
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

ETD Archive

2016

Intelligent Voice Activated Home Automation (IVA) Intelligent Voice Activated Home Automation (IVA)

Mrunal Dipakkumar Bhatt

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

 Part of the Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Bhatt, Mrunal Dipakkumar, "Intelligent Voice Activated Home Automation (IVA)" (2016). ETD Archive. 900.
https://engagedscholarship.csuohio.edu/etdarchive/900

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/900?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

INTELLIGENT VOICE ACTIVATED HOME AUTOMATION

 (IVA)

 MRUNAL DIPAKKUMAR BHATT

 Bachelor of Engineering in Information Technology

University of Pune

May, 2010

Submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

at the

CLEVELAND STATE UNIVERSITY

May, 2016

We hereby approve this thesis of

MRUNAL DIPAKKUMAR BHATT

 Candidate for the Master of Computer Science Degree

 for the Department of Electrical Engineering and Computer Science

 And

 CLEVELAND STATE UNIVERSITY

College of Graduate Studies

Thesis Committee Chairperson, Dr. Victor Matos

Department and Date

Dr. Ben Blake

Department and Date

Dr. Sunnie S. Chung

Department and Date

Student’s Date of Defense: 05/09/2016

ACKNOWLEDGEMENTS

I would like to gratefully thank my academic and thesis advisor, Dr. Victor Matos for his

guidance, supervision and expertise throughout the course of this study. His vital inputs at

regular interval made it possible to reach the goals set for my thesis. His immense

knowledge and vision of technology makes him an ideal thesis advisor according to me.

Secondly, I offer my sincere gratitude to other committee members Dr. Ben Blake and Dr.

Sunnie Chung for their encouragement.

I would like take the opportunity to thank my friends Mr. Ravi Kandoi, Mr. Chaitanya

Lomte, Mr. Karan Katyal and Mr. Adwait Sankhe for their support and help. Also, I

would like to thank my fiancée Ms. Sonal Boraste for her motivation, support and

encouragement while working on my thesis.

This thesis would not be possible without constant support, guidance and motivation

from my parents Mr. Dipakkumar H. Lakhalani and Mrs. Malti D. Lakhalani. I cannot

thank them enough for raising me to become who I am today.

Finally, I thank my dear brother Mr. Chinmay Bhatt, who made my life happy and

uplifting.

 iv

INTELLIGENT VOICE ACTIVATED HOME AUTOMATION (IVA)

MRUNAL DIPAKKUMAR BHATT

ABSTRACT

This thesis presents the design of an original Intelligent Home Automation Architecture.

My work was divided in two phases. The first portion was dedicated to acquiring a

thorough understanding of the most successful and diffused Home-Automation

commercial architectures. During this phase, I intended to gain a deep appreciation for the

variety of organizations, capabilities, limitations, and potential areas of growth of the

existing Home-Automation leading systems. In order to acquire this knowledge, I had to

use a reverse engineering approach. The reason for using this methodology arises from the

fact that all the products considered in this study are commercially protected as industrial

secrets. Consequently, it is not possible to obtain detailed descriptions of their 'real'

architectures and internal operations. The second part of this thesis presents my personal

contribution in the form of a prototype for a Smart-Home Architecture. My design, called

IVA (short for Intelligent Voice Activated) home automation, is primarily driven by the

processing of natural language voice commands. I argue that this approach should be

attractive to seniors, and people with limited range of mobility. In addition, the hardware

needed to implement the system is commonly available and inexpensive. The most

sophisticated device in my model is a smartphone, which in most cases, is already own by

the prospective user.

v

TABLE OF CONTENTS

Acknowledgements.. iii

Abstract .. iv

List of tables ... x

List of figures ... xi

CHAPTER I

INTRODUCTION .. 1

 1.1 Smartphone reach and accessibility .. 1

 1.2 Internet of Things ... 4

 1.3 Home Automation ………………….. 4

 1.4 Some background on Domotic Computing .. 5

 1.5 Current status of Home Automation .. 5

 1.6 Popularity of Home Automation .. 6

 1.7 IoT with home automation and voice commands ... 7

CHAPTER II

LITERATURE REVIEW .. 8

 2.1 Present and future of home automation ... 8

 2.2 Technology Standards ... 10

 2.3 Popular platforms for home automation .. 11

 2.4 Study of Apple HomeKit .. 12

 vi

 2.4.1 Third Party product criteria .. 13

 2.4.2 HomeKit working ... 14

 2.4.2.1 Manufacturer Apps .. 14

 2.4.2.2 Voice commands through Siri ... 15

 2.5 Nest thermostat ... 16

 2.5.1 Current thermostat working .. 16

 2.5.2 Nest smart approach .. 17

 2.5.3 Nest features .. 18

 2.6 IFTTT (IF-THIS-THEN-THAT) .. 19

 2.7 Amazon Echo .. 20

 2.7.1 Speculating working of Amazon Echo ... 21

 2.7.2 Speculated architecture of Amazon Echo ... 21

 2.8 Belkin Wemo switch ... 22

 2.8.1 Working of Belkin Wemo switch .. 23

CHAPTER III

IVA SMART HOME .. 25

 3.1 Introduction to IVA ... 25

 3.2 Reasons for using Wi-Fi over ZigBee and X10 ... 26

 3.2.1 Usage .. 26

 3.2.2 Cost .. 26

 3.2.3 Availability .. 27

vii

 3.2.4 Cloud Computing is easier with Wi-Fi ... 27

 3.3 Limitations of Wi-Fi over ZigBee ... 28

 3.4 Arduino microcontroller .. 28

 3.5 IVA’s components .. 30

CHAPTER IV

IVA’S HARDWARE .. 32

 4.1 IVA Control Box .. 32

 4.1.1 Control Box connections .. 33

 4.1.2 Explanation of schematics ... 33

 4.1.3 Power circuits ... 34

 4.2 Wi-Fi connection and setup ... 34

 4.2.1 Step1: Physical connections .. 36

 4.2.2 Step2: Configuring parameters .. 37

 4.2.2.1 If using Windows OS to configure Wi-Fi .. 37

 4.2.2.2 If using Apple Computer to configure Wi-Fi 38

 4.2.2.3 Android to check the Wi-Fi security type .. 38

 4.3 Receiving the command from the app .. 40

 4.4 Command structure ... 41

 4.5 Controlling actual devices ... 43

 4.6 ‘setup’ method code snippet for Control Box .. 43

 4.6.1 Explanation ... 44

 viii

 4.7 ‘loop’ method code snippet ... 45

 4.7.1 Explanation ... 49

 4.7.2 Flowchart ... 50

CHAPTER V

IVA’S SOFTWARE AND INTELLIGENCE …... 52

 5.1 User Interface .. 52

 5.1.1 XML code ... 53

 5.1.2 Explanation ... 55

 5.2 Toggle Button .. 56

 5.3 Activating microphone for voice commands .. 57

 5.4 How speech to text conversion works ... 61

 5.4.1 Speech to text processing .. 61

 5.5 Socket connection and communication code .. 63

 5.6 Filtering hot words code ... 64

CHAPTER VI

CONCLUSION AND FUTURE WORK …... 66

 6.1 Conclusion .. 66

 6.2 Future Work .. 66

 6.2.1 Improving voice capturing ... 67

 6.2.2 Scalability for adding new devices ... 67

 6.2.3 Improving IVA’s intelligence .. 68

ix

 References ... 69

 Appendices .. 71

 Appendix A .. 71

 Appendix B .. 74

 Appendix B.1 ... 74

 Appendix B.2 ... 76

 x

LIST OF TABLES

Table 2.1 – Comparision of Wi-Fi and ZigBee network technologies 11

Table 4.7 – Commands used by IVA.. 42

Table 5.1 – Hot Words.. 60

 xi

LIST OF FIGURES

Figure 1.1 – Smartphone vs PC market shipment in millions .. 1

Figure 2.1 – Speculated Nest Thermostat network architecture 15

Figure 2.2 – Speculated Nest Thermostat network architecture 17

Figure 2.3 – Amazon Echo connecting to Cloud Server speculated diagram 22

Figure 2.4 – Image of Belkin Wemo switch ... 23

Figure 2.5 – Belkin Wemo speculated connection architecture 24

Figure 3.1 – Arduino Mega 2560 pinouts ... 29

Figure 3.2 – Working of IVA on Wi-Fi technology ... 30

Figure 4.1 – Schematic of IVA’s Control Box ... 32

Figure 4.2 – Wi-Fi setup showing Hi-Link’s HLK-Rm04 chip 35

Figure 4.3 – Configuring the Wi-Fi module ... 36

Figure 4.4 – Windows Network configuration ... 37

Figure 4.5 – Mac OS Wi-Fi network preferences... 38

Figure 4.6 – Selecting Wi-Fi network on Android device ... 39

Figure 4.7 – Loop method flowchart .. 50

Figure 4.8 – Loop method flowchart continued. 51

Figure 5.1 – screenshot of IVA’s user interface ... 56

Figure 5.2 – Flowchart for toggle button (light) event listener 57

Figure 5.3 – Screenshot of voice dialog box for speech-to-text 58

 xii

Figure 5.4 – Screenshot of response from speech to text .. 59

Figure 5.5 – Overview of Speech-to Text processing and its visualization 63

1

CHAPTER I

INTRODUCTION

1.1 Smartphone reach and accessibility

As computers are becoming faster, smaller and cheaper, they are intercepting more aspects

of common life. Today, a smartphone's processing power is comparable to that of a much

larger desktop unit. Hand-held devices, such as smart phones and tablets are getting more

proficient in understanding environment via the sensors embedded in them. As reported by

various sources, including AVC [1], Forbes [22] and Business Inside [21], smart phones

are the fastest growing industry of our generation. The chart from AVC [1] below, shows

how the smartphone market is overtaking the traditional PC market share.

Figure 1.1 Smartphone vs PC market shipment in millions. Source (AVC [1])

2

The chart in Figure 1.1 shows that the acceptance of portable computers, i.e. smartphones,

tablets and wearable computers is a massive world-wide phenomenon. The obvious

conclusion from the high diffusion of hand-held units is that the society is getting

comfortable with mobile technology.

Let us look back a decade or two; the technology then was much less advanced than it is

today. This was the time of personal computers. A study by Pew Research [4] shows that

older people have started accepting smartphone technology at a much faster rate than a few

years ago.

As reported by PewResearchCenter [4]: older people, mostly above 65 years of age had

difficulties in learning computers then. For them, computers were bulky, less useful, and

considered difficult to learn and operate, whereas nowadays, the elderly population in the

United States is getting more open to using smartphones than personal computers, as per

Axial Exchange’s article [8]. This is mainly a consequence of features such as portability.

Useful array of sensors embedded in the device such as GPS, camera, health-monitoring

elements, as well as voice recognition help users’ devices collect data. In addition,

smartphones provide a sense of continuous and transparent Internet connectivity, with all

the beneficial elements of information and services at the user's fingertips.

Notably, the Human Computer Interface (HCI) elements have become simpler with natural

hand gestures and touches, in comparison to mouse and keyboards as primary input

instruments for PCs. Consequently, smartphones act as facilitators, bringing information

3

and services, not only to the senior elements of society but to everybody, and they do it in

a much more intuitive way.

A research conducted by the Collat School of Business at the University of Alabama [5]

indicates that the number of smartphones in use will outnumber the total population on the

planet. The estimate given by Collat School of Business, states that there would be around

ten billion mobile Internet users, by the year 2016. The assumed world population is little

more than seven billion. This divides to approximately 1.4 mobile devices per person living

on face of earth.

