
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

ETD Archive 

2016 

State Estimation of Glucose and Insulin Dynamics State Estimation of Glucose and Insulin Dynamics 

Morgan Nicholas Miller 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive 

 Part of the Biochemical and Biomolecular Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Miller, Morgan Nicholas, "State Estimation of Glucose and Insulin Dynamics" (2016). ETD Archive. 925. 
https://engagedscholarship.csuohio.edu/etdarchive/925 

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for 
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, 
please contact library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/241?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/925?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


 

 

 

 

State Estimation of Glucose and Insulin Dynamics 

 

Morgan Miller 

 

 

Bachelor of Chemical Engineering 

Cleveland State University 

May, 2015 

 

 

 

 

Submitted in partial fulfillment of requirements for the degree 

MASTER OF SCIENCE IN CHEMICAL ENGINEERING 

at 

CLEVELAND STATE UNIVERSITY 

August, 2016 

  



 

 

We hereby approve this thesis for 

 

Morgan Miller    

 

Candidate for the Master of Science in Chemical Engineering degree for the  

 

Department of Chemical and Biomedical Engineering 

 

and the CLEVELAND STATE UNIVERSITY  

 

College of Graduate Studies  

 

 

_________________________________________________________________ 

 

Thesis Chairperson, Dr. Sridhar Ungarala    

 

 

_____________________________________________ 

Department & Date 

 

 

 

 

_________________________________________________________________ 

 

Thesis Committee Member, Dr. Jorge Gatica    

 

_____________________________________________ 

Department & Date 

 

 

 

 

_________________________________________________________________ 

 

Thesis Committee Member Dr. Rolf Lustig    

 

 

 

_____________________________________________ 

Department & Date 

 

Student’s Date of Defense:  06/30/2016    



 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor Dr. Sridhar Ungarala for his guidance, patience, and time 

throughout this process.  

I would like to thank my thesis committee members Dr. Jorge Gatica and Dr. Rolf Lustig 

for their time. 

I would like to thank my family for their support and for keeping me on track for the past 

few years. 

 

 



 

 

iv 

 

STATE ESTIMATION OF GLUCOSE AND INSULIN DYNAMICS 

 

 

MORGAN MILLER 

 

ABSTRACT 

Process simulation and state estimation have very important applications in 

chemical engineering as well as the biomedical field. Diabetes is a rapidly growing disease 

in the United States with 29 million people already diagnosed. The estimation of glucose 

and insulin concentration in patients is necessary in order to effectively treat diabetes. The 

Bergman Minimal Model is a popular process model that is used to simulate glucose and 

insulin dynamics. A simulation of this model was created based on estimated parameters 

for the model from historical data. This thesis investigated the estimation of glucose 

concentration, insulin concentration, and effect of active insulin using the extended Kalman 

filter, unscented Kalman filter, ensemble Kalman filter, and sequential Monte Carlo Particle 

filter. The performance of the filters was compared using root mean squared error. The 

filters were studied for the cases of good filter initialization, poor filter initialization, plant-

model mismatch, increased measurement noise, and multiple glucose ingestions.  
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CHAPTER I  

INTRODUCTION 

 

 

Process simulation allows for the testing of experiments that would ordinarily be 

impractical to be performed physically as a result of financial, safety, or legal constraints. 

Instead of a physical experiment, a model is developed for the process and tested using 

computer simulation. Most variables that are desired to be known about a process cannot 

be measured directly and are correlated to other measurements from sensors such as 

current or voltage. The methods and techniques for state estimation have existed for 

several decades but have gained recent interest in the chemical engineering field. This is 

due to the need of discrete analytical models to solve engineering problems where 

accurate theoretical models either do not exist or cannot be solved practically [1]. 

Measurements in a chemical process are subject to errors and noise to the point where the 

laws of conservation of mass and energy are not observed from these noisy 

measurements [2]. This is a major problem that can affect the monitoring and control of a 

process [3].  Measurements need to be filtered to reduce the impact of the noise in order 

to have a better estimate for the true state of a process. In the area of chemical process 

control, state estimation can be applied to estimate state variables in distillation columns, 

biomedical devices, or continuously stirred tank reactors.  



 

2 

 

A main area of interest in state estimation are biomedical applications. One of 

these biomedical applications is the estimation of blood glucose and insulin dynamics due 

to prevalence of diabetes in the population. 

 

 

1.1 Diabetes 

 

Diabetes is a rapidly growing disease in the United States. 29 million people in 

the United States are diabetic and 86 million people are pre-diabetic, which means they 

are very likely to become diabetic unless radical changes are made to their diet and 

exercise routine [4]. The combined amount of people that are diabetic or pre-diabetic 

accounts for nearly one third of the population in the United States. In type 1 diabetes, the 

pancreas cannot produce enough insulin to control the glucose concentration in the blood 

stream [4]. In type 2 diabetes, the body has become resistant to the insulin that is 

produced by the pancreas [4]. In both cases of the disease, the body is unable to 

effectively regulate the glucose concentration in the blood. This can have serious medical 

consequences. If the glucose concentrations in the blood are too high over long periods of 

time, there can be damage to the eyes including blindness, damage to the kidneys, nerve 

damage, heart disease can result, and the amputation of a limb may be required [5].   

One of the techniques that is used for diagnosing diabetes is the glucose tolerance 

test. Patients fast for at least 8 hours before the test and have a blood sample taken 

initially. This sample represents the fasting or basal glucose concentration. This can be 

thought of as a steady state glucose concentration that the body always returns to after a 
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meal. The patients are then given a concentrated sugar solution or an injection of glucose 

and their blood is drawn at pre-determined intervals over a period of approximately 3 

hours [6]. Table 1 below summarizes the typical ranges of concentrations for individuals 

who are healthy, pre-diabetic, or diabetic. 

  

Fasting 

(mg/dL) Immediately after meal (mg/dL) 

2-3 hours after eating 

(mg/dL) 

Normal 80-100 170-200 120-140 

Pre-

Diabetic 101-125 190-230 140-160 

Diabetic >125 220-300 >200 

 

Table I: Typical glucose concentrations for normal, pre-diabetic, and diabetic 

patients [7] 

 

 

1.2 Control of Diabetes 

 

 The most common treatments for diabetes involve the injection of insulin through 

needles or insulin pumps. Insulin injections are given at predetermined times throughout 

the day. Insulin pumps deliver a continuous dosage throughout the day known as the 

basal dosage which is determined by a physician. At meal times, the dosage is changed to 

a bolus dosage which is higher than the basal dosage since it needs to compensate for the 

increased glucose levels in the blood as a result of the meal. These dosages are based on a 

“guess” of the proper insulin dosage that would respond to what the glucose 

concentrations will rise to and is adjusted by the patient based on the resulting glucose 

measurements from either a continuous glucose monitor or a glucose test strip. Insulin 

concentrations cannot be measured in a nonclinical setting. A glucose test strip involves 
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drawing a small sample of blood from the fingertip. A continuous glucose monitor 

samples interstitial tissue fluid from an electrode implanted underneath the skin [8]. 

 
Figure 1: Continuous glucose monitor illustration [8] 

 

While there are insulin pumps available on the market that have been coupled with 

continuous glucose monitors, they do not function as feedback process controllers [9]. 

Rather, the insulin pump takes action only when the glucose concentration is too low or 

too high to avoid periods of hypoglycemia or hyperglycemia. These conditions can result 

in confusion, falls, seizures, coma, or death [10]. This is not an optimal design since the 

insulin dosage being provided to the patient may not accurately reflect the actual dosage 

that is required to reach their normal glucose levels which could result in frequent 

oscillations in glucose concentration along with wasted insulin. 
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1.3 Motivation 

 

In order to ensure the proper dosage of insulin is being administered at all times, a 

feedback loop needs to be created where measurements from a glucose monitor are used 

to estimate the true glucose and insulin concentrations. This feedback loop process 

controller can replace the function of the pancreas in a diabetic and may be referred to as 

an artificial pancreas. 

 

1.4 Scope of the Thesis 

 

 This thesis investigates the use of the extended Kalman filter, unscented Kalman 

filter, ensemble Kalman filter, and particle filter to estimate the glucose concentration, 

insulin concentration, and effect of active insulin in the human body. 

 The performance of the extended Kalman filter, unscented Kalman filter, 

ensemble Kalman filter, and particle filter is investigated for the following cases: 

 Good filter initialization: The performance of the filters is compared when the 

initial estimate of the state is very close to the actual state. This is done for cases 

of both high and low confidence in the initial estimate which is reflected in 

adjusting the value for the initial covariance matrix for the filter. 

 Poor filter initialization: The performance of the filters is compared for the 

scenario when the initial estimate of the state is distant from the actual state. This 

is also done for the cases of both high and low confidence in the initial estimate 

which is reflected in the initial covariance matrix. 
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 Plant-Model mismatch: The performance of the filters is compared for the 

scenario where the model for the system used in the state estimator does not 

accurately describe the true state. There are 2 cases of plant-model mismatch. The 

1st case is where the value for insulin sensitivity for the estimator is not equal to 

the actual insulin sensitivity of the patient. The 2nd case where the system is 

changed to an elderly patient while the estimator uses the model parameter values 

for a normal patient. 

 Large measurement noise: The performance is compared for 3 levels of signal 

noise from the glucose measurement. 

 Multiple glucose ingestions: The performance of the filters is compared for the 

scenario where a 2nd glucose ingestion occurs 60 minutes into the simulation. The 

filters are compared for the case when the filter knows the ingestion has taken 

place and when the filter does not know the ingestion has taken place. 

 

1.5 Organization of the Thesis 

 

This thesis has been organized in the following manner. The mathematical model 

for glucose and insulin dynamics is discussed in Chapter 2. Chapter 3 explains the 

different types of filters used for state estimation. This includes the different variants of 

the Kalman filter along with the Monte Carlo based particle filter. The results of the 

simulation study and comparison of the filters are presented in Chapter 4. Chapter 5 

presents the conclusions and provides the direction for future work. 
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CHAPTER II 

GLUCOSE AND INSULIN MODEL 

 

 

 In 1986, Richard Bergman and Giovanni Pacini developed a model to describe 

glucose and insulin dynamics known as the Minimal Model [11]. The Minimal Model 

can be used to describe the glucose and insulin dynamics of healthy people not affected 

by diabetes as well as diabetics. This is accomplished by adjusting the parameter values 

introduced in the model to fit recorded patient data. Since the Minimal Model was first 

developed, there have been over 100 technical reports published regarding the model 

[12]. The accuracy of the model was tested by performing intravenous glucose tolerance 

tests on humans. The patients were given an initial injection of 0.3 g/kg of glucose. This 

means that the dosages were normalized to account for the different weights of patients in 

the study. Their glucose and insulin levels were then measured for approximately 3 hours 

to obtain information on the dynamic behavior of the glucose and insulin system. 

