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CATHEPSIN K TARGETING MATRIX REGENERATIVE NANOPARTICLES 

FOR SMALL ABDOMINAL AORTIC ANEURYSM REPAIR 

JONATHAN M. FOX 

ABSTRACT 

 

Abdominal aortic aneurysms (AAAs) are characterized by the loss of elasticity in 

the aorta wall leading to a chronic increase in diameter and resulting in rupture.  This is 

due to the lack of regeneration of elastic fibers and chronic proteolytic breakdown of elastic 

fibers within the aorta mediated by matrix metalloproteinases (MMPs), specifically MMP-

2 and -9.  Previous studies in our lab have shown cationic amphiphile-surface 

functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with 

doxycycline (DOX) to inhibit MMP activity and stimulate elastic matrix synthesis, effects 

we attributed to both low doses (< 10 mg/ml) of DOX released and independent effects of 

cationic amphiphile pendant groups on the NP surface.  This promises application of these 

NPs to arrest or regress AAA growth since high oral DOX dosing inhibits new elastic 

matrix formation in the AAA wall and has undesirable side effects.  In this study, we 

investigated feasibility of antibody-based active targeting of intravenously infused NPs to 

the AAA wall.  Cathepsin K, a cysteine protease, is a biomarker for AAA and 

overexpressed in abdominal aortic aneurysm tissue making it an ideal target moiety.  We 

have shown using a covalent conjugation method of modifying the surface of the NPs with 

a cathepsin K antibody resulted in a more robust antibody attachment which did not affect 

the DOX release profile.  Cathepsin K expression was confirmed to be localized on the cell 

surface and utilizing cathepsin K Ab-conjugated NPs, we demonstrated an increased NP 
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localization to the cathepsin K overexpressing cells in vitro and ex vivo.  Importantly, the 

DOX-loaded NPs demonstrated pro-elastogenic and anti-proteolytic effects in aneurysmal 

smooth muscle cells supporting their use as regenerative therapies to arrest and regress 

AAA growth.  Preliminary data has been collected indicating cathepsin K Ab-conjugated 

NP targeting to AAAs in elastase-injured rat models.  The study outcomes support the 

feasibility of using cathepsin K Ab-conjugated NPs as a targeted therapy for elastic matrix 

regeneration in AAA tissue and will serve as a basis for already initiated follow up studies 

to assess NP biodistribution, in situ retention in the AAA wall, and safety as a function of 

time.   
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CHAPTER I 

INTRODUCTION 

 

1.1. Cardiovascular disease and abdominal aortic aneurysms 

 

 Cardiovascular disease (CVD) broadly describes a variety of disease states 

including coronary artery disease, myocardial infarction, heart failure, and aneurysms1.  

Currently, CVD is the leading cause of death in the United States, with approximately one-

third of the population living with at least one type of CVD, and one of the most prominent 

causes of death worldwide1–3.  CVD is becoming more prevalent in the US, and currently 

accounts for ~17% of the healthcare expenditures with the medical costs increasing by ~6% 

annually2.  In 2010, it was estimated $444 billion was spent on treatment and medications 

for CVD and associated lost productivity, while hospitalization costs reached an additional 

$33 billion3.  With increased prevalence and cost associated with CVD, treatment options 

and preventative measures are becoming areas of much interest4. 

Abdominal aortic aneurysms (AAAs) are a prominent manifestation of CVD.  They 

are abnormal and rupture-prone expansions of the wall of the abdominal aorta segment 

(Figure 1.1).   AAAs occur in approximately 6-7.6% of men and 0.7-1.3% of women 

(increases to 6% when multiple risk factors present) in the US, and account for more than 
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13,000 deaths per year domestically5–7.  While certain sub-populations (elderly males, 

Caucasians, and smokers) have been identified to be more susceptible to developing AAAs, 

screening these individuals at an early stage in AAA development is vital.  Currently, the 

United States Preventive Task Force recommends men between the ages of 65 to 75 

undergo a one-time ultrasound screening to detect and thus initiate early management of 

AAAs8.  If unchecked, the mortality rate after AAA rupture is ~80% and 50% for those 

who receive emergency reparative surgery5,9.  This data emphasizes the importance of early 

diagnosis, identification, and treatment of AAAs, especially since this can improve survival 

and can be a cost-effective preventative measure.  

 

Figure 1.1. CT scan of an AAA in a 76-year old asymptomatic male5.  Adapted by 

permission from Macmillan Publishers Ltd: [NATURE REVIEWS CARDIOLOGY], 

Pathophysiology and epidemiology of abdominal aortic aneurysms. Copyright 1 Feb 2011  
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 Risk factors that have been associated with the formation and growth of AAAs 

include age, sex, family history, smoking, lipid levels, hypertension and obesity5,10.  The 

risk of AAA formation increases with age with individuals in the >50 year old segment 

being especially prone to developing AAAs.  AAA rupture is rare below 65 years of age 

but the risk increases by 40% for every 5 years after the age of 655.  Men are at a 6-fold 

higher risk for AAA formation than are women but the AAA development in women is 

highly correlated to family history suggesting that genetics also play a vital role in disease 

etiology6.  Patients with a positive family history were found to exhibit twice the risk of 

AAA formation than someone without a family history5.   

 The formation and growth of an AAA is a very slow process, extending over 5-7 

years and results from the loss of the structural extracellular matrix (ECM; stretch and 

recoil generating elastic fibers and collagen fibers that impart stiffness and load bearing 

strength)11,12 in the wall of the aorta due to chronically overexpressed matrix 

metalloproteinase (MMP) enzymes and cysteine proteases13–16. AAA growth is generally 

seen as irreversible or even difficult to arrest due to poor auto-regeneration and repair of 

elastic matrix structures in adult tissues, and lack of technologies to overcome these 

issues17.   

1.2. Current methods to diagnose and treat AAAs 

 

 Since AAAs are typically asymptomatic until they attain a critical size (> 5.5cm in 

diameter versus a normal aorta with a diameter of 2-2.5 cm), their detection tends to mostly 

coincide with elective imaging-based screening of high risk patients with known risk 

factors for AAA formation (e.g. elderly Caucasian males and smokers)9.  The World Health 
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Organization (WHO) has developed protocols and guidelines to determine the 

effectiveness and usefulness of screening tests for specific diseases.  Based on the criteria 

set by the WHO, AAAs can be considered a screenable disease which will help increase 

survival rates9. 

 Among other techniques, ultrasound has been utilized to successfully detect 

aneurysmal expansions.  Ultrasound technology can clarify the diameter of the aneurysm, 

an important factor in determining the future treatment course9. The screening method has 

proven to be an effective tool in reducing rupture and increase survival rates with studies 

showing screening processes can reduce the rate of rupture by 55-70% over a five year 

period9.    Current management of AAAs smaller than a critical size of 5.5 cm is limited to 

such passive ultrasound based growth monitoring, conducted every 6 months. If the 

aneurysm is close to 5 cm in diameter, or if the annual growth rate exceeds 10%, active 

treatment may be mandated, since significant increases in risk of AAA rupture are 

indicated10.  At this time, active treatment of large, critically-sized AAAs is primarily via 

surgical intervention (Figure 1.2).  
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Figure 1.2. Current treatment options based on AAA size and patient history. 

 

  In the open repair procedure18, the aneurysmal vessel segment is surgically excised 

and replaced with a graft. In the minimally invasive endovascular repair (EVAR) 

procedure, the aorta is opened lengthwise and a stent inserted within.  Once the stent has 

been inserted, both ends of the stent are sutured to the aortic wall such that blood does not 

leak out.  Once the stent is attached to the aorta, the aortic wall is closed around the stent 

and sutured back together18,19.  Despite being applied to large rupture prone AAAs, surgery 

on small (<5.5 cm diameter) AAAs is elective, and performed in only ~35% of small 

AAAs20. Such elective surgical intervention has been found to provide no benefit in terms 

of preventing continued AAA growth to rupture or improving post-op patient survival. The 

procedural risk of surgery on small AAAs also greatly exceeds their rupture risk (~2% for 

aneurysms less than 4 cm)20. Since no other clinically proven drug-based treatments exist 

for small AAAs, management of small AAAs, as mentioned above, is currently limited to 

passive, imaging-based growth monitoring leading to a pre-rupture stage when surgery is 
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inevitable. Given the slow growth of AAAs to rupture, which occurs over a 5-7 year period, 

there is a long-window of opportunity to deliver therapies targeting arrest or reversal of 

AAA growth.   

  Although there are several drugs in the discovery pipeline for the treatment of 

AAAs, treatment of AAAs with doxycycline (DOX), a modified tetracycline with 

antibiotic properties has been most promising.  Studies have shown DOX to attenuate 

MMP activity in the AAA wall to slow proteolytic disruption of the aortic wall ECM17,21, 

towards slowing AAA growth.  However, most of these outcomes have been observed in 

animal models18,19 and clinical outcomes are inconsistent5. There are also other critical 

challenges with DOX therapy including a) systemic inhibition of MMPs, which play 

essential roles in healthy tissue remodeling and maintenance, b) several body-wide side 

effects, and c) inhibitory effects of DOX at these high oral doses, on the already poor 

deposition of new, crosslinked elastic matrix in the AAA wall22. Since restoring elastic 

matrix homeostasis is essential to arrest or reverse AAA growth, oral DOX therapy has 

poor prospects to achieve these outcomes. Recent findings in our laboratory have shown 

for the first time that DOX at low micromolar doses maintains its anti-MMP effects but 

additionally, also provides pro-elastogenic properties23. On the basis of this evidence, and 

considering the deficiencies of oral DOX dosing, there is a significant motivation for AAA 

tissue-localized, predictable and sustained low level DOX dosing. Nanoparticles (NPs) 

may be useful vehicles for such localized drug therapy. 
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1.3. Nanoparticles and their use as a targeted treatment option 

 

  The term nanoparticle can be used to describe an object in the size range of 

approximately 1 to 100 nm in all three dimensions while other definitions suggest the range 

is from 5 to 200 nm or even as large as 1 µm24–26 (Figure 1.3).  However, the definition of 

a nanoparticle is not necessarily determined by its size but rather by its physical properties.  

A particle could be considered a nanoparticle if its properties are different than the 

properties of the bulk material of the same substance24.   

 

Figure 1.3.  Sizes of common pharmaceutical treatments24. Reprinted from Chemical 

Engineering Science, 125, Byung Kook Lee, Yeon Hee Yun, Kinam Park. Smart 

Nanoparticles for drug delivery: Boundaries and opportunities, 158-164., Copyright 2015, 

with permission from Elsevier. 

 

  Encapsulating the drug within the nanoparticle provides opportunities to enable 

controlled (e.g., steady-state), predictable, and sustained release of the drug, protect the 

drug from rapid degradation and thus extend its half-life in vivo, permit low level dosing 

of active agent with reduced systemic biodistribution and effect, and provide a much lower 
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footprint in terms of vehicle degradation byproducts and associated toxicity27–29.  NPs thus 

have attractive prospects to improve efficacy of drug-based treatments30.   

Our lab has recently designed biodegradable polylactic co-glycolic acid(PLGA)- 

polyethylene glycol (PEG) NPs for sustained (>6 months), predictable, and steady release 

of DOX locally within the AAA wall at very low doses (i.e., 1/100th of the useful oral dose 

or 1-20 g/ml) at which we found DOX to continue to inhibit MMPs but, in addition, also 

stimulate elastogenesis23. A unique feature of the NP design is the incorporation of pendant 

cationic amphiphile functional groups on the NP surface that augment elastin regenerative 

repair by a) enabling NPs to hydrophobically interact and bind to the exposed elastin core 

of disrupted elastic fibers at the site of tissue repair, b) stimulating elastin precursor 

synthesis, crosslinking and fiber formation by aneurysmal SMCs, and c) inactivating 

elastolytic MMPs23. Through the independent but synergistic effects of the functionalized 

PLGA nanocarriers and their released drug (DOX), the DOX-NPs are able to shift the 

balance between elastic matrix biosynthesis (elastogenesis) and elastin breakdown 

(elastolysis) to facilitate robust and lasting buildup of stable and mature elastic fibers at the 

AAA tissue site. Despite these highly promising outcomes, further innovation in NP design 

is required to actively target these NPs in an efficient manner to the AAA wall following 

simple intravenous (IV) infusion.  The focus of this thesis is to explore one such antibody-

based active targeting strategy.  

1.4. Problem statement and thesis objectives 

 

 The objective of this thesis is to develop an antibody-based modality for active 

targeting and improved retention of our DOX loaded, anti-proteolytic, and pro-matrix 
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regenerative NPs to/within the matrix-disrupted AAA wall, without adversely 

compromising their functional effects. Potential NP targets are cysteine proteases 

overexpressed in AAA tissue.  Of particular interest within the family of cysteine proteases 

is the group of enzymes termed cathepsins.  These proteins have been associated with many 

physiological processes including cartilage proteoglycan degradation, ECM regeneration 

and embryonic development13.   The cathepsin family includes enzymes that target both 

elastin (elastases) and collagen (collagenases); these include cathepsin S (cat S), cathepsin 

K (cat K), cathepsin L (cat L), and cathepsin V (cat V).  Even though cathepsins have been 

associated with a wide range of physiological processes, overexpression of cathepsins has 

only been recently linked to formation and growth of AAAs14,16.  While the role cathepsins 

play in AAA formation is still not completely understood, their high level of expression 

both in AAA tissues and in serum/plasma of AAA patients, makes them a useful biomarker 

for early diagnosis of AAA formation, growth assessment, and a potential target for drug 

delivery to the AAA wall16.   

 The specific aims of this study are: 

1. To determine if functionalization of the NP surface with a cathepsin K 

antibody improves their targeting and uptake to the AAA wall without 

change in their physical and functional pro-regenerative/anti-proteolytic 

properties in vitro and in ex vivo culture models.   

2. To assess trans-endothelial migration of Ab-functionalized NPs from the 

lumen to the AAA wall and benefits of αvβ3-integrin antibody tagging for 

this purpose.  
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3. To generate initial evidence of successful delivery of the cathepsin K Ab-

modified NPs to AAAs in a rat model following intravenous infusion. 

 

1.5. Organization of thesis 

 

Chapter 2 presents an extensive literature review to provide background on the 

structure of vasculature, abdominal aortic aneurysm etiology and progression, a detailed 

explanation of current treatment options for AAAs and their limitations, nanoparticle uses 

in various treatments and how to apply nanoparticles to the treatment of AAAs.  Chapter 3 

presents comprehensive experimental methods used for in vitro and in vivo treatment with 

antibody-modified NPs.  Chapter 4 outlines and interprets the results and provides 

interpretations of these results.  Chapter 5 explains the limitations and future work to 

further advance the use of antibody modified nanoparticles in the treatment of AAAs.   
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CHAPTER II 

BACKGROUND 

 

2.1. Vascular physiology 

 

 The vascular system is a complex network of blood vessels that delivers oxygenated 

blood from the heart to tissues in the body to support their proper function.  Arteries are 

exposed to drastic increases in blood pressure following each ventricular contraction.  They 

respond by expanding with increased pressure and relaxing with decreased pressure to 

propel blood forward between heartbeats.  Expansion of the major vascular conduit leading 

from the heart, the aorta, controls the pressure spike from each heart contraction and evens 

out the blood flow in smaller vessels31.  In cross-section, the walls of blood vessels are 

composed of three major layers – the tunica intima, the tunica media, and the tunica 

adventitia (Figure 2.1).  These layers have distinct cell types and extracellular matrix 

(ECM) composition that allows them to perform specific functions and change under 

certain physiologic conditions.  The demand for blood and nutrients varies widely between 

tissues but can rapidly change in the same tissue under different environmental conditions.  

The vascular system is well adapted to meet these varying demands and arteries play a key 

role in controlling blood flow31.   
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Figure 2.1. The artery is composed of three separate layers all with different compositions 

and functions32,33.  Adapted from Encyclopedia Britannica Online.  

 

2.1.1. Tunica Intima  

 

 The tunica intima is the innermost layer of the blood vessel, adjoining the lumen, 

and consists of endothelial cells (ECs) and the subendothelial matrix34.  The subendothelial 

layer consists of a specialized ECM or basement membrane comprised of collagen type IV, 

laminin and proteoglycans35.  In the artery wall, the monolayer of ECs respond to increased 

fluid shear stress due to blood flow by releasing specific factors such as nitric oxide or 

prostacyclin that incite relaxation of smooth muscle cells (SMCs) surrounding the intima 

layer31.   

The role of endothelial cells in the tunica intima is to serve as a barrier, affect 

vasodilation, and influence thrombotic events.  The ECs act as a selective barrier by 

controlling the passage of particles into and out of the bloodstream.  The control of particle 
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passage is due to the ECs ability to change the adherens and tight junction complexes 

between cells36–38.  Beyond their role as a barrier, ECs play a role in responses to tissue 

damage as well as an anti-thrombotic function to prevent thrombosis and blockage of the 

artery36,39.  The release of adhesion molecules and cytokines into the blood stream recruit 

leukocytes to repair tissue damage.  To regulate thrombotic events in the blood vessel, the 

ECs release various molecules to inhibit or promote the activation of platelets and the 

coagulation cascade36.  Besides the release of molecules that regulate coagulation, ECs 

release various factors to control vasodilation40.  The endothelium releases factors such as 

nitric oxide (NO) and prostacyclin (PGI2) to induce dilation of the artery or thromboxane 

(TXA2) and endothelin-1 (ET-1) to cause constriction.  The vasoactive factors released by 

the ECs target the smooth muscle cells in the tunica media to change the vessel diameter40. 

2.1.2. Tunica Media 

 

 The tunica media, the middle layer of the artery, is mostly comprised of vascular 

smooth muscle cells (SMCs) surrounded by another basement membrane and ranges in 

thickness from 0.03 mm in mice to 1.12 mm in humans35,41.  In the tunica media of the 

aorta, elastin and collagen are precisely oriented forming defined layers.  The layers of 

thick elastin, termed lamellae, are seen as concentric plates with thin elastin fibers 

connecting the elastin layers.  Between the layers, collagen is present and aligned 

circumferentially and while the elastin fibers are connected, there are no connections 

between the collagen and elastin41.  This arrangement of elastin and collagen could present 

a challenge in regeneration of the vascular wall especially concerning the crosslinking of 

elastin and not of collagen.  The SMCs are located between the elastin lamellae and the 
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interactions between cells, elastin and collagen produce the viscoelastic properties of the 

aorta41.   

The SMCs in the arteries respond to changes in blood pressure through the 

myogenic effect.  In response to elevated pressure, the SMCs contract narrowing the artery 

while maintaining a constant blood flow downstream.  Chronic high pressure in the arteries 

causes the SMCs to remodel the vascular wall by increasing its thickness helping to resist 

pressure.  However, this remodeling can disrupt the elastic matrix and decrease the 

capability to withstand sudden pressure changes31.  Disruption of the elastin in the artery 

wall can alter the SMC phenotype and generate a cascade of problems for the ECM.  SMCs 

remain in a quiescent contractile state in mature arteries but can differentiate under certain 

conditions such as injury or repair42.  In vitro experiments confirmed the role of elastin in 

regulating SMC proliferation, migration and differentiation.  Elastin significantly inhibits 

SMC proliferation and migration while maintaining the contractile phenotype42,43.  Results 

from several studies have determined elastin is not only vital for artery recoil but plays a 

regulatory function through SMC proliferation42,43.   

2.1.3. Tunica Adventitia  

 

 The tunica adventitia, the outermost layer of the artery, composed of connective 

tissue, small blood vessels and nerve endings is a structural support for the tunica media44.  

While the main function of the adventitia was considered to be support, it is now 

understood to play an important physiological role in vascular function.  In diseases where 

vascular function has been affected, noticeable changes in structure and biochemical 

composition are observed.  Removal of the adventitia from rat carotid arteries decreases 
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contractile capabilities and increases the endothelium function suggesting its role in 

vascular function44.  Even though the adventitia surrounds the artery it can affect other 

layers.  Adventitial fibroblasts may be substitutes for the endothelial cells in regulating 

artery tone or the source for proliferating cells in the intima caused by atherosclerosis45.  

