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DECITABINE-LOADED NANOGEL TREATMENT 

TO REVERSE CANCER DRUG RESISTANCE 

SAMANTHA A. CRAMER 

ABSTRACT 

Cancers in which epigenetic changes, such as hypermethylation of DNA, lead to 

drug resistance cause the cancer to become unresponsive to existing chemotherapeutic 

treatments. The epigenetic drug – 5-aza-2’-deoxycytidine (decitabine, DAC) – is a potent 

hypomethylating agent, but its effect is transient due to its instability. Previous studies 

have shown that loading DAC into nanogel significantly enhances its antiproliferative 

effect (compared to DAC in solution) in drug-resistant breast cancer cells (MCF-7/ADR). 

Further, the previous studies demonstrated changes in the membrane lipid profile of 

resistant cells following treatment with DAC either as solution or in nanogels. The 

objective of the present study was to compare the stability of DAC as solution and DAC 

encapsulated in nanogel, determine the effect of duration of DAC and DAC-nanogel 

pretreatment on the antiproliferative activity of subsequent chemotherapeutic agent 

addition, and to visualize and quantify the effect of DAC and DAC-nanogel pretreatment 

on uptake of poly dl-lactide co-glycolide (PLGA)-based nanoparticle in MCF-7/ADR 

cells. An increase in the stability of DAC when encapsulated in nanogel could be a 

mechanism contributing to the sustained effect of DAC. DAC-nanogel’s sustained effect 

and its effectiveness at altering the membrane lipid profile to reduce resistance could 

cause a longer DAC-nanogel pretreatment time to increase the antiproliferative effect of 

subsequent chemotherapeutic agent addition. Additionally, the membrane lipid profile 

altering effects of DAC and DAC-nanogel could cause DAC and DAC-nanogel 
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pretreatment to increase uptake of nanoparticles in MCF-7/ADR cells. The stability of 

DAC was assessed in mouse plasma at physiological conditions using mass spectrometry. 

DAC in solution was found to be less stable than DAC in nanogel. The effect of durations 

of 3-days and 5-days of DAC-nanogel treatments on the subsequent efficacy of 

chemotherapeutic agent, paclitaxel was assessed in MCF-7/ADR cells using a MTS 

assay.  The DAC-nanogel had a greater effect with a longer duration of pretreatment time 

as determined by the dose-response curve, IC50, and IC70. The effect of DAC or DAC-

nanogel pretreatment of a 3-day duration on subsequent uptake of nanoparticles was 

visualized with confocal microscopy and the differences in uptake were quantified. 

Increase in uptake of nanoparticles was seen in both DAC and DAC-nanogel with DAC 

alone having a greater effect. Overall, this study shows that increased DAC stability is a 

contributing factor to the increased efficacy and sustained effect of DAC-nanogel, the 

effect of DAC-nanogel on subsequent anticancer drug antiproliferative activity is 

significantly increased with a longer duration of pretreatment, and DAC and DAC-

nanogel pretreatment cause a greater uptake of subsequent nanoparticle addition than in 

cells without any pretreatment. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

Once cancer acquires drug resistance, it is difficult to treat with existing 

chemotherapeutics (Solyanik 2010). There are certain changes that cause cancer cells to 

become drug-resistant and exhibit characteristics that do not appear in drug-sensitive 

cancer cells. One of these characteristics is reduced drug transport into resistant cells due 

to changes in the membrane lipid composition leading to greater membrane rigidity than 

that of sensitive cell membrane (Peetla et al. 2010). Another characteristic is that drugs 

that are transported across the membrane are then trapped in endosomal vesicles so that 

they are not available for interaction with intracellular targets, or they are trapped in the 

membrane but then effluxed out from the cell via permeability glycoprotein (P-gp) which 

is over-expressed in resistant cells. These events, increased rigidity of the cell membrane, 

endosomal entrapment, and increased efflux by P-gp lead to impaired drug transport or 

endocytosis that affects nanocarrier-mediated drug delivery and cause chemotherapeutic 

agents to be less effective (Gottesman 2002; Peetla et al. 2013).  
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The acquired drug resistance seen in some cancers is due to epigenetic changes to 

the genome (Knappskog and Lønning 2012). These changes affect the expression of the 

genes without altering the DNA sequence. 5-aza-2’-deoxycytidine (decitabine [DAC]), a 

hypomethylating agent, reactivates silenced genes. DAC treatment achieves 

hypomethylation via covalent binding of DNA methyltransferase 1 (DNMT1) (Onda et 

al. 2012). This results in a decrease in the amount of DNMT1 available to carry out 

methylation. Although the demethylation and reactivation of tumor suppressor genes is 

often the primary focus of DAC research, another effect of the hypomethylation is that it 

causes the lipid profile of the cell membrane to be altered by means of altered membrane 

lipid synthesis (Vijayaraghavalu et al. 2012).  

The resistant cells treated with DAC have membrane lipid profiles that resemble 

more or less that of a sensitive cell’s lipid profile. When these DAC-treated resistant cells 

are then sequentially treated with anti-cancer drug, the anti-cancer drug’s efficacy is 

enhanced (Vijayaraghavalu et al. 2012). The benefit of using DAC in this manner – as a 

pretreatment – is that although in vitro DAC is an effective antiproliferative agent by 

itself, in vivo it becomes toxic at higher doses (especially in bone marrow) due to its 

DNA-damaging activity and targeting rapidly dividing bone marrow cells, causing 

myelosuppression (Hollenbach et al. 2010). DAC has a significantly short half-life (10 – 

35 minutes in vivo) because of its rapid clearance rate as it has low affinity for plasma 

proteins, and it is also rapidly degraded by cytidine deaminase in the liver (Jabbour et al. 

2008).  
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The efficacy of pretreatment with DAC could be improved upon by overcoming 

some of the factors that have limited its use in clinical trials. Currently, DAC is approved 

by the FDA as a monotherapeutic agent to treat hematological cancers (Boumber and Issa 

2011).  Treatment of solid tumors with DAC has been attempted in clinical trials with 

disappointing results (Boumber and Issa 2011). There are several factors that limit the 

performance of DAC in solid tumors, as it cannot achieve therapeutic dose because of 

short half-life and repeated and high dosing of DAC to maintain therapeutic level at the 

tumor site causes myelosuppression and leukopenia (Momparler et al. 1997). Loading 

DAC into nanogel has been shown to significantly enhance its antiproliferative effect in 

drug-resistant breast cancer cells (MCF-7/ADR) due to prolonged DNMT1 depletion 

(Vijayaraghavalu and Labhasetwar 2013). In aqueous solutions and culture media DAC 

rapidly degrades due to hydrolytic opening of the 5-azacytosine ring resulting in many 

degradation products (Stresemann and Lyko 2008; Rogstad, D. K. et al. 2009). The 

sustained effect may be due to the nanogel increasing DAC stability in culture medium. 

In addition to a greater efficacy of DAC, nanogel confers other properties useful in 

overcoming difficulties associated with using DAC in vivo. Nanogel can potentially 

reduce this toxicity because nanogel may not be able to pass through the openings in the 

sinusoidal capillaries of bone marrow as freely as drug molecules. DAC-nanogel could 

protect DAC from deamination by cytidine deaminase in the liver, spleen, and plasma 

(Stresemann and Lyko 2008). Another benefit of nanogel is that DAC’s method of action 

is S-phase dependent. Tumor cells have been shown to divide at a slower pace in vivo 

versus in vitro. The sustained effect of DAC-nanogel could expose cancer cells at the 
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tumor site to DAC for a longer duration so that the DAC can be incorporated into the 

DNA when the cancer cells go through S-phase (Brünner et al. 1989; Oloumi et al. 2010).  

1.2 Hypothesis 

 It is hypothesized that DAC is more stable when loaded in nanogel, that this 

stability means the duration of DAC-nanogel pretreatment will correlate with its ability to 

increase subsequent drug efficacy, and that DAC-nanogel pretreatment will cause a 

greater uptake of nanoparticles in drug resistant breast cancer cells (MCF-7/ADR). 

1.3 Specific Aims 

 1. One aim of this research was to test the stability of DAC alone versus DAC-

nanogel by comparison in plasma under physiological conditions over time using high 

pressure liquid chromatography (HPLC), UV/VIS, and mass spectroscopy.  

2. A second aim was to determine how duration of pretreatment with DAC and 

DAC-nanogel affects the anti-proliferative effect of subsequent chemotherapeutic drug 

treatment in drug resistant breast cancer cells. MCF-7/ADR cells were treated with DAC 

alone, DAC-nanogel, or control, with durations of three or five days. All samples were 

then treated with chemotherapeutic agent and dose response curves, IC50s, and IC70s 

(concentration of the drug which causes 50% or 70% inhibition of cell growth) were 

obtained using MTS assays.  

