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FORECASTING HARMFUL ALGAL BLOOMS FOR WESTERN LAKE ERIE USING 

DATA DRIVEN MACHINE LEARNING TECHNIQUES 

NICHOLAS REINOSO 

ABSTRACT 

 

 

Harmful algal blooms (HAB) have been documented for more than a century 

occurring all over the world. The western Lake Erie has suffered from Cyanobacteria 

blooms for many decades. There are currently two widely available HAB forecasting 

models for Lake Erie. The first forecasting model gives yearly peak bloom forecast while 

the second provides weekly short-term forecasting and offers size as well as location. 

This study focuses on bridging the gap of these two models and improve HAB forecast 

accuracy in western Lake Erie by letting historical observations tell the behavior of 

HABs. This study tests two machine learning techniques, artificial neural network (ANN) 

and classification and regression tree (CART), to forecast monthly HAB indicators in 

western Lake Erie for July to October. ANN and CART models were created with two 

methods of selecting input variables and two training periods: 2002 to 2011 and 2002 to 

2013. First a nutrient loading period method which considers all nutrient contributing 

variables averaged from March to June and second a Spearman rank correlation to choose 

separate input sets for each month considering 224 different combinations of averaging 

and lag periods. The ANN models showed a correlation coefficient increase from 0.70 to 

0.77 for the loading method and 0.79 to 0.83 for the Spearman method when extending 

the training period. The CART models followed a similar trend increasing overall 

precision from 85.5% to 92.9% for the loading method and 82.1% to 91% for the 
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Spearman method. Both selection methods had similar variable importance with river 

discharge and phosphorus mass showing high importance across all methods. The major 

limitation for ANN is the time required for each forecast to be complete while the CART 

forecasts earlier is only able to produce a class forecast. In future work, the ANN model 

accuracy can be improved and use new sets of variables to allow earlier HAB forecasts. 

The final form of ANN and CART models will be coded in a user interface system to 

forecast HABs. The monthly forecasting system developed allows watershed planners 

and decision-makers to timely manage HABs in western Lake Erie. 
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CHAPTER I 

INTRODUCTION 

 

 

 

1.1 Problem Statement 

Harmful Algal Blooms (HAB) are quickly becoming a major problem all around the 

world. A HAB is a bloom of algae that has the potential to harm humans or the ecosystem 

(Ho, 2015). The HAB problem is well documented impacting recreation, water treatment, 

individual health, and property values. The species of HABs in western Lake Erie is 

Microcystis where bloom growth is promoted by warm temperatures over twenty degrees 

Celsius. The months that consistently have temperatures over the temperature threshold 

are July, August, and September. The months that often have blooms are the three 

months over the temperature threshold with a carry over into October. HABs are being 

forecasted by different techniques around the world.  

Machine learning techniques have been increasingly used to forecast HABs. 

Dissimilar to traditional methods, machine learning is based on algorithms that are able to 

iteratively learn from data finding hidden insights without depending on rule-based 

programming. Supervised learning algorithms are often used when historical data is able 

to predict future events. 
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This study uses two supervised machine learning techniques with two different 

methods of choosing input data for two training periods for a total of eight models briefly 

described as follows. The first technique used is classification and regression tree 

(CART) forecasting for the severity of the bloom with two considered ranges, classes 1 to 

3 and 1 to 5. The second technique used is artificial neural networks (ANN) forecasting 

the biomass of the bloom. Two methods of selecting input variables are used for both 

techniques and both training periods. The first method is an accepted nutrient loading 

period determined through the literature review using nutrient contributing variables. The 

second method used for selecting the input sets is the Spearman rank correlation which 

also considers variables that affect the growth of HABs such as temperature and wind 

speed as well as the nutrient contributing variables. Both techniques use two training 

periods from 2002 to 2011 and from 2002 to 2013. 

Forecasting HABs in Lake Erie will allow commercial as well as recreational users of 

the lake to make timely decisions concerning western Lake Erie. There are two available 

HAB forecasting models for western Lake Erie from the National Oceanic and 

Atmospheric Administration (NOAA). One of the forecasts is an assembly of multiple 

models to forecast the peak bloom for the year. The second forecast is focused on weekly 

short-term forecasting and provides size as well as location. The focus of this study is to 

bridge the gap between the two available forecasts.  
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1.2 Study Area 

This study focuses on forecasting HABs in the western basin of Lake Erie. The 

western basin of Lake Erie has had a problem with HABs for decades whereas the central 

and eastern basins have not experienced large HABs. There are two major factors that 

cause this to occur: water depth and nutrient loading. The average water depths for the 

three basins are 7.4, 18.3, and 24 meters for the western, central, and eastern basins, 

respectively. The shallow waters in the western basin cause an increase in water 

temperature promoting the growth of HABs. Figure 1 below shows the average monthly 

water temperature for the western Lake Erie basin. 

 

 
Figure 1. Monthly Average Water Temperature in the Western Lake Erie Basin from 

2000 to 2015 

 

The second major factor that promotes bloom growth in the western basin is nutrient 

loading. The two major tributaries into Lake Erie are the Detroit River and the Maumee 

River. The two main nutrients for Microcystis to bloom are phosphorus and nitrogen with 

phosphorus being the limiting factor. The amount of flow from the Maumee River is 
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1/35th of the Detroit River however the concentration of nutrients results in the same 

amount of nutrients entering the lake from the Maumee River (Stumpf, 2016). The 

remaining tributaries are insignificant producing less than ten percent of the nutrient 

loads of the Maumee River (Stumpf, 2016). In this study through the literature review, it 

was determined that the nutrient loads from the Maumee River are the main source of 

nutrients for modeling HABs. Figure 2 below shows the study area. 

 

 
Figure 2. Map of the Western Lake Erie Basin with Priority Tributaries for HABs 

(Environmental Protection Agency [EPA], 2017) 

 

Lake Erie’s problem with HABs has been going on for decades and has been well 

documented since the 1950s. By the mid-1960s Lake Erie was declared “dead” and 

HABs were reported seasonally in the western basin of Lake Erie. The HABs were driven 

by the large amounts of phosphorus and nitrogen entering the lake from sources such as 
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farm runoff, sewage, and industrial pollution. In 1972, an effort to fix the lake began. The 

Clean Water Act was passed in 1972 to increase the regulations on industrial dumping. 

Also, in 1972 the United States and Canada signed the Great Lakes Water Quality 

Agreement in an effort to reduce the amount of pollutants entering the Great Lakes. In the 

agreement, the two countries agreed to reduce the amount of phosphorus load entering 

Lake Erie to 14,600 metric tons from 29,000 metric tons which was later agreed to 

further reduce the loads to 11,000 per year in a 1978 Agreement (EPA, 2017). By 1977 

the Detroit Wastewater Treatment Plant reduced the amount of phosphorus put into the 

Detroit River by over 90% (Bingham, 2015).  

The regulations from 1972 started having an effect and had revived Lake Erie by the 

1980s. During the 1980s, no large blooms were reported however in the late 1980s zebra 

and quagga mussels started to arrive in Lake Erie. In the mid-1990s, large HABs started 

forming once again. A recent study was performed to look at the reason for the 

resurgence of HABs. The following list shows some of the twenty-five possible factors 

examined in the study (Smith, 2015): 

• Climate Change – The total amount of rainfall in the HAB loading period has 

increased roughly 25% in the last decade 

• Commodity Prices – Prices for farm goods has been increasing recently which 

gives producers more of a reason to use more phosphorus to reduce the chance 

of crop loss 

• Fertilizer Source – In the 1990s there was a switch to a fertilizer with 

increased soluble phosphorus 
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• Fertilizer Timing – Fertilizer is often applied before crops are grown and with 

the reduced intake of fertilizer initially there is an increase chance for 

phosphorus runoff 

• Larger Farms – In the last thirty years the number of farms harvesting corn 

grain has nearly halved resulting in larger farms which now need to apply 

fertilizer earlier than in previous decades 

• No-Till – The no-till growing method was adopted in the 1990s and resulted 

in an increase phosphorus load through subsurface drainage 

During the 2000s, HABs had returned to being a yearly problem for the western Lake 

Erie basin. Another possible factor for the return of HABs is the zebra and quagga 

mussels. The mussels filter small particles out of the water such as algae, microscopic 

bugs, or zooplankton that eat algae (Ruetter, 2014). They then excrete dissolved 

phosphorus, a main source of food for HABs. If the mussels suck in a harmful form of 

algae, they stop filtering and spit it out then start filtering again (Ruetter, 2014). The 

problem of HABs has been becoming an increasingly larger problem for Western Lake 

Erie. Satellite images have been analyzed by NOAA since 2002 in order to determine the 

magnitude of the HAB biomass in ten day intervals known as the Cyanobacterial Index 

(CI). The 2011 bloom peak was 274% larger over the previous peak bloom of the 

previous nine years. as shown below in Figure 3. 
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Figure 3. Annual HAB Peak Biomass from 2002 to 2015 

 

Western Lake Erie has had one serious catastrophe in recent times. On August 2, 

2014, the City of Toledo’s water treatment plant was shut down until August 4th. The 

bloom was not large in terms of coverage throughout the lake however the bloom was 

very thick and happened to be concentrated where the water treatment plant’s intake 

pipes are located. When the water in Lake Erie was tested the Microcystin toxin levels 

were between ten to twenty parts per billion (ppb) (Kozacek, August 2014). The World 

Health Organization has set the following guidelines for Microcystin in Ohio: children 

under six and sensitive populations do not drink when the toxin levels reach 0.3 ppb, ages 

six and older when there is a concentration level of 1.6 ppb, and when the toxin levels 

reach twenty ppb the water should not be used (EPA, 2017). The drinking water crisis left 

more than four hundred thousand people and three counties in Ohio and one in Michigan 

without drinking water (Kozacek, August 2014). The governor of Ohio, John Kasich in 

2014, announced a state of emergency to organize resources for the affected and the 

following emergency measures also became apparent (Kozacek, August 2014): 
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• Stores sold out of bottled water, sending residents into neighboring cities and 

states to find supplies 

• Local restaurants, universities and public libraries closed 

• Several nearby municipalities that were not affected by the toxin offered water to 

Toledo residents free of charge 

• The National Guard was charged with delivering 300 cases of bottled water from 

Akron, Ohio, as well as Meals Ready to Eat for distribution to homeless shelters 

and other vulnerable populations who were unable to cook with their water 

• Humanitarian organizations like the American Red Cross responded by manning 

water distribution centers and provided water delivery assistance to homebound 

residents 

 

1.3 Research Objectives 

The main objective of this thesis is to create two models to improve operability and 

accuracy for forecasting monthly western Lake Erie HAB indicators for July, August, 

September, and October. Two machine learning techniques were used to create monthly 

forecasts, ANN and CART. Before this main objective could be accomplished the 

following three sub-objectives had to be completed: 

• Performing a literature review 

• Collecting relevant data 

• Analyzing and systematically selecting sets of input variables 
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1.4 Scope and Organization of Thesis 

The first step of this study was to perform a literature review to understand the history 

of HABs in Lake Erie and to examine the current forecasting methods used in Lake Erie 

and around the world. The second step of the study was to collect relevant data to 

forecasting HABs from various sources. The third step was to analyze the collected data 

to determine the importance of each variable and then systematically select sets of input 

variables. The final step of this study was to use the selected variables to create ANN and 

CART monthly forecasting models. 