Overall, the tunica adventitia plays a role in vascular function beyond its structural support 

of the tunica media.  

2.2. Composition and structure of the extracellular matrix (ECM) 

 

 The ECM of the aorta wall plays a major role in determining its mechanics and 

regulating biology of the contractive vascular cells.  The ECM is comprised of several 

protein components which vary between the different tunic layers.  The two major 

structural components of the ECM of the vessel wall are collagen and elastin34.  The 

integrity of the ECM is maintained by contacting vascular cells (smooth muscle cells, 

fibroblasts) which are capable of limited matrix remolding.   

Both collagen and elastin play a vital role in determining vascular mechanics.  

Elastin is responsible for the initial change in modulus when the vessel undergoes 

expansion at physiologic pressures.  The elastic lamellae expand during increased pressure 

because of their low stiffness compared to collagen.  However, under increasing strain the 

modulus increases due to the collagen fibers.  At super-physiologic pressures, the collagen 

fibers begin to carry the load under the strain in order to maintain the aorta shape46,47.  

Eventually, the strain in the wall will become greater than the collagen strength and the 

wall will rupture.  Under diseased conditions, the mechanics of the wall are altered so lower 

strain can cause greater strains leading to increased stiffness (Figure 2.2)46. 
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Figure 2.2.  The stress-strain curve of a healthy and disease-simulated aorta46.  The normal 

aorta can withstand greater strains than the injured aorta. Reprinted from Ultrasonics, 50, 

Asawinee Danpinid, Jianwen Luo, Jonathan Vappou, Pradit Terdtoon, Elisa E. Konofagou, 

In vivo characterization of the aortic wall stress-strain relationship, 654-665, Copyright 

2010, with permission from Elsevier. 

  

2.2.1. Collagen 

 

 Collagen is one of the most abundant proteins in the ECM of connective tissues.  

There are as many as 16 different types of collagen but three types – I, II, and III – make 

up more than 80 percent of the collagen in the body48.  Collagen was thought to be only 

secreted by fibroblasts but now it is well understood that numerous cell types generate 

different collagen structures and this may play an important role in regeneration of the 

collagen matrix.  This is noticed in the varying deposition of collagen types in the different 

tunics and in arteries of different sizes.  Collagen is found in the tunica intima and 

adventitia but is limited in the medial layer.  However, no matter the structure and type of 
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collagen, the function remains the same, that is to help tissues withstand stretching forces 

to prevent their rupture.   

 Collagen, similar to many other secreted proteins, is synthesized as precursor 

molecules.  These chains are transported to the rough endoplasmic reticulum and undergo 

processing leading to formation and alignment of disulfide bonds between the precursor 

molecules to generate a triple helix structure48.  This triple helix conformation domain and 

the interactions between these domains help stabilize these aggregates to form larger 

networks.  The triple helix of collagen is characterized by the interweaving of three helical 

polypeptide chains.  This forms a coiled coil structure where, due to steric reasons, the 

center of the helix is comprised of only glycine (Gly) residues.  The amino acid sequence 

of these helices follows a similar pattern of Gly-X-Y allowing for the Gly to remain in the 

center of the helix.  Glycine is found in the center of the helix due to the single hydrogen 

atom while the other two amino acids provide stability.  Any other sequence of amino acids 

would disrupt the triple helix formation 49.   

After secretion of this triple helical structure into the extracellular space, both 

terminal regions of the propeptide are removed allowing the collagen to polymerize into 

fibrils48.  As mentioned before, the interactions of the helix domains stabilize the 

aggregates and this is due to the side chains of the X-Y amino acids in the polypeptide.  

The side chains of the X and Y amino acids are facing outside of the helix allowing for 

lateral interactions mediated by the crosslinking enzyme lysyl oxidase (LOX) (Figure 

2.3)48–50.  The crosslinks occur between helices and are critical for collagen function and 

strength.  The various collagen types allow collagen to generate a wide range of structures.   
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Figure 2.3.  Synthesis of collagen fibers50.  Collagen monomers can aggregate to form 

several types of structures with various mechanical properties49.  Adapted from Shoulders 

and Raines. Annu. Rev. Biochem. (2009). 78: 929-58.   

 

2.2.2. Elastin 

 

 Elastin is a key protein component of the elastic matrix which provides stretch and 

recoil properties to the vessel wall to accommodate blood flow during systole and to 

maintain blood pressure during diastole 42,51.  In the major arteries such as the aorta, elastin 

comprises ~50% of the tissue dry weight.  In the aorta wall, elastin is found mainly in the 

tunica media and is responsible for artery recoil.  Artery recoil was attributed to SMCs and 

elastin but comparing recoil of arteries with and without smooth muscle cells have shown 

similar recoil properties.  This suggests the cells do not play a major role in the contraction 
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of the artery after expansion but rather elastic fibers are the major contributor.  This is 

further confirmed in cases of mutations of the elastin gene (e.g., supravalvular aortic 

stenosis, cutis laxa, Williams Syndrome)52–54.  The mutations in the elastin gene causes 

loss of function or complete gene deletion.  In these mutations, the elastic lamellae in the 

aorta wall are fewer or disrupted leading to various degenerative vascular conditions and 

early mortality52.  

 The elastic matrix is generated through the crosslinking of tropoelastin monomers 

but the process is complex (Figure 2.4).  The elastic fiber is made of two distinct 

components, the microfibrils and an amorphous elastin core.  The amorphous elastin core 

is synthesized from tropoelastin monomers encoded by an ELN gene expressed by 

fibroblasts, smooth muscle cells, and endothelial cells during childhood but expression 

quickly decreases during adulthood51.  The tropoelastin monomers bind to the elastin-

binding protein which protects the monomers from degradation and phase separation while 

transporting the monomers to the cell surface55,56.  Once the complex is secreted from the 

cell, the elastin-binding protein interacts with other complexes causing the release of 

tropoelastin.  The elastin-binding protein returns to the intracellular space to bind more 

tropoelastin monomers and repeat the process51.  Outside of the cell, the hydrophobic 

domains of tropoelastin interact generating aggregates on the cell surface.  While this 

appears to be the beginning of the elastic fiber formation, studies have shown the 

interaction of the C-terminal of tropoelastin with microfibrils is the first step and is required 

to assemble an elastic fiber51.  Eventually, tropoelastin production and crosslinking at the 

cell surface generates a sufficiently sized aggregate and it is released from the cell surface 

where it migrates through the extracellular matrix and deposits into the microfibril 
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scaffold56.  Lysyl Oxidase (LOX) plays an important role in the crosslinking of tropoelastin 

leading to stable and non-reducible crosslinks34,57.  Once tropoelastin has been crosslinked, 

its production is reduced and there is minimal turnover of the mature elastin55.   

Figure 2.4.  Schematic showing steps in elastic fiber assembly. (1) The tropoelastin is 

secreted to the cell surface and binds to the Elastin-Binding Protein (2) before being 

polymerized (3) and released.  The tropoelastin undergoes cross-linking by lysyl oxidase 

(4) and is directed to assembly onto microfibrils (5) followed by aggregation and fiber 

extension (6) resulting in an aligned fiber (7). 

 

 As mentioned earlier, elastic fiber formation requires microfibrils and the 

microfibrils act as a scaffold and support elastin deposition.  The microfibrils are composed 

of fibrillin, specifically fibrillin-1, which is expressed across all tissues.  Fibrillin-1 is 

secreted and undergoes a cleavage step required for the multimerization to create structures 

at the cell surface.  Microfibrils are stabilized by a fibronectin network that promotes 
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interactions with other microfibril proteins where the microfibrils will be crosslinked 

leading to further stabilization of the structure51.  The aggregates associated with the 

microfibril continue to crosslink leading to larger aggregates generating a functional fiber.  

LOX, an oxidative deaminase, and Cu2+-dependent enzyme, oxidizes the deposited elastin 

until the coacervates coalesce and integrate onto the microfibril scaffold51.   

Elastin production is significant during prenatal and neonatal development but 

decreases by adolescence.  Fortunately, the half-life of cross-linked elastic matrix is ~74 

years so once the matrix has been deposited in childhood, it withstands an entire lifetime.  

This long half-life is due to the high degree of crosslinking and tightly packed nature of 

elastin due to its hydrophobicity.  Since elastin production is limited in adult SMCs and 

there are no current treatments to increase elastin production, disorders wherein accelerated 

enzymatic disruption of the elastic matrix occurs are difficult to treat or reverse33.  

However, the advances in tissue engineering and regenerative medicine may soon make it 

possible to stimulate elastin regeneration and repair such scenarios.      

 The tertiary structure of elastin varies across tissue types and this is due to the forces 

the tissue experiences.  The ELN primary transcript is heavily spliced causing isoforms 

that range from 60 to 75 kDa.  Six exons of human tropoelastin have been identified to be 

alternatively spliced affecting the hydrophobic and hydrophilic domains.  The splicing may 

be tissue dependent as multiple isoforms have been identified in aorta and lungs56.  The 

different splicing of domains may explain the differences in elastin structure in tissues.  For 

example, the aorta in humans may have as many as seven isoforms of elastin and this could 

affect the elastin structure56.  In the medial layer of the aorta, the elastin is arranged in 

concentric fenestrated lamellae while in elastic cartilage the elastin is configured in three-
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dimensional honeycomb-like structures and this could be the result of splicing51.  

Differently, in aortic valves, elastin is present as continuous and fenestrated sheets in the 

ventricularis layer and is found as discrete/loose fiber networks in the skin58.  The structure 

and content of elastin in various tissues are listed in Table 2.1.   

 

Figure 2.5. SEM images of bovine elastin fibers treated with cathepsin K.  Panel A shows 

untreated elastin with visible fibers.  Panel B shows elastin treated with cathepsin K in 

which disruption is visible.  Panel C, D, and E highlight the elastin treatment with a mutant 

cathepsin K to highlight exosite importance in degradation59. Adapted from Sharma et al. 

Biochem J. (2015), 163-173.   

 

Table 2.1. Elastic Fibers in Various Tissues and Elastin Content as Percentage of Dry 

Weight51. 
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 Mature elastin is stable under normal physiological conditions and exhibits minimal 

remodeling and turnover.  However, specific cell types (e.g., SMCs, fibroblasts) express 

elastin degrading enzymes (proteases, elastin matrix metalloproteinases, cysteine 

cathepsins) at low levels14,60,61.  Figure 2.5 highlights the degradation of elastin due to 

cathepsin K.  Figure 2.5.A shows the untreated elastin fibers in bovine.  Figure 2.5.B 

shows the disrupted elastin fibers following treatment with cathepsin K.  Figure 2.5.C, 

Figure 2.5.D, and Figure 2.5.E were treated with mutant variants of cathepsin K to 

highlight the importance of the exosites in the degradation of elastin59.  Such basal 

expression of elastin degrading enzymes is required for cells to migrate through the ECM.  

However, under certain diseased conditions or following tissue injury, these enzymes are 

expressed at greater levels leading to rapid elastic matrix degradation.  These elastases are 

generally released by recruited inflammatory cells and cytokine-activated fibroblasts in the 

vessel wall in several diseases (atherosclerosis, abdominal aortic aneurysms)55.   

2.2.3. Cathepsins 
 

 The extracellular matrix is a complex structure that continually undergoes 

remodeling and modification.  The restructuring of the ECM can be caused through 

enzymatic or non-enzymatic processes62.  The enzymatic processes were thought to be 

controlled by MMPs and serine proteases until recent discoveries have shown cysteine 

cathepsins also contribute to the degradation of the ECM.  Cysteine cathepsins were 

originally described as intracellular proteases requiring an acidic environment for optimal 

activity but under certain conditions, the cathepsins are secreted into the extracellular 

matrix and maintain their protease activity12,62.   
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 Cysteine cathepsins fall under a more diverse cathepsin group composed of various 

catalytic proteases.  The broad cathepsin group includes serine cathepsins, aspartic 

cathepsins and cysteine cathepsins.  Sequencing of the human genome has revealed 11 

cysteine cathepsins, the most abundant in the cathepsin group62.  Cathepsins are expressed 

in an inactive state and following transport to the lysosome are activated by removal of the 

predomain which can be autocatalytic or catalyzed by other proteases.  One important 

factor in autocatalytic activation is the presence of negatively charged surfaces that induces 

a conformational change allowing for processing by other proteases62,63.  The presence of 

a negatively charged surface such as an appropriately modified nanoparticle surface, could 

increase cathepsin activation so it is necessary to design their surface characteristics to 

achieve desired anti-proteolytic and pro-matrix properties for therapy.    

Cysteine cathepsin structure consists of two domains: a left domain composed of 

three α-helices and a right domain composed of a β-barrel.  Located between these two 

domains is the active site, a cysteine and histidine residue62,64.  Substrates bind to the 

cathepsin through interactions with both domains and along the active site cleft.  The 

binding of cysteine cathepsins and substrates exhibit a greater specificity compared to other 

cysteine proteases and this is attributed to the interaction of multiple binding sites.  

Specifically, cathepsin K exhibits specificity for proline and glycine residues and this 

matches the cathepsin K specificity for ECM proteins62.  The role of cathepsin K on the 

degradation of the ECM proteins will be discussed later.     

 The localization of cathepsins in lysosomes was thought to retain the cathepsins as 

intracellular proteases but they can be released into the cytosol and translocate to the cell 

surface or are secreted into the extracellular space.  Once in the extracellular space, cysteine 
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cathepsins degrade proteoglycans and fibrous proteins such as collagen and elastin (Table 

2.2).  Several proteases have been identified that degrade collagen including MMPs and 

cysteine cathepsin K65.  The degradation of collagen was thought to be originally caused 

by multiple cysteine cathepsins until recently when cathepsin K was shown to be the only 

physiologically relevant collagenase.  While other collagenases (MMPs, elastase) cleave 

the triple helix in collagen at a single site, cathepsin K can cleave the helix in multiple sites 

as well as cleave the telopeptide region producing collagen monomers making cathepsin K 

more potent62,65.  Another important component of the ECM, elastin, can be degraded by 

cathepsin K - known to be a potent elastase.  Cathepsin K contains two hydrophobic 

exosites which play a major role in stabilizing the interactions between elastin and 

cathepsin K.  The structure of cathepsin K makes it a potent elastase due to the exosites 

being located far from the active site and the binding of elastin to these sites positions the 

cleavage susceptible region of elastin in the cathepsin active site62.    

Table 2.2.  Cysteine cathepsins and their extracellular matrix substrates62. 

 

 

 Cathepsin K plays a crucial role in the degradation of collagen and elastin and this 

has an impact on vascular diseases.  Vascular diseases, such as atherosclerotic plaque and 

atheroma, have shown significantly increased cathepsin K expression14.  This is significant 

because atheroma is associated with regions of increased elastin degradation.  Beyond their 
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role in atherosclerosis and degradation of the ECM, cathepsins play an important role in 

immune response.  One such disorder, where the breakdown of elastin and immune 

response lead to disease progression, is an abdominal aortic aneurysm (AAA) in which 

cathepsin K contributes to AAA formation and growth12,62.  The role of cathepsin K in 

AAA progression was confirmed using cathepsin K deficient mice.  In these mice, the aorta 

was infused with elastase to induce an aneurysm.  Compared to the control mice, the 

cathepsin K deficient mice were protected from AAA formation66.   

2.3. Abdominal aortic aneurysms (AAAs)  

 

 Abdominal aortic aneurysms are localized expansions of the aorta that develop and 

grow to rupture due to the chronic overexpression of matrix metalloproteinases causing 

irreversible breakdown of vessel wall elastic matrix.  Clinically, AAAs are defined as aortal 

expansions with a 50% increase over the healthy aortal diameter (2.5 cm)67.  Elderly male 

smokers are at the greatest risk for developing an AAA, however the prognosis for women 

is worse with a rupture rate 4 times greater68.  The formation of an aneurysm has been 

linked to genetic factors but environmental factors play a major role in development.  

2.3.1. AAA etiology 

 

 The formation of an AAA can be caused by multiple factors such as trauma, chronic 

hypertension, vasculitis or inflammatory diseases (e.g. atherosclerosis) but this accounts 

for a small portion of aneurysms.  Therefore, most aneurysms have been termed “non-

specific” but atherosclerosis has been associated with most cases of AAAs69.  However, 

this view on the development of the abdominal aortic aneurysm has been challenged but in 

all cases, there is an initial stimulus that induces AAA formation.  Figure 2.6 shows the 
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etiological progression for AAA development and growth to rupture.  An AAA occurs after 

an initial injury or stimulus causing the recruitment of inflammatory cells to the aortic wall 

(Figure 2.6.1 and Figure 2.6.2).  The inflammatory cells release proteases, specifically 

matrix metalloproteinases (MMPs) (Figure 2.6.3).  The proteases degrade the fibrillar 

collagens and elastic matrix generating elastin fragments69.  The elastin fragments have a 

two-fold effect.  First, the fragments recruit more inflammatory cells thereby creating a 

positive feedback loop.  The elastin fragments recruit leucocytes to the aortic wall as well 

as inflammatory cytokines, chemokines and prostaglandins69.  Additionally, the elastin 

fragments induce smooth muscle cell apoptosis which further results in decreased elastin 

content (Figure 2.6.4).  The SMCs express several ECM proteins and therefore are critical 

in vascular wall remodeling so the depletion of SMCs limits remodeling capabilities.  

Further, the loss of elastin content exposes the SMCs to an increased stress and to 

compensate, the cells produce additional collagen matrix (Figure 2.6.5).  The collagen in 

the tunica adventitia plays a critical role in the resistance to rupture once the elastin in the 

tunica media has been broken down69.  The increased collagen production leads to a 

transient wall thickening but is susceptible to proteolytic breakdown, eventually leading to 

wall thinning (Figure 2.6.6).  The stress in the aortic wall becomes greater than the wall 

strength and the aneurysm ruptures (Figure 2.6.7).   
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Figure 2.6.  Abdominal aortic aneurysm etiology in which an initial injury stimulus (1) 

begins aneurysm development and ends with wall thinning (7) and eventual aorta rupture.     
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The inflammatory cells recruited to the aneurysm site release proteases, specifically 

matrix metalloproteinases (MMPs).  As previously mentioned, aneurysms were thought to 

be caused by atherosclerotic disease but recently there has been a shift citing MMPs to play 

an important role in formation68.  The release of MMPs was originally thought to occur 

from the inflammatory cells recruited to the aneurysm site but experimental data has shown 

activated endothelial cells, aortic SMCs and adventitial fibroblasts are secreting MMPs 

into the ECM.  When MMPs are secreted into the ECM, they are in an inactive form and 

converted to an active form.  This may be a useful target for treating AAAs.  Inhibiting the 

activation of MMPs in the aneurysm tissue could significantly decrease growth and 

formation.  Specifically, MMP-9, expressed by macrophages in the aneurysm, has an 

affinity for the breakdown of elastin and collagen and the increase in aneurysm diameter 

may be correlated to its expression68.  Therefore, identifying inhibitors of MMPs may be a 

crucial part of aneurysm treatment.   

2.3.2. Treatment options for AAAs  

 

 Identification of high risk populations and preventative, imaging-based screening 

has enabled the detection of aneurysms early in development.  At the present time, 

management of small AAAs is limited to passive ultrasound or magnetic resonance 

imaging (MRI) every six months and endovascular/surgical repair at a critical size (>5.5 

cm) (Figure 2.7) when rupture risk greatly exceeds surgical risk10,20. Even with screening 

and treatments, AAA rupture still remains one of the largest causes of death in the elderly11.  

There are currently several treatments available for large AAAs to reduce the risk of rupture 

but the risks and benefits of repair need to be compared to the risk of rupture before elective 

surgery should be considered.  The two most common surgeries are endovascular stent 
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graft and open repair.  Each treatment has its advantages and limitations so careful 

consideration should be used when determining the appropriate course of treatment as one 

treatment may be better suited for some individuals.    Since current treatment options are 

limited to large AAAs, developing a novel treatment for small AAAs has several 

advantages.  Treatment of small aneurysms reduces the risks associated with surgeries 

especially in elderly patients and can reduce the costs of late intervention.  Arresting and 

regressing the aneurysm growth at an early stage can prevent future hospital visits.  Another 

advantage of treating small AAAs is the increase in quality of life.  With the current options 

of passive monitoring and no active treatment, the quality of life is decreased due to the 

waiting period for aneurysm growth.   