As per these articles of Techcrunch [9] and The Telegraph [10], smartphones are reaching

developing countries at faster rate than their developed countries counter parts. The main

concern for the lower income group is the cost to connect with the technology. Thus, the

focus is now shifted to marketing less expensive phones with cheaper Internet connectivity

options. There is a plethora of small, mid-tier, and large telecom companies trying to

provide easier access with affordable hardware, and software solutions. The growth of

smartphone adoption in countries like Brazil, China, India, and Argentina is reported to be

exponential. This shows that smartphones are gaining wide ownership and reaching

consumers who were aloof from the allure of information-based technologies and services.

Innovation in the fields of Cloud Computing, Internet-Of-Things, and automation is

changing the face of technology of the twenty first century.

4

1.2 Internet-of-Things

As computers are getting more efficient in handling complex and large data using cloud

computing technology, it is becoming a common practice to introduce dedicated computers

to make traditional electro-domestic devices automated. For example: TVs, microwaves,

washing machines, dish washers, and even home based coffee brewing appliances are

getting 'smarter'.

The new generation of home appliances is being manufactured with the expectation of

making them transparently connected to the world of Internet, through dedicated

microcontrollers. The next 'big thing' in technology is prophesied to be different types of

smaller devices interacting as a single coordinated unit. This collection of small

heterogeneous devices working together is now called as ‘Internet of Things’ or IoT. It is

a new term used to describe the architectural model in which an unlimited, and ever

growing number of heterogeneous devices can be connected to the Internet. According to

proponents of model by Telecomengine [11], devices will get more connected from the

isolated world, than they are right now.

1.3 Home Automation

One of the most targeted areas for the IoT is Home Automation. Home Automation, also

called Domotic Computing, enables a user to control home devices using a remote control.

Although, home automation is not a new concept, the idea of making homes smarter is

gaining popularity as a by-product of the success and diffusion of the IoT notion. Currently,

a user can control home devices by a touch of a UI control in an app or a specific gesture

5

on their smartphones or tablet-type mobile devices.

1.4 Some background on Domotic Computing

Nikola Tesla first patented the technology of remote control, but the use of the technology

was not imagined until inception of twentieth century, when the use of electrical systems

became common.

The Idea of modern home automation was first demonstrated in the 1930s. The rough idea

of controlling electrical based home appliances was shown in World Fairs at that time in

Chicago and New York. Engineers gave this idea a serious thought in the late 1960s and in

early 1970s. In 1966, Jim Sutherland, an engineer working for Westinghouse Electric [6],

developed a home automation system called "ECHO IV"; this was a private project and

was never commercialized [2]. ECHO IV was way too ahead of its time for people to accept

such a technology in their daily lives. Moreover, the computing needed to make a complete

home automation lacked in the year 1966.

1.5 Current Status of Home Automation

Smart software embedded in powerful microcontrollers and processors has made it even

more feasible to design and develop cheap automation devices. Thus, home automation is

getting immensely popular. Software companies like Google, Amazon, Apple, Comcast,

AT&T, and many more have either stepped in, or are planning to get in the home

automation business. We will consider each company’s home automation product in detail

in next chapter. This shows that home automation is seen as one of the next frontier in

http://en.wikipedia.org/wiki/Westinghouse_Electric_Company

6

technology.

1.6 Home Automation popularity

Home controlling is not a concept of future. Controlling devices at home using a remote

control is not a new thing. We have televisions, air conditioners, music systems, and even

garage doors that are controlled via a dedicated remote control. Most of these physical

devices are now implemented as software apps running on smart phone, tablets and PCs.

So far, the idea of controlling homes with the use of a button-driven control unit has been

widely accepted by the world.

Now a day, the technology for making homes smart, malleable, fast, and responsive with

less errors and crashes is ready, and so are its consumers. The homes of today are getting

ready to being controlled by a single universal smart remote. They are getting smart enough

to automatically decide, how appliances are able to interact or how to adapt to their owner’s

requirements. There are already smart thermostats and sensors setup in modern homes,

which can learn and study their users' needs and preferences. It can then adapt to the new

habits, and changing routines of its users.

We are already able to see simple and cheap automation products around us; video phones,

automated doorbells, RFID, motion sensing, smart thermostats, and temperature controls.

The market for smart home is ready with demands and new budding ideas. Ideas such as

natural language voice inputs to smart homes are in huge demand.

7

1.7 IoT with home automation and voice commands

Imagine, where the smart home talks to the user when the user needs to be reminded. The

home would understand the users’ daily needs and takes care before the user gives any

command. For example, if the smart home reminds the user to take his office folder before

leaving to work. Another example, the smart home can open the garage door, when the user

is leaving through the front door. Yet another example can be considered as, the smart home

brews the coffee as soon as user is getting ready in the morning. Imagine if the smart home

can do all of the above stuff without asking user for it.

The above can be achieved via IoT integration in home automation system. IoT becomes

really important in understanding the environments and interacting with its dedicated

network. IoT can connect heterogeneous devices like washing machines, refrigerators,

televisions, AC/heaters, motion detectors, garage doors, and many other types of devices

to collect data and issue command to perform tasks.

There was a television show named Eureka, which showed a smart home named SARAH.

SARAH was close to an intelligent human being, with her personal female voice,

personality and even ability to understand humor and sarcasm. The future is not far when

such smart homes could be seen. The digital assistants like Siri, Google Now are already

popular and interact with the users intelligently.

8

CHAPTER II

LITERATURE REVIEW

2.1 Present and future of home automation

The basic automation systems have become a large part of people’s lives today. Systems

such as motion sensing, intelligent thermostat control, adaptable luminescence, RFID,

biometrics, IR technology, RF technology, and CCTV security have become very common.

Advanced automation technology such as user recognition using facial features, voice

controlled commands, assisting in planning, and advising in daily life chores is already

implemented. The popularity of residential automation is growing quickly. According to

ABI Research [19], 1.5 million home automation systems were installed in the US in 2012,

and a sharp uptake could see shipments topping over 8 million in 2017. Cisco CEO John

Chambers predicts that the market will be worth $19 trillion by 2020[4].

In the year 2014, Google bought a company named Nest Labs for $3.2 billion (£2bn) [3].

California-based Nest Labs makes 'smart' home appliances [4]. Nest was founded by Tony

Fadell, the so-called "godfather of the iPod", after he left the position of head of music at

Apple in 2008[4]. Although Nest has many research oriented devices, Nest Labs currently

has just two products in market: the smart smoke alarm and smart thermostat. Nest is

planning to make home appliances smarter by giving them unique features such as washing

9

machine that will text its status, the refrigerator that can call, etc. It remains unseen, how

many features users want in their home appliances.

Today, we have a lot of cheap and costly home automation products in the market. Each

has a way to communicate to the device controllers. For example, the RF based remotes

can turn lights on and off, a smart plug that can be controlled via a smart phone or a tablet,

which can later be used to control specific devices. Motion detection has been around, since

the 1970's. Opening of the door, as soon as someone walks in front of it is a great example

of automation. These are a few common examples among a vast majority of diverse, and

most importantly, intelligent systems.

Most of the world’s top technology companies have been working on developing their own

version of home automation technology. The research has been ongoing for a couple of

years now. Many of them have either come up with their version of the technology for the

general public to buy, or they have their initial prototypes, ready to be launched soon.

We will try to understand the technologies of some of the most accomplished in the market.

As mentioned in the abstract section, the standards, hardware architecture, software

models, and protocols of most of the companies are hidden; thus, we will try to speculate

the details as to how they were able to implement their respective smart home technologies.

Each company has its own unique designs and implementations. None of the designs are

public. The companies developing technologies also collaborate with other manufacturers

so that the third party manufacturers can develop devices compatible with their platform.

For example, Phillips’s Hue bulb which changes its color can now be controlled via Apple’s

10

Home Kit, and Siri commands. To do this, Phillips had to collaborate with Apple to use

Apple’s platform and communicate with its devices.

2.2 Technology standards

The most commonly used standards and protocols are discussed in this section. Although,

most of the companies implement their own version of standards, it is difficult to analyze

each and every product’s unique platform. Thus, we would look into the comparisons of

open source and general defined standards.

In today’s time, there are a multitude of standards and protocols implemented by industries.

Each company is trying to implement their own technology into the market. Internet of

Things, or IoT is the communication platform for light-weight microcontroller based

devices. Each company and organization has its own unique way of implementing IoT

based solutions. Some have their ZigBee based routers needed to communicate with their

in-house manufactured devices, whereas some companies use Wi-Fi as its base wireless

network. Bluetooth is also widely used for designing IoT based networks.

Some examples of the home automation system are Apple’s home kit, Samsung’s

SmartThings platform, and AT&T’s home automation solutions. Comcast also has its own

home automation system. Each has their own devices talking to each other.

Thus, standardization is very fragmented in current times, which include Wi-Fi, ZigBee,

11

Bluetooth, Infrared or other wireless techniques to form a dedicated small network of

Internet of Things.

2.3 Popular platforms for home automation

To implement home automation, there need to be three essential things:

 The device gets user input to control all the actions, such as remote control or voice

recognition based hardware

 A reliable medium to transmit messages/commands

 End devices to perform actions such as turning on/off, brewing coffee, changing

heater/AC controls, and etcetera.

 Wi-Fi ZigBee

Basic Technology? Uses a router of longer range to

send data.

It is designed to carry small

amounts of data over a short

distance, while consuming very

little power

Networking Type Centralized hub type network. It is a mesh networking standard,

as each node in the network is

connected to each other.

Power

Consumption

Needs lots of power as

compared to ZigBee

Very low power consumption.

The battery can last for months,

even years sometimes.

Speed Up to 5 Gbps. 250 Kbps.

Cost Higher than ZigBee, but Very cheap, $10 - $50

12

affordable $50 to $500

Type of content

that can be sent

Streaming music, videos, and

high bandwidth data

At max, text based data can be

sent.

Ease of use and

implementation

Lots of online documentation,

and support for general public

to use, and implement Wi-Fi

based network.

Very technical for general users

to understand and implement the

technology. Require some

knowledge regarding embedded

systems.

Availability Huge number of United States

households and work places

have Wi-Fi availability for

Internet sharing as basic goal.

Not widely implemented. It has

to be implemented by

manufacturers in their devices.

Although, a lot of manufacturers

use ZigBee for the device

implementation, they are mostly

hidden from common user.

Table 2-1 – Comparison of Wi-Fi and ZigBee network technologies

2.4 Study of Apple HomeKit

In June of 2014 at their World Wide Developers Conference (WWDC), Apple announced

iOS 8 and highlighted some of the upcoming features. Among those features were two new

“Kit” platforms, HealthKit and HomeKit, which are designed to integrate iOS with two

rising digital-age trends: quantified self-healthcare, and smart homes. HealthKit is to your

body and fitness gear, HomeKit is to your home and electronics.

13

HomeKit is not a single control application. It is instead a hardware certification platform,

and database system that allows developers to create hardware. Moreover, it helps to

integrate the hardware with iOS to provide for easy discovery, configuration, management,

and communication between a wide variety of smart home products such as locks, lights,

security equipment, and other home automation products.

Armed with HomeKit products and your iOS device, one can set up their home such that

the lights turn on a specific time to wake one up. Furthermore, the thermostat could crank

the AC up when one will be driving home on a hot day. Additionally, at the end of the day,

one can snuggle into bed and talk out loud to their iOS device and tell HomeKit to shut the

house down for the evening.

