission incidence (i = −46.0°). Additional 

detailed flowfield data and inlet boundary layer measurements were acquired at the cruise 

and takeoff points.  

At each incidence angle setting, data were acquired at the five nominal flow 

conditions listed in Table III. The design pressure ratio was 1.412 which corresponds to 

an exit isentropic Mach number of 0.72. A baseline flow condition was established by 

finding the lowest Reynolds number at which the tunnel could consistently maintain an 

exit Mach number of 0.72. The baseline Reynolds number, Reb, was found to be 0.53 × 

10
6
. Higher Reynolds number cases were run at 1.06 × 10

6
 and 2.12 × 10

6
.  An order-of-

magnitude variation in Reynolds number could be achieved by reducing the exit Mach 

number to 0.35. The lowest Reynolds number point of 2.12 × 10
5
(0.4Reb) could not be 

achieved at the design exit Mach number due to the limitations of the tunnel operating 

envelope (see Fig. 2).  
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Table II. Angles Settings and Zweifel Coefficients 

Inlet Angle, 

 β1 

Incidence 

Angle, i 

Zw 

50.0° 

45.0° 

40.0° (Cruise) 

34.2° 

28.0° 

18.1° 

8.2° 

−2.5° (Takeoff) 

−11.8° (Mission Max-i) 

−16.8° 

15.8° 

10.8° 

5.8° 

0.0° 

−6.2° 

−16.1° 

−26.0° 

−36.7° 

−46.0° 

−51.0° 

1.22 

1.13 

1.06 

0.99 

0.92 

0.82 

0.74 

0.65 

0.58 

0.53 

 

 

Table III. Nominal Flow Conditions 

Exit ReCx Pressure 

Ratio 

Exit 

Mis 

 99,1 †
 

 [in.] 
H1,992 † 

2.12 × 10
6 

1.06 × 10
6
 

5.30 × 10
5
 

5.30 × 10
5
 

2.12 × 10
5
 

1.412 

1.412 

1.412 

1.087 

1.087 

0.72 

0.72 

0.72 

0.35 

0.35 

1.16 - 1.23 

1.28 - 1.36 

1.42 - 1.50 

1.40 - 1.49 

1.60 - 1.69 

0.39-0.41 

0.43-0.45 

0.47-0.50 

0.47-0.50 

0.53-0.56 

 

† Reynolds-scaling estimated range of boundary-layer thickness over ten incidence angle 

settings. 

Boundary Conditions 

Inlet Boundary Layer: The estimated inlet boundary-layer thickness range is 

documented for each flow condition in Table III. The boundary-layer heights were 

calculated by inlet Reynolds number scaling (turbulent flow) of detailed inlet boundary-

layer measurements acquired in Giel et al. [21]. The range in Table III indicates the 

variation in the boundary-layer thickness for the ten incidence angles and corresponding 

inlet Reynolds number variations. This Reynolds number scaling was verified during this 

study by acquiring inlet boundary layer measurements at the take-off and cruise incidence 

angle for three flow conditions. Figures 10-13 compare the estimated boundary layer 
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thickness (orange) to the directly calculated thickness from the data (blue) and using two 

additional scalings. These data confirmed that the use of the Reynolds Number scaling 

for turbulent flow is adequate for the remainder of the inlet conditions.  

 

Figure 10. B-L Measurements for i = +5.8°, 1.0Reb, M2,i = 0.72. 

 

 

Figure 11. B-L Measurements for i = +5.8°, 0.4Reb, M2,i = 0.35. 

 

 

Figure 12. B-L Measurements for i = −36.7°, 1.0Reb, M2,i = 0.72. 
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Figure 13. B-L Measurements for i = −36.7°, 0.4Reb, M2,i = 0.35. 
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Exit Periodicity 

 The endwall static pressure contours are shown in Fig. 14 for all ten incidence 

angles. The location of the downstream measurements plane (Station 2) is at roughly     

x= +5.5 inches and covers the pitch distance −11.5 ≤ y ≤ +4.0. In Fig. 14, the positive 

incidence angle data show the upper-board and exhaust (near blade 1) creates a low 

pressure field. At i = +15.8° this difference is almost negligible. Between the blade 

passages the static pressure appears periodic as will be shown in the downstream survey 

data. As the incidence is reduced in the negative direction the static pressure non-

uniformity increases and influences the downstream pressure field between blades 1-3. 