Frequent samples of blood were drawn from the patients to obtain measurements of the 

glucose and insulin concentrations. This was done in order to establish the shape of the 

concentration profiles over time. The measured data along with the model that was fit to 

the data can be seen in Figure 2. The basal glucose and insulin concentrations are plotted 

as dashed lines. It can be seen that after the initial peak from the glucose injection, the 
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levels undershoot the basal levels and then oscillate around the basal levels. The insulin 

concentration is reported in units of micro units per milliliter which is a standardized unit 

of measure in the medical field. 

 
Figure 2: Measured glucose and insulin concentrations vs. time [11] 
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The model assumed that glucose returns to its basal concentration due to the effect of 

glucose to regulate its concentration by itself and due to the effect of insulin. Figure 3 

shows a physiological representation of the model proposed by Bergman.   

 

 

Figure 3: Physiological representation for glucose and insulin dynamics [12] 

 

The glucose concentration is represented by the level in the tank in figure 3. The level 

can change due to production by the liver or utilization by the body including the central 

nervous system and muscles. The pancreas responds to the glucose level by producing 

insulin which is transported from the bloodstream to the “remote” compartment which is 

interstitial tissue where it can increase the glucose uptake by the muscles or fat tissue or 
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reduce the glucose production by the liver. After a meal or an injection of glucose, the 

glucose level rises which causes a response by the pancreas. The pancreas produces 

insulin which is transferred into the interstitial tissue where it acts to return the glucose to 

the basal level. This creates a biological feedback loop. An analogous process control 

block diagram for the Minimal Model can be seen in Figure 4. 

 

 
 

Figure 4: Control system analog for glucose and insulin kinetics [13] 
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G(t) and I(t) are the glucose and insulin concentrations as functions of time respectively. 

Gb and Ib are the basal or steady state glucose and insulin concentrations respectively. 

X(t) is not an actual physiological measurement quantity but the effect of active insulin or 

what is sometimes referred to as the effective insulin activity in min-1. The insulin 

activity quantity accounts for the insulin having to travel from the bloodstream into the 

interstitial tissue to respond to the glucose level. The pancreas in the glucose and insulin 

system basically functions as a process controller. Glucose enters the plasma 

compartment at a rate proportional to the difference between the actual and basal 

concentrations. Glucose exits the plasma compartment at a rate proportional to the 

activity of insulin in the interstitial tissue. Insulin enters the plasma compartment at a rate 

proportional to the insulin responsivity by the pancreas multiplied by the time and exits at 

a rate proportional to the amount of insulin in the plasma compartment.  

The equations for the Minimal Model are derived from unsteady state material 

balances in the body. The general unsteady state material balance is as follows: 

𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

(2.1) 

The unsteady state material balances for glucose and insulin are taken from the reference 

and shown in the following equations below [11]: 

𝑘1(𝐺𝑏 − 𝐺) − 𝑋𝐺 =
𝑑𝐺

𝑑𝑡
 

 (2.2) 

Where k1 is the glucose effectiveness in min-1 which may also be written as SG, Gb is the 

basal glucose concentration in 
𝑚𝑔

𝑑𝐿
, G is the glucose concentration in 

𝑚𝑔

𝑑𝐿
, and X is the 

effect of active insulin also known as insulin activity in interstitial tissue in min-1.  



 

13 

 

𝑘3 (
𝑘2

𝑘3

(𝐼 − 𝐼𝑏) − 𝑋) =
𝑑𝑋

𝑑𝑡
 

(2.3) 

Where k2 is the weighted external insulin input in min-1, k3 is the insulin clearance in min-

1, I is the insulin concentration in 
𝑚𝑖𝑐𝑟𝑜𝑈

𝑚𝐿
 , Ib is the basal insulin concentration in 

𝑚𝑖𝑐𝑟𝑜𝑈

𝑚𝐿
 , 

X is the insulin activity in min-1, and the ratio of k2 to k3 is the insulin sensitivity (SI). The 

insulin sensitivity reflects how effective the insulin is at returning to the basal 

concentration. Diabetics would have lower insulin sensitivities since they have impaired 

glucose tolerance. Equation 2.3 describes the dynamics of the transport of insulin from 

the blood to interstitial fluid. The final equation in the model describes the change in 

insulin concentration in the blood over time. 

𝛾(𝐺 − 𝐺𝑏)𝑡 − 𝑘(𝐼 − 𝐼𝑏) =
𝑑𝐼

𝑑𝑡
 

(2.4) 

Where γ is the insulin responsivity by the pancreas in min-2, G is the glucose 

concentration in 
𝑚𝑔

𝑑𝐿
, Gb is the basal glucose concentration in 

𝑚𝑔

𝑑𝐿
, t is the time in min, k is 

the insulin decay rate, I  is the insulin concentration in 
𝑚𝑖𝑐𝑟𝑜𝑈

𝑚𝐿
, and Ib is the basal insulin 

concentration in 
𝑚𝑖𝑐𝑟𝑜𝑈

𝑚𝐿
.  The material balances result in 3 coupled differential equations 

(2.2, 2.3, and 2.4) which form the Minimal Model. 

Since the original Minimal Model has been proposed, there have been several 

proposed modifications to the model by other researchers. An example of this is a 

modification of the model to include the effect of physical exercise on insulin sensitivity 

and glucose effectiveness [14]. This is done by creating a more complex system that 
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result in more than 3 coupled differential equations. Other modifications that have been 

proposed include the addition of parameters to account for genetic risk factors and 

obesity [15].  

 

Matlab Implementation 

 

The glucose insulin system was generated by simulating the original Bergman 

Minimal Model in MATLAB. The 3 coupled differential equations were solved using the 

MATLAB differential equation solver function ODE15s. This is a differential equation 

solver for stiff functions which was chosen after the standard differential equation solver 

ODE45 function failed to solve the system of equations in a timely manner. The system 

was simulated for 180 minutes with glucose measurements taken at every minute. 
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CHAPTER III  

STATE ESTIMATION 

 

3.1 Kalman Filter 

 

There are several types of state estimators that have been introduced over the 

years. One popular type is the Kalman filter. The Kalman filter is a recursive data 

processing algorithm that combines all available measurement data, plus prior knowledge 

about the system and measurement devices to produce an estimate of the desired 

variables. The Kalman filter can be applied when the state equations are linear and there 

is a Gaussian distribution for the probability density function of the state for all of the 

time steps.  

 The following is a general linear system that the Kalman filter could be applied to 

which includes equations for the state as well as the measurement. 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘 

(3.1) 

Where 𝑥𝑘 is the state of the system at times step k, A is a constant,  𝑥𝑘−1 is the state at 

time step k-1, and 𝑤𝑘 is the process noise. 

𝑦𝑘 = 𝐶𝑥𝑘−1 + 𝑣𝑘 

(3.2) 
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Where 𝑦𝑘 is the measurement at times step k, C is a constant,  𝑥𝑘−1 is the state at time 

step k-1, and 𝑣𝑘 is the measurement noise. 

 

3.2 Extended Kalman Filter 

 

For non-linear systems, other state estimators are required. The extended Kalman 

filter attempts to apply the Kalman filter to nonlinear systems by linearizing the system 

and measurement equations for each time step. This is done through the use of a Taylor 

expansion for each time step. This results in a Jacobian matrix of partial derivatives. 

𝐹 =
𝜕𝑓

𝜕𝑥
= [

1 + (−𝑆𝐺 − 𝑋) ∗ 𝑑𝑡 −𝐺 ∗ 𝑑𝑡 0
0 1 − 𝑘3 ∗ 𝑑𝑡 𝑆𝐼 ∗ 𝑘3 ∗ 𝑑𝑡

𝑘 ∗ 𝛾 ∗ 𝑑𝑡 0 1 − 𝑘1 ∗ 𝑑𝑡
] 

(3.3) 

𝐻 =
𝜕ℎ

𝜕𝑥
= [1 0 0] 

(3.4) 

F and H are the Jacobian matrices of the state and measurement functions respectively. 

The Kalman gain (Kk), covariance (Pk) and estimate (𝑥̂𝑘) are updated as shown in 

equations 3.5, 3.6, and 3.7.  

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅)−1 

(3.5) 

𝑃𝑘 = 𝑃𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘−1 

(3.6) 

 

𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑥̂𝑘) 
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(3.7) 

Where 𝑥̂𝑘 is the estimate state of the system at times step k, R is the system noise 

covariance matrix,  𝑥̂𝑘−1 is the state at time step k-1, Kk is the Kalman gain at time step k, 

𝑃𝑘 is the system covariance matrix at time step k, 𝑦𝑘 is the measurement at times step k, 

H is the Jacobian matrix of the measurement function. The reason matrix transposes and 

inverses are used in equation 3.5 is due to the behavior of Gaussian systems as well in 

order to obtain a feasible solution with the proper dimensions. 

A drawback of the extended Kalman filter is that it requires the system and 

measurement functions to be differentiable and knowledge of what the derivatives of 

those function are. Some functions that are nonlinear may also not be linearized well by 

only a first order Taylor expansion. 

 

3.3 Unscented Kalman Filter 

 

 The unscented Kalman filter takes another approach to apply the Kalman filter to 

nonlinear systems. The unscented Kalman filter involves a method of statistical 

linearization by deterministically sampling 2n+1 “sigma points” where n is the number of 

states that represent the system. The points that are sampled represent the current mean 

and the standard deviation from both sides of the mean. The points are fed through the 

system equation. As a result, the distribution of the sigma points is no longer symmetric. 

Sigma points are re-generated symmetrically by calculating the new weighted mean and 

covariance and choosing new points accordingly. A graphical representation of the sigma 

points can be seen in figure 4 from the reference [16]. 
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Figure 4: Symmetric sigma points for the Minimal Model system [16] 

 

The dots connected by the solid line represent the initially symmetric sigma points while 

the dots connected by the dashed lines show a possible distribution that can result after 

the sigma points are passed through the nonlinear system. The sigma points are 

regenerated symmetrically using the following equations. 

𝑥0 = 𝑥̅ 

(3.8) 

Where 𝑥0 is the central point which is taken from the weighted mean of the sigma points 

(𝑥̅). The remaining sigma points are generated based off of the standard deviation from 

the mean. In the case of model used in this thesis, there are 3 sigma points on the positive 

side of the mean and 3 sigma points on the negative side of the mean. This is shown in 

equations 3.9 and 3.10. 