 

Figure 2.7. Current treatment options vary for small and large aneurysms due to the risk 

of rupture.  Small aneurysms are managed using passive imaged-based monitoring until 

the size and risk of rupture increases and surgery is performed.    
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2.3.2.1. Endovascular stent graft repair 

 

 Endovascular stent graft repair of AAAs is a common treatment option and a viable 

alternative to other surgical options as it is less invasive.  In endovascular aortic repair 

(EVAR), the aim is to reduce the risk of rupture by excluding the aneurysm sac from the 

circulation of blood (Figure 2.8).  Excluding the aneurysm sac is accomplished through 

the placement of a bypass graft in the aorta18,67.  Most abdominal aortic aneurysms (~70%) 

can be treated with endovascular repair due to their morphology but there are several 

limitations to this treatment.  If the patient is under 60 years of age, the use of a stent graft 

is not suggested since there is lack of long-term durability data.  Other limitations include 

a short, conical proximal neck or thrombus within the proximal neck18.  In EVAR, a 

catheter with the stent graft is inserted into the femoral artery and guided to the aneurysm.  

Once the stent graft is located at the aneurysm site, the graft is expanded and attached to 

the aorta wall.  The stent graft is checked with dye to ensure there is no blood leakage 

around the area.  The catheter is removed leaving the stent graft in place and the femoral 

artery site sutured together leaving only small incision sites70.      
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Figure 2.8. A 3-D reconstructed image of an AAA. The left image shows a 7.9 centimeter 

aneurysm and the image on the right shows the stent graft in place after surgery71.  

Reprinted from European Journal of Vascular and Endovascular Surgery, 52, C.V. 

Ioannou, D.K. Tsetis, Going Beyond Current AAA Neck Angulation Limitations of the 

Ovation Ultra-low Profile Polymer-filled Stent Graft, 172, 2016, with permission from 

Elsevier. 

 

 While minor complications can arise from surgery itself, once the endovascular 

graft has been surgically implanted complications caused by the stent can occur.  These 

complications include renal failure, endoleak, occlusion, migration or infection of the stent 

graft.  While only occurring in 1 to 3% of patients, bowel ischemia is a serious complication 

with a 50% mortality rate within 1 month72.  In bowel ischemia, thrombotic deposits can 

be dislodged while the stent is being positioned and can travel into the renal or lower-limb 

circulation resulting in patchy ischemia72.  Similar to bowel ischemia, renal artery 

occlusion is another complication that occurs in less than 5% of cases.  In renal artery 

occlusion, the stent covers the renal arteries preventing blood flow but if detected early 

enough the stent can be repositioned without any major side effects72.  While these 

complications are associated immediately after surgery, the most common complications 
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occur within a few months after the surgery.  Limb thrombosis can occur in as many as 

40% of cases with the underlying cause being stent-graft kinking72.   

2.3.2.2. Open aneurysm repair 

 

 Similar to endovascular stent graft repair, open repair utilizes a stent graft to remove 

the aneurysm sac from circulation, however the main difference is the delivery method of 

the stent.  In open aneurysm repair, an incision is made down the center of the abdomen to 

expose the aorta.  Once the aorta is exposed, it’s clamped above and below the aneurysm 

site to stop blood flow.  The aneurysm sac is cut open and a graft inserted.  The graft is 

sutured to the aorta wall effectively connecting the two together.  The clamps are removed, 

the aorta wall wrapped around the graft and sutured together before suturing the abdominal 

incision70.   

 The open repair procedure is more invasive than EVAR.  Although EVAR shows 

a lower 50-day mortality but the long term results of open repair may outweigh the risks73.  

Common complications are similar to EVAR with open repair including bleeding, small 

bowel obstruction, hernia and ischemia.  The complications were corrected through 

reintervention surgery and most reintervention surgeries were not related to the graft but 

were directly related to the laparotomy73.  However, patients undergoing EVAR had a 3-4 

times greater risk of graft related complications or reintervention compared to patients 

undergoing open repair.  EVAR carries an advantage in mortality after the first few years 

but that advantage disappears over time.  This may be due to the late rupture of patients 

treated by EVAR73.  While EVAR may have reduced initial risks, open repair requires less 

follow-up monitoring.  The open repair surgery is considered ‘for life’ and requires 
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minimal to no follow-up monitoring because there are so few late complications.  Finally, 

the reintervention rate for EVAR was 41% while the reintervention rate for open surgery 

was 9%73.  The long term complications and costs associated with open repair compared 

to EVAR require more data to decide which treatment option should be considered the 

standard73. 

2.4. Restoring elastin homeostasis in the AAA wall  

 

 The goal of tissue engineering and regenerative therapies is to utilize patient 

derived cells or other biological materials/resources to generate functional, structural and 

biological mimics of native tissues on demand to restore or replace diseased tissues. Tissue 

engineering of the aorta would be an exciting breakthrough in the treatment of AAAs and 

could become the standard treatment.  The extracellular matrix of the aorta is complex and 

requires significant remodeling to treat aneurysm formation so it is necessary to explore 

several tissue engineering options.   

 Current advances in restoring elastin include improvements in cell therapies and 

drug-based MMP inhibition.  The use of cell therapies provide unique treatment 

opportunities.  Autologous cell therapies reduce the likelihood of an immune response as 

the cells were taken from the patient but the applications of use for these cells can be 

limited.  Another possible cell therapy utilizes stem cells.  Stem cells can be generated from 

multiple sources and tailored to a specific application but can be severely limited in clinical 

settings.  To use stem cells in a clinical setting, the culture conditions and processes must 

be highly regulated to ensure there are no variations in the cell types and complications 

upon implantation.  Drug-based MMP inhibition is an attractive option for restoring elastin 
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because once the drug has been FDA approved it can be mass produced.  Unlike cell 

therapies, using drug-based therapies limits the time spent in hospitals since most drugs are 

administered at home.  However, the use of drug-based MMP inhibition has its drawbacks.  

MMP expression and activity is required as part of the natural remodeling within the body 

so the high concentrations of MMP inhibitors, especially from oral dosing, can have 

systemic side effects.    

2.4.1. Elastin regeneration using stem cells 

 

 Terminally-differentiated, healthy adult vascular SMCs are poorly elastogenic and 

thus cannot be used for cell therapy towards regenerative repair of AAAs.  However, a 

viable option to regenerate the elastic matrix is through the use of stem cells.  Elastin 

production is upregulated during fetal and transiently during vascular injury responses, 

both representing the only scenarios when this occurs.  However, the elastin produced by 

inflammatory cells fails to crosslink into elastic fibers74.  Stem cells and their SMC-like 

progenitors/derivatives are purported to play a key role in elastogenesis in such scenarios.  

For effective cell therapy, it is crucial to identify stem cells and derivative phenotypes that 

will stimulate the diseased SMCs to produce elastic matrix, inhibit matrix proteolysis, and 

also serve as an additional source of new elastic matrix to augment elastin regeneration at 

the AAA site.   

 There are several sources of adult stem cells available for cell therapy including 

those from bone marrow, peripheral blood, and adipose tissue.  The advantages of using 

these autologous stem cells is the lack of immune rejection.  These adult stem cells 

(mesenchymal stem cells or MSCs) are multipotent meaning they can differentiate into 
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several distinct cell lineages.  MSCs have been successfully differentiated into adipocytes, 

chondrocytes, osteocytes, and SMCs75–78.  They provide several advantages for cell 

therapies for matrix regeneration including their immunoregulatory property – which 

prevents activation of the immune response through inactivation of surface markers in T-

lymphocytes even upon allogeneic implantation79.  Multiple studies have suggested MSCs 

stimulate matrix regeneration and tissue recovery which may play a crucial role in treating 

AAAs.  One such study determined when rat aorta tissue from an AAA model was co-

cultured with MSCs, there was an increase in elastin fiber formation compared to controls.  

Another study found when the MSCs were differentiated before culturing with aneurysmal 

tissue, the differentiated MSCs increased the gene expression of elastin and elastin 

deposition79,80.  Both of the studies suggest MSCs and differentiated MSCs have the ability 

to stimulate the regeneration of elastin when cultured with aneurysmal tissue.  It is crucial 

now to determine if MSCs can produce the same results in vivo and develop a means to 

deliver the MSCs to the AAA.    

2.4.2. Elastin regeneration using pharmaceuticals 

 

 There are currently no FDA-approved or proven drugs for AAA treatment and 

almost none capable of regenerating elastic matrix.  Drugs in the development pipeline for 

small AAA management including statins5,67,81, tetracyclines21,60,69, and ACE inhibitors82 

only seek to attenuate chronically overexpressed proteases in the AAA wall.  This can at 

best lead to slowed AAA growth.  There is no impetus to regenerative repair of disrupted 

elastic matrix structures.  There is therefore, a compelling need for non-surgical, drug based 

therapy targeting and reversal of pathophysiologic changes in the AAA wall which include 

chronic proteolysis and lack of autoregenerative repair of the elastic matrix.   
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The inhibition of MMP activity is an area of focus for treating AAAs so there have 

been great strides in producing synthetic MMP inhibitors such as batimastat, doxycycline 

and other tetracycline derivatives69.  Synthetic MMP inhibitors reduced aneurysm dilation 

in several rat models by controlling the inflammatory response83,84.  The MMP inhibitors 

produced promising results but also caused adverse musculoskeletal side effects likely 

related to their systemic biodistribution and high dosing levels85,86.  Recently, tetracycline 

based drugs have been shown to inhibit MMP activity87.  One of the most studied is the 

drug, doxycycline (DOX), which has been shown in several animal models of AAAs to 

slow AAA development87.  When DOX was administered subcutaneously in a rat elastase 

injury AAA model, there was a significant decrease in AAA growth while oral dosing 

showed a 50% reduction in AAA growth rate in Ang II mice88.  DOX has also shown 

promise in clinical trials in slowing AAA growth upon oral therapy89,90.  This was primarily 

attributed to decrease in elastolytic MMPs 2 and 9 in the AAA wall.  Despite this promise, 

the clinical outcomes are inconsistent largely due to difficulties in delivering a defined 

steady dose of the drug in the AAA wall, sustaining its effect in the long term, and rapid 

drug inactivation associated with oral dosing.  In addition, the high oral DOX doses (30-

50 mg/kg/day) necessary to ensure sufficient levels of MMP inhibition in AAA tissue 

causes body wide side effects (e.g., musculoskeletal pain, inflammation, tendonitis) and 

also further inhibits the already poor elastin regeneration and crosslinking in the AAA 

wall85.   This negates prospects to restore elastin homeostasis in the AAA wall, a key 

requirement for arresting or reversing AAA growth. 

In recent studies in our laboratory, we have shown that at much lower doses (< 5 

µg/ml) than that achieved in the AAA wall with oral dosing (50 mg/kg/day equivalent to 
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~50 µg/ml), DOX maintains its anti-MMP effects but also has significant pro-elastogenic 

effects as well, which was a novel finding (Unpublished Data).  To achieve this benefit, 

modalities to ensure targeted, predictable, sustained and steady low level DOX dosing 

locally in the AAA wall are necessary.  Nanoparticles (NPs) offer several advantages for 

this purpose.  

2.5. Nanoparticles for drug delivery 

 

Nanoparticles provide unique opportunities as a treatment option that are not 

available in pharmaceutical and cell-based therapies.   Limitations of pharmaceuticals 

include short half-lives, poor bioavailability, or physical and chemical instability91.  These 

limitations have led researchers to study nanoparticles in which many of the poor 

characteristics from pharmaceuticals can be overcome and a unique environment for drug 

delivery can be designed25.  One of the largest obstacles to overcome in using stem cells as 

a therapy is their delivery to the treatment site as well as the processing and purifying of 

the cells along with tracking the cells in vivo.  Upon implantation in the body, stem cells 

have the ability to form tumors if not properly controlled or delivered to the target area.  

This gives nanoparticles (NPs) a distinct advantage as a therapy option.  However, to be an 

effective drug delivery system, the NP needs to consist of three components: the core 

material, the ability to carry therapeutics, and surface modifiers92.   

2.5.1. NP characteristics 

 

 An important feature of NPs is their composition or core material92.  Most NPs are 

formulated using either synthetic or natural polymers however other nanoparticles have 

been generated using lipids to create liposomes or silica and alumina to create inorganic 
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nanoparticles25.  In liposomes, the hydrophilic head and hydrophobic tail of the lipid 

aggregate to form an aqueous core in which therapeutics can be encapsulated92.  The use 

of liposomes to deliver therapeutics is currently the most developed system with the largest 

number of clinical trials and treatments in the marketplace.  However, this may be due to 

the relatively new focus on polymeric materials compared to liposomes92.  Synthetic 

polymers have advantages over natural polymers in terms of drug delivery and release 

kinetics, but the formulation conditions of synthetic polymers limits their use.  Some 

common synthetic polymers used are biodegradable polymers such as poly (D, L-lactide-

co-glycolide) (PLGA) and polylactide (PLA).   

Both PLGA and PLA polymers are approved by the US Food and Drug 

Administration for safe human use and are commercially available in various molecular 

weights and co-polymer compositions25,93.  PLGA is one of the most commonly used 

polymers due to the degradation products being lactic acid and glycolic acid which are 

easily metabolized in the body through the Krebs cycle thereby limiting the toxicity of the 

NPs93,94.  The biodegradable polymers can be formulated to encapsulate drugs, proteins or 

DNA and act as a delivery system.  The polymer matrix helps prevent degradation of the 

encapsulated drug and allows for control over drug release.  Drug release is altered by 

changing the ratio of drug to polymer or changing the polymer molecular weight and 

composition95.  

Nanoparticles are submicron-sized polymer particles and have characteristics 

different than bulk materials24,96.  Nanoparticles have advantages over larger sized particles 

when targeting cells for treatment.  Studies comparing uptake of particles with different 

sizes have shown the smaller particles are more readily taken up by cells.  The uptake of 
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100 nm particles was 15 to 250 fold greater than particles of 1 and 10 µm with respect to a 

rat intestinal model.  It was also found particles in the nanometer range could pass through 

the submucosal layer while larger particles were trapped in the epithelial lining28.  The 

uptake of the NPs into the cell are mediated through a concentration and time-dependent 

endocytosis process.  Once the NPs are taken up by the cell, and depending on their surface 

charge, undergo a surface charge change from anionic to cationic in the endo-lysosomes 

disrupting the membrane.  The NPs do not remain in the endo-lysosomes for long because 

of this and they quickly enter the cytoplasm following uptake95.  The surface characteristics 

of the NPs play a vital role in their escape from the endo-lysosomes which effects their 

retention within the cell.  The surface characteristics that influence NP retention in the 

cytosol include zeta potential and hydrophilicity95. 

2.5.2. Tissue targeting of NPs 

 

While the use of nanoparticles as drug delivery systems has been around for 

decades, extensive research has recently been conducted on utilizing nanoparticles as a 

targeted delivery system24.  Nanoparticle surfaces have been modified to effect the 

characteristics, uptake, and localization of the nanoparticles within the body with much 

research conducted to identify surface modifications to increase nanoparticle targeting to 

specific tissues.  Nanoparticles have been altered with several types of surface 

modifications such as polysorbate 80, PEG, and DMAB  to change nanoparticle behavior 

in the body23,26.  Studies have shown the polysorbate 80 modification can help move drug-

loaded nanoparticles through the blood-brain barrier while the addition of heparin or 

DMAB can increase nanoparticle retention in arteries26.  Previously published research 

from our group, indicates modifying the surface with DMAB increases the nanoparticle 
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binding to elastin23.  Each surface modification imparts a unique characteristic on the NP 

so it’s critical to understand how to utilize these qualities.  Utilizing these qualities of 

surface modification, targeting of nanoparticles to specific regions of the body is an area 

of great promise and continued interest.   

Targeting of NPs to specific tissues/regions is an area of interest in treating 

diseases.  Extensive research has been conducted on treating cancer using NPs loaded with 

chemotherapeutic drugs.  In order to target cancer cells, chemotherapy drugs are 

administered at high concentrations which has adverse side effects on the entire body but 

with NPs the systemic concentration could be significantly decreased and thereby reduce 

side effects.  For example, paclitaxel loaded NPs were modified with transferrin to increase 

cellular uptake.  After a week of treatment in vitro, the modified NPs demonstrated an 80% 

decrease in cell growth compared to a 40% decrease with unmodified NPs.  The largest 

change was in comparison to the paclitaxel solution where there was a 20% decrease in 

growth95.  This demonstrates the effectiveness of using NPs as delivery systems.    

In order to increase the targeting capabilities of NPs, understanding the biology of 

the target tissues is crucial.  Movement of nanoparticles into the intracellular space is 

accomplished through endocytosis which can be separated into three subtypes: 

phagocytosis, pinocytosis and receptor mediated endocytosis.   Phagocytosis occurs in 

select cell types such as macrophages and neutrophils where particles up to 10 µm are 

ingested.  However, in pinocytosis submicron particles can be ingested by nearly all cell 

types leading to greater access of nanoparticles to cells25.  This difference in uptake 

depends on nanoparticle size and can be used to differentiate which cells ingest 

nanoparticles.  Expression of receptors that can be targeted can change depending on tissue 
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type and disease state so identifying these changes allows for the determination of specific 

targets25,28.  Finally, modifying the surface of the NP with a primary antibody has been 

linked to increased targeting capabilities (Figure 2.9).  The functionalization of the NP 

surface with an antibody can be accomplished through adsorption of a compound to the 

surface or though covalently linking the compound to the polymer95.  In this method, the 

active site of the antibody is left free to bind to target compounds.  If the target is a receptor 

on the cell surface, this can effectively increase the localization of the NP to the tissue.   

 

Figure 2.9. Functionalization of nanoparticles using a primary antibody surface 

modification.   

 

Another option being actively explored to increase localization of NPs to specific 

tissues utilizes the loading of iron oxide into NPs to generate superparamagnetic iron oxide 

NPs (SPIONs).  Currently, there are imaging contrast agents commercially available 

utilizing SPIONs to improve imaging of the liver and GI tract.  Recently, SPIONs have 

been combined with therapeutics to investigate improvement in treatments with the use of 

magnetic fields97–99.  The combination of imaging agents and therapeutics is described in 

more detail in the following sections.    Iron oxide particles alone are hydrophobic leading 
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to aggregation resulting in large clusters.  The formation of these large clusters is 

undesirable so modifying the surface or encapsulating the iron oxide particles in polymer 

scaffolds reduces this effect and increases their effectiveness as a treatment option100.  The 

use of SPIONs originally focused on delivery of peptides, DNA molecules and 

chemotherapeutic drugs but the focus has shifted to using SPIONs to fight infections, as 

anti-inflammatory reagents, or dissolve blood clots99.  Several studies have confirmed the 

capabilities of SPIONs to target tumors with concentration increases from 4 to 200 times 

greater.  Using an implanted permanent magnet, cytotoxic SPIONs were successfully 

localized to solid tumors in hamsters.  The localization to the tumor increased the anti-

tumor activity as well as eliminated unwanted side effects such as weight loss99.  Despite 

the attractive NP targeting possibilities with SPION incorporation, there are regulatory 

challenges due to the designation of SPION-loaded/modified polymer NPs as combinatory 

devices and questions regarding long-term safety and biodistribution of the SPIONs, which 

need to be elucidated.  Therefore, alternative safer and less complex targeting modalities 

(e.g., antibody or peptide mediated targeting) must be explored.  

2.5.3. Environmental activation of NPs 

 

 While surface modifications improve targeting, activation of nanoparticles as drug 

delivery systems has become an area of interest as it helps create specificity in drug release.  