This causes the blade-to-blade passage non-uniformity. At i = −46.0° and i = −51.0° the 

lower flow board induces a negative pressure field affecting blades 9-11.    

Focusing on the region of interest (blades 3,4,5) for this test in Fig. 15, the data 

from the endwall pressure taps located near the Station 2 survey plane (x/Cx = 1.070) are 

shown for two inlet angles for the baseline Reynolds number and design exit Mach 

number condition. These data are also compared to the blade base pressures measured on 

blades 4, 5, and 6. For both incidence angles the static pressure increases in the positive 

pitch direction. From the contours it can be seen that the pressures are influenced by the 

downstream exhaust configuration which induces a pitchwise static pressure non-

uniformity. The aperiodicity is negligible at positive incidence angles, but increases at the 

negative incidence angle settings. This aperiodicity will be observable in the flowfield 

data discussed later. 
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i = +15.8°                                                            i = −16.1 

 
i = +10.8°                                                        i = −26.0 ° 

 

 
i = +5.8°                                                          i = −36.7 ° 

 

 
i = 0.0°                                                      i = −46.0 

 

 
i = −6.2 °                                                     i = −51.0 ° 

 

Figure 14. Endwall Static Pressure at ReCx,2 = 4Reb, M2,i = 0.72. 
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Figure 15. Station 2 Endwall and Midspan Blade Base Pressures at ReCx = 1.0Reb 

and M2,i = 0.72. 
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CHAPTER IV 

RESULTS 

 

 The effects of incidence, Reynolds Number, and Mach number variations on the 

exit flowfield are explored in this chapter. First, the detailed exit flowfield measurements 

at the take-off and cruise angles will be discussed which will give a good initial 

comparison of the flowfield for negative and positive incidence conditions. The impact of 

incidence change on secondary flowfield effects and blade loading will be very 

noticeable. This will be supported by the blade loading data for the ten incidence angles. 

Once the flowfield and blade loading trends are established, the midspan total-pressures 

and exit flow angles will be discussed.  

3-D Flowfield Results 

Survey Data 

 Detailed exit flowfield measurements were obtained for the cruise (i = +5.8°) and 

takeoff (i = −36.7°) incidence angles at the baseline Reynolds number (Reb = 530,000) 

and design exit Mach number (M2,i = 0.72). To look at the effects of Reynolds number 
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and Mach number, detailed measurements were also obtained at a low flow condition 

(ReCx,2 = 212,000 and M2,i = 0.35) and the takeoff incidence setting. Data were taken at 

26 spanwise locations over 62 pitchwise points.  

The total-pressure contours in Fig. 16 show that at the positive incidence angle 

(Fig. 16a) the blade is highly loaded, producing strong secondary flows which drive the 

endwall flow to and along the suction side of the blade. The blade loading is reduced and 

the flow becomes very two-dimensional at the negative incidence angle (Fig 16b). The 

contours of total-pressure coefficient remain largely unchanged as the Reynolds number 

and Mach number are reduced as shown in Fig. 16c.  

A detailed single-passage view of the secondary flow vectors and pitch and yaw 

angles are shown for the baseline flow conditions at the positive (Fig. 17) and negative 

(Fig. 18) incidence angles.  The impact of secondary flows is evident for i = +5.8°. The 

flow vectors and pitch angles show strong overturning near the hub (z = 0). At y/S = 

−0.45 and z/H = 0.33 in Fig. 17a the flow vectors show the core of the horseshoe vortex. 

This is also evident in the pitch and yaw angle data. For i = −36.7°, the secondary flow 

vectors, and the pitch and yaw angle show little variation due to the two-dimensionality 

of the flowfield.  

