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HARMFUL ALGAE BLOOM PREDICTION MODEL FOR 

WESTERN LAKE ERIE USING STEPWISE MULTIPLE 

REGRESSION AND GENETIC PROGRAMMING 

 

AMIN DAGHIGHI 

 

ABSTRACT 

     The Great Lakes are most important freshwater bodies providing water resources and 

other various related businesses to the northeastern part of North America. However, 

harmful algal blooms (HABs) are more often and severe in those lakes than before and 

thus threatening lake environments and economies. Researchers have studied the factors 

influencing HABs characteristics using different scientific methods. In this study, all 

possible predictors and predictand variables were collected from various data source and 

then eight final predictors and one predictand were selected based on correlation between 

predictors and predictand variables. This study tests two machine learning techniques, 

Stepwise Multiple Regression (SMR) and Genetic Programming (GP), to forecast 

monthly HAB indicators in Western Lake Erie from July to October. SMR and GP 

models were created with selected input variables for two training periods, 2002 to 2011 

and 2002 to 2014. A Spearman rank correlation coefficient was used to choose input 

variable sets for each HAB month considering 224 different combinations of lag time and 

average periods. The SMR models showed a correlation coefficient increase from 0.71 to 

0.78 when extending the training period. The GP models followed a similar trend 
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increasing the overall correlation coefficient from 0.82 to 0.96. Both models optimally 

selected monthly discharge and phosphorus mass from Maumee River Basin as 

significant predictor variables. A major drawback of both models was data-dependency 

as common in data-driven methods. GP was better to detect high nonlinear HAB 

mechanism than SMR due to its nature to use many mathematical functions while SMR 

only use the linear combination of variables. This study attested that both SMR and GP 

can be useful to simulate historical HAB event and predict future HAB severity. In future 

work, to avoid under- or over-prediction for unobserved HAB mechanism regarding short 

training period, it is suggested to develop an extrapolation technique that is statistically 

sound and operable in the model and test multi-model ensemble approaches to provide 

most possible HAB prediction. 

 

Key Words: Harmful Algal Blooms, Genetic Programming, Stepwise Multiple 

Regression, Data-driven Methods. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Problem Statement 

     Harmful Algal Blooms (HABs) are quickly becoming a key problem all around the 

world. A HAB is a bloom of algae that has the potential to harm humans or the ecosystem 

(Ho, & Michalak, 2015) The current state of knowledge regarding HABs, their growth, 

and means of addressing the issues resulting from them, stems from a rich literature on 

the taxonomy, growth characteristics, and ecophysiology of freshwater and marine 

phytoplankton collectively grouped as “harmful algae.” 

     This societally defined category includes toxic species that express poisonous 

substances to higher trophic levels, largely fish, shellfish, marine mammals, or humans, 

and include members of the cyanobacteria, dinoflagellates, raphidophytes, haptophytes, 

and diatoms. Included also under the HAB umbrella are largely human-caused high-

biomass events that, while often comprising non-toxic phytoplankton species, still 

critically alter ecosystems through hypoxia/anoxia, altered food web efficiencies, 

stimulation of pathogenic bacteria, or other ecological consequences. (Wells et al., 2015) 
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     HABs are pervasive along coastlines of most nations including the United States 

(Hallegraeff, 1993, Anderson et al., 2008). Excessive nutrient loading is commonly cited 

as a factor contributing to the expansion of HAB (Anderson, Glibert, & Burkholder, 

2002, Heisler et al., 2008). However, zooplankton grazing plays an important role in 

constraining phytoplankton abundance in aquatic ecosystems (Burkill, Mantoura, 

Llewellyn, & Owens, 1987, Latasa, Landry, Louise, & Bidigare, 1997, Calbet, & Landry, 

2004) and a failure of predator control can facilitate phytoplankton blooms (Irigoien, 

Flynn, & Harris, 2005, Modigh, & Franzè, 2009). Zooplankton grazing has also been 

shown to have a primary effect on the outbreak of HAB (Smayda, 2008), and for some 

HAB such as caused by the pelagophyte, Aureoumbra lagunensis, blooms may be 

promoted via positive feedback between grazing disruption and altered nutrient cycling 

(Kang, Koch, & Gobler, 2015). 