Activation of these nanoparticles can occur through two main modes – exogenous and 

endogenous activation101,102.  In exogenous activation, the NPs are stimulated through an 

external stimuli to control drug release.  This can be accomplished through magnetic fields, 

light, or radio frequencies91,101,103.  Using an external stimulus provides greater control of 

drug release allowing for high concentrations of therapeutics to be delivered in specific 
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sites while limiting systemic concentrations.  Also, the use of magnetic fields to stimulate 

drug release can serve a dual purpose as it can help localize NPs to the treatment area as 

well as control drug release.  Using magnetic guidance for SPIONs has shown potential in 

experimental cancer treatments through an increase in drug concentration in solid 

tumors102.  Beyond the localization of nanoparticles, the magnetic field has shown to trigger 

the drug release in certain materials.  In a ferrogel composed of micelles encapsulating 

SPIONs and a hydrophobic drug, the applied magnetic field causes the micelles to be 

squeezed through SPION interactions thereby releasing the drug102.  The use of SPIONs 

and the MRI may play a vital role in treating AAAs as the treatment and imaging could be 

performed at the same time.  Passive monitoring of the AAA is currently performed and 

the addition of the SPIONs could provide a treatment option without significantly changing 

current treatments.   

The endogenous activation relies on a variety of differences between healthy and 

diseased tissue to cause drug release from NPs.  Factors that influence the activation of 

NPs include pH, enzyme concentrations, and hypoxia91,101,103.  Using pH sensitive NPs 

allows for targeting and triggered release of drugs in specific organs as well as specific 

intracellular compartments.  pH sensitive NPs utilize two main strategies for triggered 

release including polymers that undergo conformational or solubility changes when the pH 

changes as well as systems where the bonds in the polymers are broken when the pH 

changes102.  Another possible endogenous activation system relies on enzymatic activity.  

In pathological conditions, the expression of enzymes may be altered and can be a target 

for NPs.  Studies have reported the use of peptide sequences susceptible to MMPs as linkers 

in nanoparticles.  As MMPs cleave the peptides, the encapsulated drugs are released 
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thereby limiting their release to areas of high MMP concentration102.  The use of enzyme 

concentrations to control drug release could provide valuable treatment options within 

AAAs as several proteins have been identified to be over expressed in the diseased tissue.  

2.5.4. NP treatments and diagnostics 

 

 Treatments using nanoparticles have been approved for human use by the FDA to 

treat disorders ranging from cancer to infection but the number of options is relatively 

small25,104.  However, there are a large number of clinical trials underway which could lead 

to a dramatic increase in nanoparticle treatments.  One study published in 2013 evaluated 

the developments of nanoparticles and their use in clinical trials and found nearly 800 

potentially relevant clinical trial results.  Of these 800 clinical trials, 141 were unique 

products with approximately 40 already approved for use104.  This number is expected to 

grow as interest in nanoparticles and nanomaterials increases.   

 Imaging is a large portion of diagnosing and the first step to treat many disorders.  

In medical imaging, there are two approaches: anatomic imaging to identify structural 

information and molecular/functional imaging to provide physiological and cellular 

information.  Anatomical imaging does not always require contrast agents but for 

molecular imaging the contrast agents are essential.  Imaging contrast agents include small 

molecules, proteins, and nanoparticles105.  While most scans use small molecules as 

contrast agents, interest in nanoparticles has grown and led to new applications.  These 

include intense and long lasting imaging signals, the ability to have different targeting 

strategies, theranostic capabilities, and detection by several imaging instruments.  One of 

the most intriguing possibilities is the use of nanoparticles as theranostics in which the 
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imaging agent can also deliver therapeutics.  The use of nanoparticles as theranostics has 

been studied with doxorubicin loaded ferumoxytol nanoparticles to treat cancer.  The 

nanoparticles, or SPIONs, generate a signal when using MRI but may also be able to treat 

cancer by releasing the encapsulated doxorubicin105.  More studies are confirming the 

increased localization of SPIONs to tumors using MRI which may eventually lead to 

improved drug delivery106,107.  

 Apart from imaging agents, the use of nanoparticles has been extensively 

researched in the treatment of cancer.  The most common treatment of cancer involves 

using one or more cytotoxic small molecules to kill cancer cells.  Unfortunately, these small 

molecules do not recognize cancer cells specifically and will kill other cells types leading 

to many unwanted side effects108.  To limit side effects, targeted therapy has been explored 

to reduce exposure to cytotoxic small molecules.  Two modes of targeted therapy using 

nanoparticles have been explored including direct and indirect treatment methods.  Indirect 

treatment relies on an immune response that causes cancer cell apoptosis or inhibits 

angiogenesis108.  Nanoparticles loaded with cancer treating drugs have shown much 

promise.  However, different drugs have different mechanisms of action and require 

delivery to specific target areas.  Paclitaxel affects microtubules so it needs to localize in 

the cytoplasm where other drugs need to migrate into the nucleus to be effective108.  In 

treating AAAs, the direct treatment method will provide the necessary cellular response to 

stimulate elastin regeneration.   

 Nanoparticles have been used as detection agents and treatment options for several 

vascular diseases including atherosclerosis and thrombosis109.  As previously mentioned, 

the vascular wall is a complex and difficult tissue to treat and regenerate.  The vascular 
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wall cannot be treated like many other tissues because of the large amount of blood flow.  

Administering a therapeutic drug directly does not induce therapeutic benefits due to rapid 

drug removal from the site as well as the short half-life of drugs in plasma.  Also, 

conventional therapies for treating disorders in the vascular wall do not produce the desired 

results because many therapeutic agents are toxic at the dose required to be therapeutic as 

well as having systemic side effects109.  This has led to much research into using 

nanoparticles as targeted drug delivery systems.   

Using targeted drug delivery systems allows for low systemic concentration but 

high concentration in areas of interest as well as a sustained and controlled release that can 

be extended over a long period of time.  The success of nanoparticles targeted to the 

vascular wall are affected by the size of the particle, the blood flow type, and the vascular 

wall shear rate.  In this study, we aim to utilize targeted drug-loaded nanoparticles, with a 

sustained and controlled drug release, to stimulate regeneration of the disrupted elastic 

matrix associated with abdominal aortic aneurysms and investigate the efficacy of antibody 

based targeting on these NPs to the AAA wall with no adverse impact on their physical 

and functional properties, which are vital to effective regenerative repair of the AAA wall 

ECM.   
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1. Induction of AAA in rat model via elastase infusion 

 

 All rat surgeries were performed with IACUC approval at the Cleveland 

Clinic (2016-1581).  Acepromazine (0.5 mg/kg) was administered subcutaneously 

approximately 30 minutes before anesthesia induction.  Elastase solution was prepared (20 

Units/ml, Sigma) and stored on ice until use.  Immediately prior to anesthesia induction, 

buprenorphine hydrochloride (0.03 mg/kg) was administered subcutaneously.  The rat was 

moved to the anesthesia induction chamber (oxygen flow rate 1 L/min, 2.5% isoflurane) 

for 7-8 minutes until anesthetized.   

Once anesthetized, ophthalmic eye ointment was applied to both eyes and the rat 

was placed on the surgery table and its nose inserted into the nose cone.  The isoflurane 

concentration was reduced to 2% for the duration of the procedure.  The hair from the 

abdomen was clipped, the abdominal skin sterilized using betadine and alcohol scrubs with 

application proceeding from the inside out.  Immediately before the surgical procedure, 

0.25% Bupivacaine (2-8 mg/kg; analgesic) was administered subcutaneously at the 
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incision site.  The abdominal cavity was exposed by a laparotomy and the abdominal wall 

was held open using retractors.  The exposed intestines and other internal organs (stomach, 

pancreas, liver, etc.) were removed to outside the body cavity and were covered with 

moistened sterile gauze to prevent drying during the procedure.  Using fine forceps, the 

aorta was exposed by removing surrounding fat and connective tissue.  Once the aorta was 

exposed, images were taken using a microscope to allow for diameter determination.  The 

blood flow in the aorta was stopped by using a plastic clamp at the proximal and distal ends 

of the abdominal aorta.  Care was taken to ensure the aorta was completely sealed before 

infusion.  A micro cannula system (Braintree Scientific, Inc.) was inserted into the aorta 

without passing completely through.  The elastase solution was infused through the micro 

cannula system into the aorta and held for 20 minutes.  The solution was removed from the 

aorta and the cannula system removed.  The aorta was either sutured or glued shut using a 

fibrin glue (Tisseel Fibrin Sealant; Baxter; Westlake Village, CA).  Images of the aorta 

were taken post treatment.  The intestines were replaced and the abdomen sutured with the 

muscle layer sutured using 4-0 vicryl non-absorbable nylon stiches in a running pattern and 

the skin sutured using 4-0 silk stiches in an interrupted pattern.  During suturing, the 

isoflurane was reduced to 1.5% to begin recovery.   

The animal was removed from isoflurane and placed on a heating pad (37 °C) to 

continue recovery before being moved to its cage and placed on a towel to finish 

recovering.  While in the cage, food and a water-gel pack was placed on the cage floor to 

allow access during recovery.  Once the animal has recovered enough to move around the 

cage, the cage was returned to the BRU.  Pain from the surgery is managed through twice 

daily injections of buprenorphine hydrochloride (0.03 mg/kg) for 72 hours.  
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3.2. Isolation and culture of SMCs from elastase perfusion-induced rat AAAs 

 

 EaRASMCs were harvested from multiple (n = 3) adult male Sprague-Dawley rats 

at 14 days following elastase infusion, as we have previously published110. The AAA 

segments were isolated following laparotomy and the intimal layer scraped off. The medial 

layer was then separated from the adventitia, dissected into ~0.5 mm long slices, and rinsed 

in sterile phosphate-buffered saline (PBS). The tissue was digested in DMEM-F12 medium 

(Invitrogen, Carlsbad, CA) containing 125 U/mg collagenase (Worthington Biochemicals; 

Lakewood, NJ) and 3 U/mg elastase (Worthington Biochemicals) for 30 min at 37 oC, 

centrifuged (400g, 5 min) and cultured in T-75 flasks in DMEM-F12 medium containing 

10% v/v of fetal bovine serum (FBS; PAA Laboratories; Etobicoke, Ontario) and 1 % v/v 

of penicillin-streptomycin (PenStrep; Thermo Fisher; South Logan, UT). At 70% 

confluence, the primary EaRASMCs from individual rats (n = 3) were pooled and 

passaged. 

 Primary rat aortic SMCs (RASMCs; healthy cell controls) were isolated from aortae 

of multiple (n = 3) healthy Sprague-Dawley rats, in a similar manner as previously 

described for EaRASMCs, pooled, passaged, and used in culture experiments at passage 

<6.   

3.3. Experimental design for cell culture 

 

 In order to study the effect of cathepsin K antibody-conjugated DOX-NPs and 

unconjugated NPs on cellular elastic matrix synthesis, EaRASMCs were seeded at 30,000 

cells per well in wells of a 6-well plate, and cultured for 21 days in DMEM-F12 medium 

supplemented with 10% v/v fetal bovine serum (FBS) (Invitrogen), 1% v/v PenStrep (CCF 
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Cell Services), and 50 ng/ml of tumor necrosis factor-α (TNF-α) (Thermo Fisher; Waltham, 

MA). The media from each well was removed and centrifuged (5 min, 12,000 RPM) to 

pellet the NPs.  The NPs were re-suspended in fresh medium before being added back into 

each well.  Culture groups included untreated EaRASMC cultures (treatment control), 

EaRASMCs cultured with unconjugated NPs loaded with 2% w/w of doxycycline hyclate 

(DOX; Sigma Aldrich), and cathepsin K Ab-conjugated NPs loaded with 2% w/w of DOX. 

In the latter cases, the NPs were added on Day 1 following an overnight incubation at a 

concentration of 0.2 mg/ml.  

 To study the migration of Ab-modified NPs through the endothelial cell layer, 

human umbilical vein endothelial cells (HUVECs) were cultured in vascular cell basal 

media (ATCC; Manassas, VA) supplemented with Endothelial Cell Growth KIT-VEGF 

(ATCC; Table 3.1).  The HUVECs were seeded at 30,000 cells per well or per collagen-

coated PET membrane (Millipore; Billerica, MA) and cultured with the medium 

supplemented with vascular endothelial growth factor (VEGF; 5 ng/ml; ATCC).  The cells 

were stimulated with 10 ng/ml of TNF-α for subsequent experiments (immunofluorescent 

labeling and treatment with NPs and Ab-modified NPs).  The cells were cultured with the 

NPs at a concentration of 0.2 mg/ml.   
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Table 3.1. Endothelial Cell Growth Kit-VEGF added to 500 ml of vascular basal media 

for the culturing of HUVECs. 

Component Volume Final Concentration 

rh VEGF 0.5 ml 5 ng/ml 

rh EGF 0.5 ml 5 ng/ml 

rh FGF basic 0.5 ml 5 ng/ml 

IGF-1 0.5 ml 15 ng/ml 

L-glutamine 25.0 ml 10 mM 

Heparin sulfate 0.5 ml 0.75 Units/ml 

Hydrocortisone hemisuccinate 0.5 ml 1 µg/ml 

Fetal Bovine Serum 10.0 ml 2% 

Ascorbic Acid 0.5 ml 50 µg/ml 

 

3.4. Formulation of fluorescein-loaded, Alexa Fluor 633-loaded, VivoTag® 800-

loaded, DOX-loaded, and blank PLGA NPs 

 

 Poly (DL-lactic-co-glycolic acid) (PLGA; 50:50 lactide: glycolide; Durect 

Corporation; Birmingham, AL) NPs loaded with fluorescein (Chemicon; Temecula, CA), 

Alexa Fluor 633 (AF633) (Invitrogen; Carlsbad, CA), or VivoTag® 800 (PerkinElmer; 

Waltham, MA) were prepared using a double emulsion solvent evaporation technique. 

PLGA (50 mg) was dissolved in 2 ml of chloroform (Fisher Scientific, Fair Lawn, NJ) and 

0.1 ml of a 1 mg/ml solution of fluorescein, AF633, or VivoTag® 800 was added.  The 

mixture was emulsified on ice using a probe sonicator (Q500; QSonica LLC; Newtown, 

CT) for 30 seconds at an amplitude of 20% to form a water-oil emulsion.  Similar to loading 

of the fluorescent dye, the DOX-loaded NPs were prepared using an aqueous DOX solution 

containing a 2% w/w ratio of DOX: PLGA and emulsified into the PLGA solution using a 

probe sonicator.  For all of the  NP formulations, 6 ml of an aqueous phase consisting of 

nanopure water and surfactant, didodecyldimethylammonium bromide (DMAB; Sigma-

Aldrich, St. Louis, MO), was added and sonicated again for 60 seconds (30 seconds on – 

10 seconds off - 30 seconds on) on ice at 20% amplitude to form the water-in oil-in water 
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double emulsion. The double emulsion was stirred for 16 hours at room temperature and 

desiccated for 1 hour under vacuum. The samples were separated by ultracentrifugation 

(35,000 rpm, 30 minutes; Beckman L-80, Beckman Instruments, Inc., Palo Alto, CA), the 

supernatant removed and the NPs washed with nanopure water to remove residual DMAB 

and unencapsulated loading compounds, sonicated to re-suspend the NPs, and a repeat 

ultracentrifugation (30,000 rpm, 30 minutes).  Following the second ultracentrifugation 

step, the NPs were re-suspended in 6 ml of nanopure water and sonicated before aliquoting 

into cryovials.  The cryovials were immersed in liquid nitrogen, to flash freeze the NPs, 

and stored at -80°C overnight.  The NPs were lyophilized for 48 hours to obtain a dry 

powder. Samples were kept covered throughout this procedure to ensure the fluorescent 

dye did not undergo bleaching.  Following the methods as previously described, blank 

PLGA NPs were formulated using DMAB as the surfactant.   

3.5. Determination of NP size and surface zeta potential 

 

  Mean hydrodynamic diameters of the NPs were determined using a dynamic light 

scattering technique, and their mean zeta potentials (surface charge) were determined via 

a phase analysis light scattering technique using a commercial particle-sizing system 

(PSS/NICOMP 380/ZLS, Particle Sizing Systems; Santa Barbara, CA).   

 To determine the particle size, a small aliquot of the NPs (~ 5 µl) was diluted in 

nanopure water and placed in a small glass vial.  The glass vial was wiped clean to ensure 

no interference.  The glass vial was inserted into the particle-sizing system and the particle 

size was measured over a 2 minute cycle.  The results were displayed as a Gaussian 

distribution.  To determine the zeta potential, the NPs (~0.5 ml) was added to ~2.5 ml of 

nanopure water and transferred to the cuvette.  The electrode was rinsed with deionized 
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water and placed on the cuvette.  The cuvette and electrode were placed into the instrument 

and the electrode connected.  Once the electrode is connected the zeta potential was 

measured over a 5 minute cycle.   

3.6. Preparation of cathepsin K Ab-modified NPs 

 

3.6.1. Adsorption of cathepsin K Ab to NP surface  

 

 Fluorescent dye loaded-NPs (AF633) were suspended in PBS (pH 7.4, 0.5 mg/ml) 

and a 490 µl aliquot of this was mixed with 10 µl of cathepsin K Ab (200 µg/ml; rabbit 

anti-rat; Santa Cruz Biotechnology, Inc.; Dallas, TX).  A mixture containing 490 µl of the 

NP dispersion and 10 µl PBS was used as a control.  These mixtures were stirred (2, 5, or 

24 hours) and centrifuged (12,000g, 10 min) to separate the free antibody from NPs.  The 

pellet containing cathepsin K Ab-adsorbed NPs were washed twice with PBS and re-

suspended in 500 µl of PBS (pH 7.4). 

3.6.2. Covalent conjugation of cathepsin K Ab to NP surface  

 

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC; Thermo Fisher; 

Rockford, IL), a cross-linking reagent, was used to generate a covalent bond between free 

carboxylic acids on the PLGA NP surface and the primary amine group on the cathepsin 

K Ab. The NPs were suspended in 2-(N-Morpholino)ethanesulfonic acid (pH 5.5, MES; 

Sigma-Aldrich) at a concentration of 0.5 mg/ml and 490 µl of this mixture was mixed with 

10 µl of cathepsin K Ab followed by the addition of 100 ng of EDC .  Two controls were 

run including one without EDC and one without EDC and antibody.  The mixtures were 

stirred at 24C for 5 hours followed by centrifugation (10 min, 12,000 rpm) and the 
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supernatant discarded and the NP pellet washed two times with PBS (pH 7.4).  The NPs 

were finally re-suspended into PBS to the desired concentrations.   

3.7. Assessment of cathepsin K Ab incorporation on NP surface 

 

3.7.1. Fluorescence spectroscopy to assess cathepsin K Ab binding to NPs 

 

 A fluorescein-tagged goat anti-rabbit secondary antibody (Chemicon, Temecula, 

CA), was used to qualitatively determine the relative binding of the cathepsin K Ab on the 

surface of the NPs.  Cathepsin K Ab-modified NPs were treated with the secondary 

antibody (4 oC, 1 h, 1:500 dilution).  The samples were centrifuged (12,000g, 10 min) and 

the pellets washed twice with PBS, to remove any unbound secondary antibody, and then 

re-suspended in 500 µl of PBS.  Three 150 µl aliquots per sample were placed in the wells 

of a 96-well microplate.  The fluorescence intensity due to fluorescein was measured (λex 

= 493 nm and λem = 525 nm) using a SpectraMax M2e microplate reader (Molecular 

Devices, Sunnyvale, CA) as well as visual confirmation using a fluorescent microscope.   

3.7.2. Measurement of cathepsin K Ab conjugation efficiency 

 

 The cathepsin K Ab was covalently conjugated to AF633-loaded NPs over 5 hours 

as described previously, with proper controls. Following conjugation and washing, an 

Alexa Fluor (AF) 546-conjugated donkey anti-rabbit (1:1000 dilution; Thermo Fisher 

Scientific) was used to fluorescently tag the NP-bound cathepsin K Ab (25 C, 1 hour).  