The total pressure data of the three- and five-hole probe measurements were in 

good agreement for both incidence angles as seen at z/H = 0.042. Figure 16 also shows 

reasonable periodicity between passages 4 and 5. Consistent with the downstream 

endwall static pressure contours in Fig. 14, there is a slight aperiodicity observed in 

Passage 6.  
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a) i  = +5.8°, M2,i  = 0.72, ReCx,2 =  Reb. 

 

 

b) i  = −36.7°, M2,i = 0.67, ReCx,2 = Reb. 

 

 

b) i  = −36.7°, M2,i = 0.35, ReCx,2 =  0.4Reb. 

Figure 16.  Total Pressure Coefficient Contours Over Three Passages. 
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Figure 17.  Detailed View of Flow at i = +5.8°, ReCx,2 = 5.30×10
5
 (Reb), M2,i = 0.72. 

 

 

Figure 18. Detailed View of Flow at i = −36.7°, ReCx,2 = 5.30×10
5
 (Reb), M2,i = 0.67. 

 

 Pitchwise integrations of the total-pressure coefficient, pitch angle, and yaw angle 

were calculated at each spanwise immersion for i = +5.8° (Fig. 19) and i = −36.7° (Fig. 

20 and Fig. 21). Area-averaging of the total pressure was performed so that calculated 

loss coefficients would account for loss production both within the blade passage and in 

downstream mixing. The area-averaged total-pressure coefficient (Fig. 19a and 19b) 
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reflects strong spanwise variation in the secondary-flow field; the thick inlet boundary-

layer fluid is thinned out near the hub and transported to a higher span section on the 

blade suction side.  The estimated inlet boundary layer, noted in Table III, for this flow 

condition is 1.44 inches, which accounts for roughly 24% of the blade span. As seen in 

the flowfield contours (Figs. 17), the horseshoe vortex and its core location can be seen in 

Fig. 19c and 19d at z/H = 0.33. The pitch angle in Fig. 19c show the flow is always 

overturned near the hub. The point of minimum turning is located at z/H = 0.33. This is 

the same spanwise location of the maximum yaw angle shown in Fig. 19d.  

The integrations at i = −36.7° are shown in Fig. 20 at the baseline flow conditions. 

The inlet boundary-layer thickness was 1.50 inches, roughly 50% of the half-span; due to 

the two-dimensionality of the flow at this incidence angle, the boundary-layer thickness 

at the exit remains nearly consistent through the blades. The pitch angle in Fig. 20c 

reflects overturning at the endwall; further up the span, the flow tends towards the exit 

metal angle and remains constant spanwise. The integrations at the same incidence angle 

but at a reduced Reynolds and Mach number are shown in Figure 21. The trends are the 

same for both flow conditions. Only five-hole probe data were obtained due to tunnel 

test-time constraints.  

The total-pressure integrations for both angles show good agreement between 

each passage and between the three-hole and five-hole probes.  The yaw angle data could 

only be acquired with the five-hole probe. Passage-to-passage differences in yaw angles 

and the average offset from 0° are within the measurement uncertainty. 
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Figure 19.  Pitchwise Integrations for i = +5.8° at Reb and M2,i = 0.72. 
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Figure 20.  Pitchwise Integrations for i = −36.7° at Reb and M2,i = 0.72. 
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Figure 21.  Pitchwise Integrations for i = −36.7° at 0.4·Reb and M2,i = 0.35. 
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Blade Loading 

 

The effects of incidence and Reynolds number on blade loading are shown in Fig. 

22 for five selected incidence cases. The nominal flow conditions are listed above the 

plots. The loading plots are arranged with the highest Reynolds number (4Reb) on the left 

column decreasing to the minimum tested Reynolds number on the right most column 

(0.4Reb).  The incidence angle begins with the highest positive incidence in the top row 

and decreases to the lowest negative incidence at the bottom row.  