     HABs in freshwater systems are quickly becoming a global epidemic as well. Reports 

of HABs in Lake Taihu in China (e.g., Qin et al., 2010), Lake Victoria in Africa (e.g., 

Sitoki, Kurmayer, & Rott, 2012), Lake Erie in North America (e.g., Michalak et al., 

2013), and Lake Nieuwe Meer in The Netherlands (e.g., Joehnk, Huisman, Sharples, 

Sommeijer, Visser, & Stroom, 2008) constitute examples of an alarming trend in 

freshwater ecosystems worldwide that is only expected to worsen under a changing 

climate (Paerl, & Huisman, 2009). The effects of HABs are well documented. These 

effects  are associated with acute morbidity and mortality across a range of biota 

(including humans) (Landsberg, 2002, Van Dolah, 2005), economic impacts through 

ecological and human health costs (Anderson, Hoagland, Kaoru, & White, 2000, 

Hoagland, Anderson, Kaoru, & White, 2002) and the need for additional water treatment 
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measures for regions relying on surface water supplies (Hitzfeld, Höger, & Dietrich, 

2000, Hoeger, Hitzfeld, & Dietrich, 2005).  

     HABs in Great Lakes is becoming a major issue recently more than last decade. The 

Laurentian Great Lakes, so named because of their relationship to the St. Lawrence 

River, are arguably one of the most valuable natural resources in North America, if not 

the world. This system situated between Canada and the Mid-western United States 

represents roughly 20% of the earth's available surface freshwater, a resource that is 

expected to become increasingly limited in the near future (Schottler, Eisenreich, & 

Capel, 1994). Lake Erie alone provides over 7 billion dollars in revenue each year from 

tourism and fishery industries (United States Department of Agriculture (USDA), 2005). 

     Among the five Great Lakes, Lake Erie is most susceptible to recurring large-scale 

blooms due to the morphology of the lake, its location in a temperate climate with warm 

summer temperatures, and extensive anthropogenic inputs. At an average depth of 19 

meters, Lake Erie has a relatively short retention time (less than 3 years) and consistently 

reaches temperatures above 25 °C during summer months (Stumpf, Wynne, Baker, & 

Fahnenstiel, 2012). 

     Lake Erie is the cause for concern regarding threats to the fresh water system. For 

example, an HAB in Lake Erie during the summer of 2014 resulted in a three-day tap 

water ban for Toledo, Ohio (Wilson, Wright, Bronnenhuber, MacDonald, Belore, & 

Locke, 2014), providing an acute reminder of the impacts of HABs and the urgency of 

addressing their proliferation. The need for scientifically guided policy to mitigate these 

impacts has never been greater; since the 1990s, harmful Microcystis blooms reappeared 
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in Lake Erie and plankton growth has been enhanced in response to the increasing total 

phosphorus loading and weather-driven changes (Michalak et al., 2013). 

1.2 Impacts of HABs 

     Current spatial and temporal ranges of HAB species will most certainly change under 

future climate scenarios. Spatially, one can expect that the geographic domains of species 

may expand, contract, or just shift latitudinally. The HAB research community is largely 

under-prepared to address these questions. The central challenge is to achieve consensus 

about the way forward from both research and management perspectives. This focused 

community synergy will be critical if the knowledge base is to advance faster than the 

influence of climate-related changes on HABs, and if statistically credible evidence of 

this change can be provided soon enough to contribute to the societal debate over climate 

change impacts. These preparations will be particularly critical for high latitude regions 

where climate change impacts are liable to be most rapid and substantial (Stocker et al., 

2013). 

     The foundation of HAB knowledge has accumulated mainly through isolated 

investigations, as with most environmental sciences, but this piecemeal process does not 

readily foster as powerful a knowledge structure as can be achieved through synergistic, 

collective, and collaborative approaches. That is, a collective vision is needed that can 

identify the ‘‘known knowns’’ and rank the levels of the ‘‘known unknowns’’ if the 

community is to presage climate change-HAB linkages before they develop (Wells et al., 

2015). 

     Another possible factor for the return of HABs is the zebra and quagga mussels. The 

mussels filter small particles out of the water such as algae, microscopic bugs, or 
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zooplankton that eat algae (Reutter, & Dierkes, 2014). They then excrete dissolved 

phosphorus, a main source of food for HABs. If the mussels suck in a harmful form of 

algae, they stop filtering and spit it out then start filtering again (Reutter, & Dierkes, 

2014). 