3. A final aim was to assess nanoparticle uptake in MCF-7/ADR cells after 

pretreating with DAC, DAC- nanogel, or no pretreatment. Nanoparticles loaded with 6-

coumarin dye were added to the pretreated cells. The cells were imaged with confocal 
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microscopy. The amount of nanoparticle uptake per cell was quantified using the 

intensity of the green 6-coumarin dye. 

1.4 Significance of Research 

The stability of DAC-nanogel versus DAC alone will be helpful information for 

planning the specifics of using DAC- nanogel in vivo. Greater stability would mean a 

longer retention time in vivo. The stability could be a part of the mechanism of action 

accounting for the increased effectiveness.  

Additional information on the mechanism that would aid in vivo study set-up is 

the effect of the duration of pretreatment with DAC on uptake of subsequent anticancer 

drug. Confocal microscopy of dye-loaded nanoparticles will be used to visualize and 

quantify differences after pretreatment with DAC and DAC-nanogel on cellular uptake of 

the dye-loaded nanoparticles. The resulting images will show the amount of dye-loaded 

nanoparticles inside the cells indicating the amount of endocytosis. The principle of 

increased uptake from increased endocytosis of dye-loaded nanoparticles could be 

expanded in theory to include uptake of drug or drug-loaded nanoparticles. 

Taken together, this research could further the case for using DAC-nanogel as a 

pretreatment for drug-resistant cancers. It also elucidates on the mechanism of action – 

greater stability and increased uptake by the cell membrane – by which the pretreatment 

is improving efficacy. 
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CHAPTER II 

BACKGROUND 

 

2.1 Cancer Drug Resistance and Epigenetics Role 

 Drug resistance is a major problem in cancer chemotherapeutics and a 

multifactorial phenomenon. The resistance may be preexisting within the genetic code of 

the cancer cells, or the resistance may be acquired after treatment with chemotherapeutics 

(Solyanik 2010). There are mechanisms of resistance that reduce the amount of drug 

within the cell via decreased drug influx, drug sequestration in intracellular vesicles, and 

increased drug efflux by way of P-glycoprotein (P-gp) (also known as multidrug 

resistance [MDR] protein 1) pumps. Other mechanisms change the apoptotic cell 

pathways to avoid cell death (Gottesman 2002; Pérez-Tomás 2006). Cancers that acquire 

drug resistance may do so through genetic changes to the genome. An example of 

acquired resistance through genetics is the mutation of the gene for p53 which causes a 

decrease in apoptosis (Knappskog and Lønning 2012).  

Epigenetics is a change in the genetic activity without changing the nucleotide 

sequence. Mechanisms of epigenetic regulation include DNA methylation, chromatin 

remodeling (histone modification), small interfering RNA (siRNA) and micro RNA 
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(miRNA) – mediation (Nakao 2001; Bird 2007; Goldberg et al. 2007). Methylation – 

methyl group addition to DNA - is known for its gene silencing effect but can also 

regulate imprinting and X-chromosome inactivation. DNA methyltransferase (DNMT) is 

the enzyme responsible for methylation in mammal genomes. DNMT adds methyl groups 

to clusters of cytosine and guanine near gene promoters (termed CpG islands) or to 

histone amino acids, affecting gene expression (Jones and Takai 2001; Jones 2012). The 

role of methylation in acquired drug resistance in cancer has been extensively studied. 

There is an increase in methylation (hypermethylation) of promoters of several tumor 

suppressor genes such as retinoblastoma tumor-suppressor gene (Rb) and breast cancer 

type 1 susceptibility protein (BRCA1) (Esteller 2007). Hypomethylation is also seen in 

acquired drug resistant in genes that prevent apoptosis and enhance cell survival 

(Gopisetty et al. 2006).  

2.2 Approaches for Overcoming Resistance 

 Significant effort has been devoted to overcoming drug resistance primarily 

focusing on drug transport. A thoroughly investigated family of transporters that cause 

increased efflux of drug with low specificity is the ATP-binding cassette (ABC) 

transporter family, of which the P-gp pump is a member. There are drugs which shut 

down the P-gp efflux pump and often these are used in combination with an anticancer 

drug to act synergistically (Szakács et al. 2006; Peetla et al. 2013). Combinations of 

multidrug – resistance gene silencers made up of siRNA or miRNA or with anticancer 

drug have also been investigated (Peetla et al. 2013).  
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 There are several drugs that target epigenetic mechanisms currently in preclinical 

or clinical trials or approved for use. Of particular interest is decitabine (DAC), which has 

a molar mass of 228.21 g/mol and a molecular formula of C8H12N4O4 (Neupane, Y. R. et 

al. 2015) . DAC is an analog to the nucleoside cytidine (shown in Figure 1a) and 

therefore exploits the same metabolic pathway (Jordheim et al. 2013). It crosses the 

membrane via the human equilibrium nucleoside transporter 1 (hENT1) protein 

(Damaraju et al. 2012). Intracellularly, it is converted to its active form – DAC 

triphosphate – then incorporates into the DNA during S-phase as shown in Figure 1b 

(Jordheim et al. 2013). When DNMT attempts to methylate the daughter strand of DNA 

in which the DAC has been incorporated in place of cytidine, DNMT is irreversibly 

bound to DAC and degraded. Normally, a nucleophilic attack initiates DNMT’s 

methylation of the substrate cytidine, methylation occurs, and the bond is broken by beta-

elimination at the carbon-5 atom. The nitrogen atom at position 5 of DAC causes an 

unresolvable covalent bond to occur between DNMT and the carbon at position 6 of the 

DAC. This triggers a DNA damage response and the DNMT is targeted for proteosomal 

degradation (Stresemann and Lyko 2008; Yang et al. 2010). Initially, the result is 

hemimethylated DNA as shown in Figure 1c. In subsequent round of replication the 

DNMT remains depleted and the DNA becomes increasingly hypomethylated (Santini et 

al. 2001). This hypomethylation of the DNA results in reactivation of silenced genes such 

as tumor suppressor genes (Cramer  et al. 2015).  
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Figure 1: Molecular structure, metabolic pathway, and hypomethylation action of 

decitabine (DAC). (a) The molecular structure of cytidine and DAC. The key difference is 

the 5-carbon of cytidine being replaced by nitrogen in DAC. (b) DAC enters the cell 

through the human equilibrium nucleoside transporter 1 (hENT1). It is subsequently 

phosphorylated by deoxycytidine kinase, nucleoside monophosphate kinase, then nucleoside 

diphosphate kinase to form DAC-triphosphate which is incorpoarated into DNA during S-

phase. (c) Some deoxycytidylate-phosphate-deoxyguanylate (CpG) islands are methylated 

(the addition of CH3 represented her by addition of a • to cytosine) in the initial DNA. 

During normal replication, DNMT maintains methylation by addition of methyl groups to 

the newly formed daughter strand symmetrically. In the presence of DAC, DNMT is 

depleted leading to the DNA in the daughter cells being hemimethylated. Subsequent 

rounds of DNA replication in the absence of DNMT will lead to increasingly 

hypomethylated DNA. Figure 1a decitabine molecule is from (Fvasconcellos  2007). 

 

At high doses, which are necessary to achieve therapeutic levels in solid tumors, 

DAC is toxic, especially to the rapidly dividing cells in the bone marrow, and can cause 

chronic myelosuppression and leukopenia. The mechanism of toxicity is DAC’s DNA 

https://commons.wikimedia.org/wiki/User:Fvasconcellos
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damaging activity, replacing cytidine in the replicating cell, and not its hypomethylation 

activity (Brown and Plumb 2004). 

 DAC has been successful in clinical trials against hematologic malignancies 

(tumors that affect the blood, bone marrow, lymph, and lymphatic system). DAC is 

approved for use in the treatment of myelodysplastic syndrome (MDS). It is also used 

off-label to treat acute myeloid leukemia (AML) in the elderly and in a phase III trial. 