𝑥𝑖 = 𝑥̅ + (√(𝑛 + 𝜆)𝑃𝑥𝑥)
𝑖
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(3.9) 

𝑥𝑖 = 𝑥̅ − (√(𝑛 + 𝜆)𝑃𝑥𝑥)
𝑖
 

(3.10) 

The weighted mean for the estimate of the state of the system is calculated as follows: 

 

𝑥̅𝑘 = ∑ 𝑊𝑖𝑥𝑘,𝑖

2𝑛+1

𝑖=0

 

(3.11) 

 

The weights for the mean and covariance for the central sigma points are assigned using 

the following equations: 

𝑊𝑎
(0)

=
𝜆

𝑛 + 𝜆
 

(3.12) 

𝑊𝑐
(0)

=
𝜆

𝑛 + 𝜆
+ 1 − 𝛼2 + 𝛽 

(3.13) 

Where 𝑊𝑎
(0)

 is the weight of the central sigma point for the mean and  𝑊𝑐
(0)

 is the weight 

of the central sigma point for covariance. The weights for the mean and covariance for 

the rest of the sigma points are assigned using the following equations: 

 

𝑊𝑎
𝑖 = 𝑊𝑐

𝑖 =
1

2(𝑛 + 𝜆)
 

(3.14) 
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𝜆 = 𝛼2(𝑛 + 𝜅) 

(3.15) 

Where n is the number of sigma points, λ is a function of the tuning parameters α, β, and 

κ which have typical values of α=0.5, β=2, and κ=3-n [17]. The values for these 

parameters can be adjusted to “tune” the filter to the system with an unbiased estimate as 

long as the sum of the resulting weights is equal to 1. 

The following equations are used to update the estimate of the state and the covariance: 

𝑃𝑥𝑦 =
1

𝑁 − 1
∑[𝑥𝑖 − 𝑥̅]

𝑁

𝑖=1

𝑊𝑖[ℎ(𝑥𝑖) − ℎ(𝑥̅)]𝑇 

(3.16) 

𝑃𝑦𝑦 =
1

𝑁 − 1
∑[ℎ(𝑥𝑖) − ℎ(𝑥̅)]

𝑁

𝑖=1

𝑊𝑖[ℎ(𝑥𝑖) − ℎ(𝑥̅)]𝑇 + 𝑅 

(3.17) 

𝐾 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 

(3.18) 

𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾(𝑦𝑘 − ℎ(𝑥̂𝑘)) 

(3.19) 

An advantage of the unscented Kalman filter is that the system and measurement 

equations do not need to be linearized at each time step through Taylor expansions. This 

means there is no longer the need to calculate Jacobians as is the case in the extended 

Kalman filter. 
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3.4 Ensemble Kalman Filter 

 

 The ensemble Kalman filter is another way to utilize the Kalman filter for 

nonlinear systems. Instead of representing the mean and covariance of the state through 

deterministically chosen sigma points like the unscented Kalman filter, the ensemble 

Kalman filter utilizes a more stochastic process. The ensemble Kalman filter involves 

sampling a large number of random points to obtain the mean and covariance. In this 

thesis, 100 points which each had a value for the glucose concentration, insulin 

concentration, and effect of active insulin were used for the ensemble Kalman filter. The 

initial distribution of the points is assumed to be Gaussian. After the initial time step, the 

points are fed through the nonlinear state equation and their distribution becomes non-

Gaussian. In this filter, the sample mean and sample covariance are used instead of some 

type of weighted mean and covariance. 

𝑃𝑥𝑦 =
1

𝑁 − 1
∑[𝑥𝑖 − 𝑥̅]

𝑁

𝑖=1

[ℎ(𝑥𝑖) − ℎ(𝑥̅)]𝑇 

(3.20) 

 

𝑃𝑦𝑦 =
1

𝑁 − 1
∑[ℎ(𝑥𝑖) − ℎ(𝑥̅)]

𝑁

𝑖=1

[ℎ(𝑥𝑖) − ℎ(𝑥̅)]𝑇 + 𝑅 

(3.21) 

 

𝐾 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 

(3.22) 
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𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾(𝑦𝑘 − ℎ(𝑥̂𝑘)) 

(3.23) 

𝑃𝑥𝑥 =
1

𝑁 − 1
∑[𝑥𝑖 − 𝑥̅]

𝑁

𝑖=1

[𝑥𝑖 − 𝑥̅]𝑇 

(3.24) 

The ensemble Kalman filter does not require the Gaussian assumption that is made for 

the propagation of sigma points in the unscented Kalman filter. A shortcoming of the 

ensemble Kalman filter is that all of the particles are assigned equal weights regardless of 

what their distribution [18].  

  

3.5 Particle Filter 

 

The last state estimator discussed in this thesis is the Monte Carlo based particle 

filter which was first proposed by Gordon et al [19]. In the particle filter, the assumptions 

of a Gaussian distribution and linear system are no longer required. Since there is no 

readily available formula for the probability density function of non-linear and non-

Gaussian processes, the use of Monte Carlo simulation is required. Monte Carlo 

simulation involves drawing a large number of random samples to estimate integrals or 

areas. In the case of the particle filter, it is used to estimate the area of the probability 

density function. 

The conditioned probability density for the particle filter is based off of Bayes 

rule and is as follows:  

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
=

𝑝(𝑦1|𝑥1)𝑝(𝑥1|𝑦0)

𝑝(𝑦1)
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(3.25) 

Where 𝑝(𝑦1|𝑥1) is the probability of 𝑦1 conditioned on 𝑥1, and 𝑝(𝑥1|𝑦0) is the 

probability of 𝑥1 conditioned on 𝑦0, and 𝑝(𝑦1) is a normalizing constant. 

 The particle filter estimates the state of the system by using a weighted estimate. 

In order to determine the weights of the particles, the following equation was used. 

𝑊𝑒𝑖𝑔ℎ𝑡 =
1

√2𝜋𝑅
𝑒𝑥𝑝 (−

(𝑦 − ℎ(𝑥))2

2𝑅
) 

(3.26) 

Where R is the sensor noise variance, x is the state, y is the measurement, and h(x) is the 

measurement function of x. In this equation, the transition density was used as the 

importance density. This was done out of computational ease however there are other 

techniques for calculating the importance density. 

 The state was estimated by taking a weighted average of the particles at each time 

step in the simulation as shown in equation 3.27 below: 

𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = ∑
𝑥 × 𝑊𝑒𝑖𝑔ℎ𝑡

∑ 𝑊𝑒𝑖𝑔ℎ𝑡
 

(3.27) 

Where 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is the estimated value of the state, x is the vector of particles created for 

the simulation, and the weight is the vector of weights for each particle which was 

normalized. This was performed for each time step to estimate the state of the process. 

 A resampling step was added to the particle filter algorithm. One reason 

resampling is performed is to prevent a condition known as degeneracy. This is where 

after a large number of time steps, only one particle has significant weight [20]. This 

means that computational effort is wasted on particles with negligible weight while only 
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one particle determines the estimate of the state. In the resampling step which occurs at 

every time step, particles with low weights were eliminated while particles with high 

weights were duplicated. There are several types of resampling methods that vary in 

computational efficiency which include multinomial resampling, stratified resampling, 

systematic resampling, and residual resampling [21]. In this case, residual resampling 

was chosen. More information about the algorithm can be found from the reference [21]. 
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CHAPTER IV  

SIMULATION STUDY 

 

 

The application of a process controller to function as an artificial pancreas will 

have to respond to the changes to the glucose insulin system during meal time. The 

Minimal Model that was described in chapter 2 was used as the simulation of the true 

state of glucose and insulin dynamics using the ODE15s function to solve the differential 

equations. The parameters used in the differential equations are taken from the reference 

and summarized in table II below [11]. 

SG (min-1) 0.03082 

SI min-1(microU/mL)-1 5.07E-04 

k1 (min-1) 0.3 

k3 (min-1) 0.02093 

Gamma min-2(microU/mL)(mg/dL)-1 0.003349 

Gb (mg/dL) 89.5 

Ib (microU/dL) 7.3 

Table II: Minimal model parameters 

Glucose measurements were also generated by adding random noise to the true 

glucose concentration. Figures 5, 6, and 7 show the system under normal circumstances 

which was used for the good filter initialization and poor filter initialization case studies. 
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Figure 5: Glucose concentration vs. time

 
Figure 6: Effect of active insulin vs. time 
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Figure 7: Insulin concentration vs. time 

 

In order to evaluate the performance of the filters, the root mean squared error 

(RMSE) was computed as shown in the following equation. 

𝑅𝑀𝑆𝐸 = √
1

𝑘
∑(𝑋𝑡 − 𝑋)2

𝑘

𝑖=0

 

(4.1) 

Where k is the number of time steps, Xt is the true value of the state, and X is the state 

estimate. The comparison of the RMSE of the filters is given as an empirical observation 

and is not meant as an ultimate comparison as which filter is the absolute best. This is 

because of the selection of tuning parameters, number of samples generated, and 

selection of importance density will vary among other programmers and impact the 
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results of the same type of filter. The computational times were calculated for illustrative 

purposes as no attempt was made to optimize the coded algorithm of the filters for speed. 

Another reason to calculate the computational times was to see if the filters could be 

implemented in real time even if they were not optimized for speed. The figures 

presented in each case study are for realizations of filter performance that had a RMSE 

close to the average and are presented for illustrative purposes. 

 

4.1 Good Filter Initialization 

 

The following results are for the case of good filter initialization where the initial 

estimate and state covariance are as follows: 

𝑥0 = [289 1 × 10−7 406] 

𝑃0 = [
22 0 0

0 1 × 10−32
0

0 0 22

] 

(4.2) 

The estimates from all 4 filters can be seen in figures 8, 9, and 10. 
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Figure 8: Good filter initialization, high confidence, glucose concentration vs. time 

 
Figure 9: Good filter initialization, high confidence, effect of active insulin vs. time 
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Figure 10: Good filter initialization, high confidence, insulin concentration vs. time 

 

The results of the filters are summarized in table III below. It was observed that the 

unscented Kalman filter had the lowest RMSE for all of the states. 

