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DETERMINATION OF NOVEL METABOLITES OF THERAPEUTIC 

AGENTS USED IN THE TREATMENT OF CASTRATION-RESISTANT 

PROSTATE CANCER 

MOHAMMAD ALYAMANI 

ABSTRACT 

Despite an array of improved treatment options over the past decade, prostate 

cancer remains the second leading cause of cancer mortality for men in the United States. 

Abiraterone and galeterone are oral steroidal compounds that are used to treat metastatic 

castration-resistant prostate cancer (CRPC). Abiraterone blocks 17α-hydroxylase/17,20-

lyase (CYP17A1), an enzyme required for androgen synthesis. Galeterone inhibits 

CYP17A1, blocks the androgen receptor (AR), and decreases AR protein levels. Both 

drugs share the same structure with endogenous androgens such as 

dehydroepiandrosterone, which are substrates for the enzyme, 3β-hydroxysteroid 

dehydrogenase (3βHSD). Metabolites of 3βHSD undergo further metabolism to produce 

the AR ligand, testosterone and dihydrotestosterone. 

Overall this project aimed to investigate the steroidogenic metabolism of 

abiraterone and galeterone and evaluate the metabolites’ role in prostate cancer. The 

background on prostate cancer, steroid biosynthesis, and treatment options is described in 

Chapter I. Chapter II describes the development and validation of a liquid chromatography 

mass spectrometry method LC-MS/MS to determine abiraterone metabolites. My method 

distinguished between all the diastereoisomers with conventional chromatographic 



 

 vii 

conditions. In chapter III and IV my validated LC-MS/MS method was utilized to study 

the metabolism of abiraterone in vitro using prostate cancer cell lines and in vivo using 

mice. It also helped in determining abiraterone metabolites in a pharmacokinetic trial in 

healthy human subjects and in prostate cancer patients enrolled in several clinical trials. 

The trials aimed to evaluate the standard dose of abiraterone acetate, combining abiraterone 

acetate with androgen deprivation therapy (ADT), adding dutasteride (an SRD5A 

inhibitor), or increasing the frequency of the standard dose of abiraterone acetate. In 

chapter V, galeterone metabolism was studied in vitro and in vivo and the metabolites’ 

activities were evaluated for their roles in prostate cancer. Chapter VI discusses the overall 

conclusions and future directions.   

This project identified a new subset of abiraterone and galeterone metabolites that 

are generated by steroidogenic enzyme conversion.  These metabolites had opposing 

effects on prostate cancer. These findings suggest a common pathway for steroidal drugs 

with a Δ5, 3β-hydroxyl structure. This project also provides new strategies in prostate 

cancer treatment that will make the current treatment options more beneficial.   
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CHAPTER I 

PROSTATE CANCER: AN OVERVIEW 

 

 

 

1.1. Background 

“A very rare disease” is how J. Adams, the surgeon at The London Hospital, 

described the first case of prostate cancer, which he discovered by histological examination 

in 18531. After more than 160 years, prostate cancer is the most frequently diagnosed 

cancer and the third leading cause of cancer death in men in the United States. One out of 

seven American men will be diagnosed with prostate cancer during their lifetime. In 2017, 

it is estimated that 160,000 American men will be diagnosed with prostate cancer and 

26,000 will lose their lives to the disease2. 

The prostate gland is part of the male reproductive system. It is a walnut size and 

shaped organ. It sits below the bladder just in front of the rectum and surrounds part of 

the urethra. The role of the prostate is to help make the semen. Even though researchers do 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046539&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046564&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046501&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046555&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046640&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046703&version=Patient&language=English
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not know exactly what causes prostate cancer, several factors can be linked to it: age, 

ethnicity, heredity, and geographic region3.  The older the man is, the higher the possibility 

of being diagnosed with prostate cancer. According to recent statistics from the Prostate 

Cancer Foundation, 65% of prostate cancer patients are older than 65 years old. Compared 

with Caucasian and Asian men, African American men are more likely to develop prostate 

cancer and are more likely to die from the disease. The chance of being diagnosed with 

prostate cancer will double if a man has a father or brother who developed prostate cancer. 

Those who live in the northern part of the United States are at higher risk to develop and 

die from the disease. Although why this pattern exists is unclear, it may be that low 

exposure to sun light and vitamin D deficiency can increase the disease rates4. Other factors 

that can be linked to prostate cancer include diet, obesity, and smoking5. 

1.2. The Androgen Receptor 

Prostate cancer is a hormone-dependent malignancy; tumor progression depends 

on androgen receptor AR presence and function6,7. AR belongs to the steroid hormone 

group of nuclear receptors, along with the estrogen receptor (ER), glucocorticoid receptor 

(GR), progesterone receptor (PR) and mineralocorticoid receptor (MR)8. Testosterone (T) 

and its more potent metabolite, 5α-dihydrotestosterone (DHT), are the ligands for 

activating the AR. Therefore, these two steroids are the endogenous ligands fueling the 

growth of malignant prostate cells. DHT is 10 times more potent than T in activating the 

AR9. AR protein is encoded by the AR gene located on the X chromosome at Xq11-12 and 

spans ~180 kb of DNA containing 8 canonical exons. The AR contains four domains: (I) 

the amino terminal activation domain (NTD); (II) the DNA-binding domain (DBD); (III) 

the hinge region (HR) and (IV), the carboxyl ligand-binding domain (LBD). NTD, which 

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/X_chromosome
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is encoded by exon 1, is the transcriptional regulatory region of the AR containing 

activation function-1 (AF-1). The DBD, composed of two zinc finger motifs, is encoded 

by exons 2 and 3, respectively. The hinge region is encoded by exon 4. The LBD is encoded 

by exons 5–8 and contains activation function-2 (AF-2) that allows the recruitment of co-

activators and co-repressors (Fig 1). The transcriptional activity of the AR requires AF-1 

in its NTD with negligible activity being attributed to AF-2 region in the LBD10,11. 

When androgens such as DHT diffuse through the plasma membrane of the cell and 

bind to the LBD of AR, they will initiate cellular events involving conformational changes, 

receptor stabilization, and nuclear translocation. It will also result in binding of AR dimer 

to androgen response elements (AREs) located in the promoter and enhancer sequences of 

target genes. AR binds target AREs via its DBD; a portion of the DBD together with the 

hinge region encode for a nuclear localization signal (NLS)12,13 (Fig. 2).  

1.3. Regulation of Testosterone Synthesis by the Endocrine Axis 

The major source of circulating testosterone are the testes; however the adrenal 

gland can also produce T by regulating androgen biosynthesis. The endocrine axis 

contributes to the growth of prostate cancer by regulating T synthesis in these two sources: 

(i) the hypothalamus-pituitary-gonadal axis (HPG axis) and (ii) the hypothalamus-

pituitary-adrenal axis (HPA axis)14,15. In the hypothalamus, gonadotropin-releasing 

hormone (GnRH), also known as luteinizing hormone (LH)-releasing hormone (LHRH), 

is produced and travels to the anterior pituitary and interacts with LHRH receptors (LHRH-

Rs). Due to this interaction, LH will be released into the blood stream. In the testes, the 

released LH binds to its receptors (LH-R), inducing T production. The hypothalamus also 

produces corticotropin-releasing hormone (CRH). CRH stimulates the secretion of 
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adrenocorticotropic hormone (ACTH) from the pituitary into the blood stream where it 

interacts with the adrenal cortex portion of the adrenal gland and stimulates the synthesis 

of adrenal androgens, including T (Fig 3). T synthesized and released from both sites enters 

the prostate cells, where it is converted to 5α-dihydrotestosterone (DHT) by the enzyme 

5α-reductase SRD5A. DHT binds tightly to AR, enters the cytoplasm, and the complex 

translocates to the nucleus, where it activates transcription of genes that regulate cell 

growth and survival.  
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Figure 1. Genomic organization of the AR gene. 
(Source: Quigley, C. A,1995)11 
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Figure 2. Ligand-dependent activation of the AR. 

CBP (CREB-binding protein); hsp (heat shock protein); SRC-1 (steroid receptor 
coactivator 1) (Source: Meehan, K. L; 2003)12. 
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Figure 3. The regulation of androgen synthesis by the HPA and HPG axes. 
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1.4. Steroid Biosynthesis (Steroidogenesis) 

Cholesterol is the precursor for steroid biosynthesis16,17. This 27-carbon compound 

can be oxidized to 21-carbon steroids (progestins, glucocorticoids, and mineralocorticoids) 

that then can form 19-carbon androgens. As discussed in section 1.3, the two primary 

sources of androgens are the adrenal cortex and the Leydig cells. Enzymes involved in 

steroidogenesis are either part of the cytochrome P450 (CYP) system, which is a group of 

oxidative enzymes that contain a single heme group and almost 500 amino acids18, or 

hydroxysteroid dehydrogenases (HSDs), which contain heme groups and require 

nicotinamide adenine dinucleotide as a cofactor for their activity. Structurally, HSDs 

belong to two groups of enzymes: the short-chain dehydrogenase reductase (SDR) family 

or the aldo-keto reductase (AKR) family19. CYP reactions are irreversible, meaning that 

the accumulation of product will not drive flux to its precursor. On the other hand, some 

HSD reactions are reversible. The first step of steroidogenesis is catalyzed by CYP11A1, 

which results in side chain cleavage of cholesterol to pregnenolone (Fig. 4).  CYP17A1 

(17α-hydroxylase and 17,20 lyase) converts pregnenolone to 17 hydroxy-pregnenolone 

and then to dehydroepiandrosterone (DHEA). 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 

isomerase (3βHSD) irreversibly converts 3β-OH, Δ5 steroids to 3-keto, Δ4 steroids. Two 

isoforms of 3βHSD are present in human, with 3βHSD1 being the isoenzyme dominantly 

expressed in peripheral tissue. This enzyme converts pregnenolone to progesterone, 17-

hydroxypregnenolone to 17-hydroxyprogesterone, DHEA to androstendione (AD), and Δ5-

Androstenediol (A5diol) to T.  

The Sharifi lab reported that in CRPC a mutation in the gene coding for 3βHSD 

results in increased DHT levels20. Steroid-5α-reductase (SRD5A) converts 3-keto, Δ4 
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steroids to 5α-reduced steroids. Two isoforms of SRD5A are present in human. This 

enzyme converts AD to 5α-androstanedione (5α-dione) and T to DHT. It has been reported 

that in CRPC, conversion of AD to T is less favored and DHT synthesis requires conversion 

of AD to 5α-dione, where AD is the favored 5α-reductase substrate21. 17β-hydroxysteroid 

dehydrogenase (17βHSD) reversibly converts 17 keto-androgens to 17 hydroxy-

androgens. Fourteen 17βHSD isoenzymes are present in humans; some have a preference 

for the reductive reaction (17-keto to 17-hydroxyl) and some prefer the reverse reaction. In 

males, 17βHSD3 is the isoenzyme responsible for T synthesis in the testes. However, in 

CRPC, 17βHSD5, also known as the aldo-keto reductase 1C3, another reductive enzyme 

and converts AD to T, is up-regulated22,23. 3α-hydroxysteroid dehydrogenase (3αHSD) is 

also an aldo-keto reductase; it has four isoenzymes and although it is required for 

converting active steroids to inactive steroids, it can be involved in the backdoor DHT 

synthesis pathway24,25.  
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Figure 4. DHT synthesis pathways. 
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1.5. The Development of Castration-Resistant Prostate Cancer 

Prostate cancer develops in stages. In its early stages the tumor is found in the 

prostate only. In this stage, prostate cancer is microscopic; it cannot be felt on a digital 

rectal exam (DRE), and it is not seen on imaging of the prostate. The tumor then spreads 

but still inside the prostate and does not extend beyond it. After that the tumor will spread 

outside the prostate but only barely, and may involve the nearby tissues like the seminal 

vesicles. In its latest stages the tumor will spread (metastasize) outside the prostate to other 

tissues (lymph nodes, the bones, liver, or lungs). The treatment option will depend on the 

stage: active surveillance, radical prostatectomy, or radiation therapy (external beam or 

brachytherapy) are the options for localized disease. In the advanced stages, chemotherapy 

and hormonal therapy are the options. Hormonal therapy is the gold standard for treating 

patients with prostate cancer26-28. The discoveries of Charles Huggins concerning hormonal 

therapy to treat prostate cancer led him to win Nobel Prize in 1966. In his early research, 

Huggins found that castration or estrogen administration shrinks the tissue29,30. His 

discoveries led to what is known now as androgen deprivation therapy, or ADT, which can 

be achieved either by surgical castration (orchiectomy) or medical castration using a GnRH 

agonist or antagonist. ADT will lower serum T levels and it initially works in many cases; 

however, the tissue can still find its fuel which leads it to resist this treatment and the tumor 

will develop to the castration-resistant prostate cancer CRPC stage22,31,32. Second-

generation hormone therapies such as abiraterone acetate and enzalutamide are treatment 

options at the CRPC stage33-36 (Fig 5A&B).  
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Figure 5. Treatment options for prostate cancer 

(Source; Gomez, L. 2015)28 
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1.6. Abiraterone  

Abiraterone [abi; 17-(3-pyridyl)-androsta-5,16-dien-3β-ol] is a 17-heteroazole 

steroidal compound and a potent inhibitor of steroid 17α-hydroxylase/17,20-lyase 

(CYP17A1), an enzyme required for androgen synthesis37. Abiraterone’s structure makes 

it a potent CYP17A1 inhibitor, and the double bond at C16 is necessary for functionally 

irreversible inhibition of the enzyme38-40. Abiraterone is administered as the prodrug, 

abiraterone acetate (AA), for the treatment of CRPC and prolongs survival for these 

patients34,41,42. In 2011, the United States Food and Drug Administration (FDA) approved 

AA in the post-chemotherapy setting, and in December 2012 it approved the use of AA for 

patients with chemotherapy-naïve CRPC43. Prednisone is administered with AA to block 

mineralocorticoid excess that occurs with the simultaneous inhibition of cortisol 

synthesis27,44. The major recognized metabolites of abiraterone result from hepatic 

CYP3A4 and SULT2A1 processing, forming the N-oxide of abiraterone and abiraterone 

sulfate45, respectively.  Neither of these modifications affect the Δ5, 3β-hydroxyl-structure 

of the steroid backbone.  