     In working to achieve a higher level of cooperation among HAB and climate 

scientists, there is some guidance to be gleaned from the ocean acidification field, which 

used broad collaboration to create the infrastructure and standard methods needed to 

generate scientific awareness and funding streams that critically address the 

environmental and biological questions of greatest importance. Moving the understanding 

of HAB-climate change interactions beyond informed speculation will require rigorous, 

testable hypotheses to guide scientists, managers and the public on what changes are 

happening or are projected, estimation of the confidence limits on those projected 

changes, and establishing the infrastructure and studies needed to capture these necessary 

data. 

     HAB-climate change interactions directly affected by depth of the lake or coastal area. 

Lake Erie as the smallest and shallowest system of the Great Lakes, and therefore, the 

most susceptible to nutrient-driven water quality issues, is uniquely positioned to be a 

proving ground for the hypothesis expressed in the current study. Recent evidence 

suggests that rapid ecological changes are in fact occurring in the ecosystem, involving a 

complex and often poorly understood interplay among many factors related to the lake's 

chemical, physical and biological characteristics (Michalak et al., 2013). The problem of 

HABs has been becoming an increasingly larger problem for Western Lake Erie as 
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shown in Figure 1. The 2011 bloom peak was 274% larger over the previous peak bloom 

of the previous nine years. 

 

 
Figure 1. Time Series of HAB Peak Biomass at Lake Erie from 2002~2015 

 

     Recently Western Lake Erie faced one serious calamity. On August 2, 2014, the City 

of Toledo’s water treatment plant was shut down until August 4th. The bloom was not 

large in terms of coverage throughout the lake however the bloom was very thick and 

happened to be concentrated where the water treatment plant’s intake pipes are located. 

When the water in Lake Erie was tested the Microcystin toxin levels were between ten to 

twenty parts per billion (ppb) (Kozacek, August 2014). 

     The World Health Organization has set the following guidelines for Microcystin in 

Ohio: children under six and sensitive populations do not drink when the toxin levels 

reach 0.3 ppb, ages six and older when there is a concentration level of 1.6 ppb, and when 

the toxin levels reach twenty ppb the water should not be used (Environmental Protection 

Agency, 2017). The drinking water crisis left more than four hundred thousand people 

and three counties in Ohio and one in Michigan without drinking water. The governor of 
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Ohio, John Kasich, announced a state of emergency to organize resources for the affected 

(Kozacek, August 2014). Humanitarian organizations like the American Red Cross 

responded by manning water distribution centers and provided water delivery assistance 

to homebound residents thus indicating that HABs can have serious effects on local 

economies.  

     HABs can have a major effect on property values in Western Lake Erie as well. A 

study performed to look at the economic effects of HABs determined there is 3.458 

billion dollars in residential housing stock near the western basin of Lake Erie (Bingham, 

Sinha, & Lupi, 2015). Recreational activities such as boating, water skiing, fishing, and 

swimming are all effected when HABs occur. Water treatment plants must take more 

precautions and use more treatment methods in an attempt to not repeat what happened in 

Toledo in 2014. Tourism is also an important economic factor; millions of trips are taken 

to counties near Western Lake Erie with a range of sixty-six million to three hundred and 

five million dollars at risk (Bingham, Sinha, & Lupi, 2015). Table 1 shows the result of 

the study on economic loses from the 2011 and 2014 HABs. 

 

Table 1. Breakdown of HAB Effects on the Ohio Economic Losses 

Economic Factors 
HAB Event Year 

2011 2014 

Property Value $16,000,000 $18,000,000 

Tourism $20,000,000 $20,000,000 

Recreation $31,000,000 $23,000,000 

Water Treatment $4,000,000 $4,000,000 

Overall $71,000,000 $65,000,000 

 

     HABs have the possibility of causing many different types of health problems for 

humans and animals as well as having major effects on the economy. The most common 
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species of harmful algae in Ohio’s Great Lake is Cyanobacteria also known as blue-green 

algae. The Ohio Department of Health listed the health problems that go along with each 

type of exposure listed below (Ohio Department of Health, 2016): 

1) Drinking or swallowing water contaminated with Cyanobacteria 

 Severe diarrhea and vomiting 

 Difficulty breath 

 Neurotoxicity (weakness, tingly fingers, numbness, dizziness) 