But, the efficacy of DAC in treating solid tumors has been disappointing. This is due to 

the difference in the pharmacokinetics and pharmacodynamics in between solid tumors 

and hematological malignancies. In acidic conditions, DAC degrades due to cleavage of 

the glycosidic bond. In basic and neutral aqueous conditions such as those in vitro 

studies, the opening of the 5-azacytosine ring is the cause of the degradation (Stresemann 

and Lyko 2008). In vivo, characteristics such as a very high clearance rate (half-life of 

10-35 min), rapid degradation in acidic environment such as those in solid tumors (due to 

cleavage of the glycosidic bond), and rapid degradation by cytidine deaminase (found 

principally in the liver) come into play (Jabbour et al. 2008). Also, as DAC is S-phase 

dependent, its efficacy in solid tumors could be affected by the slower dividing of cancer 

cells in vivo versus in vitro (Momparler et al. 1997). It may take 5-15 days for all the cells 

in a tumor to pass through S-phase (Brünner et al. 1989; Oloumi et al. 2010).  

2.3 Lipid Biosynthesis in Drug Resistant Cells and Alteration with DAC 

Altered lipid makeup of the cell membrane can be a characteristic of drug 

resistant cells (Escribá et al. 2008). Recent studies have shown that in breast cancer drug 

resistant cells (MCF-7/ADR) the lipid profile of the cell membrane is a mechanism of 
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drug resistance and the lipid synthesis is epigenetically controlled (Peetla et al. 2010; 

Vijayaraghavalu et al. 2012). The makeup of the membrane in these cells influences drug 

transport or endocytosis for nanoparticle-mediated drug delivery. Peetla et al. compared a 

breast cancer cell line with acquired resistance - MCF-7/ADR - to the sensitive breast 

cancer cell line – MCF-7 (Peetla et al. 2010). The resistant cells had more sphingomyelin 

(SM), phosphatidylinositol, cholesterol, and cholesterol esters leading to a more rigid, 

compact, and hydrophobic membrane (Peetla et al. 2010). When anticancer drug 

(doxorubicin) was added to the cells, it was seen that the greater hydrophobic makeup of 

the resistant cell membrane led to sequestration of the drug in the membrane, therefore 

less drug got into the cell. The intracellular concentration of anticancer agent required for 

an antiproliferative effect was the same in resistant and sensitive cells (Peetla et al. 2010). 

This supports the claim that it is the reduced uptake in the resistant cells that is a part of 

the source of resistance. Membrane lipid alterations are known to occur concurrently with 

most known drug-resistance mechanisms (Pallarés-Trujillo et al. 2000; Hendrich and 

Michalak 2003).  

The changes seen in the lipid profile of resistant cells could be due to numerous 

influences, one of which could be hypermethylation of one or multiple genes implicated 

in cell membrane protein/lipid synthesis (Vijayaraghavalu et al. 2012). The 

sphingomyelinase (SMase) gene has been seen to be hypermethylated in 60% of breast 

tumors. SMase hydrolyzes SM to become ceramide – a lipid with tumor suppression 

functions and the ability to take the place of cholesterol in the cell membrane. Decreased 

cholesterol in the membrane leads to greater fluidity. When treated with DAC, this 

SMase gene is re-expressed (Demircan et al. 2009).  
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 Studies have shown that DAC treatment can reverse some of the changes in the 

lipid composition and biophysical characteristics of the membrane of resistant cells, 

causing an increase in drug sensitivity (Vijayaraghavalu et al. 2012; Peetla et al. 2013). 

The lipid composition of the membrane of resistant cells treated with DAC displayed 

increased SMase activity, thus decreasing the amount of SM in the membrane. SM, 

cholesterol, and P-gp activity are interdependent (Slotte and Bierman 1988; 

Vijayaraghavalu et al. 2012). Thus, P-gp expression was also seen to decrease and 

fluidity of the membrane was increased. The biophysics and endocytic function of 

resistant cells resembled that of the sensitive cells after DAC treatment and drug efficacy 

was enhanced (Vijayaraghavalu et al. 2012; Peetla et al. 2013).  

2.4 DAC-Nanogel 

DAC has several characteristics that limit its use in vivo as discussed previously. 

Hydrophilic drugs, such as DAC, can be loaded into hydrophilic nanogels at a higher 

drug-loading capacity than other forms of drug delivery such as nanoparticles, polymeric 

micelles, or liposomes. A nanogel is a nano-sized hydrogel (usually tens to hundreds of 

nanometers in diameter) composed of hydrophilic polymer chains which are physically or 

chemically cross-linked (Kabanov, A. V., & Vinogradov, S. V. 2009). It has been shown 

that when DAC is loaded into a biodegradable N-isopropylacrylamide (NIPAM) based 

nanogel its efficacy is increased compared to treatment with DAC alone in MCF-7/ADR 

cells (Vijayaraghavalu and Labhasetwar 2013). This NIPAM –based nanogel has been 

thoroughly studied for loading with DAC and the materials and methods used for the 

synthesis, loading, and characterization of the DAC-nanogel have been optimized in 

previous studies. The DAC is released from this nanogel due to biodegradation of the 
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nanogel. In the previous study, the DAC-nanogel diminished the transient nature of DAC 

via more sustained DNMT1 depletion and prolonged cell cycle arrest in the G2/M phase.  

The mechanism behind the sustained effect may be an increase in the stability of DAC 

when it is loaded into the nanogel. This hypothesis is tested in the first aim of the 

research herein. Instead of comparing the efficacy of DAC and DAC-nanogel as a 

primary treatment, the second aim of the research herein compares DAC and DAC-

nanogel as varying durations of pretreatments and calculates the effect by subsequent 

response to antiproliferative drug treatment. Void (empty) nanogel was not used as a 

control because it has shown no cytotoxicity in previous studies (Vijayaraghavalu and 

Labhasetwar 2013). Another previous study – similar to the study showing that DAC 

alone causes resistant cell’s lipid profile to resemble that of a sensitive cell – showed that 

DAC-nanogel was even more effective than DAC alone in causing this change in the 

lipid profile (Raghavan et al. 2015). The third aim of the research herein builds on the 

previous research by again using DAC and DAC-nanogel but comparing their effects on 

subsequent uptake of nanoparticles across the cell membrane. 
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Materials 

 N-isopropylacrylamide (NIPAM), n-hexane, benzene, vinyl pyrrolidone (VP), 

sodium dodecylsulfate (SDS), sodium acrylate, N,N’-cystamine bisacrylamide, 

ammonium persulfate (APS), maleic anhydride, dimethyl sulfoxide (DMSO), 5-aza-2’-

deoxycytidine (decitabine, DAC), Daidzin, and paclitaxel (PTX) were purchased from 

Sigma–Aldrich Chemical Company (St. Louis, MO). Poly(ethylene glycol) (PEG, M.W. 

~5000) was purchased from Polysciences, Inc. (Warrington, PA). Cell culture media, 

Dulbecco’s phosphate-buffered saline (DPBS), penicillin and streptomycin were 

purchased from the Central Cell Services Media Laboratory of the Lerner Research 

Institute. MTS reagent was purchased from Promega (Madison, WI). Mouse plasma was 

purchased from GeneTex Inc. (Irvine, CA). 

3.2 DAC Solution 

DAC (either 5 mg or 10 mg) was reconstituted to a concentration of 8.1 mg/mL 

by addition of DMSO (maximum solubility of DAC in DMSO is 20 mg/mL) then kept at 
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-20 °C in 100 µL aliquots. The stability of storing these aliquots for up to four months 

was confirmed through HPLC comparison with fresh stock. Upon use, the concentration 

of DMSO was always diluted to below 0.1% v/v. DAC was protected from light 

degradation in all experiments using aluminum foil or decreased lighting. 

3.3 DAC Nanogel 

3.3.1 Nanogel Synthesis 

Nanogel was synthesized by surfactant polymerization of N-isopropylacrylamide 

(NIPAM) (700 mg) in the presence of PEG-maleic anhydride polymer (PEGMA) (100 

mg), using vinyl pyrrolidone (VP) (200 mg) as a co-monomer, sodium dodecylsulfate 

(SDS) (200 mg) as a surfactant, ammonium persulfate (APS) (80 mg) as an initiator, and 

N,N′-cystamine bis(acrylamide) (60 mg) as a S-S cross-linker, at 70 °C for six hours, as 

previously described (Vijayaraghavalu and Labhasetwar 2013). 

3.3.2 Loading Nanogel with DAC 

 Thirty mg of lyophilized nanogel was added to six mL MilliQ water in a 16 mL 

glass vial (Fisher Scientific, Pittsburgh, PA) and stirred slowly at room temp until 

dispersed. This was sonicated for five minutes at 20% amplitude using a Qsonica, LLC 

(Newtown, CT) Q500 with a 1/8” microtip. This time and amplitude have been optimized 

to achieve a low polydisperity index and to not create foam.  