This thesis is organized in five chapters. Chapter II goes through the effects of HABs, 

a review of machine learning models for forecasting, and other work being done on the 

HAB problem in Lake Erie. Chapter III goes through the collection of meaningful 

variables for the forecast of HABs, the systematic selection of sets of variables, the 

forecasting models used, and input variable selection methods. Chapter IV goes through 

the results of the CART and ANN models and provides a discussion on the results. 

Chapter V summarizes the study and the key conclusions. 
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CHAPTER II 

LITERATURE REVIEW 

 

 

 

This chapter first goes through the effects of HABs. This is followed by the 

advantages and disadvantages of three machine learning techniques and concludes with 

an examination of various HAB forecasting models currently available for Lake Erie. 

 

2.1 Harmful Algal Bloom Effects 

HABs have the possibility of causing many different types of health problems for 

humans and animals as well as having major effects on the economy. The most common 

species of harmful algae in Ohio lakes is Cyanobacteria also known as blue-green algae. 

The Ohio Department of Health listed the health problems that go along with each type of 

exposure listed below (Ohio Department of Health, 2016): 

a. Drinking or swallowing water contaminated with Cyanobacteria 

• Severe diarrhea and vomiting 

• Difficulty breath 

• Neurotoxicity (weakness, tingly fingers, numbness, dizziness) 

• Death 
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b. Skin Contact often from recreation activities in HAB waters 

• Rashes 

• Hives 

• Skin blisters 

c. Inhaling water droplets of mists of Cyanobacterial contaminated water 

• Runny eyes and nose 

• Sore throat 

• Asthma-like symptoms 

HABs can have serious effects on local economies such as property values in western 

Lake Erie. A study performed to look at the economic effects of HABs determined there 

is 3.458 billion dollars in residential housing stock near the western basin of Lake Erie 

(Bingham, 2015). Recreational activities such as boating, skiing, fishing, or swimming 

are all effected when HABs occur. Water treatment plants have taken more precautions 

and now use more treatment methods in an attempt to not repeat what happened in 

Toledo in 2014. Tourism is also an important economic factor; millions of trips are taken 

to counties near western Lake Erie with a range of sixty-six million to three hundred and 

five million dollars at risk (Bingham, 2015). Table 1 shows the result of the study on 

economic loses from the 2011 and 2014 HABs. 

 

Table 1. Breakdown of HAB Impacts on the Ohio Economic Losses (Bingham, 2015) 

Economic Factors HAB Event Year 

2011 2014 

Property Value $16,000,000 $18,000,000 

Tourism $20,000,000 $20,000,000 

Recreation $31,000,000 $23,000,000 

Water Treatment $4,000,000 $4,000,000 

Overall $71,000,000 $65,000,000 
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The Toledo water-treatment plant is in the process of being upgraded. In 2012 the city 

began working on upgrading the water-treatment plant originally estimated at $312 

million over 20 years (Messina, 2016). Residents of Toledo and the surrounding suburbs 

have seen an increase in their water bills. By 2018 the residents will have an additional 

hundred and twenty-five dollars on their bill annually when compared to 2013 (Messina, 

2017). The Ohio EPA recently mandated that the work be completed in ten years instead 

of the original plan of twenty years and included a list of mandated additional upgrades 

that must be completed for an additional $188 million for a total of $500 million 

including an $80 million upgrade to address HABs (Messina, 2016). 

 

2.2 Harmful Algal Bloom Modeling 

2.2.1 Machine Learning Forecasting Techniques 

Since the 1990s, machine learning has been used to solve many complicated 

problems in various fields. Machine learning is an area of computer science and a sub-

area of artificial intelligence concentrating on theoretical foundations (Muttil, 2006). 

Machine learning, in general, contains algorithms that estimate dependency between a 

systems inputs and outputs while improving its performance automatically through a 

training period. These different methods are then able to predict outputs from given 

inputs. These techniques are ideally suited to model the HAB dynamics since such 

models can be set up rapidly and are known to be effective in handling dynamic, non-

linear and noisy data, especially when underlying physical relationships are not fully 

understood, or when the required input data needed to drive the process-based models are 

not available (Muttil, 2006). Three artificial intelligence algorithms are examined in this 
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literature review: ANN, CART, and genetic programming (GP). There are three major 

tasks shown below that artificial intelligence techniques are used for with the strengths of 

each algorithm examined in a study from (Kim, 2009) (Figure 4): 

• Knowledge engineering which is the process of acquiring knowledge and 

refining it to gain additional knowledge 

• Problem solving such as scheduling and optimization 

• Classification and prediction 

 

 
Figure 4. Strengths of Each of the Three Algorithms for Three Major Tasks  

 

Recently machine learning techniques such as ANN and CART have progressively 

been used to create models for forecasting HABs. ANN models have been used in 

ecological and environmental science since the 1990s. ANNs can be applied to the 

following types of problems: pattern classification, clustering and categorization, 

function approximation, prediction and forecasting, optimization, associative memory, 

and process control (Kim, 2009).  
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ANNs are data driven and the size of the sample size can determine the accuracy of 

the model. ANNs are able to learn patterns and concepts directly from inputs and adjust 

weights on each neuron even with unknown data relationships and non-linear data (Kim, 

2009). ANNs have many advantages over other modeling techniques. One of the largest 

advantages of ANN’s approach as opposed to other models is its ability to deal with 

uncertain information and incomplete or inconsistent data which makes it good for the 

forecasting of HABs (Velo-Suarez, 2007). An additional advantage ANN has is that it 

makes no early assumptions of the network. ANN is also able to handle missing data as 

well as noisy and scattered data. One of the disadvantages of ANNs is that they are non-

transparent black-box models and do not give any exact equations. Another disadvantage 

is the number of hidden layers and neurons must also be selected by the modeler and can 

have a considerable influence on performance on the outcome (Pal, 2003). In conclusion, 

ANNs are good when the results of the model are more imperative and little importance 

is placed on how the output is determined. 

Machine leaning algorithms such as CARTs have been around for decades. The 

CART algorithm builds classification trees for categorical variables and regression trees 

for continuous dependent variables (De’ath, 2000). The algorithm repeatedly splits data 

into two mutually exclusive groups by following simple rules until more branching would 

not add any accuracy to the output. CART has many advantages compared to other 

models. Unlike ANN models, it is not black box as it creates easily understandable rules. 

CART generally takes less overall time to train and create models and is able to easily 

rank the importance of input variables when compared to other machine learning 
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techniques such as ANN and GP, (Kim, 2009). According to (De’ath, 2000) CART 

models also have the following advantages: 

• The flexibility to handle a broad range of response types, including numeric 

categorical, ratings, and survival data 

• Invariance to monotonic transformations of the explanatory variables  

• The ability to handle missing values in both response and explanatory variables 

CART is non-parametric and is able to discover complex interactions between inputs 

which could be challenging to determine using traditional multivariate methods (Lewis, 

2000). Another major advantage of CART is it is able to scale to large problems and is 

able to better model small data sets compared to ANN (Razi, 2005). CART also has 

disadvantages attached to it. CART is unable to do various functions such as expressing 

linear relationships easily, produce unique solutions, or produce continuous outputs due 

to its binary nature (Kim, 2009).  

For the ANN and CART models to find their optimal results, a variable selection 

analysis is often performed. When many lag and averaging periods are considered for 

each input variable, many of the variables can possibly have no significant effect on the 

output. The presence of many irrelevant variables in the ANN model can result in the 

model behaving poorly. A study was performed on the selection of input variables for 

ANNs for water resources applications, the five methods overviewed in the study are 

listed below (Bowden, 2005): 

• Selection of variables and the corresponding lag and averaging periods based on 

knowledge of the system 
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• Selection of variables based on the correlation between inputs and outputs with all 

considered lags and averaging periods 

• Selection of variables through a heuristic method of trial and error testing 

different sets of input variables in an ANN model or through the use of stepwise 

selection 

• Selection of variables by examining an ANN model with all considered input 

variables and determining the relative importance of each variable 

• Selection of variables through a combination of the four other methods 

Input variable selection is an important part of machine learning model development 

due to the negative impact that poor selection can have on the performance during 

training and deployment post-development (May, 2011). Selecting the optimal set of 

input variables before creating machine learning models reduces the computational strain 

and overall effort related to training and selecting the final model (May, 2011). (Zeng, 

2010) recently researched an ANN pre-warning HAB model for a lake in Beijing with 

three classes, green, yellow, and red, for chlorophyll-a (Chl-a) values greater than 0.10 

mg/L between 0.06 mg/L and 0.10 mg/L, and less than 0.06 mg/L. The three classes were 

determined through the hydrographic history and historical experiences. The first step of 

the study was to collect water quality, meteorological, and hydrological historical data 

from the lake. The second step of the study was analyzing the correlations of nitrogen and 

phosphorus against Chl-a to determine which variable to represent nutrients. (Lee, 2003) 

researched ANN modeling for HABs for the coastal waters of Hong Kong. Through field 

and modeling studies, ten input variables were chosen for forecasting the HABs. The 
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study constructed numerous models to determine the optimal set of input variables 

considering seven different time lags. 