There are several notable observations from these data. The blade loading data for 

i = +15.8° confirms the three-dimensional characteristics observed in the total-pressure 

contours for the positive incidence in Figure 16. The three dimensionality of the flow can 

be observed by the spanwise variation in the static pressures represented by the colored 

symbols. A majority of the blade surface had mid-span static taps which are shown as the 

black symbols. This extreme positive incidence is clearly noted to have the highest 

loading of the other incidence angles, which increases with decreasing Reynolds and 

Mach number. For all five flow conditions, the suction surface exhibits a neutral pressure 

gradient region, followed by an abrupt diffusion near x/Cx = 0.45.  This jump is indicative 

of a reattachment following a laminar separation bubble (see Hoheisel et al. [14]).  For 

this incidence and all subsequent incidence angles, the data show excellent blade-to-blade 

periodicity.  

As incidence decreases, the front portions of the blades unload and the secondary 

flow effects diminish. At zero incidence the blade still exhibits a suction side separation 

that has moved farther aft on the blade at x/Cx = 0.8. This separation becomes more 

prominent at the lowest flow condition. With decreasing incidence, negative loading is 
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measured at the front portions of the blade. At i = −16.1°, a suction side separation is 

again observed at the lowest flow condition. When the incidence decreases to i = −36.7°, 

a pressure-side separation is observed at the lowest flow condition and is reflected in the 

midspan exit surveys shown later. At the extreme negative incidence of i = −51.0° the 

pressure side is separated for all Reynolds and Mach numbers. This is consistent with 

Yamamoto and Nouse [12] and Brear et al. [25]. A suction surface 

separation/reattachment is still observed which occurs near x/Cx = 0.59.  

The effects of exit Mach number on blade loading are shown in Fig. 23.  All data 

in this figure were acquired at the baseline Reynolds number. The loading increases and 

the location of minimum Cps moves forward with decreasing M2,i.  The increased 

diffusion causes the suction-surface reattachment points to move forward. 

The net blade loading was calculated for the five incidence angles and plotted in 

Figure 24. It is clearly shown that as the incidence decreases to a large negative values, 

the overall loading decreases. The loading levels are higher for the reduced Mach number 

conditions at incidence angles between +15.8° ≥ i ≥ −16.1°. The net loading converges at 

−36.7° for all Mach number conditions. At negative incidence angles larger than −36.7° 

the net loading is lower for the low Mach number conditions. How this relates to losses 

will be discussed in the following chapter.  
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4Reb                           2Reb                1Reb             1Reb  0.4Reb 

       Mi,2 = 0.72 Mi,2 = 0.72     Mi,2 = 0.72         Mi,2 = 0.35         Mi,2 = 0.35 

 

 

Figure 22. Blade Loading (Cps vs. x/Cx) for five incidence angles at five flow 

conditions. 
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Figure 23.  Blade Loading – Effects of Exit Mach Number at ReCx,2= 5.30×10
5
 (Reb). 

 

 

Figure 24.  Net Loading vs. Incidence 
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2-D Midspan Results 

Exit Survey Data 

 Midspan total-pressure and exit flow angle (pitch angle) surveys were measured 

for all ten incidence angles at five flow conditions. Figures 25 to 29 show the effects of 

Reynolds number and Mach number variations for a sample of five incidence angles. At 

the positive incidence angle in Fig. 25, the influence of the high blade loading and 

secondary flows on the mid-span total-pressure wake profile is observed. As the 

Reynolds Number is reduced, the suction-side wake width increases. This is due to the 

suction-side separation observed in the blade loading. At the baseline Reynolds number, 

1.0·Reb, the wake width remains constant as the exit Mach number is varied from 0.72 

(design) to 0.35. The Mach number influences the exit angle as seen in the bottom plot 

shown in Figure 25 but the exit flow angle is relatively independent of Reynolds number. 

As the Reynolds and Mach numbers decrease, the exit flow angle decreases and stays at 

or above the pressure-side exit metal angle.  

 As the incidence decreases, it is noted that the blade becomes unloaded and the 

flow becomes more two-dimensional. The influence of the suction side separation 

decreases, which results in a narrower wake profile as incidence decreases (Fig. 26-28). 

For these incidence angles, the trends are still the same; as the Reynolds number 

decreases, the wake width and depth increases. The exit angles begin to increase in the 

negative direction and generally remain between the pressure surface exit metal angle and 

the average exit metal angle.  