2.4.1 HomeKit manufacturer certification criteria

1. HomeKit products have to meet two criteria in order to be compatible with the

HomeKit platform. First, they need to be certified through Apple’s MFi (Made For

iPhone/iPad) Program, a certification process Apple has had in place for years

(reaching back in some form or another all the way to the original “Made for iPod”

certification circa 2005). This certification is designed to ensure that any product

labeled works properly with Apple hardware, iOS, and that developers have said

that hardware needs to adhere to specific rules and security practices.

14

2. HomeKit platform must include a custom encryption co-processor in all HomeKit

certified hardware.

2.4.2 HomeKit working

HomeKit serves as the underpinning of your Apple-driven smart home experience. There

is no central HomeKit control panel. For example, on your iOS device that you can just

open up and control all your devices, HomeKit is always present in the background

handling everything. The actual interaction comes in four forms: through the

manufacturer’s application, through a third-party application created by an iOS developer,

through Siri voice control, and via digital and physical triggers.

2.4.2.1 Manufacturer Apps

Every application for a HomeKit-certified device typically contains two HomeKit related

elements. First, the application will have some ability to link your HomeKit-certified

hardware to a scene, room, or a zone. For example, your smart bulb system might have a

“scene” system where you can create scenes like “relaxation”, “movie time”, or “morning

routine”.

15

Figure 2.1 Speculated architecture of Apple HomeKit

It might also give you the ability to group lights together into physical rooms or zones like

“bedroom” or “upstairs”. The second HomeKit related element is the ability to link the

application to the iOS voice assistant Siri; you’ll find an option somewhere in the menu

system of the application that reads like “Enable Siri”, “Enable Siri HomeKit Integration”,

likewise.

2.4.2.2 Voice commands through Siri

While the apps are great, (and essential to setting up and configuring the HomeKit

environment) the real welcome feature of HomeKit is the integration with iOS’s digital

voice assistant Siri.

16

Due to heavy Siri integration, HomeKit system can now be controlled with nothing more

than the dedicated iOS device and user voice. There are online guides on how to add the

Philips Hue system with the HomeKit.

Siri’s control is pretty flexible, and if there is a scene/room/zone and a matching task Siri

can complete within the HomeKit database, she is pretty good about following natural

language patterns to fulfill the commands. Commands such as “Turn off the office lights”,

“Set the house to 75 degrees”, or “set morning scene” are all easily understood by Siri, if

your product’s HomeKit hardware/app supports it. There are various third party

manufacturers developing for HomeKit platform. Products such as coffee machines,

colorful lights with brightness control, smart thermostats, video door bells, automatic

garage doors, and alarm clocks are already available to common users for purchase.

2.5 Google’s Nest Thermostat

The Nest Learning Thermostat goes beyond just simple temperature detection in order to

make a real impact in user’s HVAC energy consumption. In this section, we will see what

Nest can do, how it does, what it does, who is behind it, and what challenges it faces in

the HVAC industry.

2.5.1 Current thermostat working

To understand Nest's value, let's first look at what other thermostats do. All thermostats let

you set a desired temperature, and monitor the current temperature.

17

Many thermostats rely entirely on the user to set the temperature. Though in recent years,

manufacturers have offered programmable thermostats that can help save energy. This

helps the user program certain temperatures for certain times of the day. For instance,

letting them automatically lower the temperature when they will be out of the house (to

save energy). However, due to the complexity of these thermostats, people do not always

program them correctly, which can negate most, if not all, of their energy-saving potential.

2.5.2 Nest smart approach

The Nest Learning Thermostat aims to solve this problem. Nest actually programs itself by

learning its user’s behavior patterns and desired temperatures for certain days and times

during the week, and then builds a schedule for their HVAC. It is not the only smart

thermostat in the market, but Google's purchase of Nest Labs for a reported $3.2 billion in

January 2014, has made it the most famous.

Figure 2.2 – Speculated Nest Thermostat Network Architecture

18

2.5.3 Nest features designed to appeal to consumers

 Nest uses various inputs to observe day-to-day routine of its user and uses them to

maintain an HVAC schedule automatically, based on what it learns. (The company

calls this Nest Sense technology.)

 Nest creates an auto-away mode based on what it has learned. This sets a

temperature for minimal HVAC activity, when the user is not in the building. The

“set away” mode can also be manually set, if the user wishes.

 While it is actively heating or cooling, Nest displays an estimated time for the

system to reach the desired temperature.

 Nest displays a green leaf any time the thermostat is running at energy-saving

settings. This can help teach users to make energy-saving decisions. For example,

if Nest has learned that they typically run the AC until the house is 74 degrees

Fahrenheit (23.3 Celsius), they could turn up the temperature until you see the green

leaf to save energy. The leaf will always appear at cooling settings of 84 degrees

Fahrenheit (28.9 Celsius) or higher, and heating settings of 62 degrees Fahrenheit

(16.7 Celsius) or lower, but its threshold will change based on its user’s habits.

 Nest lets the user know what activity (between auto-away, user’s own adjustments

and the weather) results in the greatest energy savings throughout the day.

 Nest uses Wi-Fi to connect to the user account at nest.com. This feature allows

them to monitor and adjust the Nest remotely from the Web site.

19

 Nest supports a mobile app available for Apple iOS (iPod Touch, iPhone and

iPad) and Android devices. The app turns the mobile device into a remote

control for your Nest.

 Nest can be added to any number of thermostats in a multi-thermostat building.

They will work alongside other thermostats, but note that each of Nest's energy-

saving features only apply to the rooms in its sensor range, and to the HVAC

components it controls.

 A Nest account can manage up to 10 Nest devices, whether they are in the same

building or at multiple locations.

2.6 IFTTT (IF-THIS-THEN-THAT)

IFTTT also pronounced “lift” without ‘L’, is a very novel approach of controlling multiple

devices by a trigger. IFTTT has a website which encourages users to design their own

triggers, actions and conditions to make compatible devices perform tasks. IFTTT calls

these scripts with triggers recipes.

 For example, if a user just makes a recipe that the sensor inside his/her liquor

cabinet detects that a bottle is fetched, then the system would tweet a celebratory

message.

 If one owns the Philips Hue smart lighting system, for instance, the user could use

IFTTT to automatically turn on a light every time they are tagged in a Facebook

photo.

20

 In one more example, the user could use IFTTT to automatically email readers

when they comment on your WordPress blog. There are numerous combinations

(called recipes) on IFTTT that can make life easier.

IFTTT is not a home automation platform; it is more general platform to perform a task if

a trigger is met. It can simply send a notification on a smartphone if the weather gets bad.

In this example, there is no home automation used. Although, IFTTT is expanding to

work with many home automation sensors and devices.

2.7 Amazon Echo

Amazon is another player in the market with their unique smart home device, named

Amazon Echo. Amazon has been developing a comprehensive home automation product

to help user order items from their website with just their voice. The device they were

developing had to be intelligent enough to understand what the user needs just by natural

language voice processing.

The Amazon development team had an idea that if they can connect Echo with home

automation in a way that the device’s natural language processing can be used for more

than just order.

They came up with a minimalistic, yet intuitive design of a cylindrical speaker. The device

is just a speaker with 7 noise canceling microphones. The device can respond to any user’s

voice commands and their natural speech. Amazon’s Echo device responds to a wake-up

21

command. The command is ‘Alexa’ or ‘Amazon’ or ‘Echo’ as per the user sets the

command. The Echo has multi-colored lights that indicates the user that it is listening. It

lights up, when the wakes up and when command is spoken by the user.

2.7.1 Speculating working of Amazon Echo

Let’s speculate. It needs a Wi-Fi connection to connect to the home Internet, thus all the

natural language processing and understanding should be done on the cloud. Echo has a

female voice to talk back to the user. The sound can be heard from the speaker of the device.

Echo can also play the user’s favorite music. To do this, it has to have an access of the

user’s account along with the access of the cloud.

To setup Amazon Echo, an app is required to connect with the device’s own Wi-Fi channel

to provide login information, and preferences. Once the device is set, it keeps the track of

the user’s demands and learns about their requirements, and behavior.

2.7.2 Speculated Architecture of Amazon Echo

Amazon Echo seems to have similar architecture to that of Google’s Nest thermostat.

However, it can do much more than just learn about the temperature preferences. Echo is

a dedicated device which can be connected to the Internet using user’s already setup home

Wi-Fi network. The more detailed diagram can be shown in the diagram below.

The Amazon Cloud Server is a collection of different services such as voice processing

server, searching for user requirements, login services, and many more.

22

Figure 2.3 - Amazon Echo connecting to Cloud Server speculated diagram

2.8 Belkin’s Wemo Switch

Belkin already had a name in networking devices, power, and cable accessories. Belkin

came out with Wi-Fi based switch before companies like Apple, Google and Amazon came

into the home automation business. The Wemo switches were launched in 2012. Back then,

the Wemo switches were controlled with iPhone/iPod/iPad app. In January 2013, Belkin

announced the support for Android OS. They also demoed their other home automation

products line. New products such as smart motion sensors, IP cameras were displayed in

Consumer Electronics Show (CES) 2013. They made huge interest regarding the capability

of smartphones controlling home devices.

23

Figure 2.4 – Image of Belkin Wemo switch

Till then, numerous journal articles and white papers were written to control devices like

lights, fan, and AC with the help of Bluetooth, ZigBee, and Wi-Fi, using a smartphone app.

The app connected with the hardware was something that the market was ready to embrace.

The smartphone app concept became a fad. Belkin was able to leverage the peaking interest

in ‘what new can apps do?’ idea.

2.8.1 Working of Belkin Wemo switch

Wemo switches work with a bit different architecture as compared to Apple’s HomeKit,

and Amazon’s Echo. As per a Gigaom.com article [23], Belkin does not think a centralized

hub is necessary for developing a smart home environment. Apple’s home kit and Amazon

Echo both use a hub architecture to create their home automation platform.

Wemo switch uses a dedicated IP address to connect with a smartphone app. Each Wemo

switch has an inbuilt Wi-Fi chip that can individually act as a TCP/IP server. The Wemo

app is free to download through app stores. Once installed, the app asks user to connect

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjzwKLOtoLMAhVCmIMKHQEgDbMQjRwIBw&url=http://www.belkin.com/au/p/P-F7C027/&psig=AFQjCNElD0B21uTBOrQSsIEXQR0chUlbUw&ust=1460321186834641

24

with the Wemo’s own Wi-Fi access point. The user has to manually connect to the Wi-Fi

access point of Wemo switch. The app then requests user to enter the main router’s login

credentials. This router is the Wi-Fi router that connects to your smart device. The app then

sends the credentials to the Wemo switch. The Wemo switch uses this login credentials to

authenticate itself as a device on the wireless network, and receives an IP address on the

network. The switch then sends it to its app, which stores it in its memory for sending and

receiving messages.

Figure 2.5 - Belkin Wemo speculated connection architecture

25

CHAPTER III

IVA SMART HOME

3.1 Introduction to IVA

Intelligent Voice Activated Home automation, or IVA for short, is my own independently

designed smart home automation architecture. IVA is designed to understand the user’s

natural language voice commands along with support for touch controls from an Android

device. IVA software can be installed on the Android device as an app. The Android device

should have basic Wi-Fi capability in order to connect with the hardware. Additionally, an

already setup Wireless Local Area Network (WLAN) is needed to make IVA communicate

with the specially designed hardware to control end devices.