Since the 1960s, GP has been used to solve problems and has recently been applied to 

forecasting HABs. (Sivapragasam, 2010) recently described how genetic programing is 

similar to genetic algorithms as it is an evolutionary algorithm based on Darwinian 

theories of natural selection and survival of the fittest. The algorithm begins with an 

initial set of random equations which can include arithmetic operators (plus, minus, 

multiply, and divide), mathematical functions (sin, cos, exp, and log) and logical 

functions (or, and) (Sivapragasam, 2010). This set of possible solutions is then tested 

using the GP algorithm, after which the equations that best fit the training data are 

selected. The (Sivapragasam, 2010) study referenced how the transparent nature of GP 

solutions may allow inferences about underlying processes to be made, highlighted issues 

with scaling data for machine learning and noted the difficulty involved with producing 

understandable models. 

The use of GP in forecasting HABs is not without its advantages and disadvantages. 

One disadvantage of using the GP algorithm is that the user must decide a number 

parameters before applying the algorithm to model the data, such as number of equations 

and number of calculation generations. The main advantage of GP is its ability to produce 

models that build a definitive formula or equation. Study results from (Razi, 2005) show 

that “ANNs and CART models provide better prediction compared to regression models 

when the predictor variables are binary or categorical and the dependent variable 

continuous.” 
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2.2.2 Current Harmful Algal Bloom Forecasting Techniques 

Two different widely available forecasts for HABs in Lake Erie are accessible to the 

public through NOAA’s web site. One of these forecasts predicts the peak bloom for the 

entire year while the other tracks and gives a 5-day forecast on the growth and movement 

of the bloom. The two models are updated weekly and daily, respectively. The forecast 

that predicts the peak bloom is a combination of four models: NOAA-Q, NOAA-TBP, 

University of Michigan / North Carolina State University / NOAA Great Lakes 

Environmental Research Laboratory (GLERL) - Bayesian, and Limnotech – Western 

Lake Erie Ecosystem Model (WLEEM). The five-day forecast/tracker is developed by 

NOAA, GLERL, and Cooperative Institute for Limnology and Ecosystems Research. 

A study performed by (Stumpf, 2012) that observed HABs through NOAA satellite 

imagery determined a CI based on the biomass of the blooms. In the study, it was 

determined that the blooms often peak in August or September and are correlated to 

discharge as well as the phosphorus load from the Maumee River. The NOAA-Q and 

NOAA-TBP are empirical statistical-heuristic models that use flow discharge and total 

bioavailable phosphorus from the March to June nutrient loading season. The WLEEM 

model is a process-based fine-scale 3D linked hydrodynamic-sediment transport-

advanced eutrophication model. The Bayesian model is an empirical Bayesian model 

relating spring phosphorus loading to multiple estimates of HAB size. The Bayesian 

model forecast relates bloom size to spring phosphorus loads, as well as considering an 

increase of susceptibility to HABs. The model is calibrated to the CI algorithm data 

developed by (Stumpf, 2012).  
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The yearly peak bloom forecast is first announced at a webinar presented by the Ohio 

Sea Grant and is updated weekly on a NOAA bulletin. The forecast is presented in a 

bloom severity index ranging from 0 to 10 with a five-class breakdown: Class 1 (0 to 2), 

Class 2 (2 to 4), Class 3 (4 to 7), Class 4 (7 to 9), and Class 5 (>9). The HAB Tracker is a 

tool that combines remote sensing, monitoring, and modeling to produce daily 5-day 

forecasts of bloom transport and concentration. The HAB Tracker looks at daily satellite 

images and real-time data and estimates the current size and intensity of the HAB. The 

forecasting part of the tracker uses forecasted meteorological data and hydrodynamic 

modeling to forecast where the bloom will travel as well as the concentration of the 

bloom. 

There are advantages and disadvantages of the two different forecasts available. An 

advantage for the HAB tracker includes predictions which aid public health officials and 

water intake managers in a making timely public health decisions. One of the main 

advantages is that the tracker gives live information on the exact intensity, size, and 

location where an HAB is occurring. This information gives recreational users the 

condition of the water for lake activates and city managers information to create public 

health decisions. One of the disadvantages is that with only a five-day forecast when a 

large bloom is imminent it does not give city officials enough time to prepare. The yearly 

peak bloom forecast also has advantages and disadvantages. The main advantage is that if 

a large boom is forecasted then everyone on Lake Erie is able to prepare. For example, 

when a large bloom is predicted for the year cities such as Toledo may stock pile water 

bottles in case the bloom causes the water plants to be shut down. An annual peak 

forecast disadvantage is that it is unknown when the bloom will actually happen meaning 
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the decisions are based only on HAB peaks which typically occur in August or 

September. Another disadvantage is that there is no information forecasted on where the 

bloom will occur and which cities and areas it will affect. 

Creating data driven monthly forecasting models will be useful when used in 

combination with the other already created models. Being able to forecast each month 

individually has advantages for decision makers. With monthly forecasts, we will be able 

to predict for each month whether a bloom will occur and, if so, the class of bloom that 

will happen ranging from Class 1 to 3 or 1 to 5. Another advantage is that more variables 

will be considered over other models such as wind speed and temperature. One of the 

disadvantages to the model is that it does not forecast exactly where the bloom will 

occur; however, this problem is partially fixed when the model is used in combination 

with NOAA’s HAB tracker when the HAB starts to arise. 
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CHAPTER III 

METHODS 

 

 

 

This chapter first details the variables that were considered for forecasting HABs as 

well as the gathering of the data. This is followed by an analysis of the variables and an 

overview of the forecasting models used in this study. Lastly, this chapter goes through 

the selection criteria of the input sets after the initial set of variables was narrowed down.  

 

3.1 Data Gathering 

One main objective of this study was to gather numerous independent and dependent 

variables to be considered. Initially, there was a total of nineteen independent and six 

dependent variables considered shown in Tables 2 and 3 below. The first six variables 

were obtained from the Heidelberg Tributary Loading Program operated by Heidelberg 

University’s National Center for Water Quality Research (NCWQR) (Heidelberg, 2017). 

Water samples were taken on the Maumee River at Waterville, OH at the United States 

Geological Survey (USGS) station (04193500), one to three samples are analyzed a day 

depending on times of high flow or turbidity. The ten variables were taken from Great 

Lakes Monitoring (GLM) from the Illinois-Indiana Sea Grant. The CI data was gathered 
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from NOAA and Dr. Stumpf (Stumpf, 2016). Chl-a data was taken from GLM and EPA’s 

Great Lakes National Program Office (GLNPO). Two satellites were used: the Medium 

Resolution Imaging Spectrometer for 2002-2011 and the Moderate Resolution Imaging 

Spectroradiometer for 2012-2015 (Stumpf, 2016). Ten-day composite images of the 

maximum CI at each map pixel were determined by using the satellite images to 

determine the total biomass for the ten-day periods from July 11th to October 31st 

(Stumpf, 2016). After collecting these ten-day CI values, they were converted to the max 

value of the month as well as the average of the CI values in each month.  

 

Table 2. List of All Considered Input Variables. 

Variable Unit Method Source 

Q River Discharge m3/s (cms) Average NCWQR 

TP Phosphorus Concentration mg/L Average NCWQR 

PM Phosphorus Mass Ton Average NCWQR 

SRP Soluble Reactive Phosphorus mg/L Average NCWQR 

TKN Total Kjeldahl Nitrogen mg/L Average NCWQR 

S Sulfate mg/L Average NCWQR 

Q River Discharge Cms Average GLM 

TP Phosphorus Concentration mg/L Average GLM 

SRP Soluble Reactive Phosphorus mg/L Average GLM 

TKN Nitrogen Concentration mg/L Average GLM 

T Turbidity NTU Average GLM 

A Alkalinity mg/L Average GLM 

N-N Nitrite-Nitrate mg/L Average GLM 

TP Total Phosphorus ug/L Average GLM 

DO Dissolved Oxygen mg/L Average GLM 

CI Cyanobacterial Index 1020 Average, Max NOAA 

Water Water Temperature C° Average USGS 

Air Air Temperature C° Average USGS 

Wind Wind Speed Knots Average USGS 
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Table 3. List of All Considered Dependent Variables. 

Variable Unit Method Source 

Chl-a Chlorophyll a ug/L Average GLM 

Chl-a Chlorophyll-a ug/L Average of Max EPA GLNPO 

Chl-a Chlorophyll-a ug/L Max of Max EPA GLNPO 

CI Cyanobacterial index 1020 Average NOAA 

CI Cyanobacterial index 1020 Max NOAA 

Mc Microcystin ug/L Average GLERL 

 

The importance and impact on HABs for the variables was researched in the literature 

review phase to determine the key variables. Phosphorus as well as nitrogen are the two 

main sources of nutrients for the HABs in Lake Erie. One of the most important variables 

that promotes bloom growth is phosphorus which is often the nutrient that there is less of 

in freshwater whereas nitrogen is the limiting nutrient factor in saltwater. Phosphorus is a 

crucial nutrient for life forms and is required for metabolic reactions in plants to grow 

(Lawson, 2011). River discharge from the Maumee River is an important variable in 

determining the amount of nutrients entering Lake Erie. Low turbidity normally due to 

slow moving water allows more light to penetrate through the water column creating 

optimal conditions for HABs to grow (Indiana University, 2017). Temperature is also an 

important factor in the growth of Cyanobacteria, When the water temperature is over 

twenty-five degrees Celsius, it is an optimal time for growth (Indiana University, 2017). 

Wind speed and direction also play a part in HABs. The speed affects the size and 

intensity of the HABs whereas the direction can determine where the bloom travels. Low 

wind speed promotes HAB growth while high wind speed disrupts growth. In 2011, there 

was weak wind which allowed the large amount of phosphorus from spring storms to sit 

in the western basin for longer than the average year (Kozacek, April 2014). In the 

literature review it was observed that machine learning forecasting studies often included 
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a lagged dependent variable as an independent variable. From this observation, a one 

month lagged CI was also considered as an input variable. The variables are analyzed in 

section 3.2 and were narrowed down to the nine independent and two dependent variables 

shown in Table 4 and 5 below. 