  EKF UKF EnKF PF 

CPU time (s) 0.0189 6.0395 111.275 101.9108 

RMSE: Glucose (mg/dL) 1.0496 0.5453 1.8381 1.1954 

RMSE: Insulin (micro U/mL) 12.2368 0.3919 0.4794 0.6703 

RMSE: Effect of Active Insulin 

(1/min) 0.0024 5.86E-05 1.24E-04 3.27E-04 

Table III: Good filter initialization, high confidence filter performance 

 

A 2nd case was studied where the initial estimate remains the same as before but there is 

low confidence in the estimate. This is reflected in changing the value for the initial 

covariance matrix which was as follows: 
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𝑃0 = [
40 0 0
0 1 × 10−8 0
0 0 40

] 

(4.3) 

The new covariance is 10 times the covariance for high confidence. The estimates from 

all 4 filters for this case can be seen in figures 11, 12, and 13 below. 

 

Figure 11: Good filter initialization, low confidence, glucose concentration vs. time 
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Figure 12: Good filter initialization, low confidence, effect of active insulin vs. time 

 
Figure 13: Good filter initialization, low confidence, insulin concentration vs. time 
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The results of the filters are summarized in table IV below. The RMSE increased slightly 

compared to the previous case of good filter initialization and high confidence. The 

unscented Kalman filter still had the lowest RMSE. 

  EKF UKF EnKF PF 

CPU time (s) 0.0194 6.058 117.736 102.92 

RMSE: Glucose (mg/dL) 1.0613 0.5258 2.0562 1.822 

RMSE: Insulin (micro U/mL) 12.2351 0.3847 0.4852 0.6931 

RMSE: Effect of Active Insulin 

(1/min) 0.0024 5.51E-05 1.15E-04 3.27E-04 

Table IV: Good filter initialization, low confidence 

 

 

 

4.2 Poor Filter Initialization 

 

The following results are for the case of poor filter initialization where the initial 

estimate and state covariance are as follows: 

𝑥0 = [385 1.33 × 10−7 541] 

𝑃0 = [
22 0 0

0 1 × 10−32
0

0 0 22

] 

(4.4) 

The initial estimate is 33% higher than the estimate for good filter initialization. The 

initial covariance matrix was unchanged which placed high confidence in this poor initial 

estimate. The estimates from all 4 filters can be seen in figures 14, 15, and 16 below. 
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Figure 14: Poor filter initialization, high confidence, glucose concentration vs. time 

 

 

Figure 15: Poor filter initialization, high confidence, effect of active insulin vs. time 
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Figure 16: Poor filter initialization, high confidence, insulin concentration vs. time 

 

The results of the filters are summarized in table V below. The extended Kalman filter 

had the lowest RMSE. In general, the filters had a higher RMSE than the case of good 

filter initialization which is probably since they took longer to converge to the true states. 

  EKF UKF EnKF PF 

CPU time (s) 0.0189 6.1083 108.3806 101.927 

RMSE: Glucose (mg/dL) 6.238 22.5345 12.5763 22.2365 

RMSE: Insulin (micro U/mL) 2.2904 15.838 15.4067 15.7399 

RMSE: Effect of Active Insulin 

(1/min) 3.71E-04 2.30E-03 1.80E-03 2.40E-03 

Table V: Poor filter initialization, high confidence 
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The case of poor filter initialization was then repeated but with low confidence in the 

initial estimate. This means that the estimator will place less trust in the initial poor 

estimate. The new initial estimate and covariance are shown below. 

𝑥0 = [385 1.33 × 10−7 541] 

𝑃0 = [
40 0 0
0 1 × 10−8 0
0 0 40

] 

(4.5) 

The results from the 4 filters are shown in figures 17, 18, and 19 below. 

 
Figure 17: Poor filter initialization, low confidence, glucose concentration vs. time 
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Figure 18: Poor filter initialization, low confidence, effect of active insulin vs. time 

 
Figure 19: Poor filter initialization, low confidence, insulin concentration vs. time 
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The results of the filters are summarized in table VI below. The extended Kalman filter 

had the lowest RMSE. In general, the RMSE was lower than the case of poor filter 

initialization and high confidence.  

  EKF UKF EnKF PF 

CPU time (s) 0.0161 5.7939 114.4744 90.8206 

RMSE: Glucose (mg/dL) 1.0682 22.5478 8.1905 19.7673 

RMSE: Insulin (micro U/mL) 2.3299 15.8395 15.3371 15.7338 

RMSE: Effect of Active Insulin 

(1/min) 2.72E-04 2.30E-03 1.50E-03 2.40E-03 

Table VI: Poor filter initialization, low confidence 

 

 

 

 

4.3 Plant-Model Mismatch 

 

The next case study was that of plant-model mismatch where the system equation 

used by the estimator does not accurately describe the true system. The first case of this is 

where the insulin sensitivity parameter for the estimator is 33.2% higher than the actual 

sensitivity. This was chosen since it reflects the upper confidence interval for insulin 

sensitivity reported from the reference [11]. This is a likely that can arise from the results 

of a glucose tolerance test. The initial state estimate and covariance were the same from 

equation 4.2. The results from the 4 filters can be seen in figures 20, 21, and 22 below. 
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Figure 20: Plant-model mismatch: insulin sensitivity, glucose concentration vs. time 

 
Figure 21: Plant-model mismatch: insulin sensitivity, effect of active insulin vs. time 
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Figure 22: Plant-model mismatch: insulin sensitivity, insulin concentration vs. time 

 

The results of the filters are summarized in table VII below. The ensemble Kalman filter 

had the lowest RMSE. 

  EKF UKF EnKF PF 

CPU time (s) 0.0227 5.9297 127.2572 102.7042 

RMSE: Glucose (mg/dL) 7.372 4.8735 3.7011 4.2731 

RMSE: Insulin (micro U/mL) 12.7049 2.6171 2.2833 2.6021 

RMSE: Effect of Active Insulin 

(1/min) 3.50E-03 1.90E-03 1.90E-03 2.00E-03 

Table VII: Plant-model mismatch, insulin sensitivity 

 

 

The case of plant-model mismatch was then studied for the case where the true 

system was that of an elderly patient while the parameter values from the estimator were 
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still based off of the values from the reference [11]. A summary of the parameters for the 

elderly patient are shown in the table below. 

SG (min-1) 0.01572 

SI min-1(microU/mL)-1 3.10E-04 

k1 (min-1) 0.3606 

k3 (min-1) 0.01301 

Gamma min-2(microU/mL)(mg/dL)-1 0.001785 

Gb (mg/dL) 105.5 

Ib (microU/dL) 7.3 

Table VIII: Elderly patient minimal model parameters 

 The goal of this case study was to see how using completely different model parameters 

effects the performance of the filters. The results from the 4 filters can be seen in figures 

23, 24, and 25 below. 

 
Figure 23: Plant-model mismatch: elderly patient, glucose concentration vs. time 
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Figure 24: Plant-model mismatch: elderly patient, effect of active insulin vs. time 

 

 
Figure 25: Plant-model mismatch: elderly patient, insulin concentration vs. time 
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The results of the filters are summarized in table IX below. The extended Kalman filter 

had the lowest RMSE but none of the filters were actually able to converge to the true 

state for glucose concentration, insulin concentration, or effect of active insulin. 

 EKF UKF EnKF PF 

CPU time (s) 0.0206 5.7411 128.5475 101.5256 

RMSE: Glucose (mg/dL) 34.2906 41.706 37.6606 40.7346 

RMSE: Insulin (micro U/mL) 9.2112 10.6548 10.3877 10.4799 

RMSE: Effect of Active Insulin 

(1/min) 4.20E-03 4.20E-03 4.40E-03 4.20E-03 

Table IX: Plant-model mismatch, elderly patient 

 

 

 

4.4 Increased Measurement Noise 

The accuracy of glucose monitors varies across manufacturers due to the design 

and sampling method that is utilized for the monitor. The current FDA standard for 

glucose monitors available on the consumer market requires the monitor to be within +/-

15% of a reference measurement throughout the range of the monitor [22]. As a result, 

the filters were compared using the initial estimate and covariance from the case of good 

filter initialization and high confidence using (equation 4.2) but with an increased 

measurement noise of 10 mg/dL and 15 mg/dL. In the case of a measurement noise of 10 

mg/dL, the results from the 4 filters can be seen in figures 26, 27, and 28 below. 
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Figure 26: Increased measurement noise: 10 mg/dL, glucose concentration vs. time 

 
Figure 27: Increased measurement noise: 10 mg/dL, effect of active insulin vs. time 
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Figure 28: Increased measurement noise: 10 mg/dL, insulin concentration vs. time 

The results of the filters are summarized in table X below. The unscented Kalman filter 

had the lowest RMSE. In general, there was a negligible difference in the RMSE between 

the cases of measurement noise of 10 mg/dL and 5 mg/dL from section 4.1. 

  EKF UKF EnKF PF 

CPU time (s) 0.0191 6.0214 121.6147 101.1347 

RMSE: Glucose (mg/dL) 3.1281 0.5285 1.3434 1.1003 

RMSE: Insulin (micro U/mL) 12.1693 0.3903 0.3912 0.6676 

RMSE: Effect of Active Insulin 

(1/min) 1.30E-03 5.62E-05 9.89E-05 3.27E-04 

Table X: Measurement noise 10 mg/dL 

 

The case study was then conducted using the same initial estimate and covariance from 

equation 4.2. In the case of a measurement noise of 15 mg/dL, the results from the 4 

filters can be seen in figures 29, 30, and 31 below. 
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Figure 29: Increased measurement noise: 15 mg/dL, glucose concentration vs. time 

 
Figure 30: Increased measurement noise: 15 mg/dL, effect of active insulin vs. time 
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Figure 31: Increased measurement noise: 15 mg/dL, insulin concentration vs. time 

The results of the filters are summarized in table XI below. The unscented Kalman filter 

had the lowest RMSE. In general, there was a negligible difference in the RMSE between 

the cases of measurement noise of 15 mg/dL and 10 mg/dL. 

  EKF UKF EnKF PF 

CPU time (s) 0.0183 6.0064 122.9872 98.0083 

RMSE: Glucose (mg/dL) 3.2576 0.498 1.2318 1.0833 

RMSE: Insulin (micro U/mL) 12.2939 0.2752 0.3786 0.6673 

RMSE: Effect of Active Insulin 

(1/min) 1.30E-03 4.41E-05 9.41E-05 3.27E-04 

Table XI: Measurement noise 15 mg/dL 

 

 

 

4.5 Multiple Glucose Ingestions 
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 Since eating schedules may be irregular at times, this case study compared the 

performance of the filters if a 2nd ingestion of approximately half of the original amount 

of glucose occurs 60 minutes after the original ingestion. This was done in the simulation 

by defining the glucose concentration at 60 minutes as 140 mg/dL while leaving the 

insulin concentration and effect of active insulin unchanged. This allows for a more 

realistic response by the system after the sudden introduction of glucose. This could 

represent the patient eating a snack an hour after a regular meal. The performance of the 

filters was first compared for the scenario where the filters did not know about the second 

glucose ingestion. The initial state estimate and covariance were the same as equation 

4.2. The results from the 4 filters can be seen in figures 32, 33, and 34. 

 
Figure 32: Multiple glucose ingestions, filter does not know, glucose concentration vs. time 
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Figure 33: Multiple glucose ingestions, filter does not know, effect of active insulin vs. time 

 
Figure 34: Multiple glucose ingestions, filter does not know, insulin concentration 

vs. time 
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The results of the filters are summarized in table XII below. The particle filter had the 

lowest RMSE. As seen in the figures above, the particle filter was the only filter that was 

able to respond to the 2nd ingestion of glucose. 