This section of thesis also explores the reasons for which the specific technologies are

implemented for IVA’s smart home architecture. Here, we discuss the overall

implementation design and the reasons, which led to selection of specific technologies over

others. For instance: why Wi-Fi was selected over Bluetooth or ZigBee? Why hardware

was designed on Arduino platform? And why the intelligence was programmed as a

software on the Android app instead of implementing it on the hardware?

This thesis does not claim that we have designed a new way of communicating in home

automation. It shows the reasons why we selected Wi-Fi over Bluetooth and ZigBee.

26

3.2 Reasons for using Wi-Fi over ZigBee and X10

As explained above, IVA uses Wi-Fi as main communication medium. The reasons for

using Wi-Fi are:

3.2.1 Usage

Wi-Fi is a wide spread technology to connect heterogeneous type of computer devices. It

is the most common technology to connect a sufficient size network in LAN format, be it

desktop, laptop, smart phone, tablet or any other computer with Wi-Fi capability.

ZigBee and X10 are dedicated network which need special devices to create a network.

For example: ZigBee needs ZigBee controller (ZC), ZigBee Router and ZigBee enabled

device.

As for X10, it needs a special type of power line transmitter-receiver to send information

in analog mode to the devices.

3.2.2 Cost

Wi-Fi is a very cheap technology. If a computer does not have a Wireless card (capability

to connect to Wi-Fi network), there are various add-ons for as cheap as $10 to $100. Even

if there is no Wi-Fi Router, we can still create a hotspot network using a Laptop or a

smart phone, which can route the data.

In conclusion, most of the computers (small/large) have capabilities to connect to a Wi-Fi

network. But if a computer lacks hardware to connect to a Wi-Fi network, the add-on

27

hardware to connect to the Wi-Fi network is very cheap. Even a dedicated router is not

required to create a network as nowadays, the computer devices are powerful enough to

create a virtual Wi-Fi router as its own secured Network, working as a Hotspot.

3.2.3 Availability

This is the most important reason for selecting Wi-Fi over other type of home automation

protocols. Wi-Fi technology is the most common wireless technology used to connect to

heterogeneous computer hardware, running on heterogeneous software. For Example; a

Wi-Fi network can connect PCs, Mac, Linux based machines, Android devices all in one

network. The computers do not need any kind of special treating to access to the network,

provided they are rightly authenticated and authorized to use the network.

Wi-Fi technology is so common that most of the houses are equipped with it. Most of the

houses in United States have a Wi-Fi router which routes the Internet connection to local

devices on the network. Thus a special setup is not needed for a home automation system

to work. As the setup is already available.

3.2.4 Cloud Computing is easier with Wi-Fi

At present, cloud computing is huge. The controller device can be used to integrate

powerful cloud servers to control the home automation. Here the example is speech

synthesis. The IVA app can give natural language speech based commands to the

controller device, which in turn uses cloud services to convert spoken commands to text

and then the app takes a decision by understanding what user's requirements.

28

3.3 Limitations of Wi-Fi over ZigBee and X10

The most observable limitation of Wi-Fi over ZigBee and X10 is that the Wi-Fi has much

shorter range than ZigBee or X10. Although, a router is sufficient enough for most of the

common home sizes in United States, we can easily improve the range of the Wi-Fi

network by using an 'Access Point' or a Repeater to increase the range of the network.

Here, ZigBee is very efficient in increasing the range as each ZigBee device itself acts as

a range extender. As for X10, as it uses the basic power lines, (the home AC power

wiring) the analog signals travel much farther, when a range is considered. But for X10, a

special wireless remote control and the receiver is needed to connect to the network.

3.4 Arduino microcontroller

Arduino is one of the most widely used prototyping microcontroller platform. It is built

and tested on robust Atmega controller series from Atmel Corporation. Arduino hardware

platform already has the power, reset circuitry setup, as well as, circuitry to program and

communicate with the microcontroller over USB. In addition, the I/O pins of the

microcontroller are typically already fed out to sockets or headers for easy access (This

may vary a bit with the specific model). This makes it one of the best and easiest to test a

prototyping hardware. An overview with pinouts of Arduino Mega 2560 can be seen in

Figure 3.1.

Arduino has a huge community support and has innumerable documentations for every

type of hardware that can be connected to a microcontroller. Arduino provides an easier

29

programming platform in comparison to core microcontroller programming, where the

users have very predefined set of functions and pin names. It becomes much easier for

naïve programmers to program for the Arduino boards. In addition, Arduino board, which

needs +5V to work, can just be powered by the computer’s USB port.

Figure 3.1 Arduino Mega 2560 pinouts

Arduino boards comes in various sizes for flexible usability. A vary basic version of

Arduino is Uno board with bare minimum ports and pins to support hardware connected to

it. If the user needs more powerful microcontroller with more pins and ports, Arduino Mega

can be handy. Also, the code is portable across different type of Arduino boards. Thus, code

written for Arduino Uno can be easily ported to Arduino Mega with no changes.

Arduino are really cheap, and they are easily available all over the world. Arduino Uno

board can be purchased for as less as $10 in the United States. It comes with an inclusion

30

of the USB cable in order to connect with the computer. The Arduino IDE, which is used

to program and upload the machine code to the hardware is also free to download. The

Arduino software is easy-to-use for beginners, yet flexible enough for advanced users. It

runs on Mac, Windows, and Linux.

3.5 IVA’s components

Figure 3.2 – working of IVA on Wi-Fi technology

IVA’s architecture is broken down in three main categories, which we would discuss the

design details in next chapters:

1. The hardware has its capability to connect to the router. It would also be able to

turn on/off specified devices, such as lights and fans. Let’s call it ‘Control Box’.

2. GUI for users and app software programming that provides user aesthetics.

3. Our own natural language interpreter to understand user commands, which are

transformed from voice to text.

IVA’s

Control Box

Setup

31

We are calling the whole hardware setup as ‘Control Box’. There can be a number of

Control Boxes in one house. They would work in symbiosis, and would be controlled with

the help of a single app. Each Control Box would have its own unique IP address on the

WLAN formed by a router. These IP addresses would be used to send and receive messages

from IVA app on an Android device. The above Figure 3.2 shows one such Control Box.

We will understand the working of it in more details in next chapter.

32

CHAPTER IV

 IVA’S HARDWARE

4.1 IVA Control Box

IVA has a microcontroller to interpret the commands, and perform tasks as per the

commands received from the IVA app. As discussed in previous chapter, IVA is using

Arduino Mega 2560 board as its main controller. We will call this assembly of devices with

an Arduino Mega2560 as ‘Control Box’.

Figure 4.1 - Schematic of IVA’s Control Box

33

4.1.1 Control Box connections:

1. Power setup: Arduino uses 5V as power supply. A 1 Amp current supply is more

than enough to make our hardware work. Although, the power consumption

widely depends on the amount of devices connected on the ports and using

pullups to power the pins.

2. A relay switch, which would be controlled by I/O pins of the board. Here, in the

schematics, pin 27 is seen controlling the relay switch.

3. A UART port uses receiving (RX) pin and transmitting (TX) pin for

communication. We have connected a Wi-Fi chip named HLK-Rm04 for

providing wireless communication feature to IVA. We will see the setup of HLK-

Rm04 in details further in this chapter.

4.1.2 Explanation of schematics

In the Figure 4.1 above, the Arduino Mega 2560 board pinouts is shown. On the board,

the pin numbers 0, 1, 14, 15, 16, 17, 18, 19 are all Universal Asynchronous Receiver

Transmitter (UART) communication port pins. We would use one of the pair 18 (TX1)

and 19 (RX1) to connect to a Wi-Fi module. The Wi-Fi module HLK-Rm04 that would

be used is developed by a company HI-LINK Co. Ltd [14]. All the other unmarked pins

are basically 5V internally pulled up I/O pins. That is, the pins to connect a 5V digital

sensors or other digital devices. The pins here, would be used to control end appliances.

Thus, the I/O pins will be connected to the end devices controller switches using a relay

or a voltage regulator.

34

A relay switch will be used to control on/off of the devices. A relay is basically an

electromechanical switch. It is generally used to command a high voltage device like

lights, fan, etc., with a comparative small voltage like microcontroller I/O pin. The

controller I/O pin mostly has 5V output voltage.

4.1.3 Power circuit

In Figure 4.1, the power jack is labeled. A 5V DC connection will power the Arduino board.

The Arduino board will then power the HLK-RM04 Wi-Fi chip by connecting to the VCC

and GND pins. Any of the three +5V pins can be connected to Rm04 chip’s pin number 28.

Similarly, a ground (GND) pin from Arduino board should be connected to Wi-Fi module’s

pin number 2. This will take care of powering the Arduino board, which in turn will power

the Wi-Fi chip.

4.2 Wi-Fi connection and setup

The HLK-Rm04 Wi-Fi module's pins 20 and 21 are connected to Arduino Mega's pins 18

and 19 for transmitting (TX) and receiving (RX) respectively. The TX pin of Wi-Fi module

is connected to RX pin of the Arduino, so that the transmitting line is connected to receiving

line of opposite circuit and vice-versa.

The Wi-Fi module has to be setup in such a way that it can connect with an already available

wireless network. There can be more than one Control Box with the setup. Each Control

Box needs one Wi-Fi module in order to identify the box in the network. Moreover, this

increases IVA’s access to other hardware in other rooms.

35

Each Control Box’s Wi-Fi module has to be setup as a TCP/IP server on the network. Thus,

each HLK-Rm04 based module will have a unique IP address. The smartphone can then

connect to the server acting as a client. The server IP addresses are setup in IVA app

beforehand through settings screen.

Figure 4.2 Wi-Fi setup showing Hi-Link’s HLK-Rm04 chip

As you can see in the Figure 4.2, the Arduino board is connected with the Wi-Fi chip by

UART port with the help of wires. The HiLink’s HLK-Rm04 chip has many modes of

setting up with the router. It can act as a client after connecting with the router, it can act

as an access point, and become a mini-router itself. But, the mode we are going to use is

that HLK-Rm04 that has to be setup as server with a dedicated IP address on the WLAN

network. The chip HLK-Rm04 has predefined stack in order to connect as a TCP/IP

server, and communicate over network as simple ASCII text. IVA is going to use the

same setup of TCP/IP communication to connect with the Control Box from the app.

36

4.2.1 Step 1: Physical connections

Connect the Wi-Fi module HLK-Rm04 to the Arduino board and connect the 5V DC jack

to power jack on the Arduino Mega board. Once all the connections are in place, and the

Arduino board is powered on, this in-turn powers on the Wi-Fi module. Now, we would

first need to setup the Wi-Fi module as TCP/IP server and its unique IP address. The HLK-

Rm04 has to be connected to a computer with Ethernet cable. The wired connection will

be shown on the PC. Then from a browser, go to the link:

http://192.168.16.254/ser2net.asp. This is the default Active Server Page (ASP) page to

setup the Wi-Fi module. The user will be prompted to enter credentials. By default,

Username is ‘Admin’ and password is ‘admin’. A screen similar to Figure 4.3 is shown.

Figure 4.3: configuring the Wi-Fi module

http://192.168.16.254/ser2net.asp

37

4.2.2 Step2: Configuring parameters

NetMode: Select NetMode as ‘WIFI(SERVER)-SERIAL’. This will make the Wi-Fi

module as a server, which would be accessed using its own dedicated IP address.