The dispersion was determined using a NICOMP™380 ZLS (Particle Sizing 

Systems, Santa Barbara, CA) by dynamic light scattering at a scattering angle of 90 ⁰ at 
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25 °C and zeta potential in the phase analysis mode and the current mode at a scattering 

angle of −14 °.  

Three hundred µL of the 8.1 mg/mL aliquots of DAC (aliquoted in DMSO) was 

added in a dropwise fashion to the nanogel dispersed in water. This volume was with the 

goal of obtaining an 8% wt/wt solution of the DAC weight to the nanogel weight which 

has been determined to be optimal for loading. This was stirred for three hours in the cold 

room at 4 °C.  

Next, the dialysis tubing (MWCO 12-kD, Spectrum Laboratories, Rancho 

Dominguez, CA) was prepared. The outside was wet to allow opening of the tubing. 

Once open, MilliQ water was run through the tubing. The tubing was then soaked in 

MilliQ water at a temperature of 85 - 90 °C for 30 min. This is done to remove the 

sodium azide preservative that may remain from the manufacturing process. 

The dialysis of the DAC-loaded nanogel was performed against MilliQ water for 

30 minutes in the cold room. This amount of time was determined by previous work to be 

sufficient to remove free DAC and DMSO. Next, the samples were frozen at -80 °C then 

lyophilized over two days at −48 °C, 3.5 Pa, using FreeZone 4.5 (Labconco Corp., 

Kansas City, MO). The lyophilized samples were stored at -20 °C. 

3.3.3 Determination of DAC Loading in Nanogel 

 To determine the loading of the nanogel, the DAC was extracted back out of a 

small test sample. 2 mL MeOH was added to 1 mg of lyophilized DAC loaded nanogel in 

a 8 mL glass vial (Fisher Scientific, Pittsburgh, PA) and stirred overnight (12 hours) at 

100 rpm in the cold room at 4 °C. 1 mL of the solution was taken into a 1.5 mL 
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Eppendorf tube and centrifuged at 14,000 rpm (Eppendorf 5417 R, Hauppauge, NY) for 

10 min at 4 °C. DAC concentration in the supernatant was determined using HPLC 

(Shimadzu Scientific Instruments, Inc., Columbia, MD).   

 A standard plot of DAC (0 - 50 µg/mL) was prepared using the same conditions. 

Examples of standard curves from four different runs/days are shown in Figure 2.  To be 

sure of the extent of extraction, the above protocol for loading was followed except the 

dialysis step was skipped so that all of the original DAC added to the nanogel should 

remain.  It was determined that recovery was over 99% which is also reported in another 

study (Vijayaraghavalu and Labhasetwar 2013).   

 

Figure 2: Standard HPLC curves of four different runs/days showing variability in area 

under the curve and demonstrating the need to create a new standard curve each time a 

loading concentration of DAC in nanogel is to be determined. 

The HPLC conditions used to determine nanogel loading is described here. A C18 

reversed phase column (Atlantis T3 –4.6 x 250 mm – 5 µm) was used with a mobile 

phase consisting of sterile degassed methanol:water (60:40 v/v). The injection volume 

was 25 µL. The flow rate was1.2 mL/min in isocratic mode for a total of six minute run 



18 

time per injection. The UV detection wavelength was 228 nm (Vijayaraghavalu and 

Labhasetwar 2013). 

3.4 DAC Stability Analysis  

3.4.1 Sample Preparation 

Two mL mouse plasma samples (GeneTex Inc, Irvine, CA) in 8mL glass vials 

(Fisher Scientific, Pittsburgh, PA) were warmed to 37 °C in a MaxQ Mini 4450 Benchtop 

Incubated Orbital Shaker and kept rotating at 25 rpm. DAC solution, DAC-nanogel, or 

void nanogel was added to the plasma to achieve the desired concentration as shown in 

Table 1.  

Sample Concentration 

DAC solution (high 

concentration) 
100 µg/mL 

DAC solution (low 

concentration) 
300 ng/mL 

DAC-nanogel 3 - 6 µg/mL 

void nanogel 
DAC-nanogel equivalent 

mass/volume 

 

Table 1: Sample concentrations are shown for a high DAC solution concentration (n = 2), a 

low DAC solution concentration (n = 3), DAC-nanogel (n =4 ), and void (empty) nanogel (n 

= 2). All samples are in mouse plasma.  

 The high and low concentrations of DAC solution provide a range within which 

the DAC-nanogel stability curve can be compared to the DAC solution stability curve. 

These concentrations are discussed further in section 4.2. A sample of 200 µL was taken 

at timepoints 0, 1, 2, 4, and 8 hours and placed in cryovials and stored at -80 °C. Frozen 

samples were lyophilized as above (section 3.3.2) for two days.  
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3.4.2 Drug Extraction for Stability Curve Points 

Before HPLC can be used to determine DAC concentration, the drug was 

extracted from the samples. This method is similar to the method of drug extraction in 

section 3.3.3 but instead of adding certain volume of methanol per weight, 200 µL 

methanol was added to each lyophilized sample to obtain the same concentration as the 

samples were previous to lyophilization. These were placed on an orbital shaker at 100 

rpm in the cold room overnight. Next, the samples were vortexed vigorously and placed 

in the centrifuge at 13,200 rpm for 10 min at 4 °C. The supernatant (~100 µL) was 

collected in glass HPLC vials (Fisher Scientific, Pittsburgh, PA).  

A liquid chromatography electrospray ionization tandem mass spectrometric 

method was developed (LC/ESI/MS/MS) for quantification of DAC in plasma using 

daidzin as internal standard. 20 µl of the sample (the supernatant from section 3.4.2) was 

injected onto a Waters HPLC (2690 Separations Module, Waters, Corp., Franklin MA, 

USA) and separated through a C18 column (2.1 x 150 mm, 5 µm, ODS, Phenomenex, 

Torrance, CA) using a gradient starting from 95% mobile phase A (water containing 5 

mM ammonium acetate) at flow rate of 0.2 ml/min for 2 min, to 100% mobile phase B 

(acetonitrile containing 5 mM ammonium acetate) over 8 min and then with 100% B for 

5 min as shown in Table 2.  
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time (min) Mobile Phase 

0-2 5% B 

2-10 5% B to 100% B 

10-15 100% B 

Table 2: Mobile phase timeline for binary method in HPLC analysis of plasma samples. 

The HPLC column effluent was introduced onto a Micromass triple quadrupole mass 

spectrometer (Quattro Ultima, Waters Inc., Beverly, MA) and analyzed using 

electrospray ionization in positive mode with multiple reaction monitoring (MRM). A 

potential difference of 3 keV was applied between the electrospray needle and the interior 

of the ion source. Hot nitrogen gas (250 C) was used to help evaporating the solvent 

from the charged droplets and argon was used as the collision gas. The MRM transitions 

(m/z) were 457  113 for DAC and 417  255 for daidzin. The levels of decitabine in 

plasma were calibrated using internal standard daiazin. The assay was linear over the 

concentration range of 40 ng/mL -100 µg/mL. This method is adapted from published 

work. (Xu et al. 2012). Note that the HPLC/UV/VIS method was used for determination 

of loading and is described in section 3.3.3.  

3.4.3 Stability Curves and Equations 

 The concentration data for the different timepoint samples of plasma were 

normalized for easier comparison and interpretation as the initial concentration (the zero 

hour timepoint) for each sample begins at 100% on the y-axis labeled ‘% DAC 

remaining’. Graphs of both absolute concentrations and the normalized data are shown in 

section 4.1.2. Normalization does not change the decay rate (K), just the Y0 value. The 

data were fit to a one phase exponential decay model:  

Equation 3.4:       𝑌 = (𝑌0 − 𝑌𝑚𝑖𝑛)𝑒
−𝐾𝑡 + 𝑌𝑚𝑖𝑛 
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where Y0 = the Y value when t (time) is zero, Ymin = the Y value at infinite time, and K is 

the rate constant. The half-life was computed as ln(2)/K. A paired two-tailed t test was 

also done to compute a p value and rule out the null hypothesis. The graph and 

calculations were done using GraphPad Prism 5. 

3.5 Cell Culture 

 MCF-7/ADR cells (a gift from Dr. U. S. Rao’s laboratory, Department of 

Biochemistry and Molecular Biology, University of Nebraska Medical Center) were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% 

fetal bovine serum (Gibco BRL, Grand Island, NY) and 100 µg/mL penicillin and 100 

µg/mL streptomycin in 75 cm
2
 culture flasks (BD Falcon, San Jose, CA). These 

conditions were optimized for growth of these cells. Drug resistance was maintained by 

culturing in media containing 100 ng/mL doxorubicin (Drug Source Co. LLC, 

Westchester, IL) after every two passages. 