 

Table 4. List of Final Independent Variables. 

 Variable Unit Method Source 

Q River Discharge Cms Average NCWQR 

TP Phosphorus Concentration mg/L Average NCWQR 

PM Phosphorus Mass Ton Average NCWQR 

SRP Soluble Reactive Phosphorus mg/L Average NCWQR 

TKN Total Kjeldahl Nitrogen mg/L Average NCWQR 

CI Cyanobacterial Index  1020 Average, Max NOAA 

Water Water Temperature C°  Average USGS 

Air Air Temperature C°  Average USGS 

Wind Wind Speed knots Average USGS 

 

Table 5. List of Final Dependent Variables 

Variable Unit Method Source 

CI Cyanobacterial Index 1020 Average NOAA 

CI Cyanobacterial Index 1020 Max NOAA 

 

3.2 Data Analysis and Variable Elimination  

The first step of analyzing the data was looking at the correlations between the input 

and output variables. The first analysis performed was to determine the dependent 

variable to use in forecasting. The first set of plots (Figure 5) analyzed were Q, TP, and 

PM against CI for each year from 2002 to 2011. The three independent variables were all 

averaged for the accepted loading period from the literature review of March to June. The 

dependent variable, CI, for each year was the peak value from the four bloom months. 

The CI for the previous year was also analyzed against the CI for the current year (Figure 

5). 
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Figure 5. Correlation of Peak CI and Nutrient Contributing Variables Averaged from the 

Nutrient Loading Period for 2002 to 2011: (a) Q Averaged from March to June vs. Peak 

CI, (b) TP Averaged from March to June vs. Peak CI, (c) PM Averaged from March to 

June vs. Peak CI, and (d) Previous Year vs. Current Year CI 

 

The Q and CI relationship having a high correlation makes sense as often when there 

are more severe rain storms during the loading period the flow rate is high coupled with 

an increased phosphorus runoff. The correlation between the TP and CI is shown to not 

as great as Q and PM, with a value of 0.48 compared to 0.83 and 0.78. This is possibly 

explained as there can be times of high concentration of TP but low Q resulting in a 

lower amount of total phosphorus entering the Lake. The correlation of PM and CI is a 

combination of Q and TP. PM is the total amount of phosphorus entering the lake from 

the Maumee River. The correlation results between the current year CI and previous year 

show minimal correlation with the highest correlation coefficient of 0.33. 
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The second step in determining the optimal dependent variable to use in forecasting 

was looking at the correlations between the nutrient loading variables against Chl-a. The 

second set of plots (Figure 6) analyzed were Q, TP, and PM against Chl-a for each year 

from 2002 to 2011. The three independent variables were all averaged for the accepted 

loading period from the literature review of March to June. The dependent variable Chl-a 

for each year was the peak value from the four bloom months. 
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Figure 6. Correlation of Peak Chl-a and Nutrient Contributing Variables Averaged from 

the Bloom Period for 2002 to 2011: (a) Q Averaged from March to June vs. Peak Chl-a, 

(b) TP Averaged from March to June vs. Peak Chl-a, and (c) PM Averaged from March 

to June vs. Peak Chl-a 
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The correlations for all three variables Q, TP, and PM against the peak Chl-a values 

for the bloom months were all extremely low with a value less than 0.1 (Figure 6). 

Through the analysis of comparing CI and Chl-a against the nutrient contributing 

variables it was determined to only use CI as the dependent variables. After determining 

the optimal dependent variables, the next analysis looked at the importance of variables 

taken from the nutrient loading period. The set analyzed shows the averaged flow and 

phosphorus concentration from March to June (Figure 7).  

 

 
Figure 7. Comparison of Q and TP Averaged Each Year from March to June for 2002 to 

2011 

 

The analysis of Q and TP shows that they mostly follow the same trend which makes 

sense as the rain storms causes phosphorus runoff and would also cause an increase in 

flow rate. These two variables seem to follow a similar trend. However, when compared 

to CI separately, flow rate has a far better correlation (Figure 5). The next analysis of 

variables looked at the monthly distribution for the nutrient related variables (Figure 8). 
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Figure 8. Monthly Distribution of Nutrient Related Variables from 1975 to 2015 

(Heidelberg, 2017): (a) Q, (b) TP, and (c) SRP 

 

The monthly distribution of nutrient related variables confirmed the accuracy of the 

nutrient loading months of March, April, May, and June. Both Q and TP values have 

their top two median values in March and April, the beginning of the nutrient loading 

period. During the bloom months July (7), August (8), September (9), and October (10) 

the median Q is often extremely low when compared to the nutrient loading period 
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resulting in a majority of the nutrients entering the lake before the blooms occur. The 

final two variables analyzed was averaged monthly flow values from the Maumee River 

and CI values from 2002 to 2007 shown in (Figure 9) below. 

 

 
Figure 9. Observed CI vs Monthly Q from 2002 Through 2007 

 

From observing Figure 9, it was confirmed that there was a disparity between times 

of peak flow and CI values. After confirming this disparity between values, determining 

the time to lag each variable was done in two methods. One method was through the 

literature review the accepted nutrient loading period of March to June. The second 

method to determine the averaging period and time to lag each variable was selected by 

analyzing the correlations between input variables and CI values using the Spearman rank 

correlation coefficient. 
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3.3 Models 

3.3.1 Classification and Regression Tree 

The CART training function used in this study is fitctree which follows a set of node 

splitting rules from (MathWorks, 2017). The first processes consist of computing the 

weighted impurity of each node t, it then approximates the chance that an observation is 

in the node (t) using Equation 1: 

𝑃(𝑡) =  ∑ 𝑤𝑗𝑗∈𝑇        (1) 

where 

𝑤𝑗 = Weight of the observation j with 𝑤𝑗= 1/n 

n = Sample size 

T = Set of all observation indices in node t 

The next process is sorting all the predictors xi, i = 1,…,p as splitting candidates 

or cut points. In the final step fitctree decides the optimal splits for each node (t) by 

maximizing the impurity gain ΔI (Equation 2) for all splitting candidates in xi using the 

following process: 

 a. Splitting the observations in node t into left (tL) and right (tR) child nodes 

b. Computing ΔI, for example looking at a splitting candidate, tL and tR and 

contains observation indices in sets TL and TR  

ΔI = P(T)it – P(TL)itL - P(TR)itR      (2) 

The algorithm continues splitting branch nodes until one of the following occurs: 

 a. The set max number of splits is reached 

b. A planned split results in the number of observations in a branch node to be 

fewer than the MinParentSize  
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c. The algorithm is unable to find a good split within a layer 

In the final CART modeling, two model parameters were used: MinParentSize and 

PredictorNames. MinParentSize sets the minimum number of branch node observations 

and is used to control the decision tree depth. The default value of ten yields smaller trees 

with a low amount of observations. A value of one was set to create deep trees. The 

second parameter used was PredictorNames to give names to the variables in the decision 

tree corresponding to the x variables entered. After the final trees were made, the variable 

importance for each tree was determined using predictorImportance. 

PredictorImportance estimates the importance of each variable by summing the changes 

in the mean squared error from splits on each predictor and dividing by the sum of the 

number of branch nodes. 

 

3.3.2 Artificial Neural Network 

ANN models perform similar actions to the neurons in the human brain acquiring 

knowledge through a learning process that determines interneuron connection weights. 

They have three distinct layers (Figure 10). An input layer contains the known data in 

input nodes where the input data is rescaled to [-1,1]. A second a set of hidden layers 

with neurons with different sets of weights are determined from a training period with 

known inputs and outputs, and thirdly, the output layer which is determined by the hidden 

layer and is where the outputs are transformed to their original scale. The three layers are 

linked by a set of weights and biases determined by the learning algorithm. Figure 10 

shows the general architecture of an ANN model.  
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Figure 10. Example of a Simple ANN Network with Three Inputs, One Hidden Layer, 

Three Neurons, One Output Layer, and One Output Variable (Kang, 2011) 

 

Neurons are the essential processing unit of ANN models and are connected to each 

other through links. Neurons consists of three phases: input, internal, and output. The 

neurons in the first hidden layer receive weighted signals from the input layer. The first 

phase is the input into the neuron and is the summing junction. The summing junction 

sums the weighted inputs with the following function (Equation 3):  

𝑈𝑛 =  ∑ 𝑊𝑛𝑗𝑋𝑗
𝑚
𝑗=1        (3) 

where 

𝑋𝑗 = the jth input signal from a total of m inputs 

𝑊𝑛𝑗 = the strength of connection weight from the jth signal  

𝑈𝑛 = the sum of the weighted inputs to neuron n 

In the second phase, a bias Bn is added to the collective output 𝑈𝑛 to determine the 

activation potential Vn of the neuron (Equation 4).  

Vn = 𝑈𝑛 + Bn        (4) 
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In the third phase, the activation potential is then passed to the transfer function φ 

(Equation 6) which computes the output Yn of the neuron using the tansig neural transfer 

function (Equation 5). 

𝜑 =  
2

1+exp (−2∗𝑉𝑛)
− 1       (5) 

Yn = φ (Vn)        (6) 

The neurons pass information in a line through each of the hidden layers until the 

final hidden layer passes their output to the neurons in the output layer. The output of the 

neurons in the output layer is then rescaled back and is the output of the ANN model. 

ANNs can learn and acquire knowledge about a problem through training. The 

training is the updating of weights and biases between the neurons. The ANN training 

function used in this study is the Bayesian regularization backpropagation (trainbr) with 

five hidden layers. The networking training function uses the Levenberg-Marquardt 

optimization to update weight and bias values that connect all the neurons and then 

determines the best combination to generate a network (MathWorks, 2017). The 

Levenberg-Marquardt algorithm used expresses the sum of squares of nonlinear functions 

by using an iterative technique to find the minimum of a function (Lourakis, 2005). The 

Bayesian regularization occurs in the Levenberg-Marquardt algorithm. The Jacobian jX 

is calculated with backpropagation with respect to the weight and bias variables X with 

each variable being adjusted by the Levenberg-Marquardt algorithm (MathWorks, 2017) 

shown in Equations 7, 8, and 9. 

jj = jX * jX        (7) 

je = jX * E        (8) 

dX = -(jj+I*mu) / je       (9) 
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where 

E = All errors 

I = Identity matrix 

mu = Adaptive value 

The value of mu is adaptive and is increased by mu_inc until the change results in 

reduced performance and the change is made to the network and mu is decreased by 

mu_dec. Training continues until one of the following conditions occurs (Mathworks, 

2017): 

• The maximum number of repetitions is reached 

• The maximum time allotted is reached 

• Performance is minimized to the goal 

• Performance gradient falls below the min_grad 

• mu exceeds mu_max 

Using the trainbr function makes the network hard to over train or overfit as it 

contains a criterion for stopping training and calculates effective weights and parameters 

(Burder, 2009). In the input and output layers, the data is transformed to a [-1,1] scale and 

transformed back to the original scale. 