 At an incidence of −36.7° (Fig. 28), there is little variation in the wake profile due 

to changes in the Reynolds and Mach number. The overall levels of Cpt  have decreased 
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at this incidence.  At the lowest Reynolds number (0.4Reb) there is a small wake width 

increase on the pressure side. This becomes greatly exacerbated at the largest negative 

incidence tested (i = −51.0°, Fig. 29) where the pressure-side separation is evident. This 

separation covers most of the blade passage and its influence increases with decreasing 

Reynolds number. There is also a small variation on the suction side as well with 

decreasing Reynolds number. At this angle, it is also noted that the wake profile remains 

unchanged at the fixed Mach number (M2,i  = 0.35) condition as Reynolds number is 

varied from 1.0Reb  to 0.4Reb. The exit flow angle varies little with Reynolds number 

and remains near the average exit metal angle, except for the highest Reynolds number 

(4.0Reb) where the exit metal angle is lower and is consistent with the exit angles 

measured in Figure 28. The exit angles and loss profiles indicate that at the extreme 

negative incidence conditions, as Reynolds number is decreased, the pressure side 

separation-induced wake thickens substantially. The increased aerodynamic blockage on 

the pressure-side resets the aerodynamic throat upstream and effects increased turning 

and a more negative discharge angle.  

 The effects of incidence-angle variation at the highest and lowest Mach number 

conditions are summarized in Figs. 30 and 31, respectively. An order of magnitude 

variation in Reynolds number is reflected between these two figures. The three incidence 

angles shown represent the cruise (i = +5.8°), takeoff (i = −36.7°), and maximum mission 

incidence (i = −46.0°) angles. At the highest Reynolds number (4.0Reb) in Fig. 30, the 

positive incidence produces an overall higher loss and decreases with decreasing 

incidence and loading. In Fig. 31, at the lowest Reynolds number (0.4Reb) and Mach 

number of 0.35, large incidence variations are observed. The positive incidence shows a 
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large suction side wake which is consistent with the suction-side separation observed in 

the blade loading. As the incidence decreases, the blade is unloaded and the losses 

decrease. At the takeoff incidence the suction-side is attached and a slight increase in 

pressure-side losses is observed. As the negative incidence increases further, an extensive 

pressure-side separation is evident.  

 

 

 
 

Figure 25. Effects of Reynolds Number and Exit Mach Number at i = +10.8°. 
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Figure 26. Effects of Reynolds Number and Exit Mach Number at i = 0.0°. 
 

 

 

 

 

 

CW-22 RR1 VSPT Aerodynamic Measurements - Downstream Station 02 (x/Cx = 1.0702)

tip gap = 0.0% turb grid 0 1 = 34.2 (i=0.0)midspan 5-hole probe measurements

PS SS PS SSPS SS

y / S-2.0 -1.5 -1.0 -0.5 0.0 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
4.0des 0.72

2.0des 0.72

1.0des 0.72

1.0des 0.35

0.4des 0.35

Pt,1  Pt

Pt,1  P2

Cpt

Cpt =

ReCx,2 Ma2,i

PS exit metal angle

avg exit metal angle

SS exit metal angle

y / S-2.0 -1.5 -1.0 -0.5 0.0 0.5
-65

-60

-55

-50

-45

-40

-35
2

[deg]



43 
 

 

Figure 27. Effects of Reynolds Number and Exit Mach Number at i = −16.1°. 
 

 
 

Figure 28. Effects of Reynolds Number and Exit Mach Number at i = −36.7°. 
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Figure 29. Effects of Reynolds Number and Exit Mach Number at i = −51.0°. 
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Figure 31. Effects of incidence angle at ReCx,2 = 2.12×10
5 

(0.4·Reb) and M2,i = 0.35. 
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The midspan profile loss coefficients were plotted as a function of Reynolds 

number. The power-law functionality was examined and found to be indicative of regions 

of transitional flow, with the higher Reynolds numbers scaling with a −0.1 to −0.2 

exponent (turbulent) and the lower Reynolds number scaling with −0.5 exponent 

(laminar); however, the power-law exponent was found to vary with incidence angle. 