 SSID:

The SSID is the name of the Wi-Fi network which is going to be the routing network. In

short, the WLAN is the name of the home network, the smart phone device is connected.

 Encryption Type:

Encryption type depends on the router or the switch. To find out the encryption type of

your network, the computer should first be connected to the WLAN.

4.2.2.1 If using Windows OS to configure the Wi-Fi

 Click on the wireless indicator at the bottom right corner of the screen

 Hover over the network you are connected to, and it will display the security

encryption. Type under Security Type

Figure 4.4: Windows Network configuration

38

4.2.2.2 If Using Apple Computer to configure the Wi-Fi

o Navigate to System Preferences and select Network

o Make sure Wi-Fi (or Airport) is selected and highlighted and click Advanced at the

bottom right

o You will find your security encryption type listed as Security under the Wi-Fi tab

Figure 4.5: Mac OS Wi-Fi network preferences

4.2.2.3 Android to check the network security type

o Navigate to Settings and Wi-Fi

o Touch on the network you are correctly connected to and select View.

o You will find your security options under security tab

39

Figure 4.6 - Selecting Wi-Fi network on Android device

 Password for Wi-Fi module:

Password for the network.

 IP Type:

STATIC IP type is selected. This shows that it needs a specific IP address, as the smart

phone client device(s) will need the exact non-changing IP addresses to communicate with

the hardware.

 Serial Port configuration:

The serial port connects the Arduino board with the RM04 module chip. To configure the

serial port, both the Arduino and the Wi-Fi chip has to have same parameter values, such

as Baud rate, parity, etc.

The configuration used here are:

40

o Serial configure = 9600,8,n,1

o Serial Framing Length = 64

o Serial Framing Timeout = 10

 Network Mode:

Network is selected as Server. This is the TCP/IP mode. Here, it is shown that the Wi-Fi

chip will act as TCP/IP server when connected to the network.

 Port:

The port number by default is kept unchanged. It is 8080.

Now that the Wi-Fi module HLK-Rm04 is connected to the network, the IVA app on an

Android device can now send commands to respective Control Box. Android app will act

as a client and open a connection stream with the server. The Wi-Fi module, which is now

setup as a server on the network will accept the connection, and then receive a command

from the app. The command is then interpreted, i.e. broken down into various fields to

understand what it is supposed to do.

4.3 Receiving the command from the app

The Control Box receives the command in the form of text on its UART port. This is a

serial port that connects the HLK-Rm04 Wi-Fi module to the Arduino controller board.

The port connections can be seen in the schematic image 4.1.

The program on Arduino controller is continuously polling for data on the UART port.

Thus, if the data is available, it would then check the command it has received. To activate

41

the UART port on Arduino, the following code is used: Serial1.begin(9600);

The polling code is shown below:

 while (!Serial1) {

 ; // wait for serial port to connect. Needed for native USB

 }

4.4 Command structure

A command is made up of eleven characters. Most of the characters are numeric in nature.

Let us break the commands into its bare bone pieces.

i. First, the command is encapsulated with start and stop characters. Any

command has to start with an asterisk (*) character, and end with a hash

character (#). All the characters except the start (*) and stop (#) characters

are numeric in nature.

ii. The * is followed by four numeric characters of unique home identification

number. These four digit characters are unique to a home. This is done so

that only the authentic Android device can control the hardware. For

example, ‘*1234XXXXX#’. Here, the home identification number is 1234.

All the ‘X’ characters are next part of the command.

iii. The sixth and seventh digit identifies the room number. Thus, IVA can

support up to 99 unique rooms for a home. For example, the command till

room identification number would be: ‘*123401XXX#’. Here, the room

number 01 is addressed.

iv. Next two numbers are device identification number. These two digit number

42

will make the microcontroller decide which device to control. For example,

the command would be ‘*12340102X#’. The command shows that the

unique home number is 1234, the room number is 01 and the device that

has to be controlled is 02.

v. The second last character, i.e. the character before the stop character (#) is

the device control information. Here, the microcontroller is programmed

with switch-case statements to perform the actions to the device. For

example, if the device code to turn on is 1 then the entire command from

the Android app would be ‘*123401021#’. This means, that the home

number 1234, room 01, device 02 has to be switched on.

The commands interpreted by IVA are shown in table below

Home ID Room

No.

Device[No.]

– Name

Action Description

1234 01 [01] - Light 0 - OFF Switch off the light

1234 01 [01] - Light 1 - ON Switch on the light

1234 01 [02] - Fan 0-5 (range of

regulator)

0 = OFF

1 = SPEED 1

TO

5 =MAX SPEED

The Fan in the room 01

has voltage control

regulation of 0-5

range, where 0 = OFF

and 5 = FULL voltage

Table 4.7 - Commands used by IVA

43

4.5 Controlling actual devices

Arduino board has many I/O pins. These pins are used to send a 5V voltage across the line

to the connected devices. Arduino is very strong controller board. It has a pre-built

mechanism to power even the low level current operated hardware through the pin. It can

provide a current of 40 mA per I/O pin when it is pulled up. Thus, there is no need to supply

a separate power for components like LEDs, tone generating buzzers, etc. To pull up the

I/O pin, the Arduino has to be programmed with the pin number as an output port. For

example, if the pin number 5 has to be pulled up, a line in program has to be written

something like pinMode(5, OUTPUT). Here the pin number 5 will act as output pin and

will be internally pulled up. Thus, for example, when the Control Box receives the

command to switch the lights on, the microcontroller has to make pin number 27 high. This

is because, the relay switch connect to the microcontroller is via pin number 27. We can

see this in the schematic image 4.1. The line in the code to make a pin 27 high in Arduino

program is ‘digitalWrite(27, HIGH)’.

4.6 ‘setup’ method code snippet for Control Box

1. void setup()

2. {

3. int switch=27, index=0;

4. Serial1.begin(9600);

5. Serial2.begin(9600);

6. pinMode(ledPin, OUTPUT); // sets the digital pin as output for switching

44

// Pins 22, 24, 26 and 28 act as the controlling speed (regulating) the AC power voltage //

regulation

7. pinMode(22, OUTPUT);

9. pinMode(24, OUTPUT);

10. pinMode(26, OUTPUT);

11. pinMode(28, OUTPUT);

12. }

4.6.1 Explanation

The setup method is a mandatory method in Arduino program. An Arduino program will

not work if setup method is not programmed. The setup method runs for the very first time

when the microcontroller is booted or restarted. This makes it very simple for new

programmers to define everything that needs to be initialized. For example, the pins in use,

their directions, number of ports and their baud rates, and initializing of various variables.

In the method above, line 4 and 5 are to configure the serial ports on Arduino Mega

board. The serial port 1 is connected to the Wi-Fi chip HLK-Rm04. The pin that would

act as the signal pin to the relay will be configured as the output pin. This denotes that the

pin would send a 5V signal/command to the relay switch. Here, pin number 27 is set as

the output pin, which would then signals the relay switch to either turn on or off. If the

pin has +5V, signaling the relay on. If the pin is 0V, the device turns off.

45

Moreover, as explained in program comments, the pin numbers 22, 24, 26 and 28 are also

set as output pins to control the power voltage regulator.

4.7 ‘loop’ method code

0. void loop()

1. {

2. if(Serial1.available()) {

3. int inByte = Serial1.read();

4. //Serial.write(inByte);

5. inData[index] = inByte; // Store it

6. index++; // Increment where to write next

7. inData[index] = '\0';

8. if(gotit==1)

9. {

10. index=0;

11. gotit=0;

12. }

13. if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' && in

14. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='1' 15. && inData[9]=='1' && inData[10]=='\0')

16. {

17. digitalWrite(switch, HIGH); // sets the Relay switch on

46

18. //Action performed. Now listen to new command

19. gotit=1;

20. index=0;

21. }

22. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 23. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' &&

inData[7]=='0' && in 24. Data[8]=='1' && inData[9]=='0' &&

inData[10]=='\0')//if(inData=="*130201010\n")

25. {

26. digitalWrite(switch, LOW); // sets the Relay switch off

27. // Action performed. Now listen to new command

28. gotit=1;

29. index=0;

30. }

31. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 32. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0'

&& in 33. Data[8]=='2' && inData[9]=='0' && inData[10]=='\0'

)//if(inData=="*130201020\n")

34. {

35. Serial2.write(0); // write to dimmer module via serial port

36. gotit=1;

37. index=0;

38. }

47

39. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 40. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0'

&& in 41. Data[8]=='2' && inData[9]=='1' && inData[10]=='\0'

)//if(inData=="*130201021\n")

42. {

43. Serial2.write(45); // write to dimmer module via serial port

44. gotit=1;

45. index=0;

46. }

47. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 48. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0'

&& in 49. Data[8]=='2' && inData[9]=='2' && inData[10]=='\0'

)//if(inData=="*130201022\n")

50. {

51. Serial2.write(90); // write to dimmer module via serial port

52. gotit=1;

53. index=0;

54. }

55. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 56. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' &&

inData[7]=='0' && in 57. Data[8]=='2' && inData[9]=='3' &&

inData[10]=='\0')//if(inData=="*130201023\n")

48

58. {

59. Serial2.write(135); // write to dimmer module via serial port

60. gotit=1;

61. index=0;

62. }

63. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 64. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' &&

inData[7]=='0' && in 65. Data[8]=='2' && inData[9]=='4' &&

inData[10]=='\0')//if(inData=="*130201024\n")

66. {

67. Serial2.write(180); // write to dimmer module via serial port

68. gotit=1;

69. index=0;

70. }

71. else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0'

&& in 72. Data[4]=='2' && inData[5]=='0' && inData[6]=='1' &&

inData[7]=='0' && in 73. Data[8]=='2' && inData[9]=='5' &&

inData[10]=='\0')//if(inData=="*130201025\n")

74. {

75. Serial2.write(255); // write to dimmer module via serial port

76. gotit=1;

77. index=0;

78. }

49

79. }

80. }

4.7.1 Explanation

As the name of the method suggests, the loop method runs continuously, executing the

code embraced in the parenthesis. As setup method, the loop method is required to run a

code in Arduino environment.

On line number 2, 3, and 4 the serial ports are initialized. There are total four serial ports

available on Arduino Mega 2560 board, and this project uses two of the ports. One to

communicate with HLK-Rm04 Wi-Fi module, which in turn receives its data from the

Android device via WLAN. The second serial port with number 2 is to send commands to

the voltage regulator or dimmer module.

Thus, in loop method, the serial port 1 receives the commands from the Wi-Fi chip

connected. The method then checks the command. Only, when specific commands are

received, the right pin will provide +5V.

50

4.7.2 Flowchart

Figure 4.7 – loop method flowchart

51

Figure 4.8 – loop method flowchart continued. . .

52

CHAPTER V

IVA’S SOFTWARE AND INTELLIGENCE

5.1 User Interface

IVA has a very generic user-interface designed in XML. There are two toggle buttons to

turn on/off devices, mainly a lamp or a coffee machine. There is another button that

activates the voice listening capability of IVA through the Android device’s microphone.

This button is placed at the bottom of the screen. There is a slider control, or track bar

control in C#. Android calls it as ‘seek bar’. The Android seek bar controls the voltage

regulation of the regulator connected to Control Box.

All the Android graphical components and user interfaces are designed in XML. The

implementation of the UI components and the tasks they perform are handled by Java code.