Samples were centrifuged (12,000g, 10 min), washed twice with PBS, and re-suspended in 

PBS at a concentration of 0.5 mg/ml.  Three 150 µl aliquots of each sample was added to 

a 96-well microplate and the fluorescence of fluorescein (λex = 493 nm and λem = 525 nm) 
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and Alexa Fluor 546 (λex = 556 nm and λem = 573 nm) were measured using a microplate 

reader. The NPs were aliquoted onto glass cover slips, mounted, and visualized on a 

microscope (Leica TCS SP5 II, Leica Microsystems, Inc., Buffalo Grove, IL) to detect 

cathepsin K Ab-conjugated NPs exhibiting both green (fluorescein) and red (AF 546) 

fluorescence. 

3.7.3. Assessing retention of conjugated and absorbed cathepsin K Ab on NP surface 

 

 To determine whether chemical conjugation or physical adsorption resulted in 

stable binding of cathepsin K Ab to the NP surface, Alexa Fluor 633 (Invitrogen) was 

loaded into the NPs as previously described.  Cathepsin K Ab modification of the NPs was 

performed as described above for both methods (Sections 3.6.1 and 3.6.2).  An Alexa Fluor 

488-conjugated goat anti-rabbit secondary antibody (1:1000 dilution; Invitrogen) was used 

to fluorescently tag the cathepsin K Ab.  The NPs were centrifuged (12,000g, 10 min), 

washed twice with PBS, re-suspended in PBS (0.5 mg/ml) and a fluorescent microscope 

used to visualize the NPs exhibiting both red (AF633) and green (AF488) fluorescence. 

 To determine fluorescence intensity due to NP surface-bound cathepsin K Abs, a 

corrected total fluorescence (CTF) protocol was used.  Briefly, individual NPs were 

selected using the drawing tool in ImageJ software® to obtain an integrated density for both 

red and green fluorescence.  The integrated density was used to calculate the corrected total 

fluorescence at Day 1 and Day 14.  The CTF is calculated by: (Integrated Density – (Mean 

Fluorescence of Background * Area of Selected NP)).  To determine the ratio of FITC 

bound to the NP surface, the CTF of FITC (adsorption n = 132, n = 130 and conjugation n 

= 154, n = 207) was divided by the average CTF of AF633 for each test case.   
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3.8. Verifying cathepsin K overexpression by aneurysmal cells and their targeting 

by NPs 

 

3.8.1. Assessing cathepsin K expression by EaRASMCs in culture 

 

EaRASMCs (passage 3) and RASMCs (healthy cell controls) were seeded at 

30,000 cells/well, and cultured for 2 weeks in six-well plates in DMEM-F12 medium 

containing 10% v/v FBS and 1% v/v PenStrep.  Half of the EaRASMC cultures received 

medium supplemented with 50 ng/ml of TNF-α in order to simulate the inflammatory 

aneurysmal tissue environment.   

For immunofluorescence visualization of cathepsin K expression, after a further 24 

hours of culture, all cell layers were fixed in 4% v/v paraformaldehyde, permeabilized with 

Triton-100 (VWR International; UK) and labeled with the primary cathepsin K Ab (1:100 

dilution) and a secondary AF 546-tagged secondary antibody (1:1000 dilution). DAPI 

(Vector Labs; Burlingame, CA) and AF488-Phalloidin (Molecular Probes; Temecula, CA) 

were used to stain the nuclei and actin cytoskeleton, respectively. The cell layers were 

imaged on a fluorescent and confocal microscope. 

3.8.2. Assessing cathepsin K expression in matrix-injured arteries 

 

Cathepsin K expression in elastase injured arteries (Lampire Biological 

Laboratories, Pipersville, PA) was compared to expression of the housekeeping protein, β-

actin, using western blot.  Porcine carotid arteries (n = 3) were infused with either elastase 

(20 units/ml, Sigma) or 0.9% v/v sterile saline.  The end of each artery was clamped shut 

and a catheter was used to infuse 1 ml of solution into the lumen.  The other end of the 

artery was clamped shut and the arteries were incubated at 37 °C for 20 minutes.  After 
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incubation, the samples were washed with PBS to remove any residual elastase or saline.  

The arteries were then cut into segments of similar length (~15 mm) and flash frozen in 

liquid nitrogen.  After storage overnight (-80 °C), the tissue segments were lyophilized to 

produce a dry sample.  The dry weight of each segment was obtained.  The dry arteries 

were placed in RIPA buffer (Thermo Scientific) containing 1% HaltTM protease inhibitor 

(Thermo Scientific), homogenized and vortexed for one hour.  The samples were 

centrifuged (10,000 rpm, 10 minutes) to pellet the cell debris and the supernatant removed 

and stored at -80oC.  The samples were thawed and prepared for western blot (Table 3.2) 

followed by heating for 10 minutes (70°C).   

Table 3.2. Preparation of samples for western blot.  The amounts listed are for one sample 

to be loaded into one well of the western blot gel.  

  
Reagent Volume (µl) 

Sample in RIPA Buffer 15.6 

Reducing Agent 2.4 

Sample Buffer 6.0 

 

A 22.5 µl aliquot of each sample was loaded under reduced conditions into each 

lane of a 4-12% sodium dodecyl sulfate polyacrylamide gel electrophoresis gel (SDS-

PAGE), along with a SeeBlue pre-stained molecular weight ladder (Invitrogen).  The gels 

were transferred onto nitrocellulose membranes (Invitrogen).  Subsequently, the 

membranes were blocked for 1 hour with Odyssey Blocking Buffer (LI-COR Biosciences; 

Lincoln, NE; 1:1 dilution Blocking Buffer: PBS).  After blocking, the membranes were 

labeled (16 hour, 4C) with a rabbit cathepsin K Ab (1:200 dilution) and a mouse 

monoclonal antibody against β-actin (1:1000; Sigma Aldrich).  Following the primary 

antibody incubation, the membranes were washed with PBST (PBS+0.1% v/v Tween, 10 

min, 10 min, 5 min).  Secondary antibody labeling occurred at room temperature for 1 hour  
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on a shaker using IRDye® 680LT goat-anti-rabbit (1:15,000 dilution; LI-COR Biosciences) 

and IRDye® 800CW (1:20,000; LI-COR Biosciences).  The membranes were protected 

from light to prevent photo-bleaching.  The secondary antibody was removed by washing 

the membrane with PBST (10 min, 10 min, 5 min) and the membrane was then stored in 

PBST (4 °C).  A LI-COR Odyssey scanning system was used to detect the protein bands.  

The intensities of the cathepsin K bands were quantified using Image Studio® and 

normalized to their respective β-actin bands to allow reliable comparison between different 

samples in the same blot. 

3.8.3. NP targeting of cathepsin K in in vitro EaRASMC cultures 

 

 Using the covalent conjugation method, AF633-loaded PLGA NPs were 

conjugated with cathepsin K Ab.  RASMCs and EaRASMCs (passage 3) were seeded at 

75,000 cells per well and cultured for 13 days in six-well plates. The EaRASMCs were 

cultured in DMEM-F12 supplemented with 10% v/v FBS and 1% v/v PenStrep 

supplemented with 50 ng/ml of TNF-α.  Following 24 hours of incubation, the cell cultures 

received the cathepsin K Ab-conjugated AF633-encapsulated NPs. The final concentration 

of NPs was 0.5 mg/ml. After a further 24 hours, the cell layers were fixed, stained with 

AF488-Phalloidin (green for cytoskeleton; Molecular Probes) and mounted on slides with 

VectaShield containing DAPI (blue for nuclei; Vector Labs, Burlingame, CA). 

3.8.4 Assessing elastase-mediated disruption of the porcine carotid artery wall 

 

 Porcine carotid arteries were thawed, washed with PBS, and the length of each 

artery measured.  One end of the artery was clamped shut and a catheter used to infuse 1 

ml of solution (elastase; 20 units/ml; Sigma or 0.9% v/v sterile saline) before the other end 
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was clamped shut.  With the arteries clamped, the artery segments were incubated for 20 

minutes at 37°C.  Following incubation, the arteries were washed with PBS to remove any 

remaining infusion solution before continuing with additional experiments.   

3.8.4.1. Disruption of porcine carotid artery for TEM imaging 

 

To determine the disruption of the artery due to elastase treatment, the arteries were 

prepared for imaging by TEM.  Following either elastase or saline infusion (described in 

Section 3.8.4), the arteries were cut into small segments (~3 mm in length) and placed in 

room temperature 4% paraformaldehyde and incubated at 37°C for 5 minutes before 

fixation overnight at 4°C.  The samples were post-fixed in 1% w/v osmium tetroxide (1 

hour), dehydrated in a graded ethanol series (50-100% v/v), embedded in Epon 812 resin, 

sectioned, placed on copper grids, stained with uranyl acetate and lead citrate, and imaged 

(using FEI Tecnai G2 Spirit) under multiple magnifications.   

3.8.4.2 Targeting cathepsin K modified NPs to the matrix-injured artery wall 

 To determine the effectiveness of cathepsin K targeting in the aorta, thawed porcine 

arteries (n = 3) were infused with elastase (20 units/ml, 37 °C, 20 minutes, Sigma) and 

rinsed with PBS.  Following elastase infusion, unmodified Alexa Fluor 633-loaded NPs, 

cathepsin K Ab-conjugated Alexa Fluor 633-loaded NPs, IgG Ab-conjugated Alexa Fluor 

633-loaded NPs, or 0.9% saline were infused in the artery (1 ml, 2 mg/ml NP) and 

incubated (37°C, 20 minutes).  Following incubation, the arteries were flushed with PBS 

to remove any unbound NPs.  The arteries were imaged (IVIS Spectrum CT In Vivo Imager, 

PerkinElmer; Waltham, MA) and analyzed using spectral unmixing to measure NP binding 

using Living Image® software.  Briefly, spectral unmixing was used to subtract tissue 
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autofluorescence from each sample to allow for pure AF633 NP fluorescent signal.  Once 

the tissue autofluorescence was removed, ROIs were drawn over each artery and the total 

radiant efficiency ([p/s]/ [µW/cm2]) was measured and the fold-increase of NP 

fluorescence was calculated. 

3.9. Characterizing DOX release from cathepsin K Ab-conjugated and 

unconjugated NPs 

 

 DOX release from both cathepsin K Ab-conjugated and unconjugated NPs was 

measured in PBS at 37oC.  The efficiency of DOX encapsulation within the NPs was 

determined by pooling the supernatants from the washing and ultracentrifugation steps for 

individual NP formulations.  Unencapsulated DOX in the supernatant fraction was assayed 

by UV spectrophotometry (SpectraMax M2, Molecular Devices, Inc., Sunnyvale, CA) 

using the absorbance peak of DOX at 270 nm. This peak was calibrated to a standard curve 

generated using serial dilutions of a 1 mg/mL DOX solution.  The total amount of 

encapsulated DOX and the encapsulation efficiency were determined by subtracting the 

total amount of unencapsulated DOX from the known amount of DOX added during NP 

formulation.  Aliquots containing conjugated or unconjugated DOX-NPs (0.5 mg/ml) were 

collected at various time points over 45 days and centrifuged (13,000 rpm, 30 min, 4oC).  

The amount of DOX in the supernatant was quantified by UV spectrophotometry.  The 

absorbance at  = 270 nm was calibrated to a standard curve generated using serial dilutions 

of DOX in PBS. Following the absorbance measurements, the volume in each sample was 

replenished with fresh PBS.  The total amount of DOX loaded in the NPs was calculated 

and the released amount was used to determine the percentage of DOX released.    
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3.10. DNA assay for cell proliferation 

 

The DNA content of the cell layers was measured via a fluorometric assay of 

Labarca and Paigen to determine the combined effects of the unconjugated or conjugated 

NPs and released DOX on EaRASMC proliferation111. The cell layers were harvested at 1 

and 21 days of culture in Pi buffer, sonicated on ice, and assayed for DNA content. Cell 

density was calculated assuming 6 pg of DNA per cell.  

3.11. Fastin assay for elastin 

 

A Fastin assay (Accurate Scientific and Chemical, Westbury, NY) was used to 

quantify the amounts of elastic matrix (alkali-soluble and insoluble fractions) deposited by 

EaRASMCs. For each of 3 replicate samples, cell layers from 3 separate wells were 

harvested in Pi buffer, at 21 days of culture, and pooled.  The cell layers were homogenized 

by sonication on ice.  The cell suspension obtained was digested with 0.1 N NaOH (1 h, 

98 ºC) and then centrifuged to yield a pellet containing mature, highly cross-linked alkali-

insoluble elastin and a supernatant fraction containing less cross-linked alkali-soluble 

elastin. The alkali-insoluble elastin was converted into a soluble form prior to 

quantification, as the Fastin assay can only quantify soluble α-elastin.  The pellet obtained 

after the NaOH digestion step was dried and solubilized with 0.25 M oxalic acid (1 h, 95 

ºC), then pooled and centrifuge-filtered (3000 rpm, 10 min) in microcentrifuge tubes 

(Amicon® Ultra, 10 kDa molecular weight cut-off; Millipore, Inc., Billerica, MA).  The 

alkali-soluble and insoluble matrix elastin fractions, as well as the tropoelastin precursors 

released into the cell culture medium were then measured using the Fastin assay. The 
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amounts of elastin measured were also normalized to the corresponding DNA amounts, so 

as to provide an accurate comparison between the different treatments. 

3.12. Elastic matrix ultrastructure visualized by transmission electron microscopy 

(TEM) 

 

 To visualize the ultrastructure of deposited elastic matrix, EaRASMCs were seeded 

into permanox chamber slides (Thermo Fisher; Waltham MA; 50,000 cells per well) and 

stimulated with 50 ng/ml of TNF-α.  After 21 days of culture, the test (cathepsin K Ab-

conjugated DOX-loaded NPs, unconjugated DOX-loaded NPs) and control EaRASMC 

cultures were rinsed with PBS (37 °C) and fixed (5 min, 37 °C, 4% w/v 

paraformaldehyde/2.5% w/v glutaraldehyde prepared in 0.1 M sodium cacodylate buffer).  

Following the initial fixation step, the cell layers were incubated in the fixative overnight 

at 4 °C.  The samples were post-fixed in 1% w/v osmium tetroxide (1 hour), dehydrated in 

a graded ethanol series (50-100% v/v), embedded in Epon 812 resin, sectioned, placed on 

copper grids, stained with uranyl acetate and lead citrate, and imaged (using FEI Tecnai 

G2 Spirit) under multiple magnifications.    

3.13. Assessing MMP-2 and -9 expression in DOX-loaded NP treated EaRASMCs 

 

 MMP-2 and -9 expression by EaRASMCs cultured with cathepsin K Ab-

conjugated or unconjugated DOX-NPs were compared using western blots. At 21 days of 

culture, the cell layers were harvested in RIPA buffer with protease inhibitor and 3 wells 

were pooled per replicate (n = 3 replicates/treatment). Maximum volumes of sample 

protein (15.6 µL) were then loaded under reduced conditions into each lane of a 10% Bis-

Tris electrophoresis gel (Invitrogen), along with a SeeBlueTM pre-stained molecular weight 
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ladder (Invitrogen) and MMP-2 and -9 standards. The gels were run in MOPS buffer 

(Invitrogen) for 50 minutes at 200 V, and subsequently dry transferred onto nitrocellulose 

membranes (iBlot® Western Blotting System, Invitrogen). As before, the membranes were 

blocked with Odyssey Blocking Buffer for 1 hour and immunolabeled (4 oC, overnight) 

with a rabbit polyclonal antibody against MMP-2 (1:500 dilution; Abcam, Cambridge, 

MA) or rabbit monoclonal antibody against MMP-9 (1:500 dilution; Millipore, Billerica, 

MA) with a mouse monoclonal antibody against β-actin (1:1000 dilution; Sigma-Aldrich) 

as a loading control. Secondary labeling occurred for 1 hour at room temperature using 

IRDye® 680LT goat-anti-rabbit (1:15,000 dilution; LI-COR Biosciences) and IRDye® 

800CW goat-anti-mouse (1:20,0000 dilution; LI-COR Biosciences). A LI-COR Odyssey 

laser scanner was used to quantify the fluorescence of the secondary antibodies. The 

intensities of the active MMP-2 and MMP-9 bands on all gels were quantified using ImageJ 

software, expressed in terms of relative density units (RDU) and normalized to the intensity 

of their respective β-actin bands to enable comparison between the different test cases 

within the same blot. The ratios obtained for the NP-supplemented cell layers were further 

normalized to that for standalone EaRASMC cultures (treatment controls). 

3.14. Assessing MMP-2 and -9 activity using gel zymography 

 

 The differential effects of cathepsin K Ab-conjugated and unconjugated DOX-

loaded NPs on enzyme activity of MMP-2 and -9 in EaRASMC cultures was assessed using 

gel zymography. Cell layers harvested in RIPA with a protease inhibitor were loaded into 

each lane of a 10% zymogram gel (Invitrogen) in a volume containing 5 μg of protein, 

along with a SeeBlueTM pre-stained molecular weight ladder, and MMP-2 and -9 protein 

standards. Gels were run for 2 h at 125 V. The gels were then washed in a buffer containing 



65 
 

2.5% v/v Triton-X-100 for 30 min to remove sodium dodecyl sulfate (SDS) detergent, and 

then incubated overnight in a substrate/development buffer to activate the MMPs.  The gels 

were stained with Coomassie Brilliant Blue solution for 45 min, and destained for 90 min, 

until clear bands appeared visible against the blue background of the gel. Band intensities 

(RDU) of the bands obtained for NP-supplemented cultures were measured using ImageJ 

software, and normalized to those obtained for the NP-untreated control cultures to 

determine fold changes in MMP activity. Data was acquired from 3 independent replicate 

gels.  

3.15. Verification of cadherin and αvβ3 expression and targeting by Ab-modified 

NPs 

 

3.15.1. Cadherin and αvβ3-Integrin expression by HUVECs in culture  

 

 In order to actively target the SMCs in the aorta, it is crucial for the NPs to pass 

through the endothelial cell layer.  In AAAs, the endothelial cell layer is disrupted leading 

to gap formation and a leaky endothelium.  Cadherin plays a vital role in cell-to-cell 

junctions so a decrease in cadherin expression can lead to the gap formation.  Human 

umbilical vein ECs (HUVECs) were seeded at 30,000 cells per well and incubated at 37 

°C until a confluent layer was formed.  The cells were stimulated with 10 ng/ml TNF-α for 

24 hours at 37°C.  Following stimulation, cells were fixed with 4% paraformaldehyde (10 

minutes, RT) and washed 3 times with PBS.  The cell layer was blocked with the 

appropriate serum (5% serum, 20 minutes, RT).  Following blocking, the primary antibody 

(1:100 dilution of cadherin Ab or αvβ3 Ab) was added and incubated overnight at 4 °C.  

The primary antibody solution was aspirated and the cell layer washed with PBS.  The 

secondary antibody (AF 488-conjugated secondary antibody, 1:1000 dilution) was added 
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and incubated for 1 hour at room temperature.  The secondary antibody solution was 

aspirated and the cell layer washed with PBS twice.  The cell layers were mounted onto 

glass coverslips using VectaShield® with DAPI to stain the nucleus.  After mounting, the 

cell layers were visualized using a fluorescent microscope.    

3.15.2. Preparation of AF633-loaded NPs 

 

 The AF633-loaded NPs were prepared using the methods previously described in 

Section 3.4.  The PLGA NPs were prepared using a double emulsion solvent evaporation 

method with the AF633 encapsulated within the NP followed by washing to remove 

unencapsulated dye, flash freezing, and lyophilization to produce a dry powder.  The 

particle size and surface zeta-potential were determined using a commercial particle-sizing 

system (PSS/NICOMP 380/ZLS, Particle Sizing Systems; Santa Barbara, CA) as described 

in Section 3.5.   