1.7. Galeterone 

Galeterone (Gal), 17-(1H-benzimidazol-1-yl) androsta-5,16-dien-3β-ol, is a 

steroidal 17-azole compound that inhibits CYP17A146-49, directly competes with androgens 

to bind and antagonize AR50, promotes AR protein degradation, and has clinical activity as 

reported in a phase I/II clinical trial51-55. Galeterone’s structure enables interaction with the 

steroid binding site of CYP17 in addition to coordination with the enzyme’s heme iron, 

resulting in a highly specific and tightly binding inhibitor. The x-ray crystal structure of 

CYP17A1 binding to abiraterone or galeterone shows that they bind to heme iron56. 
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Galeterone shares its Δ5, 3β-hydroxyl structure with abiraterone.  The two drugs are 

distinguished by their C17 moieties – the benzamidazole ring of galeterone and the 3-

pyridyl structure of abiraterone.  These differences may explain why galeterone has been 

reported to have more direct effects on AR.  

1.8. Hypothesis  

Δ5, 3β-hydroxyl steroids are substrates of the enzyme 3βHSD, which irreversibly 

converts them to 3-keto, Δ4 steroids. An example of this is the conversion of DHEA to AD 

and A5diol to T. The next step is then 5α reduction of 3-keto, Δ4 steroids by SRD5A to 

form 3-keto-5α reduced steroids, as present in T conversion to DHT. AKR1C2 will then 

reduce the 3-keto-5α steroids to the 3α-OH-5α steroids. This last step is one mechanism of 

DHT elimination. DHT is converted to 5α-androstan-3α,17β-diol (3α-diol) (Fig. 4).  

Both abiraterone and galeterone are Δ5, 3β-hydroxyl steroids.  Therefore, they can 

be possible substrates of 3βHSD and converted to their 3-keto, Δ4 structures, which may 

follow the downstream mechanism and be converted to the 5α-reduced form. The main 

aim of this project is to study abiraterone and galeterone metabolism by steroidogenic 

enzymes and study the activity of the resultant metabolites. The metabolism was studied 

in vitro using prostate cancer cell lines and in vivo using NSG mice.  I hypothesized that 

the enzymes present in prostate cancer cell lines and in mice will convert abiraterone 

and galeterone to their steroidogenic enzyme metabolites and this conversion is 

irreversible. Galeterone metabolite activity was studied in vitro and in vivo. I 

hypothesized that galeterone metabolites will show activity toward the AR signaling 

pathway in prostate cancer cell lines, and in mouse models, the metabolites will have 

activity directed against tumors in mouse xenograft models. Abiraterone metabolism 
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was investigated in patients with CRPC who are treated with abiraterone acetate in clinical 

trials. I hypothesized that inhibiting steroidogenic enzymes or increasing the 

frequency of abiraterone dose will affect abiraterone metabolite levels in CRPC 

patients which may correlate with clinical outcomes.   
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CHAPTER II 

DEVELOPMENT AND VALIDATION OF A NOVEL LC-MS/MS METHOD FOR 

SIMULTANEOUS DETERMINATION OF ABIRATERONE AND ITS SEVEN 

STEROIDAL METABOLITES IN HUMAN SERUM 

 

 

 

2.1. Introduction to Liquid Chromatography Mass Spectrometry 

  Due to its sensitivity and selectivity, mass spectrometry-based analysis has been 

widely used in different types of research. It can be used to detect both small and large 

molecules. Mass spec applications include basic research, clinical research, drug discovery, 

forensics, food quality, and environmental protection. Several designs of mass 

spectrometers are available: linear ion trap, quadrupole based, time of flight (TOF). Also, 

there are hybrid designs: the quadrupole time of flight QTOF and quadrupole ion trap 

QTrap1.  Mass spec analysis allows one to answer numerous questions, including what is 

in the samples and how much of it is there. To be analyzed, the analyte should be charged, 
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because mass spec detects mass /charge ratio (m/z). The ionization techniques are electro 

spray ionization (ESI), atmospheric pressure chemical ionization, and atmospheric 

pressure photo ionization. The selection of the ionization type depends on the nature of the 

analyte. Multiple reaction monitoring is the technique that assures that only the analyte of 

interest is selected: First, analyzer quadrupole Q1 selects the precursor mass of interest 

from ions only of exactly the selected m/z pass to the collision cell Q2; all other ions are 

removed. Collision cell Q2 fragments precursor ions. Fragmented ions pass to analyzer 

quadrupole Q3. Analyzer quadrupole Q3 selects the most sensitive ion for quantitation 

(Fig. 6). Mass spectrometry can be used as a technique by itself or it can be coupled to 

liquid chromatography (LC-MS) or gas chromatography (GC-MS). Both techniques are 

widely used for metabolism studies; however the advantages of LC-MS over GC-MS 

includes simple sample preparation, shorter run times, and high throughput. 

Applying LC-MS analysis to detect analytes in human fluids (saliva, blood, serum, 

plasma, or urine) requires sample purification. Three methods can be applied to extract the 

analyte of interest from different matrices: direct protein precipitation, liquid-liquid 

extraction, or solid-phase extraction.     

LC-MS methods can be applied to prostate cancer research. As described in chapter 

I, prostate cancer depends on steroid synthesis. Therefore, using an LC-MS method that 

accurately detects these steroids and quantifies their levels in patient tissue or serum, may 

identify potential specific biomarkers2,3. LC-MS methods are useful in detecting drug 

metabolites; therefore it may also give a clue to which patients respond to treatment.     
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Figure 6. Multiple reaction monitoring principle. 
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2.2. Method Development and Validation 

Although mass spec is a useful technique, operating the instrument and developing 

the methods requires knowledge and qualifications in separation and ionization. The first 

step in developing LC-MS methods is to optimize mass spec parameters, which include 

selecting the appropriate ionization technique, selecting m/z for the parent analyte and the 

fragment, and selecting the declustering potential, collision energy, and the source 

temperature. After optimizing source parameters, the next step is to select suitable 

chromatographic conditions, which include type of analytical column, mobile phase 

composition, flow rate, and injection volume. Then as a last step, the best method of 

extraction is selected that leads to high recovery and minimizes the matrix effect. 

Depending on the purpose of analysis the development may also include selecting the linear 

range. After testing the developed method for linearity and accuracy, the next stage is 

validating the method per the guidelines depending on the type of analysis. The purpose of 

the validation is to make sure that the method is accurate and precise and the analytes are 

stable at different conditions. Once the validation is completed, the method is ready to be 

used for analysis. The development and validation steps are described in Figure 7.    
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Figure 7. The approach of developing LC-MS methods 
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2.3. Abiraterone Metabolism by Steroidogenic Enzymes 

Abiraterone design was based on its similarity in structure with pregnenolone which 

is a CYP17A1 substrate4,5. Since its FDA approval, abiraterone acetate, the prodrug of 

abiraterone, became the choice of treatment for patients with CRPC6,7. Abiraterone sulfate 

and N-oxide abiraterone sulfate are the reported abiraterone metabolites8. We studied the 

effect of steroidogenic enzymes on abiraterone both in vitro and in vivo and found that 3β-

hydroxysteroid dehydrogenase (3βHSD) converts abiraterone to its Δ4, 3-keto congener 

(Δ4-abiraterone; D4A)9. D4A is similar in structure to T which might enable further 

metabolism of D4A. D4A undergoes metabolism by two possible pathways: via steroid 5α-

reductase (SRD5A) or steroid 5β-reductase. The resultant metabolites can also be 

metabolized by two enzymes: 3α-hydroxysteroid dehydrogenase (3αHSD) or 3βHSD. The 

5α-reduced metabolites are 3-keto-5α-Abi, 3α-OH-5α-Abi and 3β-OH-5α-Abi, while the 

corresponding 5β-reduced metabolites are 3-keto-5β-Abi, 3α-OH-5β-Abi and 3β-OH-5β-

Abi10 (Fig 8). 

This chapter describes the development and validation of the LC-MS method that 

was used to detect abiraterone and its seven steroidal metabolites in human serum. In this 

validated method, the separation of the structurally identical metabolites was achieved 

using a reversed-phase chromatographic technique, not requiring a chiral column11.  All 

these metabolites were also detected in serum samples from patients with CRPC 

undergoing treatment with abiraterone acetate.   
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Figure 8. Steroidogenic enzyme metabolism of abiraterone. 
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2.4. Experimental Section 

2.4.1. Materials  

Abiraterone and its seven metabolites 3-keto-Δ4-Abi, 3-keto-5α-Abi, 3α-OH-5α-

Abi, 3β-OH-5α-Abi, 3-keto-5β-Abi, 3α-OH-5β-Abi and 3β-OH-5β-Abi were synthesized 

in the lab as described previously10. The internal standard (abiraterone-d4) was purchased 

from Toronto Research Chemicals, (Toronto, Canada). LC-MS grade methanol, 

acetonitrile, water, and formic acid were used to prepare the mobile phase and were 

purchased from Fisher Scientific (Fair Lawn, NJ); methyl tertiary butyl ether (MTBE) was 

used as the extraction solvent was HPLC grade and was purchased from Acros (Pittsburgh, 

PA). The control calibrators and all validation samples were prepared by spiking a known 

concentration of all analytes in double charcoal-stripped human serum from Golden West 

Biological Inc. (Temecula, CA).  

2.4.2. Method development 

In this section the development of LC-MS based bioanalytical method is described. 

The approaches to develop the LC-MS method involve optimizing the mass conditions and 

the chromatographic conditions, selecting linear range, and the procedure to prepare the 

sample, all of which are described in detail. 

2.4.2.1. Instrumentation and data analysis 

To analyze the samples, ultra-pressure liquid chromatography coupled to a mass 

spectrometer UPLC-MS system was used. The UPLC system (Shimadzu Corporation, 

Japan), consisted of an LC-30AD solvent delivery system, a DGU-20A5R vacuum 

degasser, a CTO-30A thermostated column oven, SIL-30AC auto-sampler, and a system 

CBM-20A controller. The UPLC system was coupled with a Qtrap 5500 mass spectrometer 



 

 32 

(AB Sciex, Redwood City, CA). Data acquisition and processing were performed using 

Analyst software (version 1.6.2) from AB Sciex. The peak area ratio of the analyte over 

the internal standard was used for quantification purposes.  

2.4.2.2. Optimizing mass spectrometer conditions 

The mass spectrometer was operated in positive ion mode using an electrospray 

ionization (ESI) source, and applying multiple reaction monitoring (MRM). Tuning 

parameters were optimized for the abiraterone metabolites and internal standard by 

infusing a solution containing 200 ng/mL of each analyte. After infusing the solution and 

selecting the parent ion in Q1, the optimum value of the ion spray voltage, the source 

temperature, and the declustering potential were selected. Then the parent ion was 

fragmented in Q2 and the fragment ion (daughter ion) was selected along with the collision 

energy, entrance potential, and collision exit potential. The mass spectrometer parameters 

were optimized to ensure that the highest sensitivity possible would be achieved. Nitrogen 

was used as the nebulizing and drying gas.  

2.4.2.3. Optimizing chromatographic conditions 

Selecting an appropriate analytical column and a suitable mobile phase are the main 

factors in optimizing the chromatographic conditions. This will lead to an enhanced peak 

shape, increase in the intensity, and most importantly avoid overlap between analytes. In 

the case of diaseteoisomers, distinguishing between the metabolites based on their mass 

transition is very difficult because they share the same mass transition. Therefore, the 

chromatographic conditions are key in distinguishing between the metabolites. Chiral 

columns are the choice in dealing with diasterioisomers; however, these types of columns 

are not universal and require lot of trial and error experimentation. The challenge here was 
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to separate the metabolites using a regular C18 analytical column. Several mobile phases 

were evaluated with different compositions of organic modifiers or additives. The 

separation also depends on the column temperature, so this factor was also evaluated. 

2.4.2.4. Optimization of sample preparation  

When dealing with biological samples, the major factor in selecting the extraction 

protocol is the recovery of the analyte and also avoiding the matrix effect. Although direct 

protein precipitation is fastest and the cheapest, the matrix effect can be an issue and can 

lead to ion suppression during the analysis. Solid phase extraction is a useful technique but 

it is expensive and requires a long sample processing time. Therefore, here, liquid-liquid 

extraction procedure was considered from the beginning and optimized to obtain a high 

recovery and clean samples. Methyl tert butyl ether was selected as the organic solvent. 

The other solvent that was tested during the extraction was the reconstitution solvent.       

2.4.3. Method validation 

The developed method was then validated to check its accuracy, precision, 

robustness and rigidity.  The method was validated per US FDA guidance for bioanalytical 

method validation. The validation parameters evaluated were linearity, accuracy and 

precision, selectivity, recovery, matrix effect, and stability. 

2.4.3.1. Linearity 

To ensure that the selected range is suitable for analysis, six calibration curves were 

constructed in same serum matrix for each analyte. The calibration curve is the plot of the 

ratio of the analyte peak area over the internal standard peak area versus the nominal 

concentration. Linear regression was selected applying a weighting factor of 1/x. The FDA 

guidelines state that for lower limit of quantitation LLOQ the acceptable deviation from 



 

 34 

the nominal concentration is < 20% and < 15% for the other calibration points and that 

67% of the calibrators, including LLOQ and upper limit of quantitation ULOQ, being 

within these acceptance criteria. 

2.4.3.2. Accuracy, precision, and sensitivity 

Five quality control (QC) samples from each level and LLOQ were run to determine 

intra-day accuracy and precision. To study the inter-day accuracy and precision, five QC 

samples from each level were prepared on 3 separate days and run immediately on the 

instrument after preparation. Accuracy was determined by how close the mean of the intra-

day QC sample results were to the nominal value. The method is considered accurate if the 

measured concentration is within 85%-115% (80%-120% for LLOQ) of the expected 

value.  The acceptable precision criterion is a coefficient of variation (CV%) of the QC 

sample analyte concentration being no more than 15% (LLOQ not more than 20%). 

2.4.3.3. Selectivity 

A selectivity test was done to ensure that the samples were free of interference. Six 

different serum batches were used to prepare blank and LLOQ samples. The LLOQ peak 

height (or peak area) must be at least 5 times of any peak detected in the corresponding 

blank samples at the same retention time of the analyte in order to be considered free from 

interference. 

2.4.3.4. Recovery 

The efficiency of the extraction protocol was evaluated through the recovery test. 

Three QC samples (low, mid, and high) were prepared pre- and post-extraction in triplicate. 

The analyte/internal standard peak area in spiked samples before extraction over the 
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analyte/internal standard peak area in spiked samples after extraction was used to calculate 

the relative recovery. There is no limit for the recovery; however, the results need to be 

consistent, precise and reproducible, as assessed by the coefficient of variation for each QC 

sample type being no more than 15%. The CV% was calculated as CV % = 

[(DX/X)2+(DY/Y)2)]1/2, where DX is the standard deviation for the pre-extraction samples, 

X is the mean area ratio of pre-extraction samples, DY is the standard deviation for the 

post-extraction samples, and Y is the mean area ratio of post-extraction samples. 