  EKF UKF EnKF PF 

CPU time (s) 0.020313 6.0273 103.683 103.9756 

RMSE: Glucose (mg/dL) 14.01532 13.6922 13.7116 8.3992 

RMSE: Insulin (micro U/mL) 16.20965 10.4184 10.3612 5.7244 

RMSE: Effect of Active Insulin 

(1/min) 3.02E-03 2.60E-03 2.60E-03 2.10E-03 

Table XII: Multiple glucose ingestions, filter does not know 

 

 

The scenario of multiple glucose ingestions was then studied where the filters do 

know a second glucose ingestion has occurred, this could be done in practice by having 

the patient specify to the process controller that they have eaten a meal. The importance 

of this is due to the equation for the change in insulin concentration being an explicit 

function of time since the glucose ingestion or injection. The results of this case study can 

be seen in figures 35, 36, and 37 below. 
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Figure 35: Multiple glucose ingestions, filter knows, glucose concentration vs. time 

 
Figure 36: Multiple glucose ingestions, filter knows, effect of active insulin vs. time 
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Figure 37: Multiple glucose ingestions, filter knows, insulin concentration vs. time 

 

 

The results of the filters are summarized in table XIII below. The unscented Kalman filter 

had the lowest RMSE. In this scenario, all 4 of the filters were able to effectively respond 

to the 2nd glucose ingestion and eventually converge to the true state. 

  EKF UKF EnKF PF 

CPU time (s) 0.020781 6.595625 118.0676563 99.1173 

RMSE: Glucose (mg/dL) 4.964501 0.9659688 2.597856583 3.1916 

RMSE: Insulin (micro U/mL) 12.26026 1.1124967 1.142380911 1.9218 

RMSE: Effect of Active Insulin 

(1/min) 1.29E-03 1.39E-04 1.65E-04 7.98E-04 

Table XIII: Multiple glucose ingestions, filter knows 
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CHAPTER V  

CONCLUSION AND FUTURE WORK 

 

 

 Robust control of glucose and insulin levels is essential for diabetics to live 

healthy normal lives. The current technology that is used to control the glucose 

concentration does not take into account the dynamics of the glucose and insulin system 

but rather keeps the concentrations within a range that does not result in serious medical 

emergencies. The current treatment of diabetes is to inject insulin with syringes or insulin 

pumps in order to compensate for the impaired glucose tolerance of the patient. The 

dosages are increased or decreased by measuring the glucose concentration. The design 

of future insulin pumps could be coupled with continuous glucose monitors in order to 

create a process controller that would function as an artificial pancreas.  

The extended Kalman filter, unscented Kalman filter, ensemble Kalman filter, and 

particle filter were applied to estimate the glucose concentration, insulin concentration, 

and effect of active insulin in the human body. The Minimal Model created by Bergman 

was used as the system model. The performance of the filters was compared to the cases 

of good filter initialization, poor filter initialization, plant-model mismatch, and multiple 

glucose ingestions.  
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It was observed that it is feasible to estimate the glucose concentrations, insulin 

concentrations, and effect of active insulin based off of only glucose measurements. 

Although computational times varied between the filters and for each case study, the 

computational time was low enough that the filters would be able to be implemented in 

real time for a process controller. In the case of poor filter initialization, the filters 

eventually did converge to the true state. As seen in the plant-model mismatch case 

studies, the performance of the filters is sensitive to the estimation of the parameters 

during the glucose tolerance test. Since these parameters change as patients age, the 

parameters will have to be re-estimated periodically. The case study that involved 

increasing the measurement noise from the glucose measurement had a negligible effect 

on the performance of the filters. As evidenced by the performance of the filters in the 

case study involving multiple glucose ingestions, the actual occurrence of a meal may 

have to be specified to the process controller depending on the choice of filter as only the 

particle filter was able to respond to the ingestion without having access to a system 

equation describing it. 

 

 

 

Future Work 

 

The variants of the system model that was used for this study could be 

investigated for similar case studies to see if they yield better results. Increasing the 

complexity may result in an increased burden on the state estimators but may result in 
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better filtering of the data. In the future, other Kalman based or Monte Carlo based filters 

could be applied to the problem. Once the state estimation problem of the glucose and 

insulin system is solved, the next stage of the research will be the actual design and 

implementation of a potential process controller. 

 

 

 

 

 

  



 

56 

 

REFERENCES 

 

 

[1]  P. S. Maybeck, Stochastic Models, Estimation, and Control, New York, NY: 

Academic Press, 1979.  

[2]  C. M. Crowe, "Data reconciliation - progress and challenges," Journal of Process 

Control, vol. 6, no. 2, pp. 89-98, 1996.  

[3]  S. Bai, J. Thibault and D. McCean, "Dynamic data reconciliation: Alternative to 

Kalman filter," Journal of Process Control, vol. 16, pp. 485-498, 2005.  

[4]  Center for Disease Control and Prevention, "Diabetes Latest Data and Statistics," 

2016. [Online]. Available: http://www.cdc.gov/features/diabetesfactsheet/. 

[5]  U.S. National Library of Medicine, "Diabetes," 2016. [Online]. Available: 

https://www.nlm.nih.gov/medlineplus/diabetes.html. 

[6]  U. S. National Library of Medicine, "Blood sugar test," 2016. [Online]. Available: 

https://www.nlm.nih.gov/medlineplus/ency/article/003482.htm. 

[7]  Diabetes Knowledgebase, "The Why and How of Maintaining Normal Blood 

Glucose Level," 2016. [Online]. Available: http://diabeteskb.org/the-why-and-how-

of-maintaining-normal-blood-glucose-level/. 

[8]  National Institute of Diabetes and Digestive and Kidney Diseases, "Continuous 

Glucose Monitoring," 2016. [Online]. Available: http://www.niddk.nih.gov/health-

information/health-topics/Diabetes/continuous-glucose-

monitoring/Pages/index.aspx. 



 

57 

 

[9]  Medtronic, "MiniMed 530G System," 2016. [Online]. Available: 

http://www.medtronicdiabetes.com/products/minimed-530g-diabetes-system-with-

enlite. 

[10]  A. J. Laguna, P. Rossetti, J. Ampudia-Blasco, J. Vehi and J. Bondia, "Experimental 

blood glucose interval identification of patients with type 1 diabetes," Journall of 

Process Control, vol. 24, pp. 171-181, 2014.  

[11]  G. Pacini and R. N. Bergman, "MINMOD: a computer program to calculate insulin 

sensitivity and pancreatic responsivity from the frequently sampled intravenous 

glucosetolerance test," Computer Methods and Programs in Biomedicine, vol. 23, 

pp. 113-122, 1986.  

[12]  R. N. Bergman, "Minimal Model: Perspective from 2005," Hormone Research, vol. 

64, no. 3, pp. 8-15, 2005.  

[13]  N. Van Riel, "Minimal Models for Glucose and Insulin Kinetics," 5 February 2004. 

[Online]. Available: http://cbio.bmt.tue.nl/~nvriel/parameter_estimation/VanRiel 

20Minimal 20Models 20for 20Glucose20 and 20Insulin.pdf. 

[14]  A. Kartono, "Modified minimal model for effect of physical exercise on insulin 

sensitivity and glucose effeciveness in type 2 diabetes and healthy human," Theory 

in Biosciences, vol. 132, pp. 195-206, 2013.  

[15]  D. Araujo-Vilar, C. A. Rega-Liste, D. A. Garcia-Estevez, F. Sarmiento-Escalona, 

V. Mosquera-Tallom and J. Cabezas-Cerrato, "Minimal model of glucose 

metabolism: Modified equaitons and its application in the study of insulin 



 

58 

 

sensitivity in obese subjects," Diabetes Research and Clinical Practice, vol. 39, pp. 

129-141, 1998.  

[16]  C. Eberle and C. Ament, "The Unscented Kalman Filter estimates the plasma 

insulin from glucose measurement," Biosystems, vol. 103, pp. 67-72, 2011.  

[17]  S. Ungarala, "Computing arrival cost parameters in moving horizon estimationusing 

sampling based filters," Journal of Process Control, vol. 19, pp. 1576-1588, 2009.  

[18]  Z. Shen and Y. Tang, "A modified ensemble Kalman particle filter for non-

Gaussian systems with nonlinear measurement functions," Journal of Advances in 

Modeling Earth Systems, vol. 7, pp. 50-66, 2014.  

[19]  N. J. Gordon, D. J. Salmond and A. F. Smith, "Novel approach to nonlinear/non-

Gaussian Bayesian state estimation," IEEE Proc.-F Radar Signal Process, vol. 140, 

no. 2, pp. 107-113, 1993.  

[20]  J. D. Hol and F. Gustafsson, "On Resampling Algorithms for Particle Filters," IEEE 

Nonlinear Statistical Signal Processing Workshop, pp. 79-82, 2006.  

[21]  S. Sarkka, Particle Filtering - Sequential Importance Resampling and Rao - 

Blackwellized Particle Filtering, 2012.  

[22]  G. Freckman, C. Schmid, A. Baumstark, S. Pleus, M. Link and C. Haug, "System 

Accuracy of 43 Blood Glucose Monitoring Systems for Self-Monitoring of Blood 

Glucose according to DIN EN ISO 15197," Journal of Diabetes Science and 

Technology, vol. 6, no. 5, pp. 1060-1075, 2012.  