3.15.3. Preparation of αvβ3-integrin Ab-modified NPs 

 

The αvβ3-integrin plays a vital role in cellular adhesion and migration as well as 

cellular uptake.  The goal of incorporating the αvβ3-integrin onto the NP surface was to 

increase the movement of the NPs through the endothelial cell (EC) layer into the tunica 

media.  The covalent binding of the αvβ3-integrin Ab to the NP surface was performed 

using the procedure described previously in section 3.6.2 for cathepsin K Ab incorporation.  

The NPs were suspended in MES (0.5 mg/ml) and incubated with 10 µl of αvβ3-integrin 

Ab and 100 ng EDC for 5 hours.  After incubation, the NPs were rinsed with PBS twice.   

 



67 
 

3.15.4. Assessment of αvβ3-integrin Ab incorporation on NP surface 

 

Using the previously described procedure for measuring Ab binding to NPs 

(Section 3.7.3) we determined binding of the αvβ3-integrin Ab.  An Alexa Fluor (AF) 488-

conjugated goat anti-rabbit secondary Ab (1:1000 dilution; Thermo Fisher), was used to 

fluorescently tag the NP-bound αvβ3-integrin Ab (25 C, 1 hour).  Three 150 µl aliquots 

per sample were added to a microplate and the fluorescence of both the fluorescein (λex = 

493 nm and λem = 525 nm) and Alexa Fluor 633 (λex = 632 nm and λem = 647 nm) were 

measured using a microplate reader.  The NPs were aliquoted onto glass cover slips, 

mounted, and visualized on a fluorescent microscope.   

3.15.5. NP localization in HUVEC cultures 

 

 HUVECs were seeded onto glass coverslips at a density of 30,000 cells per well 

and incubated for 7 days.  The cells were unstimulated or stimulated with TNF-α (10 ng/ml) 

for 24 hours before the addition of AF633-loaded NPs or αvβ3 Ab-modified AF633-loaded 

NPs.  The test cases are shown in Table 3.3.   

Table 3.3. Test cases for localization of NPs in HUVECs. 

Stimulation Nanoparticle 

TNF-α αvβ3 Ab Modified 

No TNF-α αvβ3 Ab Modified 

TNF-α Unmodified AF633 NPs 

 

The cells were incubated with the NPs for 3 hours at 37 °C followed by washing 

with PBS to remove any unbound NPs.  A membrane stain (Vybrant® DiI Cell-Labeling 

Solution, Thermo Fisher Scientific, 40 µM) was added to the cell layer and incubated for 

15 minutes at 37 °C.  The DiI solution was aspirated and the cell layer washed with PBS.  
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Following membrane staining, the cells were fixed with 4% v/v paraformaldehyde (10 

minutes, RT) and mounted onto slides with mounting medium containing DAPI stain 

(VectaShield® mounting medium with DAPI).  The cell layers were imaged using a 

confocal microscope (Leica TCS SP5 II-AOBS, Buffalo Grove, IL) allowing for the 

generation of Z-stacks enabling 3D reconstruction and multiple planes of views through 

the entire cell layer.      

3.16. Migration of NPs through endothelial cell layer 

 

3.16.1. FITC-Dextran migration through endothelial cell layer 

 

 HUVECs were seeded on a transparent 1.0 µm polyethylene terephthalate (PET) 

membrane cell insert that had been previously coated with collagen.  Rat Tail Collagen 

Type I (1 mg/ml) was added to the membrane and incubated for 1 hour at 4 °C.  The 

collagen solution was removed and the membranes incubated overnight at 4 °C.  After 

incubation, HUVECs were seeded (30,000 cells per insert) on each membrane and allowed 

to incubate at 37 °C for 7 days.  The test case was HUVECs stimulated with TNF-α (10 

ng/ml) for 24 hours and the two control cases were HUVECs without stimulation and the 

membrane containing no HUVECs.  FITC-Dextran (1 mg/ml, 150,000 avg. MW) was 

added to the upper chamber of each insert and incubated at 37 °C for 3 hours.  Following 

incubation, the supernatant from the lower chamber was removed and three 150 µl aliquots 

from each sample were added to a 96-well microplate and the fluorescence measured using 

a fluorescent plate reader (λex = 490 nm and λem = 525 nm).   
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3.16.2. NP migration through the endothelial cell layer 

 

 AF633 loaded-NPs were modified with an αvβ3-integrin Ab as previously described 

(Section 3.15.3).  HUVECs were seeded on a 1.0 µm PET membrane cell insert previously 

coated with collagen using the procedure from Section 3.16.1.  The test cases were 

stimulated with TNF-α (10 ng/ml) for 24 hours.  Following stimulation, the αvβ3-integrin 

Ab-modified NPs or unmodified NPs (0.2 mg/ml) were added to the upper chamber of the 

insert (Table 3.4).  The cells were incubated for 3 hours at 37 °C.  Following incubation, 

the media from the lower chamber was removed and the fluorescence of the NPs was 

measured using a fluorescent plate reader (λex = 632 nm and λem = 647).    

Table 3.4 Test cases for NP migration through the endothelial cell layer. 

Cells Stimulation NP Addition 

Yes TNF-α (10 ng/ml) αvβ3-integrin Ab-modified AF633 NPs 

Yes TNF-α (10 ng/ml) Unmodified AF633 NPs 

Yes No TNF-α Unmodified AF633 NPs 

No No TNF-α Unmodified AF633 NPs 

 

3.17. Oxidative stress assay for DOX-loaded NPs in HUVECs and EaRASMCs 

 

 In order to determine the toxicity of DOX-loaded NPs, the oxidative stress and 

superoxide production was measured when DOX-loaded NPs were cultured with 

EaRASMCs and HUVECs.  The oxidative stress was determined using an ROS/Superoxide 

Detection Assay Kit (Abcam).  Cells were seeded in a 96 well plate at a density of 20,000 

cells per well and incubated at 37°C until the cells were at ~70-80% confluency 

(approximately 48 hours).  The media was aspirated and fresh media added the day of the 

experiment.  The cells were simultaneously treated with DOX-loaded NPs (0.2 mg/ml) and 

100 µl of ROS/Superoxide Detection Solution (1:2500 dilution of Oxidative Stress 
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Detection Reagent, 1:2500 dilution of Superoxide Detection Reagent).  The cells were 

incubated for 60 minutes at 37°C.  Following incubation, the plate was read from the 

bottom using a fluorescent plate reader for fluorescein (λex = 488 nm and λem = 520 nm) 

and rhodamine (λex = 550 nm and λem = 610 nm).  

3.18. AAA induction in rat model via periadventitial elastase injury  

 

3.18.1. Surgical procedure for AAA induction  

 

Previously, as described in Section 3.1, aneurysm induction in our lab was 

performed using an elastase infusion into the aorta which requires complex microsurgical 

intervention for collateral vessel ligation, aortal catheterization and aortotomy sealing, the 

latter at risk of reopening and hemorrhage.  As a result, we investigated if small aneurysms 

could be generated in the rat model instead through periadventitial elastase treatment.  This 

method also provides the advantages of limiting lower limb paralysis that results from 

extended durations of surgery.   

All rat surgeries were performed with IACUC approval at the Cleveland Clinic 

(2016-1581).  Acepromazine (0.5 mg/kg) was administered subcutaneously approximately 

30 minutes before the induction of anesthesia.  Fresh elastase solution was prepared (20 

Units or 40 Units elastase, Sigma) and stored on ice until use.  Immediately before 

anesthesia induction, buprenorphine hydrochloride (0.03 mg/kg) was administered 

subcutaneously.  Following injection, the rat was moved to the anesthesia induction 

chamber (oxygen flow rate 1 L/min, 2.5% v/v isoflurane) for 7-8 minutes until 

anesthetized.   
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Once anesthetized, the rat was removed from the chamber and ophthalmic eye 

ointment was applied to both eyes.  The rat was placed on the surgery table and its nose 

inserted into the nose cone.  The isoflurane concentration was reduced to 2% for the 

duration of the procedure.  The hair from the abdomen was clipped, the abdominal skin 

sterilized using betadine and alcohol scrubs with application proceeding from the inside 

out.  Immediately before the surgical procedure, 0.25% Bupivacaine (2-8 mg/kg; analgesic) 

was administered subcutaneously at the incision site.  The abdominal cavity was exposed 

by a laparotomy and the abdominal wall was held open using retractors.  The exposed 

intestines and other internal organs (stomach, pancreas, liver, etc.) were removed to outside 

the body cavity and were covered with moistened sterile gauze to prevent drying during 

the procedure.  Using fine forceps, the aorta was exposed by removing surrounding fat and 

connective tissue.  Once the aorta was exposed, images were taken using a microscope to 

allow for diameter determination.  The elastase or 0.9% v/v saline was soaked up by a small 

piece of gauze and the soaked gauze was placed around the aorta.  This was done to ensure 

the treatment stayed in contact with the aorta for 20 minutes.  The gauze was removed and 

the residual solution (elastase or saline) removed by rinsing the cavity with sterile saline 

and soaked up with sterile gauze.  Images of the aorta were taken post treatment.  The 

intestines were replaced and the abdomen sutured.  The muscle layer was sutured using 4-

0 vicryl non-absorbable nylon stiches in a running pattern.  The skin was sutured using 4-

0 silk stiches in an interrupted pattern.  During suturing, the isoflurane was reduced to 1.5% 

v/v to begin recovery.   

The animal was removed from isoflurane and placed on a heating pad (37 °C) to 

continue recovery.  The animal was moved to its cage and placed on a towel to finish 
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recovering.  While in the cage, food and a water-gel pack was placed on the cage floor to 

allow access during recovery.  Once the animal has recovered enough to move around the 

cage, the cage was returned to the BRU.  Pain from the surgery is managed through twice 

daily injections of buprenorphine hydrochloride (0.03 mg/kg) for 72 hours.  

3.18.2. Rat AAA diameter measurements using stereomicroscope 

 

 The images taken prior to elastase treatment were used for diameter measurements 

of the aorta.  All images of the aorta during surgery were generated using an Olympus 

SZ61 microscope.  The images include a reference marker with a known diameter (1.5 

mm) to accurately measure the aorta diameter.  To perform the measurements (ImageJ®), 

a straight line was drawn across the reference marker to determine the number of pixels 

per 1.5 mm and this was used to create a global scale.  Straight lines were drawn across six 

different segments of the exposed aorta and the length of each line was calculated.  The 

average length and standard deviation of the lines were calculated for each rat.  The same 

procedure was used to determine the final diameter of the aorta following a 14 day 

development period.  The initial and final measurements were compared to determine the 

increase in diameter due to the elastase treatment.   

3.18.3. Rat AAA model for aorta imaging using MRI  

 

 An initial trial for protocol development was set up to optimize the MRI parameters 

to clearly visualize the aorta.  This protocol development was performed on a naïve male 

rat under anesthesia.  The breathing rate of the rat was monitored and the concentration of 

isoflurane administered was altered to maintain 50 breaths per minute.  The breathing rate 

was maintained at this level due to the MRI software containing a specific gated imaging 
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program that generates clearer images.  This MRI program takes images between breaths 

to minimize the distortion effects of the movement of the chest cavity.   

The anesthetized rat was placed in the MRI in a prone position for imaging.   

Multiple images of the abdomen were taken to identify which parameters and program 

settings generated clear visualizations of the aorta.  The images were taken under several 

imaging modes including T1-Flash, T1-FISP-3D, and T2-TurboRARE.  The images were 

taken with either a coronal or axial orientation.   

To further develop the imaging protocol, a euthanized rat, which had undergone 

aneurysm induction as previously described (Section 3.18.1), was imaged to determine 

aorta diameter.  For this protocol development, the rat was placed in the MRI instrument 

in a supine position.  The change in position (prone to supine) was taken into account to 

determine which position enhances the images.  Images were taken using T1-Flash and T2-

TurboRARE.   

All images from the MRI were converted from a DICOM format to a NiFTi format 

for use in imaging software.  The images were viewed using the software programs mricron 

and MIPAV to visualize the aorta, determine aorta diameter, and generate a 3D 

reconstruction.  In MIPAV, the aorta was measured using the line tool to draw a line across 

the aorta and the width measured from the line length.  The aorta was measured in two 

directions – from the coronal plane and the sagittal plane to determine any expansion from 

periadventitial elastase treatment.   
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3.18.4. Cathepsin K expression in induced rat AAAs  

 

Following aneurysm induction, the aneurysm was left to develop over 14 days 

before sacrificing the rat by CO2 and a physical secondary method.  The abdomen of the 

euthanized rat was opened using sterile procedures through the previously described 

laparotomy and the aorta exposed.  Healthy segments and elastase injured segments of the 

aorta were removed and rinsed with PBS.  Removing healthy and injured segments from 

the same aorta provides an internal control for cathepsin K expression.  The segments were 

flash frozen in liquid nitrogen and stored at -80°C before lyophilization.  The dried 

segments were placed in RIPA buffer, homogenized and placed on a shaker at 4 °C for 1 

hour.  The vials were centrifuged (12,000 rpm, 10 min) to pellet any debris and the 

supernatant collected.  The supernatant was stored at -80°C until western blot was 

performed.  The western blot for cathepsin K expression was performed following the 

procedure previously described (Section 3.8.2). 

3.18.5. Preliminary imaging studies to assess uptake of intravenously infused NPs into 

AAA wall 

 

 Following aneurysm induction and development, the rat was anesthetized using 

isoflurane (2.5%).  The abdomen and back of the rat were shaved to decrease auto 

fluorescence before imaging.  The rat was placed in a prone position in the IVIS Spectrum 

CT connected to isoflurane to maintain anesthesia during imaging.  Images of the 

anesthetized rat were taken under varying wavelengths as a control and to allow for spectral 

unmixing.  The multiple wavelengths were selected to cover the excitation and emission 

wavelengths of the AF633 loaded into the NPs as well as allow for the subtraction of tissue 

autofluorescence.  Following the collection of control images, the anesthetized rat was 
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injected with cathepsin K Ab-modified AF633 NPs (5 mg/ml) via tail vein injection.  

Images were taken at 30 minutes, 3 hours, and 24 hours post-injection to determine the 

localization of the NPs.   

 Following aneurysm induction and development, the rat was anesthetized (2.5% 

isoflurane) and injected with cathepsin K Ab-modified VivoTag® 800-loaded NPs (10 

mg/ml) via tail vein injection.  The rat was euthanized after injection (1 or 3 hours) and the 

abdomen opened via laparotomy to expose the aorta.  The exposed aorta was imaged using 

the IVIS Spectrum CT to determine the localization of the NPs.  As previously discussed, 

the images were taken under multiple wavelengths to visualize the fluorescently loaded 

NPs as well as identify background and tissue autofluorescence.  The images were 

visualized using Living Image® software and spectral unmixing was performed to identify 

pure Vivotag800® fluorescence.   

3.19. Statistical analysis 

 

All experimental data presented (n = 3 per condition, unless stated otherwise) are 

mean values with standard deviation (SD) or standard error (SE) where indicated. 

Statistical significance of differences between mean values for different samples and 

conditions was evaluated using a Student’s t-test, with p ≤ 0.05 considered as statistically 

significant.   
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1. Introduction 

 

 The following sections present the results from experiments conducted to 

demonstrate the feasibility of using cathepsin K as a molecular target for AAA wall-

specific delivery of drug-releasing elastic matrix regenerative NPs.  The experiments assess 

the formulation of Ab-modified NPs, expression of cathepsin K in vitro and ex vivo, and 

the ability of cathepsin K Ab-conjugated NPs to target cathepsin K.  The ability of Ab-

conjugated NPs to migrate through the endothelial cell layer is discussed as well as the 

stress induced from the presence of iron oxide NPs.  Finally, aneurysm induction in a rat 

model, experiments to identify and image aneurysm formation, and the ability of Ab-

conjugated NPs to target the aneurysm is discussed.    

4.2. Formulation and characterization of PLGA nanoparticles  

 

 The physical characteristics, size and zeta potential, of the 0.25% w/v DMAB 

stabilized PLGA NPs were determined for the various encapsulations.  The formulation of 

the blank PLGA NPs stabilized with DMAB exhibited a size of 306.9±115.1 nm and a zeta 
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potential of 30.89 mV.  Changing the loading of the NPs with either 2% DOX or various 

fluorescent dyes did not affect the size or zeta potential (Table 4.1).  For the NPs in this 

study, the target size was ~300 nm and the target zeta potential was ~30 mV.   

Table 4.1.  Mean size and zeta potential of DMAB stabilized PLGA NPs with various 

encapsulations.   

NP Condition Size (nm) ζ-potential (mV) 

No encapsulation 306.9±115.1 30.89 

2% w/w fluorescein 280.9±96.4 30.29 

2% w/w DOX 299.3±124.8 32.04 

2% w/w Alexa Fluor 633 287.8±90.4 40.52 

2% w/w VivoTag® 800 343.1±147.9 29.00 

 

4.3. Cathepsin K Ab-modified NPs 

 

4.3.1. Assessment of cathepsin K Ab conjugation to NPs 

 

 The conjugation of the cathepsin K Ab to the surface of the NPs was confirmed 

using fluorescence microscopy (Figure 4.1).  Utilizing the adsorption and covalent 

conjugation methods, the cathepsin K was successfully incorporated on the NP surface 

(Figure 4.1.B and Figure 4.1.C).  Incubation of the NPs with the cathepsin K Ab for 5 

hours was appropriate as longer incubation times (up to 24 hours) did not result in improved 

Ab conjugation (Figure 4.1.A)112.   
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Figure 4.1.  The effect of incubation times on conjugation of the antibody to NPs (A). The 

cathepsin K antibody was detected with a fluorescein-tagged secondary Ab. Relative 

abundance of conjugated antibodies on the NP surface (B). Cathepsin K antibodies were 

conjugated onto fluorescein-loaded NPs over 5 hours and were detected with secondary 

antibodies tagged with AF546.   Values shown indicate mean ± SD of RFUs (A) or of ratios 

of RFUs due to the fluorescein and AF546; n = 3 per case; # denotes significance of 

differences versus 2 h of incubation, deemed for p < 0.05 ; * denotes significance of 

differences versus control FITC NPs treated with the AF-546-tagged secondary antibody, 

deemed for p< 0.05. In C, micrographs compare cathepsin K antibody bound to NPs via 

adsorption and covalent conjugation methods (see quantitative data B). Conjugation was 

performed over 5 hours. Fluorescein (green) was encapsulated within the NPs and the 

cathepsin K antibody was detected with an AF546-tagged secondary antibody (red).  Panel 

C1 shows lack of red auto-fluorescence from cathepsin K antibody-conjugated NPs not 

treated with the AF546-tagged secondary antibody. Panels C2 and C3 show that cathepsin 

K antibody was successfully conjugated to the NP surface using the adsorption and 

covalent binding methods respectively112. 

 

In Figure 4.1.C, unconjugated NPs (A) fluoresce green and the cathepsin K Ab-conjugated 

NPs with the AF546 fluorescent secondary antibody (B) fluoresce yellow.  The AF546 

secondary antibody fluoresces red alone but when the red and the green signals overlap, 
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the fluorescent signal turns yellow.  The overlapping of these signals and the yellow 

fluorescence present in the images confirms the conjugation of the cathepsin K Ab to the 

NP surface.   

4.3.2. Assessment of cathepsin K Ab modification for covalent and adsorption methods 

 

 To determine whether the covalent conjugation method or the adsorption method 

provided a stronger cathepsin K Ab attachment to the NP surface, fluorescence microscopy 

was used (Figure 4.2).  The adsorption method for Ab attachment to the NP surface utilizes 

van der Waals forces, generally a weak force, while the covalent conjugation involves a 

carbodiimide reaction to generate covalent bonds between the Ab and surface.  Images 

were taken under similar conditions at day 1 and day 14.  The intensity of the AF633-

loaded NPs (red) were measured as well as the intensity of the FITC-labeled cathepsin K 

antibody (green).  The fluorescence of the NPs in Figure 4.2.A show a noticeable change 

in FITC fluorescence at day 14 for the adsorption method.  To quantify the changes in 

fluorescence intensity, the corrected total fluorescence was calculated and a ratio of FITC 

to AF633 was determined.  Figure 4.2.B shows the conjugation method provides a 

significantly (p < 0.05) more robust attachment of the cathepsin K Ab to the NP surface.  