2.4.3.5. Matrix effect 

The matrix effect is the variability in analyte response due to the sample matrix. To 

evaluate the matrix effect, QC low was prepared in triplicate in six different serum batches. 

Matrix effect, calculated as a matrix factor percent (MF%), was calculated as follows: ratio 

of peak area ratio of spiked analyte/internal standard for the QC low samples after 

extraction (n=18) over the peak area ratio of the spiked analyte/internal standard in 

methanol: H2O, 1:1 (n=3).  CV% was calculated as described in section 2.4.3.4. 

2.4.3.6. Stability 

The stability test was done to ensure that the analytes were stable in solution and in 

the matrix under different conditions. To study the stability in solution (methanol: H2O), 

LLOQ, ULOQ, and the internal standard were prepared and kept at room temperature for 

6 hours or at 4ºC for 9 days. The prepared samples were compared with freshly prepared 

samples from stock stored at -20ºC. The peak area was used to compare the samples and 

the test was performed in triplicate.   

In many cases the analytical run will last for more than 24 hours. To ensure that the 

processed samples were stable during the analytical run, post-preparative stability was 
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studied by keeping 5 samples of each of the three QC levels for 43 hours at 4ºC. Six samples 

of each QC low and high were used to evaluate the stability in serum under different 

conditions -- keeping the samples on the bench at room temperature for 21 hours (“bench 

top stability”); subjecting the samples to three freeze-thaw cycles (24 h at -80ºC with thaw 

at room temperature; “freeze thaw stability”); storing the samples at -80ºC for 28 weeks 

(“long-term stability”). To evaluate the stability, the concentrations in these samples were 

compared to the nominal values by running freshly prepared calibration curves. The 

accuracy had to fall within the 85-115% acceptance criteria and the relative standard 

deviation RSD could not exceed 15%. 

2.4.4. Standards and quality control (QC)  

Abiraterone and its metabolites were dissolved in methanol to prepare the stock 

solution of each at a concentration of 1 mg/mL. The working standard was prepared by 

mixing the stock solutions in one flask and diluted using methanol:H2O at 1:1;  the final 

concentration of abiraterone was 5.0 µg/mL and 0.25 µg/mL for the other metabolites. 

Freshly prepared working standard was used to prepare the serum calibrators and serum 

QC samples, all of which contained appropriate concentrations of all the analytes. Quality 

control samples were prepared at three levels, QC Low (3x LLOQ), QC Mid (half ULOQ), 

and QC High, which is 80% of ULOQ. The final concentrations of the calibrators and 

serum QC samples are listed in Table 1. The internal standard stock (2 mg/mL) was 

prepared by dissolving the stock powder in 100% methanol and further diluting it with 

methanol:H2O at 1:1 to a final concentration of 2.5 μg/mL. Stock and working standard 

solutions were stored at -20°C, and the calibrators with QC samples were freshly prepared 

through the validation. 
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Table 1. Calibrators and quality control samples.  

Sample 
Volume of 
Working 

Standard (μL) 

Final 
Volume 

(mL) 

Final Concentration in Serum 
ng/mL 

Abiraterone Metabolites 
Calibrator 1 20 10 2 0.1 
Calibrator 2 40 10 4 0.2 
Calibrator 3 120 10 12 0.6 
Calibrator 4 300 5 60 3 
Calibrator 5 600 5 120 6 
Calibrator 6 1400 5 280 14 
Calibrator 7 2000 5 400 20 

QC Low 60 10 6 0.3 
QC Mid 1000 5 200 10 
QC High 1600 5 320 16 
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2.5. Results and Discussion 

2.5.1. Method development 

The challenge in the development of a comprehensive pharmacokinetic (PK) 

technique to determine parent drug and metabolites is to separate these compounds without 

compromising sensitivity and linearity. The goal here was to develop an LC-MS/MS 

method with an available column and reagents so the method can be adopted easily by 

anyone performing the same type of stereoisomer analysis.  Several mobile phases were 

evaluated, including different organic modifiers (methanol, acetonitrile and 

methanol/acetonitrile mixtures) at various concentrations in water, as well mobile phases 

containing ammonium formate and/or formic acid without organic modifier. The Prodigy 

Phenomenix C18 analytical columns were also evaluated. Optimization of sample 

preparation according to recovery was also performed, various volumes of MTBE, as well 

as evaluating acidic and neutral reconstitution solutions. The best method was then selected 

based on the separation of all metabolites as well as based on the analytical qualities of 

linearity and sensitivity. 

2.5.1.1. Optimization of the mass analyzer  

Because of the steroidal nature of these metabolites and the presence of a pyridyl 

moiety, the mass analyzer was operated with electrospray ionization in the positive mode. 

The mass spectrometric parameters were optimized to ensure that the highest sensitivity 

possible would be achieved.  Nitrogen was used as the nebulizing (40 L/min) agent and 

drying gas (30 L/min). Ion spray voltage and the source temperature were regulated at 

2500 V and 500°C, respectively. All the analytes have the same declustering potential (120 
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V), collision energy (60 V), entrance potential (10 V) and collision exit potential (13 V). 

The metabolites mass transitions are given in Table 2. 

2.5.1.2. Optimization of the chromatographic conditions  

Due to the difficulty in distinguishing between the metabolites based on their MRM 

transition, we separated the metabolites (as well as the parent compound) by 

chromatography. Isocratic chromatographic conditions were optimized, investigating the 

effect of various mobile phase components at different concentrations. Separation of drug 

metabolites was achieved using a Zorbax Eclipse Plus C18 column 150 mm x 2.1 mm, 3.5 

µm (Agilent, Santa Clara, CA) at 40ºC with an isocratic mobile phase consisting of 35% 

A (0.1% formic acid in water) and 65% B (0.1% formic acid in methanol:acetonitrile 

(60:40), at a flow rate of 0.2 mL/min. Sample injection volume was 10 μL, and analytical 

run time was 13 minutes. Using the optimized chromatographic conditions resulted in 

separating the parent compound and metabolites, as shown in Figure 9. It should be noted 

that the method was able to resolve diastereomeric metabolites with a C18 column -- chiral 

columns were not required for separation of these stereoisomers. The employment of a 

methanol/acetonitrile mixture was critical to achieve this separation, as methanol or 

acetonitrile as the sole organic modifier in the mobile phase did not resolve the chiral 

compounds. 

2.5.1.3. Optimizing the sample preparation 

The metabolites were extracted from serum following liquid-liquid extraction. 

Different volumes of MTBE and various reconstitution solvents to achieve higher recovery 

and cleaner samples were tested. Each calibrator and QC sample was taken through the 

following sample preparation steps. Serum, 100 µL, with spiked analytes was placed in a 
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glass tube, and 20 µL 2.5 μg/mL internal standard working solution was added. The 

samples were vortexed for 30 seconds. After addition of 2 mL MTBE, the samples were 

vortexed for 1 minute. The samples were then centrifuged for 5 min at 4000 rpm at 4ºC. 

The organic layer was transferred to another tube and evaporated to dryness under nitrogen 

at 40ºC.  300 µL 1:1 methanol: H2O was used to reconstitute the dried extract and 200 µL 

was transferred to an HPLC vial. 

2.5.2. Method validation  

The method was validated according to FDA guidelines. As discussed below, all 

guideline criteria were met.  All the analytes were stable in solution and serum, meeting 

the stability criterion. The criteria for linearity, accuracy and precision fell within the 

acceptance criteria. The method gave excellent recovery without matrix effects or 

interference.  

2.5.2.1. Linearity  

To evaluate the linearity for each analyte six calibration plots were generated. 

Seven non-zero points were used to generate the calibration curve. The plot of the response 

ratio (analyte peak area over internal standard peak area) versus the analyte concentration 

was linear. The mean values for slope, intercept and R2 values for each analyte are listed 

in Table 3.  

 

 

 

 

 



 

 41 

 

 

 

Table 2. Mass transition of abiraterone metabolites. 

Analyte Q1 (m/z) Q3 (m/z) 

Abiraterone 350.5 156.1 
D4A 348.3 156.1 

3-keto-5α-Abi 350.3 156.2 
3α-OH-5α-Abi 352.4 156.2 
3β-OH-5α-Abi 352.3 156.1 
3-keto-5β-Abi 350.4 156.1 
3α-OH-5β-Abi 352.4 156.4 
3β-OH-5β-Abi 352.1 156.1 

Abiraterone-d4 (IS) 354.4 160.1 
IS = internal standard 

 

 

 

 

 

 

 

 

 

 

 

 



 

 42 

 

 

 

 

 

 

Figure 9. Chromatogram for abiraterone and its metabolites. The results were obtained 
by injecting 10 μL of 50 ng/mL standard solutions for A, Abi; B, D4A; C, 3-keto-5α-Abi; 

D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; G, 3α-OH-5β-Abi; and H, 3β-
OH-5β-Abi. 
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     Table 3. Mean values for slope, intercept and R2 

Analyte Slope Intercept R2 
Abiraterone 1.80E-02 8.17E-03 0.9990 

D4A 2.47E-02 3.00E-06 0.9996 
3-keto-5α-Abi 2.00E-02 1.04E-04 0.9995 
3α-OH-5α-Abi 2.16E-02 -6.33E-05 0.9995 
3β-OH-5α-Abi 2.56E-02 1.21E-04 0.9996 
3-keto-5β-Abi 1.15E-02 3.80E-05 0.9995 
3α-OH-5β-Abi 1.26E-02 -3.67E-05 0.9995 
3β-OH-5β-Abi 2.03E-03 5.00E-06 0.9991 
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2.5.2.2. Accuracy and precision 

To test the method’s accuracy and precision, five replicates of each QC sample 

were prepared on three different days. Five LLOQ samples were prepared in the first batch, 

and the intraday accuracy mean values were 85.3-111.2 %.  All the results fall within the 

FDA acceptance criteria. The measured concentrations (in ng/mL) and the results for inter- 

and intra-day precision and accuracy determination are given in Table 4. Nominal 

concentrations for abiraterone (LLOQ = 2, QC low = 6, mid = 200, and high = 320 ng/mL); 

and the nominal concentrations for the metabolites (LLOQ = 0.1, QC low = 0.3, mid=10, 

and high=16 ng/mL). 

2.5.2.3. Selectivity 

Testing of six LLOQ samples, each prepared from different serum batches, were 

compared to their blank samples showed that the serum was free from interference. The 

MRM chromatograms for the six representative blank samples compared to the MRM 

chromatograms of LLOQ samples of abiraterone and its 7 steroidal metabolites are shown 

in Figure 10.  
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Figure 10. Representative chromatogram of selectivity studies comparing blank samples 
(left chromatograms) matched to LLOQ (right chromatograms) for A, Abi; B, D4A; C, 3-
keto-5α-Abi; D, 3-keto-5β-Abi; E, 3α-OH-5α-Abi; F, 3α-OH-5β-Abi; G, 3β-OH-5α-Abi; 

and H, 3β-OH-5β-Abi. 
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Table 4. Intra- and inter-day accuracy and precision. 

Analyte 
Intra-day (n=5) Inter-day (n=15) 

Measured 
Concentration 

Accuracy 
% 

RSD 
% 

Measured 
Concentration 

Accuracy 
% 

RSD 
% 

Abiraterone 

2.05 102.7 2.89 n.a n.a n.a 
6.4 106.8 2.65 6.21 103.5 4.95 

203.8 102 2.06 206.3 103.3 2.84 
316 98.7 3.86 317 99.1 6.8 

D4A 

0.111 111.2 3.89 n.a n.a n.a 
0.307 102.3 7.76 0.297 98.9 6.68 
10.02 100.2 1.86 9.74 97.4 3.94 
16.4 102.3 3.02 16 100.1 6.35 

3-keto-5α-
Abi 

0.111 111 3.43 n.a n.a n.a 
0.322 107.4 1.56 0.301 100.1 7.86 
10.32 103.2 2.86 9.87 98.7 5.03 
16.8 104.9 4.68 16.5 103.1 7.56 

3α-OH-5α-
Abi 

0.106 106.2 9.23 n.a n.a n.a 
0.314 104.6 5.96 0.304 101.5 9.45 
9.91 99.1 4.41 9.39 93.9 6.33 
14.8 92.6 4.97 15.1 94.5 7.61 

3β-OH-5α-
Abi 

0.103 103 2.63 n.a n.a n.a 
0.305 101.5 4.21 0.301 100.3 4.66 
9.92 99.2 2.07 9.86 98.6 3.99 
16.0 99.9 4.63 16.1 100.6 6.51 

3-keto-5β-
Abi 

0.106 106.4 4.13 n.a n.a n.a 
0.316 105.4 2.56 0.303 101 8.77 
9.95 99.5 2.7 9.56 95.6 4.61 
15.1 94.2 3.61 15.5 96.5 7.8 

3α-OH-5β-
Abi 

0.108 108.4 4.26 n.a n.a n.a 
0.308 102.6 6.74 0.301 100.4 7.55 
9.74 97.4 2.98 9.37 93.8 4.26 
15.0 93.8 4.65 15.3 95.8 7.46 

3β-OH-5β-
Abi 

0.085 85.3 16.8 n.a n.a n.a 
0.275 91.7 10.7 0.29 97.6 12.1 
9.68 96.8 0.99 9.76 97.6 3.67 
14.9 93.3 5.6 16 99.7 9.66 
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2.5.2.4. Recovery 

The three QC levels were used to study the relative recovery, which is determined 

by the percent ratio of the analyte/internal standard peak area of a spiked sample before 

extraction over the analyte/internal standard peak area of a spiked sample after extraction. 

The results should be consistent, precise, and reproducible. The recovery was calculated as 

the mean of three triplicates for each analyte at each QC level. Recovery results and the 

CV% were good and are given in Table 5. The results met the 15% CV% criterion for 

acceptable recovery. 

2.5.2.5. Matrix effect  

The matrix effect is quantified as a matrix factor percent (MF%) by calculating the 

peak area ratio of analyte/internal standard of a QC low sample (post-extraction addition 

of analyte) over the peak area ratio of analyte/internal standard in a methanol/water 

solution.  Matrix effect results are given in Table 5, showing that the technique is 

essentially free from interference.  

2.5.2.6. Stability 

Analytes were stable in the diluted solution stored at room temperature for 6 hours 

and at 4ºC for 9 days as given in Table 6. Results of serum-based stability studies 

employing QC samples are given in Table 7.  The samples were found stable when stored 

at the autosampler temperature at 4ºC for 43 h. The analytes were stable in serum when the 

samples were left on the bench for 21 h.  Even though all analytes did show a decrease in 

concentration when subjected to three freeze-thaw cycles or when stored at -80ºC  for 28 

weeks, the results were less than 15%, which is within the criteria for accuracy. 