 

 

 



 

59 

 

APPENDIX 

 

 

 

Extended Kalman Filter 

 

%EKF_MM 
clc 
clear 
global k 
%Initial state 
x = [287;0;404]; 
n = length(x); 
m = 1; 
%Number of time steps 
N = 180; 
t = [1:N]; 
%Noise covariances 
Q = 0.0001^2*eye(n);  
R = sqrt(5)^2*eye(m); 
%Handles for Models and Jacobian functions 
f_func = @glucose_f1; 
df_func = @glucose_df1_dx; 
h_func = @glucose_h; 
dh_func = @glucose_dh_dx; 
fe_func = @glucose_f1; 
dfe_func = @glucose_df1_dx; 

  
for j=1:1 
    EKF_cputime=cputime;   
%Storage 
X = zeros(n,N); 
%Generate states 
X(:,1) = feval(f_func,x)+(diag(Q).^0.5).*randn(size(x)); 
for k = 2:N 
    X(:,k) = feval(f_func,X(:,k-1))+(diag(Q).^0.5).*randn(size(x)); 
end 

  
Y = feval(h_func,X); 
Y = Y+diag(R).^0.5.*randn(size(Y)); 
%Filter initialization 
xf = [289;1e-7;406]; %good filter initialization 
%xf = [385;1.333e-7;541]; %bad filter initialization 
Pf = [4 0 0;0 1e-9 0;0 0 4]; %high confidence 
%Pf = [40 0 0;0 1e-8 0;0 0 40]; %low confidence 
%Pf = 0.5^2*eye(n); 
%Storage; 
Xf = zeros(size(X)); 
%Filter loop 
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for k=1:N 
    F = feval(dfe_func,xf);  %will be different than system during 

plant model mismatch dfe_func and fe_func 
    xf = feval(fe_func,xf); 
    Pf = F*Pf*F'+Q; 
    H = feval(dh_func,xf); 
    K = Pf*H'*inv(H*Pf*H'+R); 
    xf = xf+K*(Y(:,k)-feval(h_func,xf)); 
    Pf = Pf-K*H*Pf; 
    Xf(:,k) = xf; 
    Kh(:,k)=K; 
end 
EKF_cputime=cputime-EKF_cputime  
comptime(j,:)=EKF_cputime; 
%Mean Squared Error 
     Eg=sqrt(sum((1/k)*(X(1,1:k)-Xf(1,1:k)).^2)); 
     Ex=sqrt(sum((1/k)*(X(2,1:k)-Xf(2,1:k)).^2)); 
     Ei=sqrt(sum((1/k)*(X(3,1:k)-Xf(3,1:k)).^2)); 

      
     Error(j,:)=[Eg Ex Ei] 
end 
 Avg_Error=mean(Error)    
 Avg_CPU=mean(comptime) 

  
%MSE = sum(sum((X-Xf).^2))/(n*N); 
figure(1) 
plot(t,X(1,:),t,Y(1,:),t,Xf(1,:),'--g') 
   xlabel('time [minutes]'); 
    ylabel('Blood glucose concentration [mg/dL]'); 
    legend('Actual Glucose Level','Measured Glucose Level','EKF 

Estimated Glucose Level'); 
figure(2) 
plot(t,X(2,:),t,Xf(2,:),'--g') 
 xlabel('time [minutes]'); 
    ylabel('Effect of active insulin [1/min]'); 
    legend('Actual Effect of Active Insulin','EKF Estimated Effect of 

Active Insulin'); 

  
figure(3) 
plot(t,X(3,:),t,Xf(3,:),'--g') 
axis([0,180,-10,400]) 
  xlabel('time [minutes]'); 
    ylabel('Blood insulin concentration [micro U/mL]'); 
    legend('Actual Insulin Level','EKF Estimated Insulin Level'); 

     

     

Function file for EKF: System function 

%glucose_f1 
function x_out = glucose_f1(x) 
global t k 
%parameters 
SG = 0.03082; %[1/min] glucose effectiveness 
SI = 5.07e-4; %[mL/uU*min] insulin sensitivity (affects frequency of 

oscillation)  
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k1 = 0.3; %[1/min] decay rate of blood insulin 
k3 = 0.02093; %[1/min] 
Gamma = 0.003349; %[1/min^2] 

  
Ib = 7.3; % [mU/L] basal blood insulin concentration 
Gb = 89.5; % [mg/dL] basal blood glucose concentration 
dt = 1; 

 
x_out(1,:) = x(1)+dt*(SG*(Gb-x(1))-x(2)*x(1)); 
x_out(2,:) = x(2)+dt*(k3*(SI*(x(3)-Ib)-x(2))); 
x_out(3,:) = x(3)+dt*((Gamma*k*(x(1)-Gb))-(k1*(x(3)-Ib))); 

  

 

 

 

 

Function file for EKF: System Jacobian 

%glucose_df_dx 
function F = glucose_df1_dx(x) 
global k t 
%parameters 

  

  

  
SG = 0.03082; %[1/min] glucose effectiveness 
SI = 5.07e-4; %[mL/uU*min] insulin sensitivity (affects frequency of 

oscillation)  
k1 = 0.3; %[1/min] decay rate of blood insulin 
k3 = 0.02093; %[1/min] 
Gamma = 0.003349; %[1/min^2] 

  
Ib = 7.3; % [mU/L] basal blood insulin concentration 
Gb = 89.5; % [mg/dL] basal blood glucose concentration 

  
dt = 1; 
F=[1+dt*(-SG-x(2)),dt*-x(1),0;0,1-dt*k3,dt*k3*SI;dt*Gamma*k,0,1-dt*k1]; 

 

Function file for EKF: Measurement function 

%glucose_h 
function y = glucose_h(x) 
y = x(1,:); 
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Function file for EKF: Measurement Jacobian 

%glucose_dh_dx 
function H = glucose_dh_dx(x) 
H=[1 0 0]; 

 

Function file: Minimal Model 

%minimod_v86 

  

  

  
function dydt = minimod_v86(t,y) 

  
global G I X Param 
% dydt = zeros(size(y)); 
G = y(1); %[mg/dL] Glucose level 
X = y(2); %[1/min] Effect of Active Insulin 
I = y(3); %[uU/mL] Insulin level 
%Parameters from Bergman 1986 
SG = 0.03082;%0.03082; %[1/min] glucose effectiveness 2.6e-2 
SI = 5.07e-4;%1.2e-4; %[mL/uU*min] insulin sensitivity (affects 

frequency of oscillation)  
k1 = 0.3;%0.3; %[1/min] decay rate of blood insulin 0.27 
k3 = 0.02093;%0.02093; %[1/min] 0.025 
Gamma = 0.003349;%0.003349; %[1/min^2]  0.0041 

  
Ib = 7.3; % [microU/mL] basal blood insulin concentration 
Gb = 89.5; % [mg/dL] basal blood glucose concentration 

  
Param = [SG SI k1 k3 Gamma]; 

  
dGdt = SG*(Gb-G)-X*G; 
dXdt = k3*(SI*(I-Ib)-X); 
dIdt = (Gamma*(G-Gb)*t)-(k1*(I-Ib)); 
dydt = [dGdt; dXdt; dIdt]; 
end 

  

 

 

 

 

 

 

Unscented Kalman Filter 
 
%minimalmodel_v18_UKF.m 
%original Bergman minimal model for blood glucose 
clc 
clear 
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global G I X  Gm  t  
Q=0.0001^2;%*eye(3); 
R=5; %measurement noise covaraiance 
for t=1:180 
s=1; %sampling interval (minutes) 
%Solve ODE 
tspan = [0:t]; 

  
y0 = [287; 0; 404]; 
[t,y] = ode15s('minimod_v86', tspan, y0); 
G=y(:,1); 
X=y(:,2); 
I=y(:,3); 
%disp([t,G,X,I]); 
L=length(tspan); 

  
%next time step initial conditions 

  
y0=[G; X; I]; 

  
end 

  

  
  xt=[G X I]; 

  
  Gm=G+sqrt(R)*randn(L,1); 
  yt=[Gm]; 

  

  
figure(1) 
plot(t,G,t,Gm,'-r'); 
xlabel('time [minutes]'); 
ylabel('Blood glucose concentration [mg/dL]'); 
legend('Actual Glucose Level','Measured Glucose Level'); 

  

  
figure(2) 
plot(t,X); 
xlabel('time [minutes]'); 
ylabel('Effect of active insulin [1/min]'); 
legend('Actual Effect of Active Insulin'); 

  
figure(3) 
plot(t,I); 
xlabel('time [minutes]'); 
ylabel('Blood insulin concentration [microU/mL]'); 
legend('Actual Insulin Level'); 
    axis([0,180,-4,400]) 

  
%apply Unscented Kalman Filter 

    
%Unscented Kalman Filter 

  
%generate weights for mean 
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n=3; %number of states 
N=7; %number of sigma points 
alpha=0.8; %usually 0.5 
beta=2;  %usually 2 
kappa=3-n; %usually 3-n 
lambda=alpha^2*(n+kappa)-n; 
Wa0=lambda/(n+lambda); 
Wc0=lambda/(n+lambda)+1-alpha^2+beta; 
Wai=1/(2*(n+lambda)); 
Wci=1/(2*(n+lambda)); 
Wa=[repmat(Wai,3,1); Wa0; repmat(Wai,3,1)];   %weighted average 7x1 

matrix 
Wc=[repmat(Wci,3,1); Wc0; repmat(Wci,3,1)];   %weighted covariance 

7x1matrix 
Wad=diag(Wa); 
Wcd=diag(Wc); 

  

  
%100 realizations 
for m=1:100 %change to 100 when ready 

   
    % xt=xt+randn(size(xt))*(sqrt(Q));  
 UKF_cputime=cputime;    
%initial condition at t=0 or k=0 

  
%generate initial sigma points (need 7) 
Gavg=289*ones(1,7); 
Xavg=1e-7*ones(1,7); 
Iavg=406*ones(1,7); 
sigma_points=[Gavg; Xavg; Iavg]; 
P=[4 0 0; 0 1e-9 0; 0 0 4]; %initial covariance matrix  Pxx High 

Confidence 
%P=[40 0 0; 0 1e-8 0; 0 0 40]; %initial covariance matrix  Pxx Low 

Confidence 
%Psqrt=chol(P)+chol(P)'-diag(diag(chol(P))) 
 Psqrt=sqrtm(P) 
Pmat=[-Psqrt zeros(3,1) Psqrt] 
sigma_points=sigma_points+Pmat; 

     
  Xhat=zeros(length(t),3); %pre-allocate space for estimate 
  Xhat(1,:)=sigma_points(:,4); %store initial state estimate 
  x=zeros(3,7); 

  
  for rt=1:length(t)-1     

      
%Solve ODE for each set of sigma points 
tspan = [rt-1:rt]; 

  
for j=1:7 
ic(j,:)=[sigma_points(:,j)];  
[te,y] = ode15s('minimod_v86', tspan, ic(j,:)); 
x(:,j)=[y(end,1); y(end,2); y(end,3)]; 

  
end 
    disp(x) %3x7 matrix 
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%generate new sigma points based on new mean and covariance 