 

3.4 Model Input Variable Selection  

Systematic selection for the optimal sets of input variables for machine learning 

models is important to improve the accuracy of the models. The final selection of input 

variables with the corresponding averaging periods and lag times was determined through 

two methods. In this study, two variable selection methods were used: method one and 
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two mentioned in the literature review. The first variable selection method, used in other 

Lake Erie HAB forecasting models, considers an accepted nutrient loading period with 

nutrient contributing variables from March to June. With this first variable selection 

method, an individual correlation analysis was performed to confirm viability of the 

nutrient loading period with the bloom months (Equation 10). 

𝑟 =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)2
         (10) 

where 

r = Pearson product moment correlation coefficient 

𝑥̅ = Average of the independent variable array 

𝑦̅ = Average of the dependent variable array 

The second variable selection method considers the nutrient loading variables as well 

as climate variables and uses the Spearman rank correlation coefficient method to select 

averaging and lag periods for each month. The Spearman method calculates ρ using 

(Equation 11) and then transforms ρ into a p-value using exact permutation distributions 

and p-values less than 0.05 represent high significance often in statistical analyses. A p-

value of 0.05 represents that the corresponding input variable is statistically significant 

with 95% confidence. In this method, two hundred and twenty-four different 

combinations of averaging and lag periods were considered and p-values calculated for 

the independent variables separately for each bloom month. The Spearman rank 

correlation first ranks the independent variable x and dependent variable y and then 

calculates ρ (Equation 11).  

ρ = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
       (11) 

where 
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ρ = Spearman rank correlation coefficient 

𝑑𝑖 = Difference in ranks between corresponding x and y variables 

n = Total number of values in the data set 

Two training periods were considered for each method: 2002 to 2011 and 2002 to 

2013. The first method was the nutrient loading period determined by the literature 

review. To confirm that the nutrient loading period selection is viable for forecasting 

HABs, an individual correlation analysis was performed on numerous averaging periods 

and lag times. The second method for determining the correct set of input variables was 

using Spearman’s rank correlation coefficient. A total of two hundred and twenty-four 

variables were considered using different lag times and averaging periods for nine 

variables. 

 

3.4.1 Nutrient Loading Period Selection 

The nutrient loading period for the nutrients for HABs was determined to be March, 

April, May, and June through the literature review. An individual correlation analysis 

with up to thirty different averaging periods and time lags considered for each variable 

(Table 6) was performed on the main nutrient phosphorus for the HABs in Lake Erie and 

the flow from the Maumee River which is the main source for the phosphorus to enter the 

lake (Table 7). The individual correlations were also looked at for air temperature and 

wind speed as they are also important variables that can limit or promote growth of 

HABs (Table 7).  
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Table 6. Number of Averaging Periods and Time Lags Considered for the Loading Period 

Correlation Analysis. 

 Averaging Periods Time Lags Total 

Flow 6 5 30 

PM 6 5 30 

TP 6 5 30 

Air 4 2 7 

Wind 4 1 4 

SRP 6 5 30 

CI 1 1 1 

 

 

 

Table 7. Top Two Individual Correlations Comparing Various Averaging Periods and 

Time Lags With Observed CI for the Loading Period Analysis. 

  July August September October 

1 2 1 2 1 2 1 2 

Q Correlation 0.84 0.81 0.95 0.89 0.87 0.87 0.84 0.79 

Method 2avg 3avg 5avg 6avg 3avg 3avg 2avg 3avg 

Lag t-2 t-1 t-2 t-2 t-4 t-5 t-5 t-4 

PM Correlation 0.79 0.78 0.96 0.93 0.83 0.83 0.77 0.76 

Method 3avg 4avg 5avg 4avg 4avg 3avg 2avg 4avg 

Lag t-2 t-1 t-2 t-3 t-3 t-4 t-5 t-4 

TP Correlation 0.57 0.55 0.69 0.68 0.65 0.60 0.60 0.55 

Method 2avg 4avg 5avg 4avg 4avg 2avg 4avg 2avg 

Lag t-2 t-2 t-2 t-3 t-4 t-4 t-5 t-5 

Air Correlation 0.65 0.60 0.27 0.23 0.57 0.56 0.32 0.31 

Method 1avg 3avg 3avg 2avg 2avg 4avg 4avg 3avg 

Lag t t t-1 t-1 t-1 t-1 t-1 t-1 

Wind Correlation 0.45 0.30 0.19 0.16 0.36 0.33 -0.25 -0.28 

Method 4avg 2avg 3avg 4avg 4avg 1avg 2avg 3avg 

Lag t t t t t t t t 

SRP Correlation 0.75 0.61 0.53 0.46 0.49 0.32 0.34 0.32 

Method 2avg 4avg 1avg 3avg 5avg 4avg 2avg 2avg 

Lag t-5 t-3 t-1 t-4 t-2 t-3 t-1 t-2 

CI Correlation   0.92  0.85 0.75 0.61 0.49 

Method   1avg  1avg 1avg 1avg 1avg 

Lag   t-1  t-1 t-2 t-1 t-2 

 

The individual correlations for flow and phosphorus were higher than the air 

temperature and wind speed as expected. The amount of nutrients entering the lake have 

a large effect on the size of the blooms. The wind speed and air temperature are able to 
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promote or discourage the growth of HABs however they are unable to cause or stop 

blooms individually. The top correlations for flow, phosphorus concentration, and total 

mass of phosphorus were around the nutrient period. Through the analysis of individual 

correlations, it was decided to use all nutrient contributing variables for CART modeling 

and previous CI as well for ANN modeling for the first method of forecasting shown in 

Table 8.  

 

Table 8. Final Loading Period Inputs for ANN and CART Models with the Addition of 

Previous Month CI for ANN Models for Both Training Periods. 

  July August September October 

Q Method 4avg 4avg 4avg 4avg 

Lag t-1 t-2 t-3 t-4 

TP Method 4avg 4avg 4avg 4avg 

Lag t-1 t-2 t-3 t-4 

PM Method 4avg 4avg 4avg 4avg 

Lag t-1 t-2 t-3 t-4 

SRP Method 4avg 4avg 4avg 4avg 

Lag t-1 t-2 t-3 t-4 

CI Method  1avg 1avg 1avg 

Lag  t-1 t-1 t-1 

 

3.4.2 Spearman Selection 

A Spearman rank correlation coefficient analysis was performed in the process of 

determining the optimal set of each input variables for each month. The first step was 

creating an ANN model using all two hundred and twenty-four variables using 100% 

training to determine if using all considered variables is a viable forecasting input. The 

results for September are shown in Figure 11. 
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Figure 11. Comparison of Observed CI and Trained CI for September Using All Two 

Hundred and Twenty-Four Variables 

 

After reviewing the result, it was determined that to select the optimal set of input 

variables the number of variables had to be reduced. When using all considered lag times 

and averaging periods, the model was overwhelmed by too many prediction variables 

while not correlating between input and output and unable to make viable forecasts. 

The second step was running the Spearman algorithm with the two hundred and 

twenty-four averaging periods and lag times for the bloom months of July, August, 

September, and October and selecting the variables with a p-value less than 0.05 for both 

training periods. The result of this step reduced the total number of variables to 31, 34, 

19, and 18 for the 2002 to 2011 training period and 37, 15, 17, and 6 for the 2002 to 2013 

training period for July, August, September, and October, respectively. 

The third step was the removal of significantly overlapped variables in order to 

reduce bias in the model. Variables that were overlapped by two-thirds by a variable 

retained were removed from the final set of inputs. For example, if Q from February to 

June was selected from step 2 it would be removed if Q from January to June was also 

selected from step 2. The result of this step reduced the total number of variables to 15, 
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14, 11, and 12 for the 2002 to 2011 training period and 16, 9, 9, and 6 for the 2002 to 

2013 training period for July, August, September, and October, respectively. 

The final selection of input variables from the Spearman rank correlation analysis are 

shown in Table 9. For example, for July Q1,6 represents a 1-month lag with a 6-month 

averaging period averaging the flow rate from January to June. 

 

Table 9. Final Spearman Selected Inputs for ANN and CART Models with the Addition 

of Previous Month CI for ANN Models for Both Training Periods. 

July August September October 

(02-11) (02-13) (02-11) (02-13) (02-11) (02-13) (02-11) (02-13) 
Q5,1 

Q4,2 

Q3,3 

Q1,6 

TP1,5 

PM3,1 

PM4,1 

PM6,1 

PM2,2 

PM1,5 

TKN5,2 

TKM3,3 

TKM4,3 

TKM1,6 

Water3,4 

  Q3,1 

Q4,1 

Q6,1 

Q2,2 

Q3,2 

Q1,5 

TP3,1 

TP1,5 

PM3,1 

PM2,2 

PM3,2 

PM1,5 

TKN5,2 

TKN2,3 

TKN1,6 

Water3,4 

Q5,1 

Q4,2 

Q1,6 

PM5,1 

PM1,6 

SRP6,1 

SRP5,2 

TKN1,6 

Water2,1 

Water1,2 

Water2,2 

Water1,3 

Water1,6 

CI1,1 

Q5,1 

Q4,2 

Q1,6 

PM5,1 

PM4,2 

PM1,6 

SRP5,2 

Water2,1 

CI1,1 

Q3,1 

Q6,1 

Q3,3 

Q1,6 

TP3,4 

PM3,1 

PM3,3 

PM1,6 

TKN1,1 

TKN3,4 

CI1,1 

Q3,1 

Q6,1 

Q3,3 

Q1,6 

PM3,1 

PM3,3 

PM1,6 

TKN3,4 

CI1,1 

Q5,2 

Q1,6 

TP1,6 

PM5,2 

PM1,6 

TKN1,2 

TKN4,2 

Air3,2 

Air3,4 

Wind3,2 

Wind1,4 

CI1,1 

Q4,1 

PM2,5 

TKN4,2 

Wind4,1 

Wind4,2 

CI1,1 
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CHAPTER IV 

RESULTS AND DISCUSSION 
 

 

 

This chapter first details the different CART models created. This is followed by 

examining the accuracy of the CART models. Lastly, this chapter goes through the 

different ANN models detailed followed by an accuracy analysis. 