Android does not use traditional Java Swings code to handle the controls. Android provides

its own mechanisms, methods, listeners, and events for interaction with graphical

components. A screen in Android is called an ‘activity’. The activity has to have a graphical

XML file linked to it to display the screen to the user. The activity screen has to have a

base container called a ‘layout’. A layout in Android can contain many components and

can arrange it as per the user needs. A layout can also contain other child layouts as

components.

53

5.1.1 XML code

activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/RelativeLayout1"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

 <ToggleButton

 android:id="@+id/toggleButton1"

 android:layout_width="102dp"

 android:layout_height="110dp"

 android:background="@drawable/light_off"

 android:text="LIGHTS(OFF)"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:textColor="#ff232323"

 android:longClickable="false"

 android:layout_alignParentTop="true" />

<ToggleButton

 android:id="@+id/toggleButton2"

54

 android:layout_width="140dp"

 android:layout_height="110dp"

 android:background="@drawable/light_off"

 android:text="COFFEE"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:textColor="#ff232323"

 android:longClickable="false"

 android:layout_alignParentTop="true" />

<TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:text="@string/voice_box"

 android:textColor="#ffff2c25" />

 <Button

 android:id="@+id/button1"

 android:layout_width="48dp"

55

 android:layout_height="48dp"

 android:background="@drawable/mic"

 android:layout_above="@+id/textView1"

 android:layout_centerHorizontal="true" />

 <SeekBar

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/regulator1"

 android:layout_marginTop="36dp"

 android:layout_below="@+id/toggleButton1"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:max="5"

 android:layout_toStartOf="@+id/textView"

 style="@style/AppBaseTheme" />

</RelativeLayout>

5.1.2 Explaination

As shown in the code above, there are two buttons. One button is for switching device. The

other button is used to start the speech into text Intent recognition related methods. When

the speech button is clicked, it takes the voice as input and outputs the text in the textview.

56

There is also a “seekbar” which can be changed to send commands to control voltage on

the hardware side.

Figure 5.1 – screenshot of IVA’s user interface

5.2 Toggle Button

A toggle button in Android has two states. One, clicked is ‘true’ state. Another, clicked is

the ‘false’ state. A click event is fired, when the button is pressed. The code then checks the

current state of the toggle button, and send a particular string command on the network.

57

Figure 5.2 – Flowchart for toggle button (light) event listener

5.3 Activating microphone for voice commands

There is a button with an image of a microphone at the bottom of the screen. When the

button is pressed, IVA immediately gets into the listening mode. The user is prompted with

a Google Voice command dialog box.

User Presses on/off Togglebutton

Open TCP/IP connection to server with
dedicated IP address

Is connected
to server?

yes

Send command code to

control hub through

TCP/IP

Close Server Port connection

no

58

Figure 5.3 – Screenshot of voice dialog box for speech-to-text

After the above screen is shown, the user can start speaking in natural language normal

pitch voice. The system then converts the voice to text using powerful cloud servers

dedicated to speech to text conversion. We will see the details of speech to text conversion

further in the chapter.

Once the app receives the response in text format from the Google voice to text processing

servers, the text is displayed in a text view on Android screen. An example of this can be

seen in Figure 5.4.

59

Figure 5.4 – Screenshot of response from speech to text

Once IVA has the text format, it tries to find the hot words. Hot words are the relevant

words already stored in its memory as database. Thus, the database of hot words can be

downloaded or added to make IVA understand what to do. Once IVA has filtered the hot

words, it tries very basic approach of considering negation, approval like yes/no, etc.

Then IVA generates an appropriate response command to be sent to the hardware side via

a Wi-Fi TCP/IP connection.

60

Words Translated

Command

Room No Device No Action

Lights on,

light on, lamp

on, too dark

*123401011# 01 01 Lamp/Light On

Lights off,

light off, lamp

off, too light

*123401010# 01 01 Lamp/Light Off

Change,

regulate, turn

down, speed,

fan, intensity,

one, two,

three, four,

five

*12340102(X)#

Here X can be

{0,1,2,3,4,5}

01 01 Increase/Reduce

speed (voltage)

of the regulator

device.

Table 5.1 – Hot words

Table 5.1 shows the list of hot words IVA uses to filter out and understand the user

requirements. The words are not static to app, they can be added in a database and IVA

can read create a filter as per the app. This gives user personal preferences and freedom to

use vocabulary of their liking. Any number of hot words can be added to increase the

efficiency, and filter of the app.

61

5.4 How speech to text conversion works

The most essential piece of IVA’s software is to interpret natural language from the user.

It uses Android’s speech to text APIs provided by Google to convert spoken words to text

format.

The app uses microphones in Android device to record the speech into an audio file. The

file is then sent to Google speech to text servers. The servers process the audio file to

generate a textual response to the Android device via Internet. Thus, IVA needs Internet if

to connect with the Google servers to send the audio file it captured via microphone.

5.4.1 Speech-to-text Processing

The process of converting speech to text is bit more complicated than just comparing voice

inputs with saved templates. Once the audio is sent to the dedicated Google cloud servers,

it then converts it from Analog to Digital format. To do this, the server takes small samples,

or digitizes, the sound by taking precise measurements of the wave at frequent intervals.

Then, the system filters these sampled sound to remove unwanted noise, and sometimes

separate it into different bands of frequency (frequency is the wavelength of the sound

waves, heard by humans as differences in pitch). It is also used to adjust volume changes,

as people don't always speak at the same speed and volume. Thus, the sound must be

adjusted to match the speed of the template sound samples already stored in the system's

memory.

Next, the signal is divided into small segments as short as a few hundredths of a second, or

62

even thousandths in the case of consonant sounds -- consonant stops produced by

obstructing airflow in the vocal tract -- like "p" or "t." The program then matches these

segments to known phonemes in the appropriate language. A phoneme is the smallest

element of a language -- a representation of the sounds we make and put together to form

meaningful expressions. As per experts, there are roughly 40 phonemes in the English

language, although different linguists have different opinions on the exact number.

Next step is the actual ongoing research to make super powerful processing computers

analyze the spoken words to accurate text. There are various ways to make this happen.

Different statistical analysis models are used to predict the words by searching for

appropriate patterns in the fed data. Learning to find the pattern even for different accents

and dialects is done by machine learning algorithms such as regressions, data analysis and

many others. More information can be found in many research papers on the topic.

The server then finds for appropriate sounding words with phonetics in the database to

replace the spoken input with output as text.

A brief overview of the above explanation can be visualized in the Figure 5.5 below.

63

Figure 5.5 - Overview of Speech-to Text processing and its visualization

(Source: howstuffworks.com) [17]

5.5 Socket connection and communication code

void connectAndSend(String cmd){

try {

 InetAddress serverAddr = InetAddress.getByName(SERVER_IP);

64

 socket = new Socket(serverAddr, SERVERPORT); // EstablishingConnection

 String str = HomeId+cmd; // Command example (01011)

 // append command to home ID Room(01) – Device (01) Action(1)

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

 out.println(str); // Sending actual data

 socket.close(); // Close open connection

 } catch (UnknownHostException e1) {

 e1.printStackTrace();

 } catch (IOException e1) {

 e1.printStackTrace();

 }

} // End method connectAndSend()

This code shows the connection to the server. The SERVER_IP is a string. The IP address

is a specific Control Box WLAN network address already programmed in the app. Once

the connection is established, an output stream channel is used to pass the information on

the network.

5.6 Filtering hot words code

void filterHotWords(String line) {

 //Filter using if() statement

65

 if (line.toLowerCase().contains("lamp") || line.toLowerCase().contains("light") ||

line.toLowerCase().contains("bulb") || line.toLowerCase().contains("lights") ||

(line.toLowerCase().contains("dark"))) { // AND (&&)

 if (line.toLowerCase().contains("so") || line.toLowerCase().contains("too") ||

line.toLowerCase().contains("on") && !line.toLowerCase().contains("not")) {

 {

 connectAndSend ("01011"); //Send command to witch on Lights

 }

 } //End method

In this code, a small example of how IVA filter’s hot words from user spoken command.

This filter, HotWords method is named after the Google speech to text server responds with

converts voice commands to text format. This text is then passed to filter the important/hot

words to understand what user wants. If specific words are found in a set required manner,

the connectAndSend method is called.

66

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The aim of this thesis was to study, assume, estimate and reverse engineer existing systems

in order to design and develop our own home automation system. This goal was successful

as IVA’s design was heavily influenced by the studied home automation architectures.

The network architecture resembles close to that of Belkin’s Wemo switch, whereas the

voice commands and natural language processing is influenced by the Amazon’s Echo

design. A device in a room idea was inculcated in IVA’s architecture by understanding how

Nest thermostat works. Thus, the working prototype architecture of Intelligent Voice

Activated Home Automation (IVA) was developed and tested based on combination of

number of home automation systems designed and developed by few of the top innovating

software and hardware companies like Google, Amazon, Apple, and Belkin.

6.2 Future Work

The future scope for IVA can be huge. There are few ideas that we are discussing to make

IVA more powerful, intelligent, scalable, and to become better overall for home

automation.

67

6.2.1 Improving voice capturing

The Android device’s microphone can be replaced with a sensitive high noise cancelling

dedicated to microphones located in each room of the house. Then, the microphones can

be connected to an Android device via a Bluetooth radio, or a Wi-Fi connection. This would

eliminate the need for user to have the Android devices close to them, while giving voice

commands.

6.2.2 Scalability for adding new devices

As the Arduino platform is highly flexible and can connect to most of the hardware, which

is compatible with a microcontroller, attaching or developing more devices working with

IVA’s system would not be a problem. The type and number of devices that can be

compatible with IVA is huge. For example, biometric ability can be provided by attaching

a fingerprint sensor to a Control Box. Another example can be adding motorized devices

like window blinds controller, garage shutter door controller, and many more devices.

Devices can be developed with a general Arduino architecture in mind to make it work

with IVA.

As all the low level controls are handled by the Control Box hardware, adding a device

connection and command for IVA’s app is not at all a problem. The scalability with IVA

can only be the limit as much as limitation of developer’s imagination.

68

6.2.3 Improving IVA’s intelligence

Currently, we are using very basic level of code to filter hot words that IVA understands

and perform certain, limited tasks as per the voice commands.

IVA can become more close to artificial learning and interaction based on machine learning

algorithm. As machine learning is current most advance topic. It provides computer with

pattern filtering ability, which can further be used to perform tasks in specific domain. The

Information Technology industry is booming with research in the subject of machine

learning. We can also see new technologies using it to simulate limited intelligence such as

self-driving cars, digital assistants, cancer detecting medical devices, and many more.

We can use similar approaches to make IVA a step closer to being intelligent.