  
    %compute weighted mean 
    xhat=x*Wa; %3x7 x 7x1 = 3x1 matrix 

     
    sigma_points=[xhat(1)*ones(1,7); 

xhat(2)*ones(1,7);xhat(3)*ones(1,7)]; 

     
    %compute covariance 

     
    diff_co=x-sigma_points; %3x7 matrix 
    P=diff_co*Wcd*diff_co'; %updated covariance matrix Pxx 

     
    %Psqrt=chol(P)+chol(P)'-diag(diag(chol(P))) 
    Psqrt=(sqrtm(P)) 
    Pmat=[-Psqrt zeros(3,1) Psqrt] 
    sigma_points=sigma_points+Pmat; 
    x=sigma_points 
   % pause 
  %try to update P 
  xhat=x*Wa; %3x7 x 7x1 = 3x1 matrix 

     
    sigma_points=[xhat(1)*ones(1,7); 

xhat(2)*ones(1,7);xhat(3)*ones(1,7)]; 

     
    %compute covariance 

     
    diff_co=x-sigma_points; %3x7 matrix 
 %generate "fake" or "predictive" measurements 

   
  Per=[sqrt(R)^2 sqrt(R)^2 sqrt(R)^2]; 
  Per=diag(Per); 
  %Persqrt=chol(Per)+chol(Per)'-diag(diag(chol(Per))) 
  Persqrt=sqrtm(Per) 
  Persqrt=diag(Persqrt) 
  Pmater=[-Persqrt; 0; Persqrt]' 
  y=x(1,:)+Pmater 
  ynew=yt(rt+1)*ones(size(y)) 
  diff=ynew-y 
%pause 
    %Kalman Gain 

  
    xhatv=x*Wa; %weighted average of state sigma points 

     
    yhatv=y*Wa; %weighted average of "fake" measurements 

     
    Pyy=diff*Wcd*diff'+R; %measurement variance            maybe delete 

this R 

     
    Pxy=diff_co*Wcd*diff'; %updated covariance matrix  

  
    K= Pxy*inv(Pyy) 
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    sumk=K*diff 

   
    x=x+sumk      %Apply UKF to state 

    

     
    %compute weighted average for estimate 
    xhat=x*Wa; 

   
    %generate new sigma points for next time step 

  
    sigma_points=[xhat(1)*ones(1,7); 

xhat(2)*ones(1,7);xhat(3)*ones(1,7)]; 
     %compute covariance 

     
    diff_co=x-sigma_points; 
    P=diff_co*Wcd*diff_co'; %updated covariance matrix  

    
   % Psqrt=chol(P)+chol(P)'-diag(diag(chol(P))) 
    Psqrt=(sqrtm(P)); 
    Pmat=[-Psqrt zeros(3,1) Psqrt]; 
    %initial conditions for net time step 
    sigma_points=sigma_points+Pmat 

  

  
  %Storage 
  Xhat(rt+1,1)=xhat(1); 
  Xhat(rt+1,2)=xhat(2); 
  Xhat(rt+1,3)=xhat(3); 
  Khat(rt,:)=K; 
  diffhat(rt,:)=diff; 
  Pxyhat(rt,:)=Pxy; 
  Pyyhat(rt,:)=Pyy; 
  diff_cohat(rt,1)=diff_co(1); 
  diff_cohat(rt,2)=diff_co(2); 
  diff_cohat(rt,3)=diff_co(3); 
  end 
UKF_cputime=cputime-UKF_cputime   
disp(Xhat) 

  
  %add filter estimate to figures 

    
    figure(4) 
    plot(t,xt(:,1),'-b',t,Gm,'-r', t,Xhat(:,1),'--g'); 
    xlabel('time [minutes]'); 
    ylabel('Blood glucose concentration [mg/dL]'); 
    legend('Actual Glucose Level','Measured Glucose Level','UKF 

Estimated Glucose Level'); 

  

  
    figure(5) 
    plot(t,xt(:,2),'-b', t, Xhat(:,2), '--g'); 
    xlabel('time [minutes]'); 
    ylabel('Effect of active insulin [1/min]'); 
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    legend('Actual Effect of Active Insulin','UKF Estimated Effect of 

Active Insulin'); 

  
    figure(6) 
    plot(t,xt(:,3),'-b', t, Xhat(:,3),'--g'); 
    axis([0,180,-5,400]) 
    xlabel('time [minutes]'); 
    ylabel('Blood insulin concentration [micro U/mL]'); 
    legend('Actual Insulin Level','UKF Estimated Insulin Level'); 

   
%Mean Squared Error 
     Eg=sqrt(sum((1/rt)*(xt(1:rt+1,1)-Xhat(1:rt+1,1)).^2)); 
     Ex=sqrt(sum((1/rt)*(xt(1:rt+1,2)-Xhat(1:rt+1,2)).^2)); 
     Ei=sqrt(sum((1/rt)*(xt(1:rt+1,3)-Xhat(1:rt+1,3)).^2)); 
     Error(m,:)=[Eg Ex Ei] 
     comptime(m,:)=UKF_cputime; 
end 

  
 Avg_Error=mean(Error)    
 Avg_CPU=mean(comptime) 

 

 

 

 

 

 

 

 

 

 

Ensemble Kalman Filter 
 
%minimalmodel_v14EnKF.m 
%original Bergman minimal model for blood glucose 
clc 
clear 
global G I X  Gm  t  
R = 5; %measurement covariance 
%Process Simulation 

  
for t=1:180 
s=1; %sampling interval (minutes) 
%Solve ODE 
tspan = [0:t]; 

  
y0 = [287; 0; 404]; 
[t,y] = ode15s('minimod_v86', tspan, y0); 
G=y(:,1); 
X=y(:,2); 
I=y(:,3); 
%disp([t,G,X,I]); 
L=length(tspan); 
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%next time step initial conditions 
y0=[G; X; I]; 

  
end 

  
  Gm=G+sqrt(R)*randn(L,1); %glucose measurement 

   
  xt=[G X I]; 
  yt=[Gm]; 

  

  
figure(1) 
plot(t,G, t,Gm,'-r'); 
xlabel('time [minutes]'); 
ylabel('Blood glucose concentration [mg/dL]'); 
legend('Actual Glucose Level','Measured Glucose Level'); 

  

  
figure(2) 
plot(t,X); 
xlabel('time [minutes]'); 
ylabel('Effect of active insulin [1/min]'); 
legend('Actual Effect of Active Insulin'); 

  
figure(3) 
plot(t,I); 
xlabel('time [minutes]'); 
ylabel('Blood insulin concentration [mU/L]'); 
legend('Actual Insulin Level'); 

  

  
%apply Ensemble Kalman Filter 

  
%Ensemble Kalman Filter 
%use 100 realizations 
for n=1:1  %change to 100 when ready 
 EnKF_cputime=cputime;   
%initial condition at t=0 or k=0 
Nsamples=100;               %use 100 random possibilities of true state 

at t=0 
GEnKF=289+sqrt(4)*randn(Nsamples,1);        
XEnKF=(1e-7+sqrt(1e-9)*randn(Nsamples,1)); 
IEnKF=406+sqrt(4)*randn(Nsamples,1); 
x=[GEnKF XEnKF IEnKF];   %initial conditions: Nsamples X 3 Matrix 

  
  Xhat=zeros(length(t),3); %pre-allocate space for estimation matrix 
  Xhat(1,:)=[289 1e-7 406];      
  %dynamics 

  

       
  for rt=1:length(t)-1 
         k=length(rt);        
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%Solve ODE 

  
for j=1:length(x)  %pass each point through ode 
      ic=x(j,:);  

  
tspan = [rt-1:rt]; 

  
[te,y] = ode15s('minimod_v86', tspan, ic); 
x(j,:)=[y(end,1),y(end,2),y(end,3)]; 
disp(x); 
L=length(tspan); 

  
%Storage 

        
end 

  
     y=x(:,1)+sqrt(R)*randn(length(x(:,1)),1); 

        
      ynew=yt(rt)*ones(size(y)); 
      diff=ynew-y; 

     

  
    %Kalman Gain    

     
    xhatv=mean(x); 

   
    yhatv=mean(y); %average of "fake" measurements 

     

     
    Pyy=var(y)+R; 
    Gcov=cov(x(:,1),y); 
    Xcov=cov(x(:,2),y); 
    Icov=cov(x(:,3),y); 
    Pgy=Gcov(1,2); 
    Pxy=Xcov(1,2); 
    Piy=Icov(1,2); 
    PXy=[Pgy; Pxy; Piy]; 

     
    K= PXy*(Pyy.^-1); 
  %  K= Pxy*inv(Pyy) 

   
    sumk=diff*K'; 

   
    x=x+sumk;      %Apply EnKF to state 

     
    %compute average for estimate 

  
    xhat=mean(x); 

     

       

    
    %Storage 
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  Xhat(rt+1,1)=xhat(1); 
  Xhat(rt+1,2)=xhat(2); 
  Xhat(rt+1,3)=xhat(3); 
  Khat(rt,:)=K; 
  Pyyhat(rt,:)=Pyy; 
  PXyhat(rt,:)=PXy; 
  diffhat(rt,:)=diff; 

   

  
  end 
  EnKF_cputime=cputime-EnKF_cputime  

  
    %add filter estimate to figures 

  
  figure(4) 
    plot(t,xt(:,1),'-b',t,Gm,'-r', t,Xhat(:,1),'--g'); 
    xlabel('time [minutes]'); 
    ylabel('Blood glucose concentration [mg/dL]'); 
    legend('Actual Glucose Level','Measured Glucose Level','EnKF 

Estimated Glucose Level'); 

  

  
    figure(5) 
    plot(t,xt(:,2),'-b', t, Xhat(:,2), '--g'); 
    xlabel('time [minutes]'); 
    ylabel('Effect of active insulin [1/min]'); 
    legend('Actual Effect of Active Insulin','EnKF Estimated Effect of 

Active Insulin'); 

  
    figure(6) 
    plot(t,xt(:,3),'-b', t, Xhat(:,3),'--g'); 
    axis([0,180,-5,400]) 
    xlabel('time [minutes]'); 
    ylabel('Blood insulin concentration [micro U/mL]'); 
    legend('Actual Insulin Level','EnKF Estimated Insulin Level');  