 

4.1 Classification and Regression Tree 

Four groups of CART models were made: two for each variable selection method and 

two training periods. Two class systems are considered, a five-class system based on the 

breakdown for the peak bloom forecast discussed in the literature review and a simplified 

three class system. The first classification was made for five classes (see 2.2.2), Class 1 

(CI<2), Class 2 (CI>=2 to CI <4), Class 3 (CI>=4 to CI<7), Class 4 (CI>=7 to CI<10), 

and Class 5 (CI>=10). The second classification was made for three classes, Class 1 

(CI<2), Class 2 (CI>=2 to CI <=7), and Class 3 (CI>7). The CART models were trained 

using two methods, data from 2002 to 2011 (Train(02-11)) and 2002 to 2013 (Train(02-

13)). First, CART models were created for the two classification systems to determine the 
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optimal class breakdown. The CART decision tree for Spearman five classes for October 

is shown in Figure 12 below.  

 

 

Figure 12. October Spearman Five Class Decision Tree Using Train(02-11) 

 

The results from the five-class decision tree showed a three-class gap in the 

prediction (Figure 12). During the training period of 2002 to 2011, the CI values for 

October had a peak value of nearly thirty while the second peak for October was only 

three. The year of 2011 was the first appearance of massive severe HABs. Before 2011, 

the most severe bloom since 2002 was nine. The 2011 HAB was also the only year on the 

CI record (2002 to 2015) where the HAB peaked in October and not August or 

September. Five-class decision trees were also made for the remaining bloom months 

which also resulted in a three-class gap for the August prediction. The CART trees for the 

loading period variable selection method are shown first below (Figure 13). 
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Figure 13. Loading Period Three Class Monthly Decision Trees: (a) July Train(02-11), 

(b) July Train(02-13), (c) August Train(02-11), (d) August Train(02-13), (e) September 

Train(02-11), (f) September Train(02-13), (g) October Train(02-11), and (h) October 

Train(02-13) 
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The decision trees for August, September, and October for both training methods are 

able to forecast all three classifications. The decision trees for July are only able to 

forecast Class 1 or 2 with the two training periods because from 2002 to 2013 there were 

no blooms in July that are classified as Class 3 bloom. However, in 2015, there was Class 

3 bloom in July. When the CART model for July is trained using the full 2002 to 2015 

data set, the new decision tree is able to forecast Class 3 blooms. Interestingly, for July, 

September, and October only Q was used in the decision trees where August, for the 

longer training period, starts to use SRP and TP. The eight decision trees made for the 

loading period selection method and both training periods were next analyzied for their 

precision for predicting the monthly HABs with predicted classes after training period 

shown in parentheses (Table 10 and 11).  

 

Table 10. Loading Period Three Classes Result Matrix for Train(02-11) and 

Predicted(12-15). 

 Predicted  

Class 1 2 3 Sum Precision 

Observed 

(July) 

1 10 (3) 0 0 10 100.00% (75%) 

2 0 3 0 3 100.00% 

3 0 1 (1) 0 1 0.00% (0%) 

Sum 10 4 0 14 92.86% (75%) 

Observed 

(August) 

1 7 (1) 0 0 7 100.00% (100%) 

2 0 4 (1) 0 4 100.00% (100%) 

3 2 (2) 0 1 3 33.33% (0%) 

Sum 9 4 1 14 85.71% (50%) 

Observed 

(September) 

1 5 (1) 0 0 5 100.00% (100%) 

2 0 3 1 (1) 4 75.00% (0%) 

3 1 (1) 0 4 (1) 5 80.00% (50%) 

Sum 6 3 5 14 85.71% (50%) 

Observed 

(October) 

1 10 (2) 0 0 10 100.00% (100%) 

2 0 1 0 1 100.00% 

3 1 (1) 1 (1) 1 3 33.33% (0%) 

Sum 11 2 1 14 85.71% (50%) 

NOTE: ‘Underlined’ indicates overall precision for that particular month and period. 
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Table 11. Loading Period Three Classes Result Matrix for Train(02-13) and 

Predicted(14-15). 

 Predicted  

Class 1 2 3 Sum Precision 

Observed 

(July) 

1 10 (1) 0 0 10 100.00% (100%) 

2 0 3 0 3 100.00% 

3 0 1 (1) 0 1 0.00%(0%) 

Sum 10 4 0 14 92.86% (50%) 

Observed 

(August) 

1 7 0 0 7 100.00% 

2 0 4 (1) 0 4 100.00% (100%) 

3 0 1 (1) 2 3 66.67%(0%) 

Sum 7 5 2 14 92.86% (50%) 

Observed 

(September) 

1 5 0 0 5 100.00% 

2 0 3 1 (1) 4 75.00% (0%) 

3 0 0 5 (1) 5 100.00% (100%) 

Sum 5 3 6 14 92.86% (50%) 

Observed 

(October) 

1 10 (1) 0 0 10 100.00% (100%) 

2 0 1 0 1 100.00% 

3 0 1 (1) 2 3 66.67% (0%) 

Sum 10 2 2 14 92.86% (50%) 

NOTE: ‘Underlined’ indicates overall precision for that particular month and period.  

 

The overall precision for both training periods is high with the lowest being 85.7% 

during the Train(02-11) method. The precision for the Train(02-11) is high when 

predicting Class 1 or 2 blooms however it is low when predicting Class 3 blooms ranging 

from 33.3% to 80% for August, September, and October with the highest accuracy in 

September. However, when increasing the training period to Train(02-13), the precision 

range increases from 66.7% to 100% except for July where the decision tree is still 

unable to forecast Class 3 blooms. In the early years of recorded CI values, the blooms 

were small in comparison to the recent blooms which results in there being a small 

amount of data for CART to forecast the high-class blooms in some months. This is 

shown in the result matrixes as the predictions have a higher precision for forecasting the 

low-class blooms. When extending the training period to include the larger blooms of 
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recent years, the overall precision increases from 87.5% to 92.9%. Next the CART 

decision trees for the Spearman selection method are shown (Figure 14). 

 

 

 

 

 
Figure 14. Spearman Selected Three Class Monthly Decision Trees: (a) July Train(02-

11), (b) July Train(02-13), (c) August Train(02-11), (d) August Train(02-13), (e) 

September Train(02-11), (f) September Train(02-13), (g) October Train(02-11), and (h) 

October Train(02-13)
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The decision trees for August, September, and October for both training methods are 

able to forecast all three classifications. Similar to the loading period selection method, 

decision trees for July are only able to forecast Class 1 or 2 with both training periods as 

from 2002 to 2013 there were no blooms in July that were classified as Class 3 bloom. 

Also, similar to the loading period method when modeled using the full 2002 to 2015 

data set to train, the new decision tree changes are able to forecast Class 3 blooms. Unlike 

the loading period decision trees, the trees for the Spearman selection method uses a 

variety of variables for the trees. The eight decision trees made for the Spearman 

selection method and both training periods were next analyzied for their precision with 

predicted classes after training period shown in parentheses (Table 12 and 13). 

 

Table 12. Spearman Three Classes Result Matrix for Train(02-11) and Predicted(12-15). 

 Predicted  

Class 1 2 3 Sum Precision 

Observed 

(July) 

1 9 (2) 1 (1) 0 10 90.00% (66.7%) 

2 0 3 0 3 100.00% 

3 0 1 (1) 0 1 0.00% (0%) 

Sum 9 5 0 14 85.71% (50%) 

Observed 

(August) 

1 7 (1) 0 0 7 100.00% (100%) 

2 1 (1) 3 0 4 75.00% (0%) 

3 1 (1) 1 (1) 1 3 33.33% (0%) 

Sum 9 4 1 14 78.57% (25%) 

Observed 

(September) 

1 5 (1) 0 0 5 100.00% (100%) 

2 0 4 (1) 0 4 100.00% (100%) 

3 0 2 (2) 3 5 60.00% (0%) 

Sum 5 6 3 14 85.71% (50%) 

Observed 

(October) 

1 9 (1) 1 (1) 0 10 90.00% (50%) 

2 0 1 0 1 100.00% 

3 2 (2) 0 1 3 33.33% (0%) 

Sum 11 2 1 14 78.57% (25%) 

NOTE: ‘Underlined’ indicates overall precision for that particular month and period. 
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Table 13. Spearman Three Classes Result Matrix for Train(02-13) and Predicted(14-15). 

 Predicted  

Class 1 2 3 Sum Precision 

Observed 

(July) 

1 10 (1) 0 0 10 100.00% (100%) 

2 0 3 0 3 100.00% 

3 1 (1) 0 0 1 0.00% (0%) 

Sum 11 3 0 14 92.86% (50%) 

Observed 

(August) 

1 7 0 0 7 100.00% 

2 0 3 1 (1) 4 75.00% (0%) 

3 0 1(1) 2 3 66.67% (0%) 

Sum 7 4 3 14 85.71% (0%) 

Observed 

(September) 

1 5 0 0 5 100.00% 

2 0 3 1 (1) 4 75.00% (0%) 

3 0 1 (1) 4 5 80.00% (0%) 

Sum 5 4 5 14 85.71% (0%) 

Observed 

(October) 

1 10 (1) 0 0 10 100.00% (100%) 

2 0 1 0 1 100.00% 

3 0 0 3 (1) 3 100.00% (100%) 

Sum 10 1 3 14 100.00% (100%) 

NOTE: ‘Underlined’ indicates overall precision for that particular month and period. 

 

The overall precision for both training periods is average with the lowest being 78.6% 

during the Train(02-11) method. Similar to the loading period method, the precision for 

the Train(02-11) is high when predicting Class 1 or 2 blooms however it is low when 

predicting Class 3 blooms ranging from 33.3% to 60% for August, September, and 

October with the highest accuracy in September. 