3.6 MTS Assay and IC50/IC70 Calculations 

3.6.1 Sample Setup 

 MCF-7/ADR cells were seeded at a density of 1.5 x 10
4
 cells/mL in six 96-well 

plates (Lerner Research Institute, Cell Culture Services).  Sixty wells per plate were 

seeded (all except the edge wells which were filled with PBS to prevent evaporation) 

with 100 µL media per well. After 24 hours cells were washed with PBS and treated with 

normal media, DAC solution, or DAC-nanogel at a concentration of 50 ng of DAC per 

mL of media. Three of the plates were incubated for 3 days at this stage (with normal 
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media, DAC, or DAC-nanogel) and three of the plates were incubated for 5 days at this 

stage (with normal media, DAC, or DAC-nanogel) as shown in Table 3.  

    

 
Plate 

number 

Pretreatment (DAC concentration for 

solution and nanogel is 50 ng/mL)  

 1 None (normal media) - 3 days  

 2 None (normal media) - 5 days  

 3 DAC solution - 3 days  

 4 DAC solution - 5 days  

 5 DAC-nanogel - 3 days  

 6 DAC-nanogel - 5 days  

    
Table 3: Table showing setup for MTS assay. Each pretreatment type and duration is 

shown. Note that plate #4 (pretreatment type DAC solution with a duration of 5 days) was 

contaminated with fungus there are no results for this plate. 

After the indicated pretreatment time (3 days or 5 days), cells were washed twice 

with PBS and 100 µL paclitaxel (PTX) in media was added at concentrations ranging 

from 0 – 20 µg/mL (0, 0.25, 0.50, 1, 2, 3, 4, 5, 10, and 20 µg/mL) and n = 6 for each 

concentration of PTX. Paclitaxel incubation time was 3 days for all plates. After this, 

cells were washed twice with PBS and normal media was added. After 2 days in normal 

media, MTS assays were performed. 

3.6.2  Cytotoxicity Assay 

An aliquot of 20 µL MTS reagent was added to each well, the plates were 

incubated for 2 hours at 37 °C, and color intensity was measured at 490 nm using a plate 

reader (Bio-Tek Instruments, Inc., Winooski, VT).  
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3.6.3  Dose Response Curves 

 Plate reader data was first transformed into logarithmic values then normalized so 

that the average of the six (n = 6) of the PTX concentration zero of each plate is the 100% 

growth point for that plate. Dose response curves were plotted on a semi-log graph. 

3.6.4  IC50 and IC70 Calculations 

 To find the IC50/IC70 values for each treatment type, first a variable slope line was 

fit to the data (already in log form) using this equation: 

Equation 3.6       𝑦 = 𝐴2 +
𝐴1−𝐴2

1+10log(𝑥0−𝑥)𝑝
 

Where y = % cell growth (normalized), A2 = % cell growth (normalized) at the bottom 

plateau region of the curve, A1 = % growth at the top plateau region of the curve, x = 

PTX concentration, x0 = the inflection point of the curve, and p = slope.  To find the IC50, 

y = 50. To find the IC70, y = 70.  

 Two-way ANOVA statistical analysis was calculated for IC50s and IC70s 

comparing the no pretreatment to the DAC-nanogel treatments and determining if the 

duration of pretreatment was the cause of the significance (which is aim 2). This 

statistical analysis is discussed further in section 4.1.3 and detailed results from GraphPad 

Prism are in Appendix B. 
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3.7 Nanoparticle Uptake Study using Confocal Microscopy 

3.7.1 Sample Preparation 

 MCF-7/ADR cells were seeded onto 35 mm glass bottom plates (MatTek Corp, 

Ashland, MA) at a density of 1.8 x 10
4
 cells/mL with 2.5 mL media in each plate. Cells 

were allowed 24 hours to attach. After 24 hours, the cells were washed with PBS and 

pretreatment of either media only, DAC in media (50 ng/mL), or DAC-nanogel in media 

(50 ng/mL). The samples were left in the incubator with the pretreatment for 3 days after 

which the cells were washed with PBS and normal media was added. Normal media was 

changed every other day until 5 days post removal of pretreatment. At that time media 

was removed and replaced with nanoparticles in media (200 µg of PLGA-based 

nanoparticles in 2 mL of media) loaded with 6-coumarin dye loaded at 50 µg 6-coumarin 

per 90 mg PLGA as previously described (Peetla et al. 2014).  The nanoparticles in media 

were added to the cells for 2 hours prior to confocal imaging. A lysotracker stain 

(Lysotracker Red DND-99, Molecular Probes, Invitrogen, catalog number L7528) was 

added to half the cell samples 30 minutes prior to imaging at a concentration of 75 

ng/mL. The other half of the cell samples were treated with a membrane dye (Cell Mask 

Deep Red Plasma Membrane Stain, Invitrogen, catalog number C10046) five minutes 

prior to imaging at a concentration of 5 µg/mL. Immediately before imaging, cells were 

washed twice with PBS to remove excess nanoparticles and dyes and phenol red free 

media with DAPI was applied for imaging.  
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3.7.2 Confocal Microscopy 

 Live cell imaging was performed using a spinning disk confocal microscope 

(Ultraview Vox, PerkinElmer, Waltham, MA). Images were captured using alternating 

illumination with lasers for capturing nanoparticle (6-coumarin) signal (green filter, Ex λ 

488) and dye signals for the lysotracker (red filter, Ex λ 561) and cell membrane (deep 

red filter, Ex λ 640). Stacks of images were taken for each sample in the z-plane. 

Distance between each ‘slice’ of a stack is 0.50 µm. Images shown from confocal are 

single slices for clarity. Magnification for all images was 63X.  All images were 

brightened 50% and sharpened 50% for viewing in print. Image enhancements and 

processing was done using Image-Pro. 

3.7.3 Quantification of Nanoparticle Uptake 

 Quantification of nanoparticle uptake was done using Excel and Image-Pro. For 

each cell sample, a stack of images was captured encompassing the entire cell monolayer. 

Cell monolayers were approximately 11 – 12 µm thick. Images (‘slices’) were taken 0.5 

µm apart, therefore a stack of about 20 images was captured for each cell sample. Five 

slices, 0.50 µm apart, taken from the middle of each stack was analyzed for the 

nanoparticles uptake quantification. For each slice, the total intensity of green in the 

image was determined using Image-Pro. Number of cells in the image was counted in 

Image-Pro, and the average (of the 5 slices) intensity per cell was calculated in Excel for 

that sample. There was only one replicate per data point (the slices were of the same 

sample and many of the cells spanned multiple slices) so there are no statistical 

calculations shown with this data. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 

4.1 Results 

4.1.1 DAC-nanogel Characterization and Loading 

 All of the aims include the use of DAC-nanogel. The physical characteristics of 

the synthesized nanogel before and after loading with DAC are shown in Table 4.  

 

Table 4: Physical characterization of nanogel before (void nanogel) and after (DAC-

nanogel) DAC loading. The efficiency of loading refers to the percentage of DAC that was 

encapsulated out of the entire amount of DAC added to the nanogel. The loading is the 

weight by weight percentage of DAC to total weight (DAC and nanogel).  This data 

represents one synthesized batch of void nanogel and one batch of loaded nanogel. Refer to 

the explanation in section 4.1.1 for further information on the samples . PI, polydisperity 

index.  

The mean hydrodynamic diameter, polydisperity index (PI), and zeta potential were 

determined using a particle sizer as described in section 3.3.1. The void nanogel and 

DAC-nanogel had a mean diameter of 209.0 nm and 227.1 nm, and zeta potentials of -

21.55 mV and -19.90 mV, respectively. Both had a PI of 0.05. This PI is consistent with 

Formulation Efficiency of loading (%) Loading (%) Mean diameter (nm) PI Zeta potential (mV)

Void nanogel - - 209.0 0.05 -21.55

DAC-nanogel 80.52 6.1 227.1 0.05 -19.90
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previous nanogel batches used in published studies and is less than the general guideline 

of 0.1 to show uniformity of the sample. The efficiency of loading (amount of DAC 

inside the nanogel versus total DAC added to the nanogel suspension) for the DAC-

nanogel was 80.52 %. The loading (percent weight of DAC to the total – DAC plus 

nanogel - weight) was 6.1 %. The data in Table 4 represents one batch of synthesized 

void nanogel and one batch of DAC loaded nanogel. There are the mean diameter, PI, 

and zeta potential values for three aliquots of the void nanogel included in the values for 

void nanogel and six aliquots included in these values for DAC-nanogel included in 

Table 4.  The efficiency of loading and loading (by mass) values are n = 1 since one 

batch of DAC-nanogel was prepared and put into aliquots. Then, one of those aliquots 

was used for DAC –nanogel loading determination using HPLC-UV/VIS, See section 4.2 

for more information on the data used in Table 4. 