After 14 days, there was a significant decrease in cathepsin K Ab presence on the NP 

surface for the adsorption method.  However, there was no significant loss of cathepsin K 

Ab from the NP surface at 14 days, when covalently conjugated.  This confirms the 

covalent conjugation method, which generates stronger covalent bonds compared to the 

weaker van Der Waals interactions, is superior to the adsorption method and therefore will 

be used in following experiments.   
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Figure 4.2. Panels A and B show results of fluorescence microscopy analysis of cathepsin 

K surface modification to AF633-loaded NPs (red).  A fluorescein antibody (green) was 

added to visualize the cathepsin K modification.  Panel A shows representative images for 

the adsorption and covalent conjugation methods at day 1 and day 14.  The green 

fluorescence demonstrates successful cathepsin K conjugation to the NP surface.  At day 

14, green fluorescence associated with NPs modified using Ab-adsorption was much lower 

compared to NPs covalently conjugated with the Abs.  Panel B shows the ratio of FITC 

intensity to AF633 intensity (mean ± SE; adsorption n=132, n=130 and conjugation n=154, 

n=207).  The conjugation method bound more cathepsin K to the NP surface for a longer 

period of time.  # denotes significance of differences between adsorption and conjugation 

on day 14 deemed for p<0.05.  * denotes significance of differences between day 1 and 

day 14 for the adsorption method deemed for p<0.05112.   
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4.4. Verification of cathepsin K overexpression 

 

4.4.1. Verification of cathepsin K expression in EaRASMCs 

 

Increased expression of cathepsin K by EaRASMCs and the effects of TNF-α in 

augmenting the expression were investigated as this simulates the AAA environment.  

Comparing cathepsin K expression levels between healthy SMCs (RASMCs) and 

EaRASMCs, the stimulation of EaRASMCs with TNF-α increased the expression of 

cathepsin K significantly (Figure 4.3.A and Figure 4.4).  Figure 4.4 highlights the 

increased cathepsin K expression using western blot and the images in Figure 4.3.A show 

an increase in cathepsin K expression within the cell layer but it does not provide enough 

information to determine the location of the cathepsin K.  In order for the cathepsin K Ab-

conjugated NPs to target cathepsin K, it needs to be released from the cells and localized 

on the cell surface.  To determine the localization of cathepsin K, IF labeling for cathepsin 

K was visualized using a confocal microscope and reconstructed in 3D (Figure 4.3.B-C).  

Figure 4.3.B shows the 3D reconstruction of the cell layer with the nuclei (blue), actin 

filaments (green) and the cathepsin K (red).  The image in Figure 4.3.B is a representative 

image of the cell layer and shows the aggregation of cathepsin K on the cell surface.  

However, for further confirmation of cathepsin K localization, the cell layer was imaged 

at various planes heights (Figure 4.3.C.1 through 4).  Figure 4.3.C.1 shows the bottom of 

the cell layer which was attached to the glass coverslip.  This region shows very little 

cathepsin K present.  As the imaging planes move towards the top of the cell layer (Figure 

4.3.C.2 through 3), cathepsin K begins to appear.  This confirms the presence of cathepsin 

K on the cell surface and therefore it can be utilized as a target molecule for the cathepsin 
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K Ab-conjugated NPs.  Figure 4.3.C.4 is a graphical representation of the plane heights 

shown in C.1 through C.3. 

 

 

Figure 4.3. (A) IF images (20x) showing relative expression of cathepsin K in RASMCs 

and EaRASMCs, without and with TNF-α stimulation. Cathepsin K (AF546-tagged 

secondary antibody) appears red while the cytoskeletal actin filaments (AF488 phalloidin) 

appear green, and DAPI-stained nuclei appear blue. (B) High magnification view of 

EaRASMCs stimulated with TNF-α and cathepsin K visualized with AF546-tagged 

secondary antibody and cytoskeletal actin stained with AF488 phalloidin. Grid: 23 µm x 
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23 µm. (C). Images of the EaRASMCs at different z-axis heights.  (1) The bottom of the 

cell layer which shows minimal cathepsin K. (2) The middle of the cell layer in which 

cathepsin K begins to appear.  (3) The top of the cells where the most cathepsin K is found. 

Scale bar for C.1-3:  50 µm. (4) Schematic of the z-axis heights for images C.1-3112.   

 

 

Figure 4.4. Western blot analysis for relative expression of cathepsin K by healthy and 

aneurysmal SMCs, with and without TNF-α stimulation. The figure shows a representative 

blot, indicating bands for the cathepsin K zymogen and β-actin (loading control). The plot 

shows -actin normalized cathepsin K band intensity (mean ± SD; n = 3 per case); * 

denotes p < 0.05 compared to TNF--unstimulated EaRASMCs. # indicates significance 

of differences versus RASMCs, deemed for p < 0.05112. 

 

4.4.2. Verification of cathepsin K expression in elastase injured arteries 

 

Differences in cathepsin K expression in healthy and matrix-injured porcine carotid 

arteries was investigated to rationalize using cathepsin K as an NP target in the AAA wall, 

wherein such elastase induced matrix disruption occurs.  Elastase has the ability to digest 

elastin fibers causing injury similar to an abdominal aortic aneurysm.  Western blot 
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analysis (Figure 4.5) showed significant increase in active cathepsin K (38 kDa) 

expression after exposure to elastase compared to the saline control (7.85 ± 1.93 vs. 0.14 

± 0.02, p < 0.05).  These findings are similar to our previous results showing an increased 

cathepsin K expression in TNF-α activated EaRASMCs cultures.  The increase in cathepsin 

K provides a rationale for the study of elastase injured arteries in the context of 

investigating targeted binding of cathepsin K Ab-conjugated NPs.    

 

Figure 4.5.  Verification of the expression of cathepsin K Ab in elastase injured carotid 

arteries compared to saline treated arteries, assayed using western blots.  Panel A shows a 

representative blot, showing the active cathepsin K form (38 kDa) and β-actin (loading 

control).  Panel B shows β-actin normalized cathepsin K band intensity (mean ± SEM; n = 

9 per case; # denotes significance of difference, deemed for p < 0.05112. 

 

 

 



85 
 

4.5. Targeting of Ab-conjugated NPs to cathepsin K expressing cells 

 

4.5.1. Targeting of cathepsin K Ab-conjugated NPs in EaRASMCs 

 

Figure 4.6 shows microscope and confocal images of RASMCs and EaRASMCs, 

cultured without TNF-α or with TNF-α, exposed to cathepsin K Ab-conjugated NPs (red 

fluorescence).  EaRASMCs stimulated with TNF-α exhibited a high amount of bound, 

cathepsin K-Ab conjugated NPs relative to the RASMCs and the EaRASMCs without 

TNF-α activation. This indicates that the conjugated NPs have a much higher targeting 

ability correlated to the overexpression of cathepsin K in the stimulated cultures. The 

unstimulated EaRASMCs showed an increase in bound NP compared to the RASMCs but 

less than the stimulated EaRASMCs.  The EaRASMCs exhibit basal levels of cathepsin K 

expression and the amount of bound NPs is directly related to the amount of cathepsin K 

expressed.   
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Figure 4.6.  Localization of cathepsin K Ab-conjugated NPs on RASMCs and EaRASMCs 

stimulated with TNF-α. (A) Microscope images showing binding of cathepsin K antibody-

conjugated NPs to EaRASMCs, without and with TNF-α stimulation. All NPs were 

encapsulated with AF633, causing them to fluoresce red. A higher number of NPs bound 

to EaRASMC cultures stimulated with TNF-α compared to unstimulated EaRASMCs. 

Cytoskeletal actin filaments, stained with AF488 phalloidin fluoresce green and DAPI-

stained nuclei appear blue. (B). High magnification image of NP localization to TNF-α 

stimulated EaRASMCs.  (C) Images of EaRASMCs with NPs at various z-axis heights.  

(1) Bottom of cell layer with minimal NP bound.  (2) and (3) Middle layers of the cell 

where NPs begin to appear around the cell. (4) Top of the cell layer where NPs are bound 

to the cell surface.  (5) Schematic of the various z-axis heights for images 1-4.  Scale bars 

represent 50 µm (A), 23 µm x 23 µm (B), and 50 µm (C)112. 

 

4.5.2. Targeting of cathepsin K Ab-conjugated NPs in elastase injured arteries 

 

Figure 4.7 shows fluorescence images of, and a plot highlighting the fold-

differences in binding of unconjugated NPs and Ab-conjugated NPs to the cathepsin K 

expressing wall of porcine arteries.  Previous results have shown an increase in cathepsin 

K expression following elastase injury in porcine carotid arteries.  Utilizing this 
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overexpression, the conjugation of the cathepsin K Ab to the NP surface will increase the 

retention of the NPs within the vessel.  To compare the binding to cathepsin K specifically, 

the NPs were unconjugated and conjugated with a nonspecific IgG Ab.  The nonspecific 

IgG Ab should not increase the retention of the NPs in the vessel as there is no binding 

sites for the Ab.  In Figure 4.7.A.4, there is no fluorescence from the saline treated artery 

and this was used as a negative control to ensure there was no autofluorescence.  The 

fluorescent images in Figure 4.7.A show the greatest intensity in the cathepsin K Ab-

conjugated NPs while the unconjugated and IgG Ab-conjugated NPs show similar 

fluorescent intensities.  Using Living Image® software to perform spectral unmixing and 

the total radiant efficiency, the intensity of the AF633-loaded NPs was determined for each 

artery using the same sized region of interest.  The total radiant efficiency ratio was 

determined using the unconjugated total radiant efficiency and the results are shown in 

Figure 4.7.B.  The plot of the total radiant efficiency confirms the increase in cathepsin K 

Ab-conjugated NP retention in the artery compared to the unconjugated and IgG Ab-

conjugated NP in which these results are similar to the observations in cell cultures.  The 

intensity of fluorescence due to uptake of cathepsin K Ab-conjugated NPs in the artery 

wall was ~2-fold higher relative to that observed for Ab-unconjugated NPs.     
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Figure 4.7.  Targeting of cathepsin K Ab-conjugated AF633-loaded NPs to wall of elastase 

injured porcine carotid arteries.  (A) Pseudocolor of NP localization in elastase treated 

arteries with (1) cathepsin K-Ab conjugated AF633 NPs, (2) unconjugated AF633 NPs, (3) 

IgG-Ab conjugated AF633 NPs, and (4) saline. (B)  Fold difference in binding of cathepsin 

K Ab-conjugated NPs and non-specific IgG conjugated NPs to elastase treated arteries 

compared to binding of unconjugated NPs (mean ± SEM; n = 6 and n = 3 for IgG-Ab 

conjugation)112.   

 

4.6. Effect of conjugated, DOX-loaded NPs on elastic matrix synthesis 

 

 Prior data from our lab indicate DOX concentrations below 5 µg/ml stimulate 

elastic matrix regeneration while maintaining the inhibitory effects on MMPs23.  Using a 

2% w/w DOX encapsulation in PLGA NPs, the released DOX over a 21-day period is less 
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than 5 µg/ml and the elastic matrix deposition significantly increased in cultures treated 

DOX-loaded NPs compared to untreated cultures23,112.  Our own studies showed that 

cathepsin K Ab conjugation to the NPs does not alter the DOX release profile and generated 

near steady-state doses in the desired dose range (Figure 4.8).  The deposition of the elastic 

matrix was quantified using a Fastin assay (Figure 4.9.B) and culturing EaRASMCs with 

DOX-loaded NPs leads to a significant increase in elastin production per cell compared to 

untreated cells.  The TEM results presented in Figure 4.9.C demonstrate that cathepsin K 

Ab-conjugated and unconjugated DOX-loaded NPs increase generation of elastic matrix 

compared to NP-untreated EaRASMC cultures.  While only sparse elastin fibrils and 

microfibrils were seen in the control cultures (Figure 4.9.C.1), significantly greater 

presence of forming elastic fibers associated with amorphous elastin deposits were seen in 

the DOX-loaded NP-treated cultures.  No significant differences in elastic matrix 

deposition were noted between the cultures receiving Ab-conjugated and unconjugated 

NPs.  This is further supported by the data examining the release profile of conjugated and 

unconjugated NPs in which there was no difference in release kinetics112.  MMPs play a 

significant role in the degradation and remodeling of the ECM especially in AAAs, so 

MMP expression and activity was assessed using western blot and gel zymography, 

respectively (Figure 4.10).  The expression of MMP-2 was significantly decreased in 

EaRASMCs cultured with the cathepsin K Ab-conjugated and unconjugated DOX-loaded 

NPs compared to NP-untreated cultures (Figure 4.10.A and Figure 4.10.B).  Similarly, the 

activity of MMP-2 and MMP-9 was significantly decreased in TNF-α stimulated 

EaRASMCs when cultured with the cathepsin K Ab-conjugated and unconjugated DOX-

loaded NPs compared to NP-untreated cells (Figure 4.10.C-F).  
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Figure 4.8. DOX release profiles in vitro from cathepsin K Ab-conjugated and 

unconjugated NPs loaded with 2% w/w DOX (mean ± SD; n = 3 per group)112. 

 

 

 

Figure 4.9.  The proliferation of EaRASMCs is not impacted by culture with DOX-NPs 

(cathepsin K Ab-conjugated or unmodified), although cell proliferation in the cultures 

treated with the Ab-conjugated NPs was significantly lower than that cultured with the 

unmodified NPs (A) (mean ± SD; n = 3 cultures per group; # denotes significance of 
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differences versus unconjugated DOX-NPs, deemed for p< 0.05).  (B) Cathepsin K 

antibody conjugation of DOX-NPs does not alter their pro-elastogenic effects on cultured 

EaRASMCs.  The amount of deposited elastic matrix was normalized to DNA content of 

the respective cell layers (mean ± SD; n =3 cultures per group; # denotes significance of 

differences relative to treatment controls deemed for p < 0.05).  (C) TEM images showing 

effects of cathepsin K Ab-conjugated and unconjugated DOX-NPs on elastic matrix 

deposition in TNF-α stimulated EaRASMC cultures. Elastic matrix deposition was sparse 

in the (1) NP-untreated cultures and few amorphous elastin deposits and no mature fibers 

were seen. Numerous forming elastic fibers were seen in the NP-treated cultures (2), with 

a greater number of amorphous elastin deposits (white arrows) associated with the 

microfibril components in the cultures that received (3) cathepsin K Ab-conjugated DOX-

NPs. Scale bars: 1 µm112.  

 

Figure 4.10. Panels A and B show the effects of unconjugated and cathepsin K Ab-

conjugated DOX-NPs on MMP-2 protein synthesis in TNF-α stimulated EaRASMCs, as 

analyzed by western blots. Panel A shows a representative blot. Panel B shows fold 

difference in β-actin normalized band intensity for active MMP-2 protein in DOX-NP-

treated EaRASMC layers, relative to control cultures cultured with no NPs (mean ± SD; n 

= 3 cultures/condition). # indicates significant differences versus controls (assigned a value 

of 1.0) deemed for a p value < 0.05.  Panels C-F show effects of unconjugated and cathepsin 

K Ab-conjugated DOX-NPs on MMP-2 and MMP-9 activity in TNF-α activated 

EaRASMCs, as analyzed by gel zymography. Panels C and E show representative images 

of gel zymogram for MMP-2 and MMP-9, respectively. Panels D and F show fold 

difference in β-actin normalized MMP-2 and MMP-9 band intensities compared to NP-

free control cultures, respectively (assigned value of 1.0; dotted line). Values shown 

indicate mean ± SD based on analysis of n = 3 cultures per condition.  # denotes 

significance of differences versus control cultures, deemed for p < 0.05112.  
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4.7. Assessment of αvβ3-Integrin expression in Human Umbilical Vein Endothelial 

Cells (HUVECs) 

 

 In order for the αvβ3-integrin Ab-conjugated NPs to target the integrin in 

endothelial cells, it was crucial to determine the expression of αvβ3-integrin in TNF-α 

stimulated cells compared to unstimulated cells.  The HUVECs were stimulated with TNF-

α for 24 hours prior to IF staining.  In the unstimulated cells (Figure 4.11.A), the expression 

of the αvβ3-integrin is constant across the cell layer with minimal gaps forming between 

cells.  However, compared to the TNF-α stimulated cells (Figure 4.11.B), the αvβ3-

integrin expression is increased along the contact points with other cells and gaps begin to 

form between cells.  The stimulation with TNF-α is expected to have this effect on αvβ3-

integrin expression as this is similar to diseased state cells.  The αvβ3-integrin is involved 

in cell migration and movement, so conjugating the αvβ3-integrin Ab to the NP surface 

will increase the passage of the NPs through the endothelial cell layer to the target SMCs.   

 

Figure 4.11. Expression of αvβ3-integrin in (A) unstimulated HUVECs and (B) TNF-α 

stimulated HUVECs.  The αvβ3-integrin appears green (AF488-tagged secondary 

antibody) and the nuclei appears blue (DAPI).  Expression of the αvβ3-integrin is increased 

when the HUVECs are stimulated with TNF-α.   
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4.8. Assessment of cadherin expression in HUVECs 

 

 Cadherins are a trans-membrane protein that play a vital role in cell-to-cell contact 

and adhesion.  The formation of junctions between cells through cadherins provides the 

necessary binding to keep the endothelium intact.  The disruption of cadherins can be 

caused by cytokine overexpression in diseased states, such as AAA.  For this purpose, 

cadherin expression by ECs was examined in vitro.  HUVECs were untreated (Figure 

4.12.A) or stimulated with TNF-α (Figure 4.12.B) and labeled with the cadherin Ab for 

IF.  The unstimulated HUVECs in Figure 4.12.A show consistent cadherin expression 

along the cell edges and there is minimal gaps between cells.  In the TNF-α stimulated cells 

in Figure 4.12.B, the expression of cadherin around the cell edge decreases and the 

formation of gaps between cells begins to appear.  The formation of gaps between cells is 

significant because this leads to a leaky endothelium similar to the endothelium found in 

AAAs.  The leaky endothelium can be useful in the targeting of the NPs to the AAA due 

to the fact the NPs can pass through the gaps formed between cells and reach the SMCs 

which is crucial in regenerating the elastic matrix.   

 

Figure 4.12. Cadherin expression in HUVECs of unstimulated control cells (A) compared 

to TNF-α stimulated cells (B).  Cadherin appears green (AF488-tagged secondary 

antibody) and the nuclei appears blue (DAPI).  The expression of cadherin decreases 
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following TNF-α stimulation in HUVECs and large micron-sized gaps form between 

cells113.   

 

4.9. Assessment of αvβ3-Integrin Ab incorporation on NP surface 

 

 The conjugation of the αvβ3-integrin Ab to the surface of the NPs was confirmed 

via fluorescent microscopy (Figure 4.13).  In Figure 4.13, unconjugated NPs (A) fluoresce 

red and the αvβ3-Integrin Ab-conjugated NPs with the 488 fluorescent secondary (B) 

fluoresce yellow.  The AF488 secondary antibody fluoresces green but when the red and 

green signals overlap, the fluorescent signal appears yellow.  The overlapping of these 

signals and the yellow fluorescence present in the images confirms the conjugation of the 

αvβ3-Integrin Ab to the NP surface.   

 

Figure 4.13. Microscope images of conjugation of αvβ3-integrin Ab to NP surface.  Panel 

A shows control AF633 NPs without Ab conjugation and Panel B shows the addition of 

the αvβ3-integrin Ab to the NP surface and labelled with a 488 secondary antibody.   

 

4.10. FITC-Dextran migration through a HUVEC layer 

 

 To test the migration of the NPs through the endothelium, it was first decided to 

test the passage of FITC-Dextran through a disrupted HUVEC layer comparable of that in 
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the AAA wall.  The FITC-Dextran used for this experiment was 150 kDa as this size should 

be larger than the NPs used in following experiments.  The FITC-Dextran was allowed to 

migrate through the stimulated and unstimulated HUVECs and the fluorescence was 

measured using a plate reader (Figure 4.14).  The stimulation of HUVECs with TNF-α 

increased the passage of FITC-Dextran through the disrupted cell layer with minimal 

interference from the PET membrane.  This result correlates with the cadherin IF result and 

the gap formation between cells allows for the passage of molecules through the endothelial 

cell layer.  Based on this result, the next step was to determine if the NPs show similar 

migration patterns and if the conjugation with the αvβ3-integrin Ab increases NP passage.   