 



 

 48 

    

 

 

   Table 5. Matrix effect and recovery. 

Analyte 

MF % 
(n=18) 

Recovery %  
(n=3) 

QC low QC low QC Mid QC High 
Mean 
(%) 

RSD 
(%) 

Mean 
(%) 

RSD 
(%) 

Mean 
(%) 

RSD 
(%) 

Mean 
(%) 

RSD 
(%) 

Abiraterone 114.7 5.04 95.7 6.54 91.7 1.49 93.4 4.65 
D4A 88.5 5.99 105.2 4.78 99.0 3.39 94.6 7.81 

3-keto-5α-Abi 96.1 5.22 91.6 7.47 89.1 7.62 97.7 9.12 
3α-OH-5α-Abi 92.0 5.05 91.2 7.48 85.1 4.51 95.1 5.61 
3β-OH-5α-Abi 99.4 4.57 88.5 6.87 86.9 2.12 92.1 5.78 
3-keto-5β-Abi 93.2 8.31 91.0 13.47 87.1 6.33 96.3 6.39 
3α-OH-5β-Abi 92.0 6.74 86.0 8.47 85.1 1.09 91.1 5.64 
3β-OH-5β-Abi 100.0 11.13 96.6 11.50 86.3 4.28 91.4 8.16 

    RSD% – relative standard deviation percent which is the same as CV%  
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      Table 6. Stock stability and post preparative stability. 

      RT – Room temperature 

 

 

 

 

 

 

 

 

 

 

Analyte 

6 Hours at RT 
(n=3) 

9 Days at 4⁰C 
(n=3) 

Post-Preparative 
42 Hr (n=5)  

LLOQ 
(%) 

ULOQ 
(%) 

LLOQ 
(%) 

ULOQ 
(%) 

QC 
Low 

QC 
Mid 

QC 
High 

Abiraterone 98.5 103.5 109.5 98.4 97.8 101.7 98.3 
D4A 100.2 102.4 91.1 86.9 96.7 96.1 100.3 

3-keto-5α-Abi 112.1 103.7 101.6 88.4 100.0 100.2 101.6 
3α-OH-5α-Abi 103.8 102.7 97.9 85.7 103.3 100.7 102 
3β-OH-5α-Abi 105.2 102.1 101.7 89.3 100.0 98.7 98.1 
3-keto-5β-Abi 107.6 103.7 97.5 83.2 103.3 101.7 102 
3α-OH-5β-Abi 104.1 103.3 105.0 85.4 100.0 96.2 97.5 
3β-OH-5β-Abi 115.0 104.6 95.4 89.7 103.3 98.2 100.4 
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 Table 7. Stability in serum. 

Analyte  
Short-term 

21 hr 
Freeze- thaw 

3 cycles 
Long-term 
28 weeks 

QC 
 Low 

QC 
 High 

QC 
 Low 

QC 
 High 

QC 
 Low 

QC 
  High 

Abiraterone 
Concentration 5.3 293.8 5.4 284.9 5.7 290.7 
Accuracy % 88.2 91.8 89.5 89 95.5 90.8 

% RSD 6.03 1.97 11.38 9.45 0.82 2.28 

D4A 
Concentration 0.3 18.4 0.3 15.3 0.3 14.2 
Accuracy % 100 114.8 86.7 95.8 90 88.6 

% RSD 3.03 1.86 8.82 11.71 3.64 1.42 

3-keto-5α-Abi 
Concentration 0.3 15.7 0.3 14.7 0.3 14.4 
Accuracy % 93.3 98.1 86.7 91.6 86.7 90.1 

% RSD 8.04 2.57 12.84 14.11 5.9 5.59 

3α-OH-5α-Abi 
Concentration 0.3 15.8 0.3 14.1 0.3 14.2 
Accuracy % 96.7 98.7 86.7 88.2 86.7 88.6 

% RSD 7.16 3.4 9.82 14.26 7.32 4.34 

3β-OH-5α-Abi 
Concentration 0.3 15.2 0.3 13.9 0.3 14.1 
Accuracy % 90 95.1 86.7 86.7 86.7 87.9 

% RSD 10.28 2.22 14.55 11.27 4.58 2.5 

3-keto-5β-Abi 
Concentration 0.3 16.3 0.3 14.2 0.3 14.4 
Accuracy % 100 101.8 93.3 88.9 86.7 90.1 

% RSD 7.58 3.66 14.57 13.44 4.92 4.26 

3α-OH-5β-Abi 
Concentration 0.3 16.1 0.3 13.8 0.3 15 
Accuracy % 96.7 100.8 86.7 86.3 90 93.5 

% RSD 7.77 2.29 10.66 12.19 3.65 3.53 

3β-OH-5β-Abi 
Concentration 0.3 16.5 0.3 14.4 0.3 14.7 
Accuracy % 93.3 103 96.7 89.8 93.3 91.9 

% RSD 10.44 5.3 14.41 13.84 5.21 3.56 
     RSD% = relative standard deviation % is the same as CV%;  
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2.6. Conclusions 

In this chapter an LC-MS/MS MRM method for the determination and accurate 

quantification of abiraterone and its metabolites in human serum was developed and 

validated.  This is the first report of a method to determine abiraterone metabolites that 

result from steroidogenic metabolism. The validated LC-MS/MS method resolved and 

quantitated all the metabolites despite the similarity in their structures, including resolving 

diastereomers, a situation that precludes analysis of co-eluting isomers based solely on 

their MRM transitions. Reversed-phase chromatographic conditions were identified to 

accomplish the separation of all metabolites and their subsequent accurate quantification. 

This validated method can be applied to determine abiraterone and the aforementioned 

metabolites in human serum in clinical trials in which patients are treated with abiraterone 

acetate.  
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CHAPTER III 

DETERMINATION OF ABIRATERONE METABOLITES IN VITRO AND IN 

VIVO 

 

 

 

3.1. Development of Abiraterone 

When abiraterone was first studied in 19941, it decreased circulating testosterone 

levels and reduced the weights of androgen-dependent organs in mice. It was designed 

based on the structure of pregnenolone, which is a substrate of CYP17A1. In the early 

stages of abiraterone development, several structurally related compounds were studied 

and compared with ketoconazole which was widely used as a CYP17A1 inhibitor. The 3β-

hydroxy, Δ5 steroidal structure with a 3 pyridyl ring at C17 and the 16, 17 double bond was 

10 times more potent than ketoconazole in inhibiting CYP17A12. The 16, 17 double bond 

was reported to be necessary for the irreversible inhibition of CYP17A13.  The x-ray crystal 

structure of CYP17A1 binding to abiraterone shows that abiraterone binds to heme iron.4 



 

 55 

Abiraterone was reported to inhibit 3βHSD either at high concentration or when 

administered with food 5,6. Abiraterone is administered in patients as the prodrug 

abiraterone acetate (AA) in combination with prednisone 7-9.  

Until recently, the main reported abiraterone metabolites were abiraterone sulfate 

and N-oxide abiraterone sulfate.10 Recently, Li et al11,12 reported a new pathway of 

abiraterone metabolism by steroidogenic enzymes. They studied the metabolism both in 

vitro and in vivo and were able to identify seven steroidal metabolites that were generated 

from abiraterone13. They studied the effect of the generated metabolites and showed that 

some of the abiraterone steroidal metabolites are biochemically active and had a crucial 

function in prostate cancer.  

3.2. Experimental Section 

3.2.1. Materials 

Iscove’s Modified Dulbecco’s (IMDM), Roswell Park Memorial Institute (RPMI) 

1640 and Dulbecco’s Modified Eagle’s (DMEM) media were all purchased from (Sigma-

Aldrich, St. Louis, MO).  Fetal Bovine Serum (FBS) from Gemini (West Sacramento, CA). 

VCaP cells were purchased from the American Type Culture Collection (Manassas, VA). 

C4-2 cells were kindly provided by Dr. Leland Chung (Cedars-Sinai Medical Center, Los 

Angeles, CA) and maintained in RPMI-1640 with 10% FBS. The LAPC4 cell line was 

kindly provided by Dr. Charles Sawyers (Memorial Sloan Kettering Cancer Center, New 

York, NY) and grown in IMDM with 10% FBS. All experiments done with VCaP cells 

were done in plates coated with poly-DL-ornithine (Sigma-Aldrich, St. Louis, MO). Cell 

lines were authenticated by DDC Medical (Fairfield, OH) and determined to be 

mycoplasma-free with primers 5’-ACACCATGGGAGCTGGTAAT-3’ and 5’-
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GTTCATCGACTTTCAGACCCAAGGCAT3’. All reagents used to run the LC-MS are 

listed in section 2.4.1. 

3.2.2. In vitro metabolism of abiraterone  

To test the hypothesis that steroidogenic enzymes present in prostate cancer cell 

lines can convert abiraterone to its steroidal metabolites, LC-MS analyses were performed 

to analyze samples obtained from in vitro assays using prostate cancer cell lines with 

known enzymatic activity: C4-2 with high 3βHSD enzymatic activity and VCaP and 

LAPC4 which have a robust SRD5A1 activity and a low 3βHSD enzymatic activity.   Cells 

were seeded and incubated in 12-well plates with 0.2 million cells/well for ~24 h and then 

incubated with 1µM of abiraterone, D4A, 3-keto-5α-Abi, 3α-OH-5α-Abi, 3β-OH-5α-Abi, 

3-keto-5β-Abi, 3α-OH-5β-Abi or 3β-OH-5β-Abi, for 24 and 48 hr. Media was collected at 

the two time points and were subjected to LC-MS analysis. This experiment was performed 

in triplicate for each drug and was repeated for three biological repeats.  

3.2.3. Abiraterone metabolism in mice 

To confirm that abiraterone is metabolized by steroidogenic enzymes, LC-MS 

analysis was utilized to confirm the metabolism in mice. Male NSG mice, 6 to 8 weeks of 

age were obtained from the Cleveland Clinic Biological Resources Unit facility. All mouse 

studies were conducted under a protocol approved by the Cleveland Clinic Institutional 

Animal Care and Use Committee. Mice were injected intraperitoneally with 100 µL 

solution containing 0.15 mmol/kg of either abiraterone (n=5), D4A (n=5), 3-keto-5α-Abi 

(n=4), 3α-OH-5α-Abi (n=4), or 3β-OH-5α-Abi (n = 4 mice/group). Blood was collected 2 

and 4 hrs after injection, centrifuged at 10,000 rpm, and the sera were stored at -80ºC for 

LC-MS analysis.   
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3.2.4. Pharmacokinetics of abiraterone and its steroidal metabolites in human  

The activities conferred by steroidal metabolites of abiraterone may make them 

biomarkers of clinical response or treatment resistance. To study the pharmacokinetics 

(PK) of abiraterone and its seven steroidal metabolites in humans, plasma samples from a 

clinical trial led by Janssen Pharmaceuticals were analyzed. In this pharmacokinetics study, 

15 healthy male volunteers received a single oral dose of 1000 mg abiraterone acetate plus 

240 mg of the AR antagonist apalutamide under fasting conditions. Serial plasma samples 

were collected from each volunteer to cover the period from 0-96 hours post-dose as 

follows: pre-dose, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 72, and 96 hours. Aliquots of the plasma 

samples were subjected to LC-MS analysis to quantify the concentrations of abiraterone 

and its seven structurally related steroidal metabolites and to assess the pharmacokinetics 

parameters for each of the metabolites.  

3.2.5. LC-MS analysis 

All samples collected from cell metabolism, mouse metabolism, and the 

pharmacokinetics studies were subjected to LC-MS analysis. All the analyses were 

performed using the same mass spectrometer conditions and chromatographic conditions; 

the only difference was the sample preparation procedure. The cell metabolism sample 

preparation was as follows: To 200 µL media 40 µL internal standard (abiraterone-d4) was 

added and  then the analytes were extracted with 2 ml TMBE,  the TMBE was evaporated, 

and the remaining sample was  reconstituted with 200 µL methanol:H2O; 1:1. The standard 

curves were prepared in media. Samples obtained from mice were subjected to direct 

protein precipitation as follows: To 20 µL mouse serum, 180 µL methanol containing the 

IS was added; the sample was centrifuged at 10,000 g for 10 min, and then 120 µL 
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supernatant was transferred to HPLC vials. The standard curves were prepared in drug-free 

mouse sera. The pharmacokinetic samples were prepared as follows: 100 µL of human 

plasma was spiked with 20 µL IS, 2 ml of TBME was added, the samples were then 

vortexed and centrifuged. The organic layer was evaporated and the samples were 

reconstituted with 300 µL methanol:H2O; 1:1.   

3.3. Results and Discussion 

3.3.1. Cell metabolism 

3βHSD enzymatic activity is present in the C4-2 cell line; therefore treating the 

cells with abiraterone resulted in detection of the abiraterone downstream metabolites as 

shown in Figure 11A. When the cells were treated with D4A, the downstream metabolites 

also were detected but not abiraterone itself (Fig 11B). This indicates that 3βHSD activity 

is not reversible and D4A was fully consumed and metabolized after 48 hours. Treating 

the cells with any of the 5α-reduced metabolites resulted in detecting the other two 5α-

reduced metabolites (Fig. 11C-E). This behavior was not observed with 5β-reduced 

metabolite. Only when the cells were treated with 3-keto-5β-Abi all three 5β reduced 

metabolites were detected (Fig. 11F).  However, treating the cells with either 3α-OH-5β-

Abi or 3β-OH-5β-Abi did not result in detecting all 5β-reduced metabolites (Fig. 11G&H). 