69

REFERENCES

[1] AVC: How Big is Tablet Market: http://avc.com/2014/04/how-big-is-the-tablet-

market/

[2] Home Automation history: http://en.wikipedia.org/wiki/Home_automation#History

[3] Nest Thermostat: https://nest.com/thermostat/meet-nest-thermostat

[4] Pew Research center: http://www.pewInternet.org/2014/04/03/older-adults-and-

technology-use/

[5] Business College at University of Alabama:

http://businessdegrees.uab.edu/resources/infographics/the-future-of-mobile-application/

[6] Westinghouse Electric: http://en.wikipedia.org/wiki/Westinghouse_Electric_Company

[7] Link-Labs: http://www.link-labs.com/zigbee-vs-wifi-802-11ah/

[8] Axial Exchange on Older Americans use of smartphones:

http://axialexchange.com/blog/article/sanity-check-do-older-americans-use-smartphones

[9] Techcrunch article on smartphone market in developing markets:

http://techcrunch.com/2012/05/27/mobile-developing-world/

[10] Telegraph article on smartphone usage and future in developing countries:

http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/1112699

7/Emerging-markets-will-lead-smartphone-growth-next-year.html

[11] Telecomengine: http://www.telecomengine.com/article/future-IoT-connectivity

[12] Arduino Wiki: https://arduino-info.wikispaces.com/MegaQuickRef

[13] Arduino - Home: www.arduino.cc

[14] HiLink Co, Ltd HLK-RM04 chip:

http://avc.com/2014/04/how-big-is-the-tablet-market/
http://avc.com/2014/04/how-big-is-the-tablet-market/
http://en.wikipedia.org/wiki/Home_automation#History
http://businessdegrees.uab.edu/resources/infographics/the-future-of-mobile-application/
http://axialexchange.com/blog/article/sanity-check-do-older-americans-use-smartphones
http://techcrunch.com/2012/05/27/mobile-developing-world/
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/11126997/Emerging-markets-will-lead-smartphone-growth-next-year.html
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/11126997/Emerging-markets-will-lead-smartphone-growth-next-year.html
http://www.telecomengine.com/article/future-iot-connectivity
https://arduino-info.wikispaces.com/MegaQuickRef
http://www.arduino.cc/

70

http://www.hlktech.net/product_detail.php?ProId=39

[15] Google buys Nest news: http://www.independent.co.uk/life-style/gadgets-and-

tech/google-buys-nest-what-does-this-mean- for-home-automation-the-internet-of-

things-and-apple-9058217.html

[16] Android Developers: http://developer.android.com/index.html

[17] Programming questions and support: http://stackoverflow.com/

[18] Arduino and Android through Wi-Fi:

http://electronics.stackexchange.com/questions/56633/simplest-way-to-connect-anrduino

-to-android-wirelessly

[19] ABI Research on home automation future: https://www.abiresearch.com/press/15-

million-home-automation-systems-installed-in-th

[20] Speech Recognition by HowStuffWorks:

http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/speech-recognition1.htm

[21] Business Insider smartphone vs PC: http://www.businessinsider.com/smartphone-

bigger-than-pc-market-2011-2

[22] Forbes: Mobile Is Eating the World:

http://www.forbes.com/sites/louiscolumbus/2014/11/09/mobile-is-eating-the-world/

[23] Gigaom.com: https://gigaom.com/2014/10/03/belkin-looks-at-the-smart-home-and-

doesnt-see-a-place-for-hubs/

[24] wikispace Arduino pinouts: https://arduino-info.wikispaces.com/MegaQuickRef

[25] ZigBee as Communication Platform for smart house applications: International

Journal of Engineering - ISSN: 1584–2673

http://www.hlktech.net/product_detail.php?ProId=39
http://www.independent.co.uk/life-style/gadgets-and-tech/google-buys-nest-what-does-this-mean-for-home-automation-the-internet-of-things-and-apple-9058217.html
http://www.independent.co.uk/life-style/gadgets-and-tech/google-buys-nest-what-does-this-mean-for-home-automation-the-internet-of-things-and-apple-9058217.html
http://www.independent.co.uk/life-style/gadgets-and-tech/google-buys-nest-what-does-this-mean-for-home-automation-the-internet-of-things-and-apple-9058217.html
http://developer.android.com/index.html
http://stackoverflow.com/
http://electronics.stackexchange.com/questions/56633/simplest-way-to-connect-anrduino-to-android-wirelessly
http://electronics.stackexchange.com/questions/56633/simplest-way-to-connect-anrduino-to-android-wirelessly
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th
http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/speech-recognition1.htm
http://www.businessinsider.com/smartphone-bigger-than-pc-market-2011-2
http://www.businessinsider.com/smartphone-bigger-than-pc-market-2011-2
http://www.forbes.com/sites/louiscolumbus/2014/11/09/mobile-is-eating-the-world/
https://gigaom.com/2014/10/03/belkin-looks-at-the-smart-home-and-doesnt-see-a-place-for-hubs/
https://gigaom.com/2014/10/03/belkin-looks-at-the-smart-home-and-doesnt-see-a-place-for-hubs/
https://arduino-info.wikispaces.com/MegaQuickRef

71

APPENDICES

Appendix A

Arduino program:

void setup() {

int switch=27, index=0;

Serial1.begin(9600);

Serial2.begin(9600);

pinMode(ledPin, OUTPUT); // sets the digital pin as output for switching

// Pins 22, 24, 26 and 28 act as the controlling speed (regulating) the AC power voltage //

regulation

 pinMode(22, OUTPUT);

pinMode(24, OUTPUT);

pinMode(26, OUTPUT);

pinMode(28, OUTPUT);

}

void loop(){

if(Serial1.available()) {

 int inByte = Serial1.read();

 //Serial.write(inByte);

 inData[index] = inByte; // Store it

 index++; // Increment where to write next

 inData[index] = '\0';

 if(gotit==1)

 {

 index=0;

 gotit=0;

 }

72

 if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' && in

Data[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='1' 15. && inData[9]=='1' && inData[10]=='\0')

 {

 digitalWrite(switch, HIGH); // sets the Relay switch on

 //Action performed. Now listen to new command

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' && in

Data[8]=='1' && inData[9]=='0' && inData[10]=='\0')//if(inData=="*130201010\n")

 {

 digitalWrite(switch, LOW); // sets the Relay switch off

 // Action performed. Now listen to new command

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' && in

Data[8]=='2' && inData[9]=='0' && inData[10]=='\0')//if(inData=="*130201020\n")

 {

 Serial2.write(0); // write to dimmer module via serial port

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='2' && inData[9]=='1' && inData[10]=='\0')//if(inData=="*130201021\n")

 {

 Serial2.write(45); // write to dimmer module via serial port

73

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='2' && inData[9]=='2' && inData[10]=='\0')//if(inData=="*130201022\n")

 {

 Serial2.write(90); // write to dimmer module via serial port

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='2' && inData[9]=='3' && inData[10]=='\0')//if(inData=="*130201023\n")

 {

 Serial2.write(135); // write to dimmer module via serial port

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='2' && inData[9]=='4' && inData[10]=='\0')//if(inData=="*130201024\n")

 {

 Serial2.write(180); // write to dimmer module via serial port

 gotit=1;

 index=0;

 }

 else if(inData[0]=='*' && inData[1]=='1' && inData[2]=='3' && inData[3]=='0' &&

inData[4]=='2' && inData[5]=='0' && inData[6]=='1' && inData[7]=='0' &&

inData[8]=='2' && inData[9]=='5' && inData[10]=='\0')//if(inData=="*130201025\n")

74

 {

 Serial2.write(255); // write to dimmer module via serial port

 gotit=1;

 index=0;

 }

 }

 }

Appendix B

B.1 Android XML User Interface code

activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/RelativeLayout1"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

 <ToggleButton

 android:id="@+id/toggleButton1"

 android:layout_width="102dp"

 android:layout_height="110dp"

 android:background="@drawable/light_off"

 android:text="LIGHTS(OFF)"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:textColor="#ff232323"

75

 android:longClickable="false"

 android:layout_alignParentTop="true" />

<ToggleButton

 android:id="@+id/toggleButton2"

 android:layout_width="140dp"

 android:layout_height="110dp"

 android:background="@drawable/light_off"

 android:text="COFFEE"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:textColor="#ff232323"

 android:longClickable="false"

 android:layout_alignParentTop="true" />

<TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_alignParentRight="true"

 android:text="@string/voice_box"

 android:textColor="#ffff2c25" />

 <Button

 android:id="@+id/button1"

 android:layout_width="48dp"

 android:layout_height="48dp"

 android:background="@drawable/mic"

 android:layout_above="@+id/textView1"

76

 android:layout_centerHorizontal="true" />

 <SeekBar

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/regulator1"

 android:layout_marginTop="36dp"

 android:layout_below="@+id/toggleButton1"

 android:layout_alignParentLeft="true"

 android:layout_alignParentStart="true"

 android:max="5"

 android:layout_toStartOf="@+id/textView"

 style="@style/AppBaseTheme" />

</RelativeLayout>

B.2 Android Java (processing) code

MainActivity.java

package com.example.androidsocketclient;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

import android.graphics.drawable.Drawable;

import android.os.Bundle;

import android.speech.RecognizerIntent;

import android.speech.tts.TextToSpeech;

import android.util.Log;

import android.view.Menu;

import android.view.MenuInflater;

77

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.SeekBar;

import android.widget.TextView;

import android.widget.Toast;

import android.widget.ToggleButton;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.InetAddress;

import java.net.Socket;

import java.net.UnknownHostException;

import java.util.ArrayList;

import java.util.Locale;

import android.os.Handler;

public class MainActivity extends Activity {

 protected static final int RESULT_SPEECH = 1;

 private static final int SERVERPORT = 8080;

 String SERVER_IP="10.0.0.14";

 String HomeId="*1302";

 public ToggleButton lamp1;

 public Button mic, button2;

 public TextView voiceCommandBox, regulatorStatusLabel;

 public EditText edText1;

 public SeekBar regulator1;

 public TextToSpeech tts;

 String regulatorProgress="0";

 Thread t;

 Drawable lamp1_on_image, lamp1_off_image;

 private Socket socket;

78

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 SharedPreferences

shrPreferences=getApplicationContext().getSharedPreferences("UISettings",

Context.MODE_PRIVATE);

 SERVER_IP=shrPreferences.getString("IP_Address","");

 regulator1= (SeekBar) findViewById(R.id.regulator1);

 regulatorStatusLabel =(TextView) findViewById(R.id.textView);

 voiceCommandBox = (TextView) findViewById(R.id.textView1);

 mic = (Button) findViewById(R.id.button1);

 lamp1_on_image = getResources().getDrawable(R.drawable.light_on);

 lamp1_off_image = getResources().getDrawable(R.drawable.light_off);

 lamp1 = (ToggleButton) findViewById(R.id.toggleButton1);

 addClickListener_toggleButton();

 addClickListener_micButton();

 ConvertTextToSpeech("Hello there, I am IVA, smart home.");

 t = new Thread(new ClientThread());

 t.start();

 regulator1.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener()

{

 @Override

 public void onProgressChanged(SeekBar seekBar, int progresValue, boolean b) {

 regulatorProgress = String.valueOf(progresValue);

 try {

 regulatorStatusLabel.setText(regulatorProgress);

 String command = HomeId + "0102" + regulatorProgress;

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

 out.println(command);

 }

 catch (Exception e) {

79

 Toast.makeText(getApplicationContext(),"There is some problem connecting

to the device. Please check your connection",Toast.LENGTH_SHORT).show();

 e.printStackTrace();

 e.printStackTrace();

 }

 }

 @Override

 public void onStartTrackingTouch(SeekBar seekBar) {

 }

 @Override

 public void onStopTrackingTouch(SeekBar seekBar) {

 }

 });

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.main, menu);

 return true;

 }

 @Override

 protected void onPause() {

 if(tts != null){

 tts.stop();

 tts.shutdown();

 }

 super.onPause();

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

80

 switch (item.getItemId()) {

 case R.id.action_settings:

 Intent refreshIntnt = new Intent(getApplicationContext(),

 Settings.class);

 startActivity(refreshIntnt);

 break;

 /*case R.id.action_refresh:

 Intent refreshIntnt = new Intent(getApplicationContext(),

 ThirdActivity.class);

 startActivity(refreshIntnt);

 break;*/

 default:

 break;

 }

 return super.onOptionsItemSelected(item);

 }

 public void addClickListener_micButton() {

 mic.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent intent = new Intent(

 RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL, "en-US");

 try {

 startActivityForResult(intent, RESULT_SPEECH);

 voiceCommandBox.setText("");

 } catch (ActivityNotFoundException a) {

 Toast t = Toast.makeText(getApplicationContext(),

 "Ops! Your device doesn't support Speech to Text",

 Toast.LENGTH_SHORT);

 t.show();

 }

 }

81

 });

 }

 @Override

 protected void onDestroy() {

 if(tts != null){

 tts.stop();

 tts.shutdown();

 }

 super.onDestroy();

 }

 @Override

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 // TODO Auto-generated method stub

 super.onActivityResult(requestCode, resultCode, data);

 switch (requestCode) {

 case RESULT_SPEECH: {

 if (resultCode == RESULT_OK && null != data) {

 ArrayList<String> text = data

 .getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);

 voiceCommandBox.setText(text.get(0));

 filter(text.get(0).toString());

 }

 break;

 }

 }

 }

 private void ConvertTextToSpeech(final String text) {

 // TODO Auto-generated method stub

 /* if(text!=null||"".equals(text))

 {

82

 tts.speak(text, TextToSpeech.QUEUE_FLUSH, null);

 }*/

 tts=new TextToSpeech(MainActivity.this, new TextToSpeech.OnInitListener() {

 @Override

 public void onInit(int status) {

 // TODO Auto-generated method stub

 if(status == TextToSpeech.SUCCESS){

 int result=tts.setLanguage(Locale.US);

 if(result==TextToSpeech.LANG_MISSING_DATA ||

 result==TextToSpeech.LANG_NOT_SUPPORTED){

 Log.e("error", "This Language is not supported");

 }

 else{

 //String text="hello there! I am Iva";

 //ConvertTextToSpeech("hello there! I am Iva");

 if(text!=null||"".equals(text))

 {

 tts.speak(text, TextToSpeech.QUEUE_FLUSH, null);

 }

 }

 }

 else

 Log.e("error", "Initilization Failed!");

 }

 });

 }

 void filter(String line) {

 String sentence =line.toLowerCase();

 if(sentence.contains("dim") || sentence.contains("reduce") ||

sentence.contains("dimmer") || sentence.contains("less") || sentence.contains("decrease")

|| sentence.contains("regulate")|| sentence.contains("regulator"))

 {

83

 if(sentence.contains("fan") || sentence.contains("light") ||

sentence.contains("lights") || sentence.contains("lamp") || sentence.contains("intensity"))

 {

 int regProgress=Integer.parseInt(regulatorProgress);

 if(regProgress>0)

 regulator1.setProgress(regProgress-1);

 Toast to = Toast.makeText(getApplicationContext(),

 "Regulator reduced!!!",

 Toast.LENGTH_SHORT);

 }

 }

 else if(sentence.contains("increase") || sentence.contains("brighter") ||

sentence.contains("more") || sentence.contains("bright"))

 {

 if(sentence.contains("fan") || sentence.contains("light") ||

sentence.contains("lights") || sentence.contains("lamp") || sentence.contains("intensity"))

 {

 int regProgress=Integer.parseInt(regulatorProgress);

 if(regProgress<5)

 regulator1.setProgress(regProgress+1);

 Toast to = Toast.makeText(getApplicationContext(),

 "Regulator Increased!!!",

 Toast.LENGTH_SHORT);

 }

 }

 else if(sentence.contains("brew") ||sentence.contains("caffeine") ||

sentence.contains("coffee") || sentence.contains("brewing") ||

sentence.contains("brewed"))

 {

 if(!sentence.contains("not"))

 ConvertTextToSpeech("oh. . . something is wrong here, cannot find a coffee

machine attached to the network.");

 else {

 ConvertTextToSpeech("Okay, I will not start brewing the coffee. Ohh! and by

the way, I cannot find a coffee machine attached to my network.");

 }

 }

 else if (sentence.contains("lamp") || sentence.contains("light") ||

84

sentence.contains("bulb") || sentence.contains("lights") || (sentence.contains("dark"))) {

 if (sentence.contains("so") || sentence.contains("too") || sentence.contains("on")

&& !sentence.contains("not")) {

 boolean networkProblem=false;

 try {

 t = new Thread(new ClientThread());

 t.start();

 String str = HomeId+"01011";

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

 out.println(str);

 socket.close();

 lamp1.setChecked(true);

 lamp1.setBackground(lamp1_on_image);

 ConvertTextToSpeech("The light is now on.");

 if(!networkProblem) {

 ConvertTextToSpeech("The light is now on.");

 Toast to = Toast.makeText(getApplicationContext(),

 "Light on!!!",

 Toast.LENGTH_SHORT);

 to.show();

 }

 }catch (Exception e) {

 networkProblem=true;

 ConvertTextToSpeech("There seems to be some problem connecting with the

network.");

 e.printStackTrace();

 }

 } else if ((sentence.contains("off") || sentence.contains("out") ||

 sentence.contains("no") || (sentence.contains("dont") &&

sentence.contains("need"))||

 (sentence.contains("no") && sentence.contains("need"))))

//&& !sentence.contains("not"))

 {

 try {

 t = new Thread(new ClientThread());

 t.start();

85

 String str = HomeId+"01010";

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

 out.println(str);

 socket.close();

 ConvertTextToSpeech("There you go. The light is off.");

 Toast to = Toast.makeText(getApplicationContext(),

 "Light off!!!",

 Toast.LENGTH_SHORT);

 to.show();

 lamp1.setChecked(false);

 lamp1.setBackground(lamp1_off_image);

 } catch (Exception e) {

 ConvertTextToSpeech("Cannot connect with the network. Check your LAN

connection.");

 e.printStackTrace();

 }

 }

 }

 }

 public void addClickListener_toggleButton() {

 lamp1.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 // TODO Auto-generated method stub

 if (lamp1.isChecked()) {

 try {

 t = new Thread(new ClientThread());

 t.start();

 String str = HomeId+"01011";

// Thread readThread=new Thread(new ReadFromServerThread(socket));

// readThread.start();

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

86

 out.println(str);

 //

Toast.makeText(getApplicationContext(),SERVER_IP,Toast.LENGTH_SHORT).show();

 socket.close();

 lamp1.setBackgroundDrawable(lamp1_on_image);

 }catch (Exception e) {

 lamp1.setChecked(false);

 lamp1.setBackground(lamp1_off_image);

 Toast.makeText(getApplicationContext(),"There is some problem

connecting to the device. Please check your

connection",Toast.LENGTH_SHORT).show();

 e.printStackTrace();

 }

 } else {

 try {

 t = new Thread(new ClientThread());

 t.start();

 String str = HomeId+"01010";

// Thread readThread=new Thread(new ReadFromServerThread(socket));

// readThread.start();

 PrintWriter out = new PrintWriter(new BufferedWriter(

 new OutputStreamWriter(socket.getOutputStream())),

 true);

 out.println(str);

 //

Toast.makeText(getApplicationContext(),SERVER_IP,Toast.LENGTH_SHORT).show();

 socket.close();

 } catch (Exception e) {

 lamp1.setChecked(false);

 lamp1.setBackground(lamp1_off_image);

 Toast.makeText(getApplicationContext(),"There is some problem

connecting to the device. Please check your

connection",Toast.LENGTH_SHORT).show();

 e.printStackTrace();

 }

 lamp1.setBackground(lamp1_off_image);

 }

 }

 });

87

 }

 class ClientThread implements Runnable {

 @Override

 public void run() {

 try {

 InetAddress serverAddr = InetAddress.getByName(SERVER_IP);

 socket = new Socket(serverAddr, SERVERPORT);

 } catch (UnknownHostException e1) {

 e1.printStackTrace();

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 }

 }

 class ReadFromServerThread implements Runnable {

 private Socket clientSocket;

 private BufferedReader input;

 public ReadFromServerThread(Socket clientSocket) {

 this.clientSocket = clientSocket;

 try {

 this.input = new BufferedReader(new

InputStreamReader(this.clientSocket.getInputStream()));

 } catch (IOException e) {

 e.printStackTrace();

 }

88

 }

 public void run() {

 while (!Thread.currentThread().isInterrupted()) {

 try {

 String read = input.readLine();

 // updateConversationHandler.post(new updateUIThread(read));

 Toast to = Toast.makeText(getApplicationContext(),

 read,

 Toast.LENGTH_SHORT);

 to.show();

 clientSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 }

}

TCPClient.java

package com.example.androidsocketclient;

/**

 * Created by Mrunal

 */

import android.util.Log;

import java.io.BufferedReader;

import java.io.BufferedWriter;

89

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.InetAddress;

import java.net.Socket;

public class TCPClient {

 private String serverMessage;

 public String SERVERIP = "10.0.0.11"; //your computer IP address

 public int SERVERPORT = 8080;

 private OnMessageReceived mMessageListener = null;

 public boolean mRun = false;

 PrintWriter out;

 BufferedReader in;

 /**

 * Constructor of the class. OnMessagedReceived listens for the messages received

from server

 */

 public TCPClient(OnMessageReceived listener, String ip, int port) {

 mMessageListener = listener;

 mRun=false;

 if(ip!=null && !ip.equals(""))

 {

 SERVERIP=ip;

 }

 if(port!=0)

 {

 SERVERPORT=port;

 }

 }

 /**

 * Sends the message entered by client to the server

 * @param message text entered by client

 */

90

 public void sendMessage(String message){

 Log.e("Client: Data->", message);

 if (out != null && !out.checkError()) {

 out.println(message);

 out.flush();

 }

 }

 public void stopClient(){

 mRun = false;

 }

 public void run() {

 mRun = true;

 try {

 //here you must put your computer's IP address.

 InetAddress serverAddr = InetAddress.getByName(SERVERIP);

 Log.e("TCP Client", "C: Connecting...");

 //create a socket to make the connection with the server

 Socket socket = new Socket(serverAddr, SERVERPORT);

 try {

 //send the message to the server

 out = new PrintWriter(new BufferedWriter(new

OutputStreamWriter(socket.getOutputStream())), true);

 Log.e("TCP Client", "C: Sent");

 Log.e("TCP Client", "C: Done.");

 //receive the message which the server sends back

 in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

 //in this while the client listens for the messages sent by the server

 while (mRun) {

91

 serverMessage = in.readLine();

 if (serverMessage != null && mMessageListener != null) {

 //call the method messageReceived from MyActivity class

 mMessageListener.messageReceived(serverMessage);

 Log.e("RESPONSE FROM SERVER", "S: Received Message: '" +

serverMessage + "'");

 }

 serverMessage = null;

 }

 } catch (Exception e) {

 Log.e("TCP", "S: Error", e);

 } finally {

 //the socket must be closed. It is not possible to reconnect to this socket

 // after it is closed, which means a new socket instance has to be created.

 socket.close();

 }

 } catch (Exception e) {

 Log.e("TCP", "C: Error", e);

 }

 }

 //Declare the interface. The method messageReceived(String message) will must be

implemented in the MyActivity

 //class at on asynckTask doInBackground

 public interface OnMessageReceived {

 public void messageReceived(String message);

 }

}

	Intelligent Voice Activated Home Automation (IVA)
	Recommended Citation

	tmp.1464272488.pdf.g462Q