 

Figure 4.14. The migration of FITC-Dextran was significantly higher through a TNF-α 

stimulated endothelial cell layer compared to an unstimulated cell layer.  The improved 

passage through the cell layer is due to the formation of gaps between the cells. * denotes 

significance of difference, deemed for p < 0.05113. 
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4.11. NP migration through the endothelial cell layer 

 

 Building off the above data, it was necessary to determine the migration of the NPs 

through the HUVEC layer.  HUVECs seeded on membranes containing 1.0 µm pores were 

incubated with αvβ3-integrin Ab-conjugated NPs or with unconjugated NPs and were 

unstimulated or stimulated with TNF-α (Figure 4.15).  The data suggests there is no 

difference between NP migration when the HUVECs were stimulated or unstimulated and 

cultured with unconjugated NPs.  However, the migration of the NPs was slightly lower 

than the blank membrane without cells so the cell layer is preventing the passage of some 

NPs.  Finally, the HUVECs cultured with the αvβ3-integrin Ab-conjugated NPs and 

stimulated with TNF-α showed the greatest migration of NPs through the cell layer.  The 

migration of the conjugated NPs is expected but the migration of the unconjugated NPs 

through the cell layer is greater than expected.  One possible explanation for the migration 

of the unconjugated NPs through the cell layer is the NPs are taken up by the HUVECs 

through endocytosis and are passed through the cell and expelled on the other side.  Another 

possible explanation is the formation of a confluent cell layer and the formation of gaps 

between cells that allow for the NP passage.  To confirm the localization of the NPs in the 

HUVECs, confocal images were taken to identify where NPs were passing through the cell 

layer.   
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Figure 4.15.  Migration of αvβ3-integrin Ab-conjugated NPs and unconjugated NPs 

through the endothelial cell layer.  The modification of the NPs with an αvβ3-integrin Ab 

slightly increased the passage of the NPs through the endothelial cell layer while the 

unconjugated NPs were able to migrate through the cell layer but to a lesser extent. * 

denotes significance of differences versus TNF-α stimulation with αvβ3-integrin Ab-

conjugated NPs, deemed for p< 0.05 

 

4.12. NP localization in the HUVEC layer 

 

 The passage of the NPs through the HUVEC layer was deemed crucial to be able 

to deliver the NPs to SMCs in the medial layer of the aorta.  The previous data has 

demonstrated the ability of the NPs to migrate past endothelial cell layer but it is necessary 

to determine if the NPs are passing through the cells or via the gaps between adjoining 

ECs.  Using AF633-loaded NPs (pseudo-colored green), it was possible to determine the 

localization in the cell layer (Figure 4.16 and Figure 4.17).   



98 
 

In Figure 4.16, HUVECs were stimulated with TNF-α and cultured with αvβ3-

integrin Ab-conjugated NPs followed by membrane staining (red) and nucleus staining 

(blue).  Using a confocal microscope, the XY, XZ, and YZ planes were visualized.  Using 

only the XY plane, the location of the NPs cannot be accurately determined.  The NPs 

could be localized on the cell surface but using the XZ and YZ planes, the NPs are located 

within the cell.  The XZ and YZ planes shown in Figure 4.16 are cross sections of the cell 

and confirm the αvβ3-integrin Ab-conjugated NPs are located within the cell.  This is due 

to (1) the NP presence around the nucleus and (2) the appearance of the membrane 

surrounding the NPs.   

 
Figure 4.16. Localization of αvβ3-integrin Ab-conjugated AF633-loaded NPs in HUVECs 

following TNF-α stimulation.  The conjugated NPs are localized within the cell as shown 

in the XZ and YZ axis.  The membrane stain (red) allowed for the location of the NPs to 

be determined.   
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In Figure 4.17, the HUVECs were treated with unconjugated AF633-loaded NPs 

(pseudo-colored green) and the localization of the unconjugated NPs (A) was determined 

and compared to the localization of the αvβ3-integrin Ab-conjugated NPs.  The 

unconjugated NPs location was confirmed by imaging the cell layer at various planes.  The 

image of the cell surface (B) shows minimal fluorescence from the NPs but the images at 

different planes through the cell layer (C) showed an increase in NP fluorescence as the 

plane moved down through the cell.  Another important aspect besides the localization of 

the NPs within the cell, is the localization of the NPs between the cells (D).  The appearance 

of the NPs in the gaps between cells and within the cell regardless of Ab-conjugation 

correlate with previous results.  

 
Figure 4.17. HUVECs treated with unconjugated AF633-loaded NPs (pseudo-colored 

green) (A).  The NP’s location was confirmed by imaging the cell surface (B).  Minimal 
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fluorescence from the NPs was observed at the apical cell surface.  Imaging at different 

planes through the cell layer (C) showed an increase in NP fluorescence as the plane moved 

through the cell.  In addition to NP migration through the cell, the NPs were shown to move 

through the gaps between cells (D)113.   

 

4.13. Effect of DOX-loaded NPs on oxidative stress in HUVECs and EaRASMCs in 

culture 

 

 Induction of oxidative stress and generation of reactive oxygen species (ROS) in 

cultured HUVECs and EaRASMCs by DOX-loaded NPs were evaluated as an affirmative 

outcome could impede the use of NPs for AAA treatment (Figure 4.18).  The DOX-loaded 

NP-treated cultures were compared to untreated cells and a positive and negative control.  

For both the HUVECs and EaRASMCs, the DOX-loaded NPs did not increase the 

oxidative stress compared to the untreated cells and was significantly lower than the 

positive control (Figure 4.18.A).  Similarly for the superoxide assay, the DOX-loaded NPs 

did not increase superoxide production compared to untreated cells (Figure 4.18.B).  This 

result confirms the DOX-loaded NPs, which were used throughout this study, do not induce 

a stress response from either cell type.   
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Figure 4.18. HUVECs and EaRASMCs were exposed to DOX-loaded NPs and no NPs to 

determine the (A) oxidative stress and (B) superoxide production triggered by the NPs.  

The presence of DOX-loaded NPs did not increase oxidative stress or superoxide 

production.  * denotes significance of difference versus positive control, deemed for p < 

0.05. # denotes significance of difference versus negative control, deemed for p < 0.05113. 

 

4.14. Assessing elastase-induced endothelial disruption in whole vessels 

 

 Elastase infusion induced matrix injury within porcine carotid arteries ex vivo was 

used to evoke the AAA.  The elastase breakdowns the extracellular matrix and effectively 

disrupts the endothelial cell layer.  Figure 4.19 shows TEM images of healthy and 

disrupted endothelial cell layers when porcine carotid arteries are treated with elastase.  

Figure 4.19.A and Figure 4.19.C highlights the intact endothelial cell layer of the artery 

following treatment with saline.  The endothelial cells maintain tight junctions as shown in 

Figure 4.19.C.  However, compared to Figure 4.19.B and Figure 4.19.D, the elastase 

treated artery exhibits a denuded endothelium with the basement membrane visibly 

disrupted.  The disruption of the endothelium and basement membrane are consistent with 

abdominal aortic aneurysms suggesting treatment with elastase is a viable option for 

inducing an aneurysm.  Besides the relationship to the aneurysm, the disruption of the 
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endothelium may play a vital role in NP migration and uptake by the AAA.  Previous 

results in this study confirmed NP migration through the endothelial cells and gaps formed 

between cells and the disrupted endothelium and basement membrane following elastase 

treatment provide a large gap for NPs to migrate through.  

 

Figure 4.19. TEM images of (A and C) healthy porcine carotid artery infused with saline 

and (B and D) porcine pancreatic elastase treated porcine carotid artery.  

 

4.15. AAA induction in rat model 

 

 The abdominal aortic aneurysm in the rat model was induced through 

periadventitial elastase treatment.  Figure 4.20.A is a representative image of an aorta prior 

to elastase treatment in a male rat while Figure 4.20.B shows the aorta immediately 
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following elastase treatment.  Immediately following treatment, the aorta changes from a 

red color to a white color indicating damage due to elastase.  In Figure 4.20.C, the same 

aorta is shown following aneurysm development over several weeks.   

 

Figure 4.20. Surgical images of aneurysm induction through periadventitial elastase 

treatment in a rat model.  Panel A shows the exposed aorta prior to elastase treatment and 

Panel B shows the aorta immediately post-treatment.  In Panel C, the aorta is exposed 

following aneurysm development. 

 

 The aneurysm induction surgery was performed on multiple rats (n=3) and images 

were taken prior to treatment and following aneurysm development.  Figure 4.21 shows 

the average diameter of the aorta for three rats following treatment with elastase (1 ml of 

20 units).  The figure shows an increase in aorta diameter for two of the rat models while 

one aorta showed no increase (66.7% success rate).  The increase in diameter was relatively 

small as we intended to achieve, unlike the large AAAs we were able to generate previously 

following elastase infusion/stretch-induced injury110.  In the latter case, the ballooning of 

the aorta upon elastase infusion may allow the elastase to penetrate into the medial layer 
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of the aorta to more effectively disrupt the elastic matrix and hence generate a larger 

aneurysmal expansion.   

 

Figure 4.21. Diameter measurements of rat aorta treated with 1 ml of 20 units of elastase.  

The measurements were obtained from images before elastase treatment and after a 14 day 

aneurysm development period.  * denotes significance of difference compared to pre-

elastase treatment, deemed for p < 0.05. 

 

4.15.1. AAA imaging and measurement using MRI 

 

 The use of MRI allows longitudinal monitoring of aneurysm growth following 

AAA induction surgery in a single animal without need for laparotomy.  Figure 4.22 shows 

multiple MRI scans of the abdominal aorta in a healthy (Figure 4.22.A and Figure 4.22.B) 

and elastase treated rat (Figure 4.22.C and Figure 4.22.D).  Figure 4.22.A shows the aorta 

from below the kidneys to the bifurcation in the lower abdomen and Figure 4.22.B shows 

a 3D rendering of the same aorta.  The 3D rendering provides a clear visual representation 

of the aorta and would allow for localized expansion to be clearly viewed.  Figure 4.22.C 

shows the aorta from the kidneys to the bifurcation in an elastase-injured rat.  Figure 

4.22.D is a 3D rendering of the aorta and the image has been rotated 30°.  The rendering 
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enables visualization of the aorta from multiple angles so if the localized expansion is not 

in the coronal plane, it can be seen in another plane.  An example of a small expansion can 

be seen in Figure 4.22.D highlighted by the red box.  Though the purpose of these initial 

MRI imaging protocols was to merely optimize imaging parameters for reliable assessment 

of aneurysm/aorta size and spatiotemporal differences in the same rat, which is still 

ongoing, our initial imaging outcomes at the very least however, demonstrate our success 

in generating early aneurysmal expansions which exhibit significant spatial anisotropy.   

  

 

Figure 4.22.  MRI scans of a healthy (A, B) and elastase treated (C, D) aorta in a rat model. 

The healthy rat aorta (A) was clearly shown in the MRI scan and this enabled diameter 
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measurements.  Using the same aorta, a 3D rendering (B) was generated which allows for 

further visualization of the aorta.  The elastase treated aorta (C) was visualized using the 

same protocol as the healthy aorta.  The elastase injured aorta was 3D rendered (D) to 

visualize any expansions from treatment.     

 

4.15.2. NP localization in rat AAA model 

 

 Preliminary in vivo infusion studies were performed on VivoTag 800® loaded 

cathepsin K Ab-conjugated NPs.  The expression of cathepsin K in the elastase-injured rat 

AAA model was increased compared to the healthy aorta (Figure 4.23).  The expression 

of cathepsin K in the aorta will be the target for the cathepsin K-Ab conjugated NPs.  The 

cathepsin K Ab-conjugated NPs were injected via tail vein injection and allowed to 

circulate for 1 or 3 hours.  The rat was euthanized and the aorta imaged using an IVIS 

Spectrum CT whole tissue imager.  Preliminary results (Figure 4.24 and Figure 4.25) 

show localization of the NPs within the aortal segment in the abdomen.  Figure 4.24.A 

shows the exposed aorta with the cathepsin K Ab-conjugated NPs (pseudo-colored blue) 

localized.  Figure 4.24.B and Figure 4.24.C are control images in which the injection site 

of the cathepsin K Ab-conjugated NPs is visible due to the NPs present (B) and the residual 

NPs visualized in the vial (C).  These results are promising as preliminary data and further 

investigation is warranted.  The biodistribution (Figure 4.25) was determined using similar 

imaging methods with images of the chest cavity (Figure 4.25.A and Figure 4.25.B) and 

the abdominal cavity (Figure 4.25.C and Figure 4.25.D) to determine the location of NPs.  

The preliminary data shows the localization of the NPs in the abdominal aorta and the chest 

cavity.  However, longer term NP biodistribution, retention, and safety studies need to be 

performed as a function of NP dose and time in AAA-induced rats, which have been 

initiated.   
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Figure 4.23.  Relative expression of cathepsin K in healthy and elastase injured rat AAA 

models.  The plot shows β-actin normalized cathepsin K band intensity (n = 3 per case). 

 

 

Figure 4.24. Preliminary results of cathepsin K Ab-conjugated VivoTag 800®-loaded NP 

localization in an AAA rat model.  (A) The exposed aorta of the rat following tail vein 

injection of the NPs.  (B) The injection site of the NPs visible 1 hour post injection.  (C) 

The residual NPs in the vial as a control for NP fluorescence.  NPs are pseudo-colored blue.  

 



108 
 

 

Figure 4.25.  Biodistribution of VivoTag 800®-loaded NPs in elastase-injured rat AAA 

model 3 hours post-injection.  The fluorescent image of the chest (A) show fluorescence 

from the NPs while (B) shows the organs imaged.  The fluorescence of the abdominal 

cavity (C) shows fluorescence from the NPs and (D) shows the aorta and other organs 

imaged.     
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. Conclusions 

 

 The goal of this study was to investigate cathepsin K Ab surface functionalization 

of our matrix regenerative DOX NPs as an effective means of targeting them to the AAA 

wall following a simple intravenous infusion protocol. Towards rationalizing and guiding 

rigorous studies to investigate the biodistribution, safety and therapeutic efficacy of these 

nanoformulations in a pre-clinical rat model of elastase-induced AAAs, this study has 

successfully fulfilled the sub-aims of a) demonstrating cathepsin K as a viable target for 

homing in NPs to the AAA wall, b) showing that cathepsin K Abs can be stably 

functionalized on the polymer NP surface with no adverse implications to their physical 

properties and beneficial pro-elastic matrix regenerative (i.e., increased elastic matrix 

synthesis, crosslinking, fiber formation) and anti-proteolytic effects, and to cellular health, 

and c) generating evidence supporting trans-endothelial transport of the NPs from the AAA 

vessel lumen to the underlying disrupted aortal medial layer. More specifically, our study 

generated the following findings: 
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 Cathepsin K expression is significantly increased in EaRASMCs when stimulated by 

TNF-α, a cytokine known to be over-expressed in the AAA wall. Cathepsin K 

expression is primarily localized on the cell membrane which can be readily accessed 

by NPs.  

 Elastase-induced vessel injury, our model to generate AAAs, triggers significant 

increases in cathepsin K expression in the vessel wall, both ex vivo (in porcine 

carotids) and in vivo (rat model), likely associated with increased expression of the 

enzyme by aneurysmal SMCs as described above. 

 Covalent conjugation results in efficient and stable functionalization of the NP surface 

with the cathepsin K Ab, with no significant changes to NP size, charge, DOX release, 

and the pro-elastic fiber neoassembly-augmenting and anti-MMP effects attributed to 

the cationic amphiphile-surface modified PLGA nanocarrier and released active 

agent, DOX. In addition, the NPs at the doses deemed appropriate to deliver the useful 

DOX dosing level do not incite oxidative stress or generation of reactive oxygen 

species in cultured EaRASMCs and HUVECs. 

 Elastase-induced vessel injury, and associated TNF- overexpression have been 

separately shown to cause activation and disruption/denudation of an intact 

endothelial layer as demonstrated within the vessel wall and in HUVEC cultures 

respectively. Where retained, the ECs lose expression of their cadherin junctions that 

maintain contact between adjacent cells to develop microns-sized gaps between, and 

also exhibit upregulated expression of αvβ3-integrins along their periphery.  

 Cathepsin K Ab-conjugated NPs are able to migrate across a disrupted endothelial 

layer by both passive diffusion through inter-endothelial gaps, and by trans-cytosis. 
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In addition, αvβ3 Ab-modification of the NP surface provides additional opportunities 

in the future to augment endothelial binding and trans-endothelial transport of the NPs, 

although passive transport, in the absence of such targeting is itself significant. 

 Initial in vivo infusion of VivoTag 800® cathepsin K Ab-conjugated NPs via the IV 

route indicated localization of the NPs in the abdominal aneurysm segment, with some 

additional fluorescence detected in the chest cavity, likely the lung. This promising 

data suggests effective but likely inefficient targeting of the NPs to the AAA wall 

using this modality.  

5.2. Limitations and recommendations 

 

 Below we list key limitations of the experiments as conducted and 

recommendations for future follow-up investigations.   

 The use of elastase for aneurysm induction provides a reproducible and effective 

mode for aorta disruption.  However, in our experience as with that previously 

reported only ~66% of animals develop an aneurysm following periadventitial or 

infusion based aortal tissue injury.  However, the infusion/vessel ballooning 

method allows elastase to penetrate between the stretched elastic lamellae causing 

more effective mechanical disruption of the wall structure compared to 

periadventitial elastase treatment, which in turn may enhance aneurysm formation 

and size.  The technical skills required for elastase infusion are much greater than 

the elastase treatment but may produce a larger number of aneurysms in the rat 

models.  While we have pursued the former method in this study for the purpose of 

simplicity, future in vivo studies will involve intraluminal elastase infusion which 

we had shown effective in a prior study110. 
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 The use of the VivoTag 800®-loaded NPs enabled the visualization of the NPs in 

the rat AAA model.  However, the rat had to be euthanized to allow for the aorta to 

be visualized.  This was a significant limitation as several rat models would be 

needed for each time point for multiple time points.  This would require a large 

number of animals as well as significant surgery time.  To visualize the NPs without 

euthanizing, the NPs could be loaded with paramagnetic iron oxide NPs (SPIONs).  

We have recently published findings that show SPIONs to impart magnetic 

mobility to the DOX-NPs in an applied magnetic field and to not alter their physical 

or biological effects. The SPION-DOX NPs could then be conjugated with the 

cathepsin K Ab and injected via the tail vein or even better within the flow occluded 

AAA segment using a balloon drug delivery catheter and guided to the AAA wall 

by application of a preclinical MRI-generated external magnetic driving force.  The 

NPs driven to the AAA wall in this manner would then ‘stick’ to the EaRASMC 

surface.  The dual modality of active targeting of NPs could circumvent the 

otherwise unavoidable passage and removal of IV-infused NPs in the lungs en route 

to the aorta.  SPIONs within the DOX-NPs can also help track their in vivo retention 

and biodistribution using MRI.    

 Further investigation in the biodistribution of the cathepsin K Ab-conjugated NPs 

following tail vein injection is warranted.  Preliminary data was collected in this 

study and was promising but additional data is necessary to confirm the targeting, 

retention and biodistribution of the NPs.  The concentration of cathepsin K Ab-

conjugated NPs injected was 10 mg/ml which was enough to produce fluorescence 
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in the rat model.  However, this concentration may not be optimal to visualize 

localization as too much or too little could significantly affect the results.  

 Finally, once the biodistribution of the NPs has been determined and the NPs can 

be localized to the AAA, the pro-elastogenic effects and anti-proteolytic effects of 

the DOX-loaded NPs will be examined in vivo.   
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