 

Figure 3: Hydrodynamic diameter and particle size distribution of a void nanogel (a) and 

DAC-nanogel (b). The mean diameter of the void nanogel shown here is 219.6 nm and the 

PI is 0.06. The mean diameter of the DAC-nanogel shown here is 223.0 nm and the PI is 

0.04. 
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Representative chromatograms of DAC and DAC-nanogel (after DAC extraction) are 

shown in Figure 4. 

 

Figure 4: Representative chromatograms from the HPLC-UV/VIS analysis of DAC and 

DAC-nanogel. Area under the curves is representative of mass. Max intensity listed in the 

upper right hand corner of each chromatogram as well as the scale on the vertical axis 

(mAU, milliAbsorbance Units) gives an indication of peak size. (a) Methanol used as blank. 

Methanol is used for the drug extraction. A small peak of residual DAC can be seen at the 

approximately 2.5 minute mark. (b) DAC in solution. Note the double peak indicating 

isomers as discussed below in section 4.2. (c) DAC-nanogel after extraction of the DAC by 

stirring in methanol overnight and centrifugation.  

4.1.2 DAC Stability 

 The objective of this experiment is to see the stability of DAC Solution (alone) 

versus DAC-nanogel in mouse plasma (GeneTex Inc. Irvine, CA) at physiological 
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conditions. The DAC or DAC-nanogel was added to mouse plasma warmed to 37 ⁰C. 

Samples were taken at time intervals to observe the stability of the DAC alone versus 

DAC-nanogel over time. 

 Figure 5a compares DAC solution with a high concentration (100 µg/mL) to the 

DAC solution with a low concentration (300 ng/mL) before normalization. The rate 

constants (K) are 1.069 for the high initial concentration and 1.075 for the low initial 

concentration. Figure 5b compares the same data except it is after normalization so that 

the first timepoint (t = 0) taken is adjusted to be 100% on the ‘% DAC remaining’ axis on 

the graph. The rate constants (K) are 1.073 for the high initial concentration and 1.071 for 

the low initial concentration. The differences in the rate constants (K) are due to 

differences in rounding during curve calculations in GraphPad Prism between the 

absolute data and the normalized data. The curves shown are model curves – one phase 

exponential decay – in all cases. 
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Figure 5: Stability curves of a high initial DAC concentration (100 µg/mL) (n = 2) in plasma 

and a relativley low initial DAC concentration (300 ng/mL) (n = 3) in plasma. (a) Absolute 

concentration values are shown using a segmented y-axis. Error bars designate s.e.m. (b) 

This data is the same data as in (a) except it is normalized to begin at 100%. Error bars 

designating s.e.m are included for all points but cannot be seen in (a) and can be seen at 

only a few points in (b) due to the y-axis constraints and the relatively small values of the 

s.e.m. data. These high and low concentration curves are combined to form ‘DAC solution’ 

in Figure 6. 

The data for the two DAC solution curves is combined and normalized to form 

‘DAC solution’ in Figure 6. The resulting curves and rate constants (K) are shown and 

the main focus is that the concentration of DAC in DAC-nanogel is decreasing slower 

than DAC alone.  

(a) 

(b) 



31 

 

Figure 6: Stability in mouse plasma at physiological conditions. n = 5 for DAC Solution,      

n = 4 for DAC-nanogel measured using HPLC-MS/MS. Error bars designating s.e.m. are 

within symbols for certain data points because of the relatively small value of s.e.m. for 

those points compared to the y-axis . p = 0.033 DAC solution vs. DAC-nanogel. 

 

4.1.3 Duration of Pretreatment 

 MCF-7/ADR cells were pretreated with DAC solution, DAC-nanogel, or no 

pretreatment for three or five days. The dose response curve is a measure of their 

response to subsequent addition of paclitaxel (PTX).  

 Figures 7 – 9 show that DAC-nanogel pretreatment for a duration of 5 days has 

an effect on subsequent drug antiproliferative effect significantly greater than the effect 

of DAC-nanogel pretreatment for a duration of 3 days. The effect occurs at lower 

concentrations of PTX as shown in Figure 7. This could be due to a threshold effect 

discussed further in section 4.2.  
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 Figure 7: Dose response curves for the different pretreatment types and durations. All 

samples are normalized with the zero concentration being 100% growth. Three data points 

in the ‘5 day DAC Nanogel’ group are excluded from the line and IC50/IC70 calculations as 

discussed in the text. n = 6. 

  Two-way ANOVA statistical analysis was performed to determine whether a 

duration of 5 days of pretreatment with DAC-nanogel is significantly more effective than 

a duration of 3 days of pretreatment with DAC-nanogel on the efficacy of PTX as 

outlined in aim two in section 1.3. The dose response curves are shown separately for      

3 day pretreatment and 5 day pretreatment in Figure 8.   
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Figure 8: Dose response curves for the different pretreatment types and durations showing 

(a) 3 day no pretreatment and DAC nanogel pretreatment and (b) 5 day no pretreatment 

and DAC nanogel pretreatment. All samples are normalized with the zero concentration 

being 100% growth. Three data points in the ‘5 day DAC Nanogel’ group are excluded 

from the line and IC50/IC70 calculations as discussed in the text. n = 6. 

The variable slope lines fit to each set of data to calculate IC50 and IC70 values are 

in Appendix A. The IC50/IC70 results are shown in Figure 9.  
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Figure 9: IC50 and IC70 concentrations. This figure shows the effect of durations of 3 days 

and 5 days of DAC-nanogel pretreatment on efficacy of subsequent PTX treatment as 

described in aim two. For the IC50s, the effect of duration on DAC-nanogel pretreatment is 

not significant. For the IC70s, p = 0.0019 for the significance of the duration of DAC-nanogel 

pretreatment. The difference in the ‘None’ pretreatment time is used as a control for the 

difference in the DAC-nanogel pretreatment type. Further explanation of the two-way 

ANOVA analysis used to find the significance is described in the text in this section. n = 6 

for all. Three data points in the ‘5 day DAC Nanogel’ group are excluded from the IC50/IC70 

calculations as discussed in the text. 

 

The IC50 (concentration of the drug which causes 50% of the maximum inhibition 

of cell viability) for the 3-day incubation with no pretreatment and DAC-nanogel 

pretreatments are 43.17 ± 1.11 and 11.33 ± 1.03 µg/mL respectively, and 5-day 

incubation with no pretreatment and DAC-nanogel pretreatments are 30.52 ± 1.04 and 
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11.61 ± 1.20 µg/mL respectively. The IC70s (concentration of the drug which causes 70% 

of the maximum inhibition of cell viability) for the 3-day incubation with no pretreatment 

and DAC-nanogel pretreatments are 20.73 ± 1.06 and 6.01 ± 1.03 µg/mL respectively, 

and 5-day incubation with no pretreatment and DAC-nanogel pretreatments are 16.68 ± 

1.02 and 2.36 ± 1.18 µg/mL, respectively.  

The two-way ANOVA analyzes how the IC50/IC70 concentrations are influenced by two 

factors – pretreatment type (none or DAC-nanogel) and duration (3 or 5 days). There is a 

difference in the ‘none’ pretreatment type between the 3-day and 5-day for both the IC50 

and IC70 concentrations as can be seen in Figure 9. This difference - due to some factor 

associated with the two day difference in incubation time – affects the antiproliferative 

effect of the subsequent PTX treatment. This difference (in the no pretreatment group) 

must serve as a control for the DAC-nanogel pretreatment group. Two-way ANOVA 

accomplishes this by analyzing whether there is a combination effect of interaction 

between the duration and the pretreatment type and what the significance of of each of 

them (duration and pretreatment type) alone is on the results (IC50/IC70). The DAC 

solution was not used for any statistical analysis since there is not a 5-day sample. 

Reports from GraphPad Prism with two-way ANOVA results are shown in Appendix B. 

The two-way ANOVA results concluded that for the IC50 data, a difference between the 

3-day and 5-day DAC-nanogel cannot be considered significant because of the difference 

also seen between the 3-day and 5-day no pretreatment samples. The two-way ANOVA 

results concluded that for the IC70 data, a difference between the 3-day and 5-day DAC-

nanogel can be considered significant because it is significantly larger than the difference 

between the 3-day and 5-day no pretreatment samples. This type of comparison is 
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examining the ratio of a ratio and then determining whether the difference is significant. 