In the C4-2 cell line as well as VCaP and LAPC4 cells, 5β-reductase enzymatic activity is 

absent. Therefore, only 5α-reduced metabolites were detected when cells were treated with 

abiraterone or D4A. In contrast to C4-2, LAPC4 and VCaP cell line have low 3βHSD 

activity. Therefore, treating the cells with abiraterone resulted in low yield of the 

downstream metabolites (Fig. 12A &13A). D4A treatment in the two cell lines resulted in 

high yield of the 5α-reduced metabolites which substantiates their robust SRD5A1 activity 
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(Fig. 12B &13B). In VCaP and LAPC4 cells, the conversion of the 5α reduced metabolites 

was not interchangeable (Fig. 12C-E &13C-E) due to low 3βHSD activity, which is 

responsible for converting 3β-OH-5α-Abi back to 3-keto-5α-Abi. 3-keto-5β-Abi 

conversion was fast, with only 20% and 30% of the metabolites left in the media after 24 

hours and almost nothing left after 48 hours (Fig. 12F&13F).  Treating the cells with 3α-

OH-5β-Abi did not result in detecting any of the other 5β-reduced metabolites (Fig 

12G&13G). In VCaP cells within 24 hours, 20% of 3β-OH-5β-Abi was converted to 3α-

OH-5β-Abi.  However, in LAPC4 cells it took 48 hours to reach this percentage (Fig 

12H&13H).  Together all these results suggest that steroidogenic enzymes are responsible 

for the metabolism and formation of abiraterone steroidal metabolites and that once the 

metabolites are formed, they cannot be converted back to abiraterone.  
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Figure 11. Metabolism of abiraterone and its metabolites in C4-2 cells. A, Abi; B, D4A; 
C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; G, 3α-OH-5β-

Abi; and H, 3β-OH-5β-Abi. 
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Figure 12. Metabolism of abiraterone and its metabolites in VCaP cells. A, Abi; B, D4A; 
C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; G, 3α-OH-5β-

Abi; and H, 3β-OH-5β-Abi. 
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Figure 13. Metabolism of abiraterone and its metabolites in LAPC4 cells. A, Abi; B, 
D4A; C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; G, 3α-

OH-5β-Abi; and H, 3β-OH-5β-Abi. 
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3.3.2. Abiraterone in vivo metabolism 

To confirm that the metabolism occurs in mice, a PK experiment was performed. 

Blood samples were collected 2 and 4 hr after the metabolite injection into NSG mice. The 

LC-MS analysis of mouse sera showed that abiraterone metabolism was fast: by 2 hrs after 

abiraterone injection, more than 40% was converted to the downstream metabolites, 

including the 5β-reduced metabolites (Fig 14A). In contrast, in the group of mice injected 

with D4A, the metabolism of D4A was not fast: only 20% was converted to the downstream 

metabolites after 4 hrs (Fig 14B). This could be due to the inhibitory effect of D4A on 

steroidogenic enzymes. Similar to the cell lines, conversion of the three 5α-reduced 

metabolites is reversible; injecting any of the 5α-reduced metabolites resulted in detecting 

all three of them but not abiraterone, D4A, or any of the 5β-reduced metabolites (Fig 14C-

E). The favorite reduction pathway for 3-keto-5α-Abi is through 3α-HSD to produce 3α-

OH-5α-Abi, as 45% of 3-keto-5α-Abi was converted (Fig 14C). In the other hand, the 

reversible reaction was slow: less than 10% of 3α-OH-5α-Abi was converted to 3-keto-5α-

Abi. However, the 3β-OH-5α-Abi metabolite when injected into the mice resulted in the 

formation of both 3-keto-5α-Abi and 3α-OH-5α-Abi. All these results suggest that 

abiraterone metabolism occurs fast in mice and that none of the metabolites can generate 

abiraterone. 
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Figure 14. In vivo metabolism of abiraterone and its metabolites in NSG mice. A, Abi; B, 
D4A; C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi. 
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3.3.3. Pharmacokinetics studies in humans 

Abiraterone bioavailability was reported to be highly variable14. However, little is 

known about steroidal metabolites of abiraterone regarding the temporal nature of their 

formation and elimination that would inform the timing of metabolite sampling for 

biomarker studies. Analysis of pharmacokinetics samples from 15 healthy volunteers 

confirmed that not just abiraterone but its metabolites were also variable.  All the 

metabolites were detected in the volunteers. The results in Figure 15A-H show the 

variability of the metabolite concentrations in the volunteers.  The drop in the mean 

percentage of abiraterone over time is accompanied by a rise in the 5β-reduced metabolites 

(Fig 16). The pharmacokinetics analysis was performed assuming a non-compartmental 

model. The metabolite maximum concentration was achieved between 1.9-19.3 hours. The 

mean Tmax was 1.9 hr for abiraterone, 2.1 hr for D4A, and 2.7 hr for 3-keto-5α-Abi, and 

ranged between 3.2 and 19.3 hrs for the other metabolites (Table 8). The mean Cmax was 

90 ng/ml for abiraterone, 0.91 ng/ml for D4A, and 5.5 ng/ml for 3-keto-5α-Abi (Table 9). 

The mean AUC at 96 hrs ranged from 5.0 for 3β-OH-5α-Abi to 504 for abiraterone (Table 

10). These data suggest that abiraterone metabolism via steroidogenic enzymes takes place 

rapidly and that D4A and 3-keto-5α-Abi are generated in rapid succession from the first 

abiraterone dose. This is the first study to evaluate the pharmacokinetics parameters of 

abiraterone and its seven steroidal metabolites in healthy volunteers, and these data will 

help in designing biomarker studies of abiraterone metabolite levels to enhance clinical 

treatment.  
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Figure 15. Pharmacokinetics of abiraterone metabolites in human serum. 15 healthy 

individual (color coded) draw blood up to 96 h after single dose of abiraterone acetate. A, 
Abi; B, D4A; C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; 

G, 3α-OH-5β-Abi; and H, 3β-OH-5β-Abi. 
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Figure 16. The mean percentage of abiraterone metabolites in human serum at 12 time 
points to cover the period (0.5-96 h) 
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Table 8. Tmax (hours) for abiraterone metabolites. 

Analyte Min 25th 
Percentile Median 75th 

Percentile Max Mean SEM 

Abiraterone 1.0 1.5 1.5 2.0 4.0 1.9 0.23 

D4A 1.0 1.5 2.0 2.0 4.0 2.1 0.22 

3-keto-5α-Abi 1.5 2.0 2.0 4.0 4.0 2.7 0.28 

3α-OH-5α-Abi 4.0 4.0 4.0 6.0 8.0 5.1 0.38 

3β-OH-5α-Abi 0 4.0 4.0 4.0 6.0 3.7 0.33 

3-keto-5β-Abi 1.5 1.5 2.0 4.0 12 3.2 0.72 

3α-OH-5β-Abi 2.0 4.0 8.0 24 72 19.3 5.46 

3β-OH-5β-Abi 6.0 8.0 12 24 48 16.8 2.92 
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Table 9. Cmax (ng/ml) for abiraterone metabolites. 

Analyte Min 25th 
Percentile Median 75th 

Percentile Max Mean SEM 

Abiraterone 33.8 38.3 65.5 116.7 223.3 90.1 15.2 

D4A 0.43 0.57 0.81 1.31 2.12 0.91 0.12 

3-keto-5α-Abi 1.18 2.76 4.59 6.72 22.6 5.54 1.33 

3α-OH-5α-Abi 0.16 0.44 0.76 1.47 4.07 1.06 0.25 

3β-OH-5α-Abi 0.00 0.15 0.23 0.49 1.84 0.39 0.11 

3-keto-5β-Abi 0.63 1.13 1.32 1.85 3.53 1.51 0.18 

3α-OH-5β-Abi 0.44 0.90 1.19 1.77 3.02 1.41 0.18 

3β-OH-5β-Abi 0.91 2.58 3.14 6.91 10.5 4.55 0.75 
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Table 10. AUC at 96 hours for abiraterone metabolites. 

Analyte Min 25th 
Percentile Median 75th 

Percentile Max Mean SEM 

Abiraterone 165 233 322 596 1784 504 110 

D4A 2.59 6.21 8.83 10.5 18.7 8.86 1.14 

3-keto-5α-Abi 9.46 25.7 40.4 54.7 235 52.7 13.85 

3α-OH-5α-Abi 1.99 4.98 8.81 16.8 63.4 14.3 3.88 

3β-OH-5α-Abi 0.00 0.75 1.51 5.87 31.5 5.04 2.10 

3-keto-5β-Abi 1.69 14.0 19.7 41.6 57.9 27.0 4.45 

3α-OH-5β-Abi 20.1 44.2 52.1 103 162 70.6 10.21 

3β-OH-5β-Abi 22.8 99.3 128 320 455 188 34.77 
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3.4. Conclusion 

Until recently, very little was known about steroidogenic metabolism of 

abiraterone. The work presented here demonstrates that steroidogenic enzymes metabolize 

abiraterone to at least seven new compounds. The formation of the metabolites was fast as 

confirmed by in vitro and in vivo experiments. Conversion of abiraterone and D4A to 

downstream metabolites was irreversible. This was confirmed by showing that the 

accumulation of products did not drive flux to their precursors (in this case abiraterone and 

D4A). In healthy human subjects, the metabolism was also fast, and all the metabolites 

were detected from the first dose of abiraterone acetate. All these data confirmed the 

presence of a previously unappreciated novel pathway of abiraterone metabolism.      
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CHAPTER IV 

ABIRATERONE METABOLISM IN PATIENTS WITH CASTRATION-

RESISTANT PROSTATE CANCER 

 

 

 

4.1. Background 

Prior to its approval in 2011, abiraterone acetate went through several clinical trials 

to evaluate its efficacy, safety, and the dose. The first study, which was three small clinical 

trials, was reported in 2004 1. In these trials the major objective was to determine the dose 

that will result in maximum suppression of testosterone; the other objectives include safety 

and tolerability, pharmacokinetics, and evaluating some endocrine data. The second 

clinical trial was reported in 2008 2; it was a phase I/II clinical study with escalating dose 

of abiraterone acetate to evaluate drug safety, pharmacokinetics, and activity in 

chemotherapy-naive patients with CRPC. Based on the outcomes of this study, the selected 

dose for treatment in clinical practice was 1000 mg daily. The major side effects were 

associated with the blockade of CYP17A1 activity; which lowers glucocorticoid and 
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elevates mineralocorticoid levels. The side effects included hypertension, hypokalemia, 

and fluid retention, which were managed with a mineralocorticoid antagonist, and can be 

prevented when abiraterone acetate is administered with prednisone. Other clinical trials 

evaluated abiraterone acetate after ketoconazole3 or in patients with prior treatment with 

chemotherapy4,5. Phase III trials were double-blind, placebo-controlled, multicenter 

designs for patients with prior chemotherapy (COU-AA-301)6  or chemotherapy-naive 

CRPC patients (COU-AA-302) 7. Based on the outcome of these two clinical trials for 

CRPC treatment, the US FDA approved abiraterone acetate in combination with 

prednisone to treat CRPC patients before or after chemotherapy. Since its approval, 

updated trial results have been published -- the median overall survival was 15.2 in 

abiraterone acetate plus prednisone arm, compared to 11.8 in the placebo plus prednisone 

arm for (COU-AA-301)8. Median overall survival was 34.7 months in the abiraterone 

group vs 30.3 months in the control group (COU-AA-302)9. 

As discussed in Chapter 3, abiraterone metabolism in vitro and in vivo generated at 

least seven metabolites through steroidogenic enzyme activity. The metabolites were also 

present in healthy humans in a clinical trial to evaluate the PK parameters after single dose 

of abiraterone acetate. Abiraterone metabolites play an important role in prostate cancer. 

D4A is the first downstream metabolite and inhibits the following steroidogenic enzymes: 

CYP17A1, 3βHSD1, and SRD5A1. It also inhibits expression of the AR-responsive genes: 

prostate-specific antigen (PSA), TMPRSS2, and FKBP5. In vivo, D4A inhibits tumor 

progression in xenograft mice when compared to abiraterone acetate10.  However further 

metabolism of D4A will not only result in losing its effect, it will generate 3-keto-5α-Abi 

which stimulates the expression of AR-responsive genes and promotes tumor progression 
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in xenograft mice11. Thus, it was important to determine the metabolite levels in patients 

treated with abiraterone acetate.  

This chapter focuses on determining abiraterone metabolites in several clinical 

trials that included investigation of the effect increasing the frequency of abiraterone 

acetate dose or adding steroidogenic enzyme inhibitors on abiraterone metabolism. In the 

first trial CRPC patients received a standard dose of abiraterone acetate (1 gm daily) with 

5 mg twice daily of prednisone (a drug administered with abiraterone acetate to overcome 

adverse events). In the second study, 1 gm daily of abiraterone acetate was combined with 

leuprolide acetate (an LHRH agonist)12. The third study combined abiraterone acetate with 

prednisone and dutasteride (a SRD5A1 inhibitor that is used to treat benign prostate 

hyperplasia)13. The fourth and last trial was designed to study the effect of increasing the 

abiraterone acetate dose from 1 gm daily to 1 gm twice daily. Samples from the four trials 

were obtained and subjected to LC-MS analysis to measure the metabolite levels.  

4.2. Determination of Abiraterone Metabolism in Clinical Trials 

The common aim of these trials was to maximize the benefit of abiraterone 

treatment. None of these trials had a major objective to study abiraterone metabolism; 

however, one of the approaches to achieve the goals of these trials was through determining 

abiraterone metabolites and correlating them with clinical outcomes.    

4.2.1. CRPC patients treated with standard dose of abiraterone acetate  

  In a clinical study held at the Cleveland Clinic under an Institutional Review Board 

– approved protocol (Case 7813), CRPC patients received a standard dose of abiraterone 

acetate (1gm daily) and 5mg twice daily of prednisone on an outpatient basis. The primary 

objective of this research study was to identify the biochemical mechanisms that underlie 
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resistance to hormonal therapies in advanced prostate cancer and to define the underlying 

mechanisms. One of the approaches was to determine abiraterone metabolites in the sera 

of the patients and correlate the levels with the clinical outcomes.  The time from the daily 

dose to the blood draw was recorded. Blood was collected using Vacutainer Plus serum 

blood collection tubes (#BD367814, Becton Dickenson, Franklin Lakes, NJ). Blood was 

collected between 1 and 16 hours after the daily dose of abiraterone acetate was 

administered. Blood was allowed to clot and tubes were centrifuged at 2500 rpm for 10 

minutes.  Serum aliquots were frozen at -80°C until processing. 

4.2.2. Neoadjuvant study of abiraterone in combination with an LHRH agonist  

This clinical trial (NCT00924469) was a phase II open-label, randomized, multi-

center study of neoadjuvant abiraterone acetate plus leuprolide acetate (an LHRH agonist) 

and prednisone versus leuprolide acetate alone in men with localized high-risk prostate 

cancer performed at Dana Farber Cancer Institute; and all patients provided written 

informed consent. The patients received the treatment for 24 weeks and then underwent 

surgery (prostatectomy). On the day of surgery, a blood sample also was drawn. The major 

aim of this trial was to evaluate the safety and efficacy of the combined treatment. 

However, for the purpose of this research, abiraterone and the metabolite levels were 

compared in both the prostate tissue and serum and were correlated with the clinical 

outcome. 