  
%Mean Squared Error 
     Eg=sqrt(sum((1/rt)*(xt(1:rt+1,1)-Xhat(1:rt+1,1)).^2)); 
     Ex=sqrt(sum((1/rt)*(xt(1:rt+1,2)-Xhat(1:rt+1,2)).^2)); 
     Ei=sqrt(sum((1/rt)*(xt(1:rt+1,3)-Xhat(1:rt+1,3)).^2)); 
    % format long 
     Error(n,:)=[Eg Ex Ei] 
     comptime(n,:)=EnKF_cputime; 

   
end 

  
 Avg_Error=mean(Error)    
 Avg_CPU=mean(comptime) 
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Function file: Resample 

 
 
function Y = resampleX_test(X,alpha,r) 
%   
%  By: Ron Abileah, Vista Research Inc 
% 
%  Original version:  November 10, 2005 
%  Version 1.1        December 1, 2005  
%                         - Corrected comments and mentioned similarity 

to 
%                         MATLAB function "resample." 
%                         - Output Y is row (column) if input X is row 
%                         (column)  
%                         - Sets alpha to default value (1) if alpha is 

not provided 
%  Version 1.2        December 15, 2005 
%                         - Corrected indexing bug discovered by Eike 
%                         Rietsch.  This improved accuracy. 
%  Version 1.3        October 23, 2006 
%                         - Corrected bug in handling the value at 

Nyquist, 
%                         which caused a slight increase in 

interpolation 
%                         error.  The problem was pointed out by a user 

who 
%                         found that resampleX(x,1) did not return 

exactly 
%                         x.   
% 
%  Resamples X(n).  Y(n) = X(alpha*n), where alpha is a resample 

interval. 
%  For example, if X is data sampled at 1000 samples per second and you  
%  would like to transform it to the equivalent of 1100 samples per 

second 
%  use alpha= 1000/1100 (.9091); for 800 sample per second  
%  use alpha = 1000/800 (1.25). 
% 
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%  ResampleX is similar to the MATLAB "resample" function (in the 

Signal 
%  Processcing Toolbox).  There are two differences: 
% 
%  (1) The MATLAB resample does some fancy schmancy interpolation of 

the  
%       original time series;  resampleX works on the Fourier trasnform 

of 
%       the time series.  The main benefit of FT processing is speed.    
%  (2) MATLAB resample cputime depends on the value of alpha.  It runs 

faster with  
%       simple rational numbers.  The cputime of resampleX is 

indpendent of 
%       alpha.    
% 
%  The main reason for using resampleX instead of resample is speed.  

In 
%  test cases resampleX was generaly 5-20 times faster.    Use resample 

if 
%  your alpha values are simple rational numbers or numerical accuracy 

is more 
%  important.  Use resampleX for very general values of alpha or where 

some 
%  accuracy can be traded for speed. 
% 
%  ResampleX uses the fact that resampling a time series X by a factor 

alpha is  
%  equivalent to resampling the frequency samples of its transform by 

m/alpha,  
%  where m is a frequency index.  
% 
%  The calling sequence is one of the following 
% 
%             Y = resampleX(X,alpha) 
%             Y = resampleX(X,alpha,r) 
%             Y = resampleX 
% 
%  X can be real or complex. Output Y is the same length as X.   
%  If alpha > 1 some Y's will be extrapolations beyond the end of X. 
%  Extrapolated values are not realiable, so throw them away.  Keep 

only  
%  the first N/alpha values, where N is the original length of the 

data. 
%  Whne X is real, Y's may have small imaginary values due to 
%  approximations.   
% 
%  Optional parameter r is an integer frequency interpolation factor.  

The 
%  function will work with r = 1, but r = 2,4, or more produces more 
%  accurate results.  Use r=64 if you want very accurate results and 

are 
%  not too concerned about computing time.  The default value is r = 8. 
% 
%  Calling the function with no arguments produces a test signal and a 

plot 
%  of the original and resampled signal with alpha =0.95, r = 8.   
%   
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%  -- Set r to its default value if not specified as input argument 
if ~exist('r') 
    r = 8; end 

  
%  -- Produce test signal if there are no input arguments 
if nargin == 0  
    x1=0:pi/64:2*pi; 
    X=exp(i*x1)+0.5*exp(i*3*x1)+0.25*exp(i*x1.^2);      
    alpha = 0.95;                                                
end 

  
% The default value of alpha is 1 
if nargin == 1 
    alpha =1; 
end 

  
% -- zero pad X for frequency interpolation  
Y=X; 
N0=length(Y);  N=r*N0; N2 = N/2; 
if r >1 
    Y(N)=0; 
end 

  
%  -- Fourier transform the padded time series 
Y = fft(Y);   
n = 1:length(X); 

  
%  -- Resample the Fourier transform 
m = round((0:(N2-1))./alpha) - (0:(N2-1));  
f = floor(alpha.*N2); m((f+1):end)=NaN; 
m = [ m  0 -fliplr(m(2:end)) ] + (1:N) ;  
m(find(isnan(m)))=N2+1;  
Y=ifft(Y(m));                                
Y=Y(1:N0)/alpha; 

  

  
if nargin>0 
    return 
end 

  
%  -- Display results  
figure  
n=1:N0;  
plot( n ,real(X),'-k' ,n ,imag(X),'--k',... 
    n ,real(Y),'-r' ,n ,imag(Y),'--r') 
xlabel('Sample number'); ylabel('Amplitude') 
axis([1 N0 -2 2]) 
legend ('Original real', 'Original imaginary ', 'Resampled 

real','Resampled imaginary')  

  
end 
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Particle Filter 
 
%minimalmodel_v1PF.m 
%original Bergman minimal model for blood glucose 
clc 
clear 
global G I X  Gm t  
 R=5; %measurement noise variance (mg/dL) 
%Process Simulation 

  
for t=1:180 
s=1; %sampling interval (minutes) 
%Solve ODE 
tspan = [0:t]; 

  
y0 = [287; 0; 404]; 
[t,y] = ode45('minimod_v86', tspan, y0); 
G=y(:,1); 
X=y(:,2); 
I=y(:,3); 
%disp([t,G,X,I]); 
L=length(tspan); 

  
%next time step initial conditions 
y0=[G; X; I]; 

  
end 

  
  Gm=G+sqrt(R)*randn(L,1); 

   
  xt=[G X I]; 
  yt=[Gm]; 

  

  
figure(1) 
plot(t,G, t,Gm,'-r'); 
xlabel('time [minutes]'); 
ylabel('Blood glucose concentration [mg/dL]'); 
legend('Actual Glucose Level','Measured Glucose Level'); 

  

  
figure(2) 
plot(t,X); 
xlabel('time [minutes]'); 
ylabel('Effect of active insulin [1/min]'); 
legend('Actual Effect of Active Insulin'); 

  
figure(3) 
plot(t,I); 
xlabel('time [minutes]'); 
ylabel('Blood insulin concentration [mU/L]'); 
legend('Actual Insulin Level'); 
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%apply Gordon Salmond and Smith Particle Filter 

  
%Particle Filter 
%use 100 realizations 
for n=1:1  %change to 100 when ready 
    PF_cputime=cputime; 
%initial condition at t=0 or k=0 
Nsamples=100;               %use 100 random possibilities of true state 

at t=0 
GEnKF=289+sqrt(4)*randn(Nsamples,1);        
XEnKF=(1e-7+sqrt(1e-9)*randn(Nsamples,1)); 
IEnKF=406+sqrt(4)*randn(Nsamples,1); 
x=[GEnKF XEnKF IEnKF];   %initial conditions: Nsamples X 3 Matrix 

  
  Xhat=zeros(length(t),3);  
  Xhat(1,:)=[289 1e-7 406];      
  %dynamics 

  

       
  for rt=1:length(t)-1 
        % k=length(rt);        

  

  
%Solve ODE 

  
for j=1:length(x)  %pass each point through ode 
      ic=x(j,:);  

  
tspan = [rt-1:rt]; 

  
[te,y] = ode15s('minimod_v86', tspan, ic); 
Gen=y(end,1); 
Xen=y(end,2); 
Ien=y(end,3); 
x(j,:)=[Gen,Xen,Ien]; 
disp([Gen,Xen,Ien]); 
L=length(tspan); 

  
%Storage 

        
end 

  
      %pause  

  
  y=x(:,1)+sqrt(R)*randn(length(x(:,1)),1); 

        
      ynew=yt(rt)*ones(size(y)); 
      diff=ynew-y; 

     
    %compute weight of particles (using Gaussian PDF) 

     
     w=(1/sqrt(2*pi*R))*exp((-1*(diff).^1.8)/(2*R)); %was 1.8 
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    %normalize weight 
    w=w/sum(w); 
    w=[w w w]; 

   
    %weighted average 
    xhat=sum(x.*w); 

   
    %Storage 

  
  Xhat(rt+1,1)=xhat(1); 
  Xhat(rt+1,2)=xhat(2); 
  Xhat(rt+1,3)=xhat(3); 

  

  
    %Resample 
    x(:,1)=resampleX(x(:,1),0.9995); %was 0.35 
    x(:,2)=resampleX(x(:,2),0.9995); 
    x(:,3)=resampleX(x(:,3),0.9995); 
  end 
     PF_cputime=cputime-PF_cputime 
    %add filter estimate to figures 

  
  figure(4) 
    plot(t,xt(:,1),'-b',t,Gm,'-r', t,Xhat(:,1),'--g'); 
    xlabel('time [minutes]'); 
    ylabel('Blood glucose concentration [mg/dL]'); 
    legend('Actual Glucose Level','Measured Glucose Level','PF 

Estimated Glucose Level'); 

  

  
    figure(5) 
    plot(t,xt(:,2),'-b', t, Xhat(:,2), '--g'); 
    xlabel('time [minutes]'); 
    ylabel('Effect of active insulin [1/min]'); 
    legend('Actual Effect of Active Insulin','PF Estimated Effect of 

Active Insulin'); 

  
    figure(6) 
    plot(t,xt(:,3),'-b', t, Xhat(:,3),'--g'); 
    axis([0,180,-5,400]) 
    xlabel('time [minutes]'); 
    ylabel('Blood insulin concentration [micro U/mL]'); 
    legend('Actual Insulin Level','PF Estimated Insulin Level');  

  
%Mean Squared Error 
     Eg=sqrt(sum((1/rt)*(xt(1:rt+1,1)-Xhat(1:rt+1,1)).^2)); 
     Ex=sqrt(sum((1/rt)*(xt(1:rt+1,2)-Xhat(1:rt+1,2)).^2)); 
     Ei=sqrt(sum((1/rt)*(xt(1:rt+1,3)-Xhat(1:rt+1,3)).^2)); 

      
     Error(n,:)=[Eg Ex Ei] 
     comptime(n,:)=PF_cputime; 

   
end 
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 Avg_Error=mean(Error)    
 Avg_CPU=mean(comptime) 
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