The significance of the effect of 5-day DAC-nanogel pretreatment (compared to 3-day 

DAC-nanogel pretreatment) is p = 0.0019. This is the effect of a longer duration with 

DAC-nanogel which is aim 2 of the research herein.  

Note that the DAC solution pretreatment for five days sample was contaminated 

and is not included in Figures 7 - 9. The DAC-nanogel 5 days sample has three data 

points that indicate an increase in cell proliferation despite increased concentrations of 

PTX which isn’t possibly correct. Those three points are designated by red arrows in the 

graph but the dose-response curve does not incorporate them and they are not included in 

IC50 or IC70 calculations. 

 

4.1.4 Uptake of Nanoparticles  

 Confocal images in Figure 10 – Figure 13 show MCF-7/ADR cells with one of 

three pretreatment types (none, DAC Solution, or DAC Nanogel) and with one of two 

dyes - Lysotracker, or ‘Membrane Stain’ (also known as Cell Mask). The Lysotracker 

appears red in color and stains acidic organelles. The membrane stain appears ‘deep red’ 

or purple and stains the plasma membrane. The green color is the nanoparticles loaded 

with 6-coumarin fluorescent dye. The blue is the cell nuclei dyed with DAPI. Although 

some cells look larger than others (see Figure 10 and Figure 11), all images are at 63 

times magnification. The different size of the nuclei and cells may be due to the degree of 

confluency in the plate.  It can also be seen that the sample with no pretreatment and 

lysotracker stain looks redder whereas the DAC Solution pretreatment and the DAC 

Nanogel pretreatment have an orange color. This is due to the amount of green 6-
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coumarin nanoparticles that were taken up by the pretreated cells. This can be confirmed 

by looking at Figure 12 and noting that when the colors are separated the Lysotracker red 

looks just as red in all the samples. In Figure 12, the Lysotracker stain reveals that the 

nanoparticles are not trapped in intracellular vesicles such as lysosomes since the green 

can be seen throughout the cytoplasm and is not just appearing in the same location as the 

lysotracker stain. In Figure 13, although it can be difficult to see the green color in the 

image, there is some green fluorescence appearing in the No Pretreatment sample. The 

intent of using a membrane stain was to be able to visualize endocytosis of the 

nanoparticles by correlating endocytic rate with a decreased signal from the membrane 

stain (due to stained lipids being endocytosed). In the images in Figure 13, the greatest 

intensity of membrane dye appears in the DAC Nanogel pretreatment group. This could 

mean that it has the lowest rate of endocytosis (assuming the intensity of membrane stain 

signal is inversely correlated to nanoparticle uptake) but that would not corroborate the 

fact that it has the second highest amount of nanoparticle uptake (according to quantified 

results of 6-coumarin loaded nanoparticle uptake shown in Figure 14). The lowest 

intensity of membrane stain appears to be in the DAC Solution, indicating that it has the 

highest rate of endocytosis. The highest rate of endocytosis appearing in the DAC 

solution sample does collaborate with the uptake in nanoparticles being the greatest for 

this sample as shown in Figure 14. The membrane stain did not serve to (inversely) 

correlate with endocytic rate as evidenced by comparing the signal intensity of the 

membrane stain in each of the three samples to the quantified uptake results in Figure 14.  

A case for the membrane stain intensity serving as an indicator of endocytic rate could be 

performed as a proof of concept study as mentioned in section 5.2. The membrane dye 
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may be useful as a confirmation that the nanoparticles are inside the cells, especially 

when the images can be seen in 3D, but was not useful in this study.  However, the 

samples that received the membrane dye can still be used for nanoparticle uptake 

quantification shown in Figure 14. 
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Figure 9 
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Figure 10 
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The intensity of the green fluorescence was quantified for each sample (no 

pretreatment, DAC solution pretreatment, and DAC nanogel pretreatment) from the 

confocal images is shown in Figure 14.  

 

Figure 14: Quantification of nanoparticles loaded with 6-coumarin (green) intensity in 

MCF-7/ADR cells. Each bar represents one sample, n = 1 (although the total green intensity 

of each image was divided by the number of cells in that image, the green intensity inside 

any individual cell was not determined for this study). * Note that the bar for the 

Membrane stain - no pretreatment sample is not zero, it is 81. 

The total intensity of the green (indicating nanoparticles) in each image was divided by 

the number of cells in that image to account for the different numbers of cells between 

images. For both stains, the graph shows that the DAC solution pretreatment caused the 

greatest increase in nanoparticle uptake and the DAC nanogel pretreatment caused an 

increase as well, although not as large. For the Lysotracker stain group, the DAC solution 

increases uptake by 27 times, and DAC nanogel increases uptake 9 times over the 
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control. In the cell membrane stain group, the DAC solution increases uptake by 421 

times, and DAC nanogel increases uptake 141 times over the control. The reason for the 

discrepancy in green fluorescence / nanoparticle uptake between the two dyes is not clear. 

Since the overall uptake is lower in the cells treated with the cell membrane stain, it could 

be that the stain is interfering with endocytosis of the nanoparticles. It is not the case that 

the membrane stain color is interfering with the resulting green intensity. The confocal 

microscopy prevents this from happening by capturing the different colors independently 

and consecutively (not all in one image at one time). 

 

4.2 Discussion 

The physical characterization of the nanogel before and after DAC loading is 

comparable to previous research performed by Vijayaraghavalu and Labhasetwar (2013) 

from which the method of nanogel synthesis, loading, and loading determination was 

adapted. The loading (and loading efficiency) was within the s.e.m. of the previous 

research (the DAC-nanogel loading and loading efficiency from the previous research 

was 80 ± 5 % and 6.4 ± 0.4 %, respectively, and 80.52 % and 6.1 %, respectively for this 

study herein). The loading of the nanogel was determined using HPLC-UV/VIS 

according to the method in previous research by Vijayaraghavalu and Labhasetwar 

(2013). The chromatograms shown in Figure 4 show that DAC can have a double peak 

which is not entirely separated but there are two apexes. This was confirmed by mass 

spectrometry during the DAC in plasma stability study to be two isomers of DAC. 

Therefore, total area under both peaks is included for the DAC analysis.  
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The mean diameter, PI, and zeta potential values are determined to assess 

continuity between batches so that experimental results can be considered comparable. 

Mean diameter of the void nanogel and DAC-nanogel was larger in this study (the void 

nanogel and DAC-nanogel mean diameter from the previous research was 233 nm and 

244 nm, respectively, and 209.0 nm and 227.1 nm, respectively for this study herein). It 

is unknown whether the difference in mean diameter is significant since there is not a 

value given for the s.e.m. for the previous research.  

Polydisperity index (PI) was lower in this study (the void nanogel and DAC-

nanogel PI from the previous research was 0.06 and 0.11, respectively, and 0.05 and 0.05, 

respectively for this study herein). The sonication step was optimized for this study to 

achieve a low PI and not create foam as outlined in section 3.3.2. A PI less than 0.1 -

which was the case for all samples in this study - is a general guideline that indicates 

uniformity of the sample. Particle size distribution around the mean diameter can be 

observed by the distribution graph from the dynamic light scattering as shown in    

Figure 3. The distribution of the nanogels is similar to the distribution shown in the 

previous research by Vijayaraghavalu and Labhasetwar (2013), as would be predicted 

based on the values for the mean diameter and the polydisperity index also being similar. 

The PI also serves as a confirmation that the sonication has successfully dispersed the 

nanogel. 

The zeta potential was within the s.e.m. from the previous research (the void 

nanogel and DAC-nanogel zeta potential from the previous research was -25 ± 4.0 mV 

and -19 ± 1.0 mV, respectively, and -21.55 mV and -19.90 mV, respectively for this 

study herein).  The zeta potential is related to the electrical surface potential of the 
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nanogel (but not the same as particle charge). It is a measure of the electrical potential 

difference at the location of the slipping plane and is a key indicator of stability of a 

colloidal dispersion. It was used in this study as another means of comparison of the 

current nanogel with previous research to assess whether the different nanogel batches 

are comparable. The results from the DAC stability analysis verify that increased stability 

of DAC in nanogel could be a reason for the greater efficacy seen when using DAC-

nanogel rather than DAC solution in previous studies (Vijayaraghavalu and Labhasetwar 

2013; Raghavan et al. 2015). A high and a low concentration of DAC solution provide a 

range within which to compare the stability curve to DAC-nanogel as suggested in the 

American Association of Pharmaceutical Scientists Journal (van de Merbel et al. 2014). 