4.2.3. Effect of increasing frequency to abiraterone acetate 

This was a single arm, open–label, multicenter, phase II study conducted at the 

University of California San Francisco UCSF and Oregon Health and Science University 

OHSU. The study was approved by UCSF and OHSU Institutional Review Boards and all 
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patients provided written informed consent prior to participation. The trial aim was to 

evaluate the efficacy and safety of increasing abiraterone acetate dose in chemotherapy-

naïve CRPC patients3. All patients started with the standard dose of abiraterone acetate and 

prednisone until the PSA concentration increased by 25% above nadir or until clinical or 

radiographic progression. At the time of disease progression, abiraterone acetate dose was 

increased to 1gm twice daily, and patients were monitored for a minimum of 12 weeks or 

until subsequent PSA, radiographic, or clinical progression. 

4.2.4. Combining dutasteride with abiraterone acetate  

  This was a phase II, single-arm, multi-center, open-label study (NCT01393730) 

performed at Dana Farber Cancer Institute; all patients provided written informed consent. 

The main purpose of this research study was to determine the efficacy of adding dutasteride 

(SRD5A1 inhibitor) to abiraterone acetate and prednisone in patients with CRPC.  Our 

purpose was to determine whether adding dutasteride would alter abiraterone metabolism 

by blocking D4A metabolism to the 5α-reduced metabolites, which may increase the levels 

of D4A and abiraterone, thus may be correlated with the clinical outcomes. Patients were 

treated with abiraterone acetate (1gm daily) and prednisone (5 mg daily) for two 4-week 

cycles. After this time, high-dose dutasteride (3.5 mg daily) was added (start of cycle 3). 

Patients continued on the 3-drug regimen until study withdrawal or radiographic disease 

progression. Blood samples were available from beginning of cycle 3, cycle 4, and cycle 

7.    
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4.3. Results and Discussion  

4.3.1. CRPC patients receiving standard dose of abiraterone acetate  

  This study is still recruiting patients in an ongoing basis. The patients included in 

the analysis were diagnosed with prostate cancer between January, 1994 and May, 2014 

and began treatment with abiraterone acetate between December, 2011 and May, 2015. 

Samples from 34 patients were available for LC-MS analysis. All seven abiraterone 

metabolites were detected despite the treatment duration or time to blood draw (Table 11). 

Abiraterone as a percentage of the total metabolites was the greatest compared to all other 

metabolites, with a mean value of 43%. The lowest metabolite percentage was 3β-OH-5α-

Abi at only 0.69% of the total metabolites. D4A has been reported to be more potent than 

abiraterone in inhibiting AR regulated gene expression. D4A levels never exceeded that of 

abiraterone in patients; the ratio of D4A: abiraterone ranged from 0.03-0.36 with a mean 

of 0.07. On the other hand, the ratio of 3-keto-5α-Abi:D4A ranged from 0.84-12.94 with a 

mean of 3.73. PSA concentration and HSD3B1genotype (a gene that can be mutated in 

CRPC patients) were evaluated for any correlation with the metabolite levels. However, 

due to the limited number of patients with a mutated gene (n=3) it was difficult to find 

correlations between the metabolite levels with the genotype and clinical outcomes. 

4.3.2. Neoadjuvant study of abiraterone in combination with an LHRH agonist 

 Patients were enrolled from September 2009 through June 2011. Patients were 

randomized to treatment with abiraterone in combination with leuprolide and prednisone 

or leuprolide alone for 12 weeks. Then all patients received another 12 weeks of 

combination abiraterone, leuprolide and prednisone. After 24 weeks of neoadjuvant 

therapy, patients underwent surgery (prostatectomy). Abiraterone and leuprolide were able 
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to suppress tissue androgens more effectively compared to leuprolide alone. Samples from 

15 patients were available for LC-MS analysis. Abiraterone metabolites were detected in 

both tissue and serum. In general, abiraterone levels in serum were lower than in tissue 

when calculated as percentage of all metabolites (Fig 17A). SRD5A activity is high in the 

prostate; thus, the D4A percentage was higher in serum than in the prostate (Fig 17B). 

Among all 5-reduced metabolites (Fig 17C-H), 3β-OH-5α-abi has higher tissue levels. For 

no metabolite did the concentration correlate with androgen levels in tissue or serum. 

However, the percentage of 3α-OH-5β-Abi and 3β-OH-5β-Abi in tissue and abiraterone in 

serum were correlated with baseline serum PSA when calculated using the Kruskal-Wallis 

test (Table 12).  

4.3.3. Effect of increasing frequency to abiraterone acetate  

Forty-one patients enrolled in the study from March 2013 to March 2014. In 14 of 

the 41 patients, the abiraterone dose was increased to 1 gm twice daily. When compared 

with the standard abiraterone acetate dose, abiraterone levels increased in 10 patients (Fig 

18A), D4A levels increased in 8 (Fig 18B). Similar to abiraterone, 3-keto-5α-Abi levels 

increased in 10 patients (Fig 18C). 3α-OH-5α-Abi, 3β-OH-5α-Abi, and 3β-OH-5α-Abi had 

an increased levels in 9 patients (Fig 18D,E&G). 3-keto-5β-Abi and 3β-OH-5β-Abi 

increased in 12 of 14 patients (Fig. 18F&H). Overall, a non-significant increase in median 

abiraterone metabolite levels was observed in patients taking the increased dose, from 13.6 

ng/mL at the time of progression on the standard daily abiraterone dose to 16.2 ng/mL on 

the increased dose (Table 13). Despite the escalated abiraterone dose, none of the patients 

had a 30% decline in PSA at study end.    
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Table 11. Concentration ng/ml of abiraterone metabolites in CRPC patients  

Patient 
# 

Time 
point 

hour, min 
Abi D4A 

3- 
keto-
5α-
Abi 

3α-
OH-
5α-
Abi 

3β-
OH-
5α-
Abi 

3-
keto-
5β-
Abi 

3α-
OH-
5β-
Abi 

3β-
OH-
5β-
Abi 

1 1,20 15.75 0.96 6.99 1.77 0.58 7.08 10.19 22.54 
2 2,00 8.64 1.28 1.36 0.42 0.12 2.43 6.46 9.42 
3 2,00 89.88 2.52 10.84 2.07 2.12 21.97 32.81 41.56 
4 2,15 39.98 1.28 3.46 0.23 0.11 6.46 2.04 3.08 
5 2,15 40.49 2.05 9.07 1.30 0.39 4.37 4.90 5.71 
6 2,30 48.45 1.29 10.66 1.16 0.52 5.95 3.44 6.86 
7 3,15 2.19 0.29 0.58 0.22 0.08 0.91 3.15 1.50 
8 3,15 213.4 7.19 28.63 3.00 0.97 45.34 16.90 34.94 
9 4,16 9.28 3.30 2.84 0.61 0.14 20.22 21.29 33.20 

10 4,49 13.96 0.77 2.25 0.48 0.16 2.50 3.98 6.75 
11 4,50 81.90 4.11 6.73 1.13 0.40 21.74 22.28 19.10 
12 6,20 111.4 5.04 65.22 8.09 1.77 46.64 21.05 27.82 
13 6,40 43.41 3.67 20.48 5.87 4.14 12.74 22.04 19.06 
14 7,30 21.50 1.29 1.04 0.26 0.12 4.48 5.52 12.54 
15 8,08 61.47 4.54 9.88 1.73 0.60 14.77 11.85 24.32 
16 8,10 16.68 2.78 3.64 0.88 0.35 18.59 26.08 28.06 
17 8,11 16.71 1.25 8.10 1.93 0.45 8.08 9.84 15.19 
18 9,00 24.30 1.61 1.57 0.43 0.20 10.80 15.83 16.22 
19 9,20 10.75 0.44 0.87 0.24 0.10 0.64 2.02 2.41 
20 10,25 60.64 2.49 10.96 2.82 0.78 7.15 11.11 10.76 
21 10,40 35.88 1.82 12.46 3.69 0.99 5.98 10.52 16.37 
22 10,45 19.24 0.52 1.22 0.37 0.15 1.28 3.83 4.33 
23 11,15 68.76 5.35 15.04 3.27 1.14 17.17 18.59 24.81 
24 11,40 49.87 4.00 11.74 2.22 0.93 15.29 11.25 21.34 
25 11,50 33.53 2.08 4.57 1.08 0.32 3.77 4.13 4.32 
26 11,50 67.98 3.59 5.36 1.11 0.44 16.54 12.53 27.29 
27 12,10 41.22 3.71 11.04 2.27 0.77 25.76 21.59 37.91 
28 12,15 19.06 1.14 4.66 1.21 0.34 11.54 10.95 12.50 
29 12,15 52.41 3.17 10.89 2.83 0.88 8.97 10.57 19.10 
30 12,20 38.32 2.16 7.59 1.26 0.51 9.12 6.13 10.10 
31 13,20 46.60 2.33 15.07 2.95 1.02 23.00 16.96 31.13 
32 13,05 22.59 2.41 4.43 0.72 0.27 5.79 5.47 6.16 
33 14,08 31.48 3.07 20.28 6.42 1.99 7.89 19.94 15.87 
34 15,45 66.69 2.83 8.71 2.88 0.88 4.29 10.53 12.34 
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Table 12. Correlation between tissue and serum metabolites with baseline PSA 

Analyte 

Tissue vs  
Baseline Serum 

PSA 

Serum  vs  
Baseline Serum 

PSA 
Coef P Coef P 

Abiraterone -0.56* 0.03 -0.56 0.03 
D4A 0.41 0.13 0.41 0.13 

3-keto-5α-Abi 0.43 0.11 -0.01 0.96 
3α-OH-5α-Abi 0.28 0.31 -0.09 0.74 
3β-OH-5α-Abi 0.16 0.57 -0.05 0.87 
3-keto-5β-Abi 0.41 0.13 -0.03 0.92 
3α-OH-5β-Abi 0.54 0.038 -0.09 0.75 
3β-OH-5β-Abi 0.53 0.043 0.09 0.75 

 *A negative coefficient indicates the values between metabolites and PSA were inversely correlated 



 

 83 

 

Figure 17. Abiraterone metabolites in human prostate and serum. A, Abi; B, D4A; C, 3-
keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-keto-5β-Abi; G, 3α-OH-5β-Abi; 

and H, 3β-OH-5β-Abi. 
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Figure 18. Metabolite concentration (ng/ml) after 1gm once vs. twice daily of abiraterone 
acetate. A, Abi; B, D4A; C, 3-keto-5α-Abi; D, 3α-OH-5α-Abi; E, 3β-OH-5α-Abi; F, 3-

keto-5β-Abi; G, 3α-OH-5β-Abi; and H, 3β-OH-5β-Abi. 

 



 

 85 

 

 

 

 

 

Table 13. Abiraterone dose dependent concentrations 

Analyte 1gm/daily 1gm twice/daily P 

Abiraterone 13.57 16.21 0.25 
D4A 1.36 1.53 0.24 

3-keto-5α-Abi 4.69 6.45 0.29 
3α-OH-5α-Abi 1.04 1.33 0.37 
3β-OH-5α-Abi 0.36 0.42 0.76 
3-keto-5β-Abi 3.55 6.62 0.12 
3α-OH-5β-Abi 7.19 9.05 0.25 
3β-OH-5β-Abi 15.14 18.12 0.21 
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4.3.4. Effect of adding dutasteride 

  Based on the analysis of the clinical trial with standard abiraterone acetate dose, 

(section 4.3.1.) 3-keto-5α-Abi:D4A ratio was 3.73. To test whether adding a SRD5A 

inhibitor will lower this ratio, samples from the clinical trial (NCT01393730) were 

analyzed. Patients enrolled between September 2011 and October 2012. Sixteen patients 

who had blood collected on abiraterone acetate alone (start of cycle 3) and after the addition 

of dutasteride (start of cycles 4 and 7) were included in the analysis (Fig 19A). Adding 

dutasteride doubled the mean concentrations of abiraterone and D4A (191.2 nM vs.372.4 

nM and 9.9 nM vs. 18.2 nM ; respectively (Table 14 and Fig 19B&C).  

  On the other hand, adding dutasteride resulted in a dramatic decline in the 5α-

reduced metabolites: 89% decline in the mean concentration of 3-keto-5α-Abi, 92% for 3α-

OH-5α-Abi, and 73% for 3β-OH-5α-Abi (Table 14 and Fig. 19D).  Concentrations of 

abiraterone, D4A, and 5α-Abi metabolites at cycle 7, the second time point after addition 

of dutasteride, were similar to cycle 4 (Table 14).  Finally, the addition of dutasteride, did 

not decrease any of the 3 5β-reduced abiraterone metabolites, supporting a very specific 

biochemical effect of SRD5A inhibition on 5α-Abi metabolism (Fig 19E). The significance 

of adding dutasteride was evaluated between cycle 3 and 4 using a paired two-tailed t-test 

(Table 14).   Together, these findings demonstrate that the elevated ratio of 5α-Abi:D4A 

in standard therapy can be lowered with dutasteride. 

 

 

 

 



 

 87 

 

 

 

 

Figure 19. Effect of adding dutasteride to abiraterone; clinical trial (NCT01393730). A, 
Study design; B, Abi; C, D4A; D, 5α-reduced metabolites; E, 5β-reduced metabolites. 
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Table 14. Effect of dutasteride on abiraterone metabolites concentrations (nM) 

Analyte Cycle 
3 

Cycle 
4 

Cycle 
4 P 

Abiraterone 191.20 372.40 305.40 0.051 
D4A 9.94 18.18 17.85 0.002 

3-keto-5α-Abi 25.76 2.94 4.42 <0.0001 
3α-OH-5α-Abi 6.09 0.50 0.80 <0.0001 
3β-OH-5α-Abi 2.69 0.73 1.25 <0.0001 
3-keto-5β-Abi 38.74 49.94 60.29 0.11 
3α-OH-5β-Abi 47.78 48.00 56.59 0.97 
3β-OH-5β-Abi 74.05 69.51 91.43 0.64 

 P value Cycle 3 vs Cycle 4 
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4.4. Conclusion  

Abiraterone was approved in 2012 based on the outcome of the clinical trial where 

it showed an increase in overall survival.  Since then, improving the drug is an ongoing 

aim for many researchers. Although the clinical trials described in this chapter were not 

designed to study abiraterone metabolites, we were able to detect abiraterone metabolites 

in order to determine whether the levels of the metabolites can be used as a potential 

biomarker and be correlated with clinical outcomes. None of the studies gave a clear 

correlation between the metabolite levels and the clinical outcomes but this is something 

that researchers need to take into consideration in future designs. In the abiraterone plus 

LHRH agonist leuprolide (neoadjuvant) study, the 5α-reduced metabolites were present in 

serum and the tissue at higher levels than D4A.  The increased dose of abiraterone did 

lower PSA but it did not achieve the study goal of a 50% decline, and although the 

increased dose also raised the D4A level, the ratio D4A:3-Keto-5α-Abi remained the same. 