During the first training period, August and October both only had one Class 3 bloom 

whereas September had three. However, when increasing the training period to Train(02-

13), the overall precision for all of the trees immensely increases as the longer training 

period with 2013 bloom gave the August, September, and October models another Class 

3 bloom to be used in training. The precision for Class 3 blooms increased from 33%, 

60%, and 33% to 67%, 80%, and 100% for August, September, and October, 

respectively, with the extended training period. After the extended training period for 
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August and September, the predictions for 2014 and 2015 showed opposite predictions: 

predicting Class 2 for Class 3 blooms and Class 3 for Class 2 blooms, respectively. 

October showed the greatest improvement in precision from 78.6% to 100% when 

extending the training period. In the early years of recorded CI values, the blooms were 

small in comparison to the recent blooms which results in there being a small amount of 

data for CART to forecast the large blooms. When extending the training period to 

include the larger blooms of recent years, the overall precision increases from 82.1% to 

91%. Next, the variable importance for both selection methods and training periods were 

analyzed (Table 14, 15 and 16). 

 

Table 14. Loading CART Variable Importance for Both Training Periods. 

 July August September October 

Variable (02-11) (02-13) (02-11) (02-13) (02-11) (02-13) (02-11) (02-13) 

Q 100% 100% 100% 46% 100% 100% 100% 100% 

TP 0% 0% 0% 20% 0% 0% 0% 0% 

PM 0% 0% 0% 0% 0% 0% 0% 0% 

SRP 0% 0% 0% 34% 0% 0% 0% 0% 
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Table 15. Spearman CART Variable Importance for Both Training Periods for July and 

August. 

July August 

Train(02-11) Train(02-13) Train(02-11) Train(02-13) 
Q5,1 

Q4,2 

Q3,3 

Q1,6 

TP1,5 

PM3,1 

PM4,1 

PM6,1 

PM2,2 

PM1,5 

TKN5,2 

TKM3,3 

TKM4,3 

TKM1,6 

Water3,4 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

100% 

0% 

0% 

0% 

0% 

Q3,1 

Q4,1 

Q6,1 

Q2,2 

Q3,2 

Q1,5 

TP3,1 

TP1,5 

PM3,1 

PM2,2 

PM3,2 

PM1,5 

TKN5,2 

TKN2,3 

TKN1,6 

Water3,4 

0% 

0% 

33% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

67% 

0% 

0% 

0% 

0% 

Q5,1 

Q4,2 

Q1,6 

PM5,1 

PM1,6 

SRP6,1 

SRP5,2 

TKN1,6 

Water2,1 

Water1,2 

Water2,2 

Water1,3 

Water1,6 

28% 

0% 

0% 

0% 

72% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

Q5,1 

Q4,2 

Q1,6 

PM5,1 

PM4,2 

PM1,6 

SRP5,2 

Water2,1 

0% 

46% 

0% 

0% 

0% 

0% 

0% 

54% 

 

Table 16. Spearman CART Variable Importance for Both Training Periods for September 

and October. 

September October 

(02-11) (02-13) (02-11) (02-13) 
Q3,1 

Q6,1 

Q3,3 

Q1,6 

TP3,4 

PM3,1 

PM3,3 

PM1,6 

TKN1,1 

TKN3,4 

55% 

0% 

0% 

0% 

45% 

0% 

0% 

0% 

0% 

0% 

Q3,1 

Q6,1 

Q3,3 

Q1,6 

PM3,1 

PM3,3 

PM1,6 

TKN3,4 

69% 

0% 

0% 

31% 

0% 

0% 

0% 

0% 

Q5,2 

Q1,6 

TP1,6 

PM5,2 

PM1,6 

TKN1,2 

TKN4,2 

Air3,2 

Air3,4 

Wind3,2 

Wind1,4 

29% 

0% 

0% 

0% 

0% 

71% 

0% 

0% 

0% 

0% 

0% 

Q4,1 

PM2,5 

TKN4,2 

Wind4,1 

Wind4,2 

21% 

48% 

31% 

0% 

0% 

 

For the loading period decision trees, interestingly, only Q was used for both training 

periods for all months except for August Train(02-13). When comparing the individual 

correlations from Table 7 for the loading period selection analysis for all months except 

August, Q had the highest value. For both selection methods Q is in every decision tree 

except for July Train(02-11) where only TKN is used in the Spearman method. In the 
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individual correlation analysis in Table 7, PM had the second highest correlation behind 

Q which is shown in the variable importance for both methods being selected the second 

most often in the decision trees. 

 

4.2 Artificial Neural Network 

Four groups of ANN models were made for each bloom month: two for each variable 

selection method and two for separate time periods. The variable selection methods were 

from the nutrient loading period and Spearman selected. The two-time periods are 

Train(02-11) and Train(02-13) as well as two predicting periods to be from 2012 to 2015 

(Predicted(12-15)) and 2014 to 2015 (Predicted(14-15)). The two-separate time periods 

were combined into the same figure resulting in eight figures below showing the results 

for the two selection methods for each month starting with July (Figure 15). 
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Figure 15. ANN Results for Both Selection Methods and Averaging Periods: (a) 

Spearman July and (b) Loading Period July 

 

The predictions for July for both selection methods and training periods overall is 

good except for 2015. For both methods increasing the training period had little effect on 

the final predictions as 2012 and 2013 did not have any special cases of blooms to 

increase the accuracy of forecasts in July. Before 2015, the July peak CI value was nearly 

three however in 2015 there was a bloom of nearly fourteen resulting in the ANN model 

to have never trained for a bloom of that magnitude for the month of July. As the training 

period extends it will be possible for the ANN models to more closely predict the high 
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magnitude blooms in July. The results for the two selection methods for August is shown 

below (Figure 16). 

 

 

 
Figure 16. ANN Results for Both Selection Methods and Averaging Periods: (a) 

Spearman August and (b) Loading Period August 

 

The predictions for August showed varying accuracy for both prediction methods for 

each year with both selection methods having similar predictions for each year. Both 

methods had a problem predicting the 2013 bloom. From 2002 to 2011, there was only 
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one bloom with a high magnitude, in 2011, resulting in the ANN models not being able to 

train more than one of the high magnitude of blooms. 

The 2015 bloom was a special case with an unusual loading period with the most 

nutrients entering the lake in June and July as well as the magnitude being more than 

double previously recorded in August. Both methods under predicted the 2015 bloom 

however they still both predicted a large magnitude bloom over the previously recorded 

max CI value for both extended training periods. 

For both methods, extending the training period improved the prediction for 2015 

with a slightly larger increase in accuracy for the loading period method. Both methods 

showed that it is possible for the ANN models to forecast blooms higher than the 

magnitude they were trained with when predicting the 2015 bloom. The results for the 

two selection methods for September is shown below (Figure 17). 
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Figure 17. ANN Results for Both Selection Methods and Averaging Periods: (a) 

Spearman September and (b) Loading Period September 

 

The predictions for September showed decent results for all predicted years for both 

methods except 2013 where both methods vastly under predict the 2013 bloom in 

September. Both methods saw an improvement in their 2015 prediction by increasing the 

training period with the loading period method showing a larger improvement with the 

increased training. The correlation coefficient for the Spearman method increased from 

0.87 to 0.96 while the loading period method increased from 0.86 to 0.98 when extending 
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the training period. Interestingly, both methods overpredicted the 2014 bloom and the 

increased training caused both methods to overpredict even more. 

The overall predictions for September are fairly accurate with correlation coefficients 

of 0.96 for the Spearman method and 0.98 for the loading period method with the 

extended training period and is possibly explained by the history of September. 

September has a history of higher magnitude blooms allowing the ANN models to have 

increased training for the larger blooms compared to the other months. The methods 

showed again that it is possible for the ANN models to forecast blooms higher than the 

magnitude they were trained with when predicting the 2015 bloom similar to the August 

2015 prediction. The results for the two selection methods for October is shown below 

(Figure 18). 
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Figure 18. ANN Results for Both Selection Methods and Averaging Periods: (a) 

Spearman October and (b) Loading Period October 

 

The predictions for October showed average results with the Spearman method over 

predicting two of the years and the loading period method only vastly overpredicting the 

2015 bloom. Both the Spearman and loading period selection methods were unable to 

closely predict the 2015 bloom. The Spearman model overpredicted the bloom for 2013 

however the loading period method was able to closely predict the bloom. The increased 

training had minor effects on both methods. The increased training for the loading period 

model had a small effect on the predictions however it followed the similar trend to the 
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Spearman model and caused the 2014 prediction to get slightly more accurate and the 

2015 prediction to get less accurate. 

The ANN models made for the two training periods and input selection methods were 

then plotted for their accuracy. The monthly trained and forecasted data for each of the 

four separate methods were combined and seperated for the training and forecasting data. 

The plots below (Figure 19) show the performance of ANN model trained to 2011 and 

2013 using the loading period data selection method with correlation coefficients of  0.70 

and 0.77, respectively. 
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Figure 19. Performance of Two Loading Period Models: (a) Train(02-11) with 40 

Trained and 16 Predicted and (b) Train(02-13) with 48 Trained and 8 Predicted 

 

The loading period ANN model followed a similar trend to the Spearman model and 

underpredicted many of the higher magnitude blooms and overpredicted one. When 

updated to the longer training period, the loading period method and the Spearman 

method showed improvements in the overall accuracy for forecasting the larger blooms. 

The loading period, as well, only has two very underpredicted predictions yet it still had 

the overpredicted prediction. However, similar to the Spearman method for the extended 

training period, all of the predictions except one had the same bloom classification as the 
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observed booms. The plots below (Figure 20) show the accuracy of the Spearman 

selection methods trained to 2011 and 2013 with correlation coefficients of  0.79 and 

0.83, respectively. 