A concentration of 50 ng/mL DAC (the concentration used as pretreatment in the 

IC50/IC70 and confocal experiments) as the beginning concentration would not have 

produced a detectable stability curve because the lower limit of quantification (LLOQ) 

for the HPLC - mass spectrometry method was 40 ng/mL DAC. The concentration of  

100 µg/mL was chosen while optimizing the protocol to be high enough that a stability 

curve could be observed. Patient data showing 300 ng/mL (1 µM DAC is equal to 228 

ng/mL) to be a clinically relevant concentration (Karahoca and Momparler 2013).  The 

DAC-nanogel did not reach a plateau during the experiment. This is reflected in the value 

of Ymin which is extrapolated out and found to be 9.27, which is past the time of the last 

sample taken at 8 hours. The absolute values or kinetics from this stability study are not 

relevant in vivo as there are many more factors in play in animal models/clinical studies 

such as renal clearance and drug metabolism. But as a mechanistic and comparative study 

it is useful in developing new theories and experiments that could lead to in vivo or 
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clinical studies. The increased stability of the DAC in nanogel (half- lives of the DAC 

and the DAC in nanogel were 39 minutes and 2 hours 12 minutes, respectively) also 

provides a mechanism by which a longer duration of the DAC-nanogel pretreatment is 

leading to greater efficacy of the subsequent anticancer drug as shown in the IC50 and 

IC70 values in Figure 9.  

The dose response curves and IC70 values correlate with the stability data by 

supporting the hypothesis that DAC is more stable in nanogel by showing that the DAC-

nanogel 5-day pretreatment has the greatest effect on subsequent drug efficacy. However, 

the effect is not seen at high concentrations of PTX. This could be because at these very 

high concentrations, enough PTX is intracellular that the efficacy is the same for the 

pretreated samples. It has been shown in a previous study that this can be the case where 

there is a threshold affect (Peetla et al. 2010). Doxorubicin is a preferred drug for treating 

breast cancer but PTX is rather a broader spectrum anticancer drug used for treating 

different types of cancers.  

The confocal experiment showed that the greatest increase in nanoparticle uptake 

occurred in the DAC solution pretreated cells, not DAC-nanogel pretreated as was 

hypothesized. It could be that if more time had elapsed since pretreatment with DAC then 

the DAC-nanogel would have had the greater effect on uptake. The protocol for the 

confocal experiment requires 3 days of incubation with pretreatment, then the confocal 

and nanoparticle addition is performed 5 days after the removal of the pretreatment. One 

study in particular has shown that timing of the experiment could impact whether the 

DAC solution of DAC-nanogel seem to be having a greater impact (Vijayaraghavalu and 

Labhasetwar 2013). In that study, DAC solution has a more pronounced affect at an 
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earlier timepoint with regards to antiproliferative effect (of the DAC/DAC-nanogel 

itself), DNMT1 depletion, and cell cycle arrest. But then at later timepoints in all these 

aspects, the sustained effect of DAC-nanogel reverses the earlier trend in drug resistant 

cells.  Although in that study, the measured responses are not nanoparticle uptake or 

perhaps membrane lipid alterations, the sustained effect that DAC-nanogel confers may 

be applicable to understanding the DAC solution efficacy at one timepoint for the 

confocal data. There are not any timepoints from that previous study that exactly match 

the pretreatment duration and post-treatment time of the confocal experiment for a more 

direct comparison. Previous study showing that DAC-nanogel caused a greater decrease 

in cholesterol-SM rafts than DAC solution and this phenomenon increased from one day 

post DAC or DAC-nanogel treatment to 5 days and 8 days post treatment (Raghavan et 

al. 2015). Since the rafts confer greater rigidity, DAC-nanogel pretreatment would 

increase fluidity and thereby should have a greater uptake of nanoparticles than the 

solution treated group. Accordingly, the nanoparticle uptake should have been greater in 

DAC-nanogel treated cells than in DAC solution treated cells.  However, in the previous 

study where lipid changes were analyzed, the medium was changed and hence DAC 

remained in the culture medium whereas for confocal microscopy study the medium was 

replaced after 3 days. Even though the DAC solution had a greater effect, the DAC-

nanogel effect was still 9 and 141 – fold higher (for lysotracker and membrane stain, 

respectively) than the control and DAC-nanogel confers benefits over DAC solution in 

vivo as outlined previously.    
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

 All experiments proved some benefit of DAC and/or DAC-nanogel pretreatment 

to overcome drug resistance. The stability of DAC in nanogel was proven to be greater 

than DAC alone (the half-lives were 2 hours 12 minutes and 39 minutes, respectively) in 

mouse plasma under physiological conditions using HPLC/MS. The effect of different 

durations of pretreatment on subsequent anticancer drug efficacy in MCF-7/ADR cells 

was found using MTS assays. The results show that DAC-nanogel pretreatment for a 

duration of 5-days causes the greatest increase in efficacy. At the higher doses all 

pretreatments have a similar response. This is why both IC50 and IC70 were calculated for 

further comparison of the data. IC50s of pretreated cells were lower than cells without 

pretreatment, but there was no significant difference between DAC solution and DAC-

nanogel at 3 days. IC70 showed a significant difference for the DAC-nanogel 5-day 

pretreatment sample compared to the DAC-nanogel 3-day sample and accounting for the 

difference seen in the control (no pretreatment) sample. The effect of DAC and DAC-
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nanogel pretreatment on the subsequent uptake of nanoparticles in drug resistant breast 

cancer cells was visualized using confocal microscopy and the uptake of nanoparticles 

was quantified using the green intensity per cell. At 5 days following a 3-day 

pretreatment, the confocal data showed that DAC solution had the greatest increase in 

uptake of nanoparticles (27 and 421 fold increases with respect to untreated cells) 

followed by DAC-nanogel (9 and 141 fold increases with respect to untreated cells). The 

images showed that nanoparticles are not trapped in intracellular vesicles based on the 

green nanoparticles being seen throughout the cytoplasm, not preferentially overlapping 

with the red lysosome stain.  

5.2 Recommendations 

 

1. There are benefits of nanogel that have been postulated but have yet to be verified. 

For instance, nanogel may protect DAC from cytidine deaminase in the liver 

and/or decreases bone marrow toxicity by causing less DAC to pass into the bone 

marrow. 

2. It would be interesting to see what the stability of DAC versus DAC-nanogel looks 

like when carried out in liver tissue (instead of plasma) under physiological 

conditions. 

3. The polyethylene glycol (PEG) on the nanogel surface should cause an increase in 

circulation time and cause more accumulation at the tumor site passively via the 

enhanced permeability (EPR) effect. This hypothesis could be tested. 
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4. Nanogel surfaces could be made with actively targeting ligands for increased tumor   

accumulation.  

5. Perform a proof of concept study for corroborating deep red plasma stain 

(membrane dye) with endocytotic rate using cells with varying known endocytotic 

rates.  

6. DAC crosses the membrane via human equilibrative nucleoside transporter 1 

(hENT1). It has been proposed that the increased efficacy of DAC-nanogel could be 

due to the nanogel crossing the membrane via an endocytic mechanism instead of 

hENT1. This different mode of membrane transportation could affect the 

conversion rate of intracellular DAC into its active form - DAC-triphospate – which 

is incorporated into the DNA (Vijayaraghavalu and Labhasetwar 2013). Whether or 

not DAC-nanogel enters the cell via hENT1 could be studied using a hENT1 

specific inhibitor such as S-(4-nitrobenzyl)-6-thioinosine (NBTI) on cells. These 

hENT1 deficient cells could then be treated with DAC-nanogel. The amount of 

intracellular DAC in these hENT1 deficient cells could then be directly quantified 

using a HPLC-MS/MS method such as the one described in this paper. If hENT1 

inhibition does not cause a change in intracellular DAC this would indicate that 

DAC-nanogel crosses the membrane differently than DAC and vice versa.  

7. A HPLC-MS/MS method for quantifying intracellular DAC-triphosphate has been 

developed and validated (Wang et al. 2013). This could be used to determine if the 

conversion rate of DAC to its active form – DAC-triphosphate – differs between 

DAC-nanogel and DAC treatment.  
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8. The confocal data quantifying the uptake of nanoparticles is n = 1. The same 

experiment could be carried out but with more replicates (n = 3 or greater). 
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APPENDIX A 

 

Nonlinear fit curves for IC50 and IC70 calculations from section 4.1.3. 
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APPENDIX B 

Two-way ANOVA results from GraphPad Prism. 
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