However, combining abiraterone acetate with dutasteride can reverse the ratio by leading 

to higher D4A.  
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CHAPTER V 

BIOCHEMICAL ACTIVITIES OF GALETERONE STEROIDAL 

METABOLITES 

 

 

5.1. Introduction 

In an effort to overcome drug resistance in prostate cancer, several approaches were 

taken into consideration when designing new agents, specifically, targeting androgen 

biosynthesis by inhibiting steroidogenic enzymes or direct targeting and antagonizing the 

AR. Abiraterone and enzalutamide are FDA-approved for treatment of CRPC. Abiraterone 

inhibits the enzyme 17α-hydroxylase/17,20-lyase (CYP17A1) 1,2, whereas enzalutamide 

directly antagonizes the AR3,4.  Unfortunately, tumor resistance eventually develops against 

both of these agents and some evidence suggests that resistance to abiraterone is yet again 

engendered by a reinstatement of AR signaling5,6  

Currently under clinical development, galeterone (Gal), 17-(1H-benzimidazol-1-

yl) androsta-5,16-dien-3β-ol, is a steroidal 17-azole compound that inhibits CYP17A1, 
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directly competes with androgens to bind and antagonize AR, promotes AR protein 

degradation, and had clinical activity in a phase I/II clinical trial7-11.  Galeterone shares its 

Δ5, 3β-hydroxyl structure with abiraterone.  The two drugs are distinguished by their C17 

moieties – the benzamidazole ring of galeterone – and the 3-pyridyl structure of 

abiraterone.  These differences may explain why galeterone has been reported to have more 

direct effects on AR 

However, abiraterone is metabolized in vivo to Δ4-abiraterone (D4A), which more 

potently than abiraterone inhibits the androgen axis12, and 5α-abiraterone, which in contrast 

is an AR agonist that promotes tumor progression13. The differing activities of abiraterone 

and galeterone may be due to their respective steroidal metabolites that interact with 

steroidogenic enzymes and AR, which in turn may thus far have led to an incomplete 

accounting of the context and activities of the parent drugs.  However, metabolites of 

galeterone along steroidogenic pathways have not yet been identified (Fig. 20).   

The aim of this chapter is to describe in vitro and in vivo galeterone metabolism by 

steroidogenic enzymes and to evaluate galeterone metabolite activity in prostate cancer.    
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Figure 20. Steroidogenic metabolism of galeterone 
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5.2. Experimental Section 

5.2.1. Cell lines and chemicals 

LNCaP, 293T and VCaP cells were purchased from the American Type Culture 

Collection (Manassas, VA) and maintained in RPMI-1640 (LNCaP) or DMEM (293T and 

VCaP) with 10% FBS. LAPC4 cells were kindly provided by Dr. Charles Sawyers 

(Memorial Sloan Kettering Cancer Center, New York, NY) and grown in Iscove’s Modified 

Dulbecco’s Medium with 10% FBS. All experiments with LNCaP and VCaP cells were 

done in plates coated with poly-DL-ornithine (Sigma-Aldrich, St. Louis, MO).  A 293T cell 

line stably expressing human CYP17A1 was generated by transfection with plasmid 

pcDNA3-c17 (a generous gift of Dr. Walter Miller, University of California, San Francisco) 

and selection with G418 as described14.  Cell lines were authenticated by DDC Medical 

(Fairfield, OH) and determined to be mycoplasma-free using the following primers: 

5’-ACACCATGGGAGCTGGTAAT-3’   and  

5’-GTTCATCGACTTTCAGACCCAAGGCAT3’.  

Dutasteride was purchased from Medkoo Biosciences (Chapel Hill, NC). Methanol, 

acetonitrile, water, and formic acid were LC–MS grade and all were from Fisher Scientific 

(Fair Lawn, NJ). Double charcoal-stripped human serum was from Golden West Biological 

Inc. (Temecula, CA). Galeterone and D4G were purchased from Shanghai Forever 

Synthesis Co., Ltd. (Shanghai, China). 3-keto-5α-galeterone, 3α-OH-5α-galeterone, 3β-

OH-5α-galeterone, 3-keto-5β-galeterone, 3α-OH-5β-galeterone, and 3β-OH-5β-galeterone 

were synthesized in the laboratory of Dr. Richard Auchus, University of Michigan Medical 

School.  
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5.2.2. Cell line metabolism 

To test the hypothesis that galeterone would be metabolized by steroidogenic 

enzymes to D4G, and 6 metabolites downstream of D4G, two prostate cancer cell lines, 

LNCaP (which expresses mutant 3βHSD1 with high enzyme activity) 15 and LAPC4 

(which expresses wild-type 3βHSD1 with low enzyme activity) 15, were used. Cells were 

seeded and incubated in 12-well plates with 0.2 million cells/well for ~24 h and then 

incubated with 0.1µM of either galeterone, D4G or 3-keto-5α-Gal (5αG) for 24 and 48 hr. 

Media were collected at the two time points and were subjected to LC-MS analysis. This 

experiments was performed in triplicate for each drug and was repeated in three biological 

repeats. 

To confirm that steroidogenic enzymes directly metabolize galeterone, 3βHSD1, 

SRD5A1, or AKR1C2 was overexpressed in HEK-293 cells, which were then treated with 

galeterone, D4G, or 5αG respectively. Media were collected 3 and 6 hours after the 

treatment and were subject to LC-MS analysis.  

To study the effect of blocking SRD5A1 on D4G metabolism, LAPC4 cells (which 

express SRD5A1) were incubated with D4G with and without SRD5A1 inhibitors 

(dutasteride and LY191704) or short hairpin RNAs targeting SRD5A1. Media samples 

were collected 3 and 6 hours and were subjected to LC-MS analysis.    

5.2.3. In vivo metabolism 

To study the metabolism of galeterone in vivo, male NSG mice, 6 to 8 weeks of age 

were obtained from the Cleveland Clinic Biological Resources Unit. All mouse studies 

were conducted under a protocol approved by the Cleveland Clinic Institutional Animal 

Care and Use Committee. Mice (n = 3 mice/group) were injected intraperitoneally with 
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100 µL solution containing 0.15 mmol/kg of either galeterone, D4G, 3-keto-5α-Gal 3α-

OH-5α-Gal, or 3β-OH-5α-Gal. Blood was collected 2 and 4 hrs after injection, centrifuged 

at 10,000 rpm, and the sera were stored at -80ºC for LC-MS analysis. 

5.2.4. Effects of galeterone metabolites on steroidogenic enzyme activity 

To study the effect of galeterone metabolites on steroidogenic enzymes, three cell 

lines were used: HEK-293, LNCaP, and LAPC4. HEK-293 cells overexpressing CYP17A1 

were treated with [3H]-pregnenolone in the presence of D4A (0.1, 1 and 10 nM), or 

galeterone and its metabolites (1, 10 and 100 nM), for 3 and 6 h, and conversion to DHEA 

was assessed by HPLC.  LNCaP cells were treated with [3H]-DHEA and the indicated 

drugs at 0.1, 1.0, and 10 μM for 24 and 48 h, and the conversion to AD was assessed by 

HPLC. LAPC4 cells were treated with [3H]-AD and 1, 5 and 10 µM of the indicated drugs 

for 8 and 24 h, and flux to 5α-dione was assessed by HPLC. All experiments went through 

the same protocol as follows: 12-well plates with 0.2 million cells/well for ~24 h and then 

incubated with indicated drugs or a mixture of radioactive ([3H]-labeled) and non-

radioactive steroids (final concentration, 100 nM; ~1,000,000 cpm/well; PerkinElmer, 

Waltham, MA) at 37ºC.  Aliquots of medium were collected at the indicated times.  

5.2.5. AR competition assay 

The affinity of galeterone and its metabolites for mutated or wild-type AR were 

assessed as follows: LNCaP (mutated AR) or LAPC4 (wild-type AR) were cultured in 

serum-free medium for 48 h and then incubated with [3H]-R1881 with or without the drugs 

(D4A, galeterone, D4G, 5α-Gal) for 30 min. Cells were washed with 1X PBS 4 times and 

0.9% NaCl solution twice before lysis with RIPA buffer. Intracellular radioactivity was 

measured with a Beckman Coulter LS60001C liquid scintillation counter and normalized 
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to the protein concentration as detected with a Wallac Victor2 1420 Multilabel counter 

(Perkin Elmer). 

5.2.6. Effects of galeterone metabolite on AR-regulated gene expression  

To study the effect of galeterone metabolites on AR target gene expression. LNCaP 

and LAPC4 cells were serum starved for 48 h before treatment with DHT (0.5 or 0.1 nM, 

respectively) and 1 μM of galeterone, D4G, 5α-Gal, D4A or 5α-Abi for 24 h.  Cells were 

starved with phenol red-free and serum-free medium. RNA was extracted with a GenElute 

Mammalian Total RNA miniprep kit (Sigma-Aldrich). cDNA was synthesized from 1 µg 

RNA in a reverse transcription reaction using the iScript cDNA Synthesis Kit (Bio-Rad, 

Hercules, CA). Quantitative PCR (qPCR) analysis was conducted in triplicate with primers 

for PSA, TMPRSS2, and RPLPO (housekeeping gene) in an ABI 7500 Real-Time PCR 

machine (Applied Biosystems) using iTaq Fast SYBR Green Supermix with ROX (Bio-

Rad) in 96-well plates at a final reaction volume of 20 µL. Accurate quantitation of each 

mRNA was achieved by normalizing the sample values to RPLPO and to vehicle-treated 

cells. 

5.2.7. Mouse xenograft studies 

All mouse studies were conducted under a protocol approved by the Cleveland 

Clinic Institutional Animal Care and Use Committee. Male NSG mice, 6 to 8 weeks of age 

were obtained from the Cleveland Clinic Biological Resources Unit.  

In order to study the efficacy of D4G as a tumor suppresser, D4G was compared 

with galeterone. 107 VCaP cells were injected subcutaneously with Matrigel into surgically 

orchiectomized NSG mice that were implanted with 5 mg 90-day sustained-release DHEA 

pellets (Innovative Research of American, Sarasota, FL) to mimic human physiology. Once 
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tumors reached 300 mm3 (length × width × width × 0.52), the mice were arbitrarily 

assigned to vehicle (n=11), galeterone (n=11), or D4G (n=11) treatment groups. Galeterone 

and D4G (0.15 mmol/kg in 0.10 mL 15% ethyl alcohol in safflower oil) were administered 

via 5 mL/kg intraperitoneal injection twice daily, 5 days per week for up to 20 days. Control 

groups were administered 0.10 mL of a solution of 15% ethyl alcohol in safflower oil. Once 

the treatment was started, tumor volume was measured with calipers three times per week, 

and time to increase in tumor volume by 20% was determined. Mice were sacrificed at 

treatment day 20.  The significance of the difference between treatment groups was 

assessed by Kaplan-Meier survival analysis using a log-rank test in SigmaStat 3.5.  

Student’s t-test was used to determine significance between different treatments. 

To evaluate whether 3-keto-5α-Gal enhances tumor growth, it was compared with 

3-keto-5α-Abi which has been shown previously to enhance tumor growth in mice13. 107 

VCaP cells were injected subcutaneously with matrigel. Once tumors reached 100 mm3 

(length × width × width height × 0.52), mice were surgically orchiectomized and arbitrarily 

assigned to vehicle (n=9), 3keto-5α-Abi (n=9), or 3keto-5α-Gal (n=9) treatment groups. 

3keto-5α-Abi and 3keto-5α-Gal (0.15 mmol/kg in 0.10 mL 15% ethyl alcohol in safflower 

oil) were administered via 7.55 mL/kg intraperitoneal injection once daily, 5 days per week 

for 24 days. Control groups were administered 0.1 mL of a solution of 15% ethyl alcohol 

in safflower oil. Tumor volume was measured every other day, and time to increase in 

tumor volume by 30% was determined. Mice were sacrificed at treatment day 24.  The 

significance of the difference between treatment groups was assessed by Kaplan-Meier 

survival analysis using a log-rank test in SigmaStat 3.5.  Student’s t-test was used to 

determine significance.   
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5.2.8. High-performance liquid chromatography (HPLC) 

Collected medium from the experiments in section 5.2.4. was treated with 1,000 

units of β-glucuronidase (Helix pomatia; Sigma-Aldrich) at 37°C for 2 h, extracted with 

860 µL ethyl acetate:isooctane (1:1), and concentrated under nitrogen gas. HPLC analysis 

was performed on a Waters 717 Plus HPLC or an Agilent 1260 HPLC.  Dried samples were 

reconstituted in 100 µl 50% methanol and injected into the instrument. Steroids were 

separated on a Kinetex 100 × 2.1 mm, 2.6 µm particle size C18 reverse-phase column 

(Phenomenex, Torrance, CA) using a methanol/water gradient at 30°C. The column 

effluent was analyzed using a dual-wavelength UV-visible detector set at 254 nm or β-

RAM model 3 in-line radioactivity detector (IN/US Systems, Inc.) and Liquiscint 

scintillation cocktail (National Diagnostics, Atlanta, GA). All HPLC studies were 

conducted in triplicate and repeated at least 3 times in independent experiments. 

5.2.9. Mass spectrometry 

Galeterone and its seven steroidal metabolites were determined using the validated 

LC-MS method for the determination of abiraterone and its seven structurally related 

metabolites16 with slight modifications. The mobile phase consisted of 30% A (0.2% formic 

acid in water) and 70% B (0.2% formic acid in methanol:acetonitrile, 60:40).  Separation 

of the metabolites was achieved using a Zorbax Eclipse plus 150 x 2.1 mm, 3.5µm C18 

column (Agilent, Santa Clara, CA) at a flow rate of 0.2 ml/min. Drug metabolites were 

ionized using electrospray ionization in positive ion mode.  

The LC-MS method was applied to analyze cell media and mouse serum samples. 

To 200 µL media, 40 µL internal standard (abiraterone) was added, then the analytes were 

extracted with 2 ml TMBE (Sigma Aldrich, St. Louis, MO), the TMBE was evaporated, 
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and the sample reconstituted with 200 µL (methanol:H2O; 1:1). The standard curves were 

prepared in media. The metabolites were extracted from 20 µl mouse serum by adding 280 

µl methanol containing the internal standard. The samples were then vortexed and 

centrifuged at 12,000 rpm for 10 min, and 200 µl supernatant was transferred to the HPLC 

vial.  

To extract the metabolites from the tumor, tumor (28.3-63.3 mg) was homogenized 

with 750 µl LC-MS grade water.  Then 75 µl internal standard (abiraterone) was added to 

the mixture, the metabolites were extracted from the homogenate using 2.5 ml TMBE, the 

organic layer was then evaporated, and the samples were reconstituted with 300 µl 

methanol: water (50:50). 