 

 

 
Figure 20. Performance of Two Spearman Models: (a) Train(02-11) with 40 Trained and 

16 Predicted and (b) Train(02-13) with 48 Trained and 8 Predicted 

 

The Spearman ANN model, when trained up to 2011, is able to forecast the lower 

magnitude blooms well. However, the model had all the predictions underpredicted 
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except two for the higher magnitude blooms. When increasing the training period to 

2013, the new ANN model is also able to forecast the low magnitude blooms well and is 

able to forecast the higher magnitude blooms with improved accuracy when compared to 

the shorter training period. The model was unable to perfectly predict the high-class 

blooms however in many cases forecasted a similar class of bloom. In August, the 2015 

bloom had a CI value of twenty-nine and all four prediction vastly underpredicted the 

bloom with the highest prediction being seventeen. However, when considering the class 

system, all four predictions and observed CI values for the 2015 bloom fall into the class 

3 category. For the extended training period all of the predictions except one had the 

same bloom classification as the observed booms. Next, the variable importance was 

calculated for each of the months for both training periods and methods (Table 17, 18 and 

19). 

 

Table 17. July and August Spearman ANN Variable Importance for Both Training 

Periods.  

July August 

(02-11) (02-13) (02-11) (02-13) 
PM6,1 

TKM1,6 

TP1,5 

Q1,6 

PM1,5 

PM2,2 

TKM3,3 

Q5,1 

Water3,4 

PM3,1 

TKM4,3 

Q4,2 

Q3,3 

TKN5,2 

PM4,1 

18% 

17% 

12% 

11% 

6% 

5% 

5% 

4% 

5% 

4% 

4% 

3% 

3% 

3% 

1% 

Q1,5 

TKN1,6 

Water3,4 

TP1,5 

PM2,2 

PM1,5 

TKN5,2 

TKN2,3 

PM3,2 

Q6,1 

Q2,2 

Q3,1 

Q4,1 

PM3,1 

Q3,2 

TP3,1 

12% 

10% 

9% 

8% 

7% 

7% 

7% 

7% 

6% 

5% 

5% 

4% 

4% 

4% 

3% 

2% 

SRP6,1 

CI1,1 

Q1,6 

Q4,2 

Water1,2 

SRP5,2 

Water2,1 

Water2,2 

Q5,1 

PM1,6 

PM5,1 

Water1,3 

Water1,6 

TKN1,6 

20% 

16% 

13% 

12% 

10% 

7% 

5% 

5% 

4% 

3% 

2% 

2% 

1% 

0% 

Q4,2 

PM4,2 

SRP5,2 

Q1,6 

PM5,1 

CI1,1 

Q5,1 

PM1,6 

Water2,1 

24% 

20% 

14% 

11% 

9% 

9% 

6% 

6% 

2% 
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Table 18. September and October Spearman ANN Variable Importance for Both Training 

Periods. 

September October 

(02-11) (02-13) (02-11) (02-13) 
Q6,1 

TKN1,1 

TP3,4 

CI1,1 

PM3,1 

PM1,6 

TKN3,4 

Q1,6 

PM3,3 

Q3,1 

Q3,3 
 

17% 

13% 

11% 

11% 

8% 

8% 

8% 

7% 

7% 

6% 

6% 

Q6,1 

PM1,6 

CI1,1 

PM3,1 

PM3,3 

Q1,6 

Q3,1 

TKN3,4 

Q3,3 
 

24% 

14% 

13% 

11% 

10% 

8% 

7% 

7% 

6% 

Wind1,4 

Q1,6 

TP1,6 

CI1,1 

PM5,2 

TKN1,2 

Air3,2 

Q5,2 

PM1,6 

TKN4,2 

Air3,4 

Wind3,2 

14% 

13% 

12% 

12% 

11% 

8% 

8% 

7% 

4% 

4% 

4% 

2% 

CI1,1 

PM2,5 

Wind4,1 

Wind4,2 

Q4,1 

TKN4,2 

28% 

25% 

20% 

13% 

8% 

6% 

 

 

Table 19. Loading Period ANN Variable Importance for Both Training Periods. 

 July August September October 

Variable (02-11) (02-13) (02-11) (02-13) (02-11) (02-13) (02-11) (02-13) 

Q 43% 46% 33% 22% 31% 21% 27% 25% 

TP 21% 26% 24% 5% 21% 25% 11% 7% 

PM 11% 9% 21% 33% 32% 21% 24% 24% 

SRP 25% 20% 13% 19% 3% 14% 8% 10% 

PCI   9% 21% 14% 18% 30% 35% 

NOTE: Empty boxes represent variables that were not considered. 

 

The ANN variable importance for the Spearman method (Tables 17 and 18) showed 

interesting trends in the variable importance. For four of the eight Spearman models, Q 

showed the highest variable importance which is understandable as the flow of the 

Maumee River brings the nutrients into the lake. In most cases, the variables with a 

longer averaging period showed a higher importance. In the physical sense, this is 

understandable as a single lagged month is unable to shape the future blooms 
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singlehandedly outside of unusual cases such as in 2015. The previous month CI input 

variable is in the top four variable importance for all months it is considered except for 

the train(02-13) method in August where the CI input is showing as an overall valuable 

bloom prediction indicator. 

The ANN variable importance for the loading period method (Table 19) also showed 

interesting results. Interestingly, Q is the only variable with a high importance in all eight 

methods with the lowest being 22%. PM also had a high importance for all methods 

outside of July with the lowest being 21%. These two variables, having the highest 

importance, are expected as they had high individual correlations for each of the bloom 

months.  
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CHAPTER V 

SUMMARY AND CONCLUSION 
 

 

 

5.1 Summary  

HABs are a major problem all over the world particularly in Lake Erie. A widespread 

literature review was performed to understand the HAB problem in Lake Erie. The 

current methods to forecast HABs all over the world and specifically in Lake Erie were 

examined. An extensive literature review and analysis was performed on the possible 

variables for forecasting HABs. Two forecasting methods, CART and ANN, as well as 

two training periods and two input variable selection methods, nutrient loading period 

and Spearman’s rank correlation were used. For the nutrient loading period selection 

method, only one set of input variables is used for forecasting whereas the Spearman 

selection method examines more variables than the nutrient loading period considering 

up to twenty-eight different averaging periods and lag times for each considered variable. 

First, the CART models were tested with both classification methods, a 3-class and 5-

class system resulting in the 3-class system being selected. The CART models were then 

created for both methods and training periods. Initially, when using the first training 

period of 2002 to 2011, the loading period method showed better precision in forecasting 
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HABs when compared to the Spearman selection method. When the training period was 

increased to 2013, both methods showed an improvement in the overall accuracy with 

Spearman having an 8.9% improvement and loading period a 5.4% improvement. 

However, with the extended training period, the loading period decision trees for August 

and September showed a slight increase in precision over the Spearman method and the 

Spearman method being slightly more precise in October. 

After the CART models, the ANN models were created and analyzed for both 

selection methods and training periods. For both selection methods in the first training 

period the models often underpredicted the higher magnitude blooms. Many of the 

predictions did not predict the exact same CI as observed however in most cases both 

methods predicted the same class of bloom as observed. In most cases after increasing the 

training period to 2013, both ANN models improved their accuracy for predicting the 

higher magnitude of blooms. The correlation coefficient increased from 0.70 to 0.77 for 

the loading period selection method and from 0.79 to 0.83 for the Spearman selection 

method when extending the training period. Both input selection methods had some 

difficulty in predicting the 2015 HAB because the 2015 bloom was a special case in 

terms of nutrient loading as well as bloom time. There was a large amount of loading in 

June and July which is atypical. The 2015 bloom in July was 382% larger than any bloom 

recorded from 2002 to 2014. The monthly discharge for June was the highest recorded 

and third highest on record since the USGS started collecting data in 1939 (Stumpf, 

2016). Similar to the CART method the ANN model showed an increase in accuracy 

when forecasting HABs with an extended training period.
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5.2 Conclusions 

Through the use of two machine learning techniques and selection methods, two 

forecasting models were created. For the nutrient loading period selection method, only 

one set of input variables is used for forecasting each month while the Spearman method 

uses different variables and periods for each month’s forecast. The main advantage for 

the nutrient loading period selection method is that it allows for an ease of understanding 

which input variables and periods are used. The main advantage for the Spearman 

selection method is more accurate results however for the forecast to be completed for all 

four bloom months more data must be collected delaying the final forecasts. 

The first machine learning technique, CART, has the main benefit of giving an 

advanced warning on the possible class of HABs months before they occur. When only 

considering nutrient contributing variables the CART model forecast for all four bloom 

months is completed by the end of June. The accuracy for the CART models to correctly 

classify the blooms increased greatly when extending the training period up to 2013. The 

CART models are valuable for watershed-planners and decision makers to prepare or 

change plans based on the class of blooms for each month. The CART models can make 

earlier forecasts for HABs when compared to the ANN models. One of the major 

limitations for the CART model however is only being able to forecast a class and not the 

specific peak CI value that is going to occur in each month.  

The second machine learning technique, ANN, results are also valuable for 

watershed-planners and decision makers. The forecasts from the ANN models are able to 

predict the biomass of the future HABs. Forecasting the exact size of the bloom is 

valuable for any decision maker using the lake ranging from recreational use to 
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commercial fishing to water treatment plant managers. However, in a few cases, the ANN 

models vastly over predicted or underpredicted the HAB biomass. In most cases 

extending the training period for both input selection methods, the ANN models 

improved the accuracy of their predictions. When considering the class of blooms 

predicted the ANN models often predicted the correct class of bloom. One of the current 

limitations on the ANN models is the use of the previous month’s CI value in the 

forecast. This limitation currently delays the forecast for the ANN models by up to three 

months. However, when ANN is used in conjunction with the CART model the CART 

model is able to make the early class forecast and allow the ANN model to give a more 

exact HAB biomass forecast closer to when the bloom occurs. 

In future work, the ANN model can be improved to not include the previous month’s 

CI value in order to make earlier forecasts. The extrapolation ability for both models can 

also be tested in order to forecast beyond the calibration range. The final ANN and 

CART models will be coded in a user interface system to forecast HABs in July, August, 

September, and October. This research was conducted to improve HAB forecasting while 

allowing consumers, recreational users, watershed planners, and decision makers to make 

more educated decisions and timely manage HABs in western Lake Erie. Lake Erie is an 

irreplaceable resource and this paper’s aim is to help improve the accuracy of forecasting 

HABs as well as provide information to those affected by HABs occurring in Lake Erie. 
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