Nonetheless, it is interesting that the strongest collapse of the overall bucket on Reynolds 

number, shown in Fig. 33, was obtained with a ω   Re
-0.5

 scaling, indicative of a 

significant influence of laminar flow on the midspan loss levels. 

The same loss coefficient data (Fig. 32) were plotted in terms of reduced loss and 

incidence according to the Ainley-Mathieson (A-M) scaling (ω/ωi vs. i/is) [27], shown in 

Fig. 34. For each loss curve, ωs = 2×ωi=0 and the stalling incidence, is, is the incidence 

corresponding to ωs. The A-M scaling strongly collapses the data down to i/is = −5°. Thus 

a canonical shape can be used to represent the data, with the following caveat: the 

narrowing of the loss bucket is found to be a function of Reynolds number to an extent 

beyond that tared out by the scaling on the stalling incidence. That is, the lack of collapse 

at the extreme negative incidence range, though consistent in Reynolds number, reflects a 

rate of change that is not tared out by a change in stalling incidence with Reynolds 

number. 

To account for blade loading, the midspan losses were plotted as a function of the 

net blade loading as shown in Figure 35. Overall, the losses increase with decreasing 

Reynolds number as expected. There is a region of net loading (0.53 – 0.74) where there 

is little variation in loss level and the loss is at the minimum. From the loading data in 

Fig. 22 it is noted in this region that the flow over the blade becomes two-dimensional 
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and a loss-generating suction surface separation occurs at the lower flow conditions. 

There are high losses at the minimum net blade loading which is due to the gross 

separation on the blade pressure surface. As the net loading increases, secondary flows 

begin to develop, as seen in the flow field data, and a suction side separation causes the 

loss levels to increase.  

 

 

Figure 32. Midspan Loss vs. Incidence. 
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Figure 33. Re
-0.5

 Scaled Midspan Loss vs. Incidence. 

 

 

Figure 34. Midspan Loss Bucket on Ainley-Mathieson Scaling. 
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Figure 35. Midspan Loss vs. Net blade Loading. 
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Figure. 36 Midspan Deviation Angle From Exit Metal Angle as Function of 

Incidence and Reynolds Number. 
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CHAPTER V 

CONCLUSIONS 

 This thesis was intended to advance the understanding of aerodynamic effect of 

large incidence angle and Reynolds number variations by documenting and explaining 

measurements on a variable-speed power-turbine blade. This work expands on previous 

work in the open literature by documenting inlet and exit characteristics, exit total 

pressure, flow angles, and blade loading at relevant Reynolds number and Mach number 

conditions. 

 Detailed survey data at the blade exit showed the influence of secondary flows at 

positive incidence. The low momentum endwall flow was transported by the secondary 

flows to the suction side. As the incidence decreased, the blade row became unloaded and 

the secondary flows reduced. The flow field became largely two dimensional at this 

unloaded condition.  

 The blade loadings at different spanwise locations corroborated the two-

dimensionality of the flowfield at the negative incidence condition. This test was run at 

low inlet turbulence levels in order to admit transitional flow on the blade surface. The 

measured loading reflected transitional flow on the blade suction surface. With the 

exception of the maximum Reynolds number condition, the loading diagrams were 
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consistent with a laminar separation, transition, and reattachment as a turbulent boundary 

layer. At the negative incidence angles, reverse loading was observed. Pressure surface 

separation was also noted at the extreme negative incidence angles.  

 The midspan surveys for all ten incidence angles were documented. The 

corresponding integrated losses showed that the loss levels decreased with increasing 

negative incidence until the pressure-side cove separation or reattachment occurred. Loss 

levels increased with decreasing Reynolds number as expected, and the range of 

acceptable loss levels decreased. 

 The results of this thesis show the effects of incidence and Reynolds number at a 

low inlet turbulence level. An additional test looking at the effects in a more engine-

realistic high turbulence environment is warranted.  
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