5.3. Results and Discussion 

5.3.1. Galeterone metabolite separation by LC-MS/MS  

The modifications of abiraterone validated LC-MS/MS method resolved all 

galeterone metabolites (Fig 21). The method was applied to detect galeterone metabolites 

in cell media, mouse serum, and mouse tumor  

5.3.2. In vitro metabolism of galeterone by steroidogenic enzymes 

After treating LNCaP and LAPC4 cells with galeterone for 24 or 48h, galeterone 

metabolites including D4G, 5αG, 3α-OH-5αG and 3β-OH-5αG were detected by LC-MS. 

Metabolism of galeterone to D4G and to subsequent 5α-reduced metabolites was more 

robust in LNCaP than LAPC4 cells (Fig. 22A&B), consistent with the known high 3βHSD 

enzyme activity in LNCaP cells. D4G was converted to 5αG, 3α-OH-5αG, and 3β-OH-

5αG but not back to galeterone, indicating that conversion from galeterone to D4G is 

irreversible. 5αG treatment led to the production of 3α-OH-5αG and 3β-OH-5αG but not 
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D4G or galeterone.  No 5β-reduced metabolites were detectable, consistent with the 

absence of 5β-reductase activity in prostate cancer cell lines.  

Expression of 3βHSD1 in HEK-293 cells permitted the conversion from galeterone 

to D4G (Fig. 23A). Similarly, expression of SRD5A1 or SRD5A2 resulted in the 

conversion of D4G to 5αG (Fig. 23B). Expression of AKR1C2, the major enzyme that 

converts endogenous 3-keto steroids such as DHT to their 3α-OH metabolites, enabled the 

conversion from 5αG to 3α-OH-5α-Gal in a time- and concentration-dependent manner 

(Fig. 23C). In LAPC4 cells with endogenous SRD5A1 activity, the SRD5A inhibitor 

LY191704 or dutasteride blocked the conversion from D4G to 5αG (Fig. 24A). Stable 

SRD5A1 knockdown with short hairpin RNAs similarly ablated metabolism from D4G to 

5αG (Fig. 24B). Together, these data support the hypothesis that galeterone undergoes 

direct metabolism by steroidogenic enzymes, similar to endogenous steroids and the 

structurally related drug, abiraterone. 
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Figure 21. LC-MS separation of all galeterone metabolites. The results were obtained by 
injecting 10 μL of 50 ng/mL standard mixture of galeterone and its metabolites. 
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Figure 22. Metabolism of galeterone and its metabolites in A, LNCAP and B, LAPC4 
cells 
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Figure 23. Steroidogenic enzymes required for galeterone metabolism. Overexpressing 
of A, 3βHSD1; B, SRD5A; and C, AKR1C2 resulted in converting the precursors.   
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Figure 24. Effect of blocking SRD5A1 on D4G metabolism. D4G conversion was 
blocked A, Pharmacologically or B, genetically.    
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5.3.3. In vivo metabolism  

Galeterone and its metabolites were injected into NSG mice to determine its 

metabolism in vivo (Fig. 25). In addition to D4G and the three 5α-reduced metabolites, 

three 5β-reduced metabolites – 5βG, 3α-OH-5βG and 3β-OH-5βG – were detected in 

mouse serum after galeterone injection. Furthermore, injecting any one 5αG-compound led 

to detection of all three 5α-reduced metabolites, which indicates that 5αG, 3α-OH-5α-G 

and 3β-OH-5α-G are interconvertible in vivo. In subsequent studies, we focused on D4G 

and the 5α-reduced metabolites because 5α-reduction leads to the formation of a planar 

structure, as occurs with the most potent endogenous androgen, DHT17,18. On the other 

hand, 5β-reduction of 3-keto steroids introduces a 90° bend, which generally inactivates 

steroid hormones and facilitates their clearance. 

5.3.4. Effects of galeterone metabolites on steroidogenic enzyme activity 

Galeterone was reported to be more potent than abiraterone against CYP17A1 

expressed in E. coli7,19. However, the comparative effects of their respective metabolites 

on steroidogenic enzymes is not known. D4A, the abiraterone metabolite that most potently 

inhibits steroidogenesis, was compared with galeterone and its metabolites12. In HEK-293 

cells stably expressing CYP17A1, D4A, at a concentration of 10 nM, completely blocked 

CYP17A1-catalyzed conversion of [3H]-pregnenolone to DHEA. Galeterone and its 

metabolites were approximately 100-fold weaker in blocking the production of DHEA 

(Fig. 26A). This result indicated that galeterone and its metabolites are 100-fold less potent 

than D4A in blocking CYP17A1 activity. In LNCaP cells, which possess high 3βHSD 

enzyme activity, galeterone inhibited the conversion of [3H]-DHEA to Δ4-androstenedione 

(AD), comparably to D4G and D4A (Fig. 26B). Conversion from D4G to 5αG slightly 
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reduces the capacity to inhibit 3βHSD1 activity. D4G was more potent than galeterone and 

comparable to D4A in inhibiting SRD5A activity, as assessed with the conversion of [3H]-

AD to 5α-dione in LAPC4 cells (Fig. 26C).  

5.3.5. The effect of galeterone and its metabolites on AR and AR signaling 

Galeterone has been reported to directly bind to and enhance the degradation of 

AR10. To determine the affinity of galeterone and its metabolites for AR, a competition 

assay was performed. The affinity of D4G for mutant AR (expressed in LNCaP, T877A) 

and wild-type AR (expressed in LAPC4 cells) was greater than that of galeterone, 

comparable to that of D4A, and comparable to or slightly greater than that of 5αG (Fig. 

27A&B). To assess the functional consequences of galeterone and its metabolites, their 

effects on expression of androgen-responsive genes were investigated. Galeterone and 

D4G inhibited DHT-induced AR-target gene expression in LNCaP and LAPC4 cells, 

comparable to D4A (Fig. 27C&D). To a lesser extent, 5αG also suppressed DHT-induced 

gene expression. Notably, however, 5αG somewhat increased basal PSA expression in the 

absence of DHT in LNCaP cells. Compared with 3-keto-5α-abiraterone (5α-Abi), a weak 

AR agonist, 5αG is an even weaker agonist (Fig. 27C&D). Taken together, these data 

indicate that the conversion from galeterone and D4G by SRD5A to 5αG may lead to a 

diminished effect on AR stability and AR-responsive gene expression. 
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Figure 25. Galeterone metabolism in vivo. A, Galeterone; B, D4G; C, 3-keto-5α-Gal; D, 
3α-OH-5α-Gal; E, 3β-OH-5α-Gal. 
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Figure 26. Effect of galeterone metabolites on steroidogenic enzyme activity. A, effect on 
CYP17A; B, 3βHSD1; and C, SRD5A1 
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Figure 27. Effect of galeterone metabolites on AR signaling. Affinity of the metabolites 
to AR in A, LNCAP and B, LAPC4 cells. The effect of the metabolites on AR regulated 

gene expression in C, LNCAP and D, LAPC4 cells. 
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5.3.6. Galeterone metabolite effects on tumor progression in a mouse xenograft 

model   

The effect of D4G on tumor growth in a xenograft mouse model was studied 

because D4G was comparable to or slightly better than galeterone in blocking 

steroidogenesis and suppressing AR regulated gene expression. VCaP xenografts were 

grown subcutaneously in orchiectomized mice with DHEA pellet implantation to mimic 

human adrenal androgen physiology. Time from initiation of treatment with D4G, 

galeterone, or vehicle to tumor progression (>20% increase in tumor volume) was assessed 

by generating Kaplan–Meier survival curves, and comparing treatment groups with the log-

rank test. Galeterone inhibited xenograft growth (vehicle vs. galeterone, p=0.01). 

Xenograft progression was also significantly delayed in the D4G group compared with the 

vehicle group (p=0.02) and was no different when compared to the galeterone group (D4G 

vs galeterone, p=0.98) (Fig. 28). LC-MS analysis for galeterone and its metabolites in 

serum and tumors collected at the study end confirmed that conversion to downstream 

galeterone steroidal metabolites is detectable in both xenografts and serum (Fig. 29A&B). 

Due to 3-keto-5α-Gal ability to stimulate AR regulated gene expression, the effect 

of 3-keto-5α-Gal activity on xenograft tumor progression was studied in orchiectomized 

mice injected subcutaneously with VCaP xenografts. The mice were assigned to vehicle, 

3-keto-5α-Gal, or 5α-Abi. Time from initiation of treatment to tumor progression (>30% 

increase in tumor volume) was assessed by generating Kaplan–Meier survival curves and 

comparing treatment groups with the log-rank test (Fig 30). Tumors from vehicle-treated 

mice did not differ from those receiving 3-keto-5α-Gal (P=0.125), nor did tumors from 

mice receiving 3-keto-5α-Gal treatment differ from those receiving 5α-Abi (P=0.20).  
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Figure 28. Survival curve of mice treated with galeterone or D4G. Galeterone and 
D4G will delay the growth of mouse xenograft compared to vehicle.  
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Figure 29. Metabolite percentages in tumor and serum. The results were obtained from 
LC-MS analysis for A, tumor samples and B, serum samples.  
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Figure 30. Effect of 5α-galeterone on tumor growth. 5α-Abi and 5α-Gal promote tumor 
progression in mouse xenograft.  

 

 

 



 

 116 

5.4. Conclusions 

Galeterone undergoes steroidogenic metabolism to generate D4G, 3-keto-5α-Gal, 

3-keto-5β-Gal and 4 other steroidal metabolites. This pathway was confirmed both in vitro 

and in vivo. Galeterone metabolites had opposing effects on prostate tumors in the 

xenograft models. Whereas D4G inhibits steroidogenic enzymes, AR-regulated gene 

expression, and tumor progression, its conversion resulted in loss of activity and generation 

of 3-keto-5α-Gal, which promoted AR target gene expression and enhanced tumor growth. 

Galeterone follows the same steroidogenic metabolism as abiraterone, which suggests a 

novel pathway for metabolism of steroidal 3β-OH Δ5 analogues, which should be 

considered in future drug design.   
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CHAPTER VI 

PROJECT CONCLUSIONS AND FUTURE DIRECTIONS 

 

CYP17A1 is a clinically validated target for the treatment of CRPC1-3. Non-

steroidal and steroidal CYP17A1 inhibitors are both undergoing pharmacologic and 

clinical development; however, the consequences of using steroidal vs. non-steroidal drugs 

are not well understood. Here, I determined that abiraterone and galaterone, Δ5, 3β-

hydroxyl steroidal drugs, are converted to at least seven steroidal metabolites that are either 

3-keto Δ4, (1 metabolite) 5α-reduced (3 metabolites), or 5β -reduced (3 metabolites) in vitro 

and in vivo, and have important downstream consequences on the androgen axis. Therefore, 

steroidogenic metabolism of drugs with the Δ5, 3β-hydroxyl structure appears to be a class 

effect, instead of being a property that is unique to a single drug.  The activity of these 

metabolites is a critical issue with broad consequences for drug development across 

steroid-dependent diseases. 

The development of the LC-MS/MS method that distinguished the metabolites gave 

a clear picture and understanding of abiraterone and galeterone metabolism. Despite its 
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novelty in separating all the diasteroisomers, the method did not require any sophisticated 

techniques and was developed using materials that are available in any analytical lab.    

An important property that distinguishes galeterone from abiraterone is that 

galeterone has been reported to have direct properties as an AR antagonist and degrader, 

while CYP17A1 is generally thought to be the main direct target of abiraterone.  However, 

conversion of galeterone by 3βHSD and SRD5A to other metabolites that are formed in 

vitro and in vivo, with varying biochemical activities, clearly has consequences on 

steroidogenic enzymes and direct effects on AR.  Importantly, D4G and 5αG bind AR more 

potently than galeterone, although both of these metabolites downstream of 3βHSD have 

divergent effects on AR.  Interestingly, despite the increased affinity for AR and 

maintaining AR enhanced degradation activity, the activity of D4G in a xenograft model 

of CRPC was no better than that of galeterone.  It is possible that any increased anti-tumor 

xenograft activity by D4G was reversed because it is one metabolic step closer to 5αG, 

resulting in higher intratumoral concentrations of the latter. This result raises the possibility 

that SRD5A inhibition to block 5αG synthesis might be beneficial. 

These findings also suggest that the design and use of steroid-based drugs for 

prostate cancer should consider the relative activities of steroidogenic enzymes in prostate 

cancer.  For example, abiraterone and galeterone are rapidly converted to their steroidal 

metabolites in cells that have high, but not low, 3βHSD1 activity.  A published head-to-

head comparison of galeterone vs. abiraterone in LAPC4 xenografts demonstrated 

galeterone to have superior activity4.  However, 3βHSD1 activity is low in LAPC4 cells, 

and therefore this comparison likely was more selectively focused on galeterone and 

abiraterone.  The consequences of downstream galeterone metabolites are more likely to 



 

 122 

be seen in cancer models and patients that have the 3βHSD1 N367T missense that 

accumulates and results in high activity5. 

The presence of steroidal abiraterone metabolites in patients was confirmed by 

analyzing samples from patients who underwent treatment with abiraterone acetate6,7. The 

metabolite levels can be altered by combining abiraterone acetate with other drugs like 

SRD5A inhibitors which may maximize the benefits of the treatments. Although increasing 

the standard dose of abiraterone acetate resulted in increasing D4A levels, it also increased 

5α-Abi and therefore maintained the percentage of both the good and the bad metabolites.   

In prostate tissue, which expressed high SRD5A1activity, the D4A level was lower than 

the 5α-Abi level. All these results indicate that new strategies are critically needed in 

treatment options that involve abiraterone acetate. 

Galeterone is under study in clinical trials; therefore, this work was limited by 

patient sample availability; as a result it was not possible to assess the metabolites in 

clinical samples.  However, given the similar metabolic behavior of galeterone and 

abiraterone in prostate cancer models, in vivo and with specific steroidogenic enzymes, it 

is highly likely that the concentrations of galeterone metabolites are significant and similar 

to abiraterone metabolites in patients.   

In summary, our results provide a more complete picture of abiraterone and 

galeterone metabolism and activity.  These findings demonstrate that metabolism by 

steroidogenic enzymes is a class effect of Δ5, 3β-hydroxyl drugs that should be accounted 

for in preclinical and clinical drug development and distinguishes these agents from non-

steroidal inhibitors.  The levels of these metabolites and their respective activities are 

determined by the expression and activity of endogenous steroidogenic enzymes, including 
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3βHSD and SRD5A. These findings must be considered for the development of better 

treatment strategies. 
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