 Death 

2) Skin Contact often from recreation activities in HAB waters 

 Rashes 

 Hives 

 Skin blisters 

3) Inhaling water droplets of mists of Cyanobacteria contaminated water 

 Runny eyes and nose 

 Sore throat 

 Asthma-like symptoms 

     The species of HABs in Western Lake Erie is Microcystis where bloom growth is 

promoted by warm temperatures over twenty degrees Celsius. The months that 

consistently have temperatures over the temperature threshold are July, August, and 

September. The months that often have blooms are the three months over the temperature 

threshold with a carry over into October. HABs are being forecasted by different 

techniques around the world. 

     A variety of aquatic biogeochemical models have been developed to understand 

ecological interactions and to predict the response of Lake Erie to external nutrient 

loading changes. Some of the models were constructed during the mid-1970s (e.g., Di 

Toro, Thomas, Herdendorf, Winfield, & Connolly, 1987, Scavia et al., 2014, Lam, 
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Schertzer, & Fraser, 1987) whilst a new generation of models has been in place more 

recently (e.g., Leon et al., 2011, Zhang, Culver, & Boegman, 2008). During the 2000s, 

HABs had returned to being a yearly problem for the Western Lake Erie basin. 

     Machine learning techniques have been increasingly used to forecast HABs. 

Dissimilar to traditional methods, machine learning is based on algorithms that are able to 

iteratively learn from data finding hidden insights without depending on rule-based 

programming. Supervised learning algorithms are often used when historical data is able 

to predict future events. 

     Forecasting HABs in Lake Erie will allow commercial as well as recreational users of 

the lake to make timely decisions concerning Western Lake Erie. There are two available 

HAB forecasting models for Western Lake Erie from the National Oceanic and 

Atmospheric Administration (NOAA). One of the forecasts is an assembly of multiple 

models to forecast the peak bloom for the year. The second forecast is focused on weekly 

short-term forecasting and provides size as well as location. The focus of this study is to 

bridge the gap between the two available forecasts. 

     Conventional, modeling of phytoplankton dynamics has been carried out using 

process-based models by incorporating physical and biotic environmental variables into a 

water quality model. However, this approach is reported to suffer from the uncertainty of 

kinetic coefficients used in such models. In the recent past, many studies have reported 

the successful application of data-driven Artificial Intelligence-based techniques, 

particularly the Stepwise Multiple Regression (SMR) and Genetic Programming (GP) 

techniques.  
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     In this study, the main purpose is to suggest a systematic method to select significant 

input variables for HAB prediction for recognizing the most appropriate SMR and GP 

models from a list of possible models through a physical understanding of the HAB 

processes supported by data interpretation. 

1.3 Research Objectives 

     The main objective of this thesis is to develop two data-driven HAB prediction 

models, SMR and GP, to improve operability and accuracy for monthly predicting the 

HAB at Western Lake Erie, compare them and confirm the applicability of the methods 

for other different lakes around the world. Specific research objectives are as follows. 

1) Perform literature review to analyze the state-of-the-art in HAB prediction 

2) Collect and document relevant predictor and predictand variables for Western 

Lake Erie  

3) Systematically select predictor variables using statistical methods 

4) Develop, train, and test SMR and GP models for HAB prediction in Western Lake 

Erie 

5) Provide future research direction to apply the developed methods to other HAB 

prediction studies. 
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CHAPTER II 

LITERATURE REVIEW 

 

     This study concentrates on forecasting harmful algae blooms (HABs) in the western 

basin of Lake Erie. The western basin of this lake has had problems with HABs for 

decades, however the central and eastern basins have not typically experienced large 

HABs. In addition to discussing the causes of HABs in Lake Erie’s western basin, this 

study will explore the collection of data in other lakes around the world. Specifically, this 

study will examine the advantages and disadvantages of four machine learning 

techniques: Genetic Algorithm and Programming (GA and GP), Stepwise Multiple 

Regression (SMR), Artificial Neural Network (ANN), and classification and regression 

tree (CART). Furthermore, a review of the current literature concludes with an 

examination of several HAB forecasting models currently available for Lake Erie. 

2.1 Environmental Variables of HABs 

2.1.1 Study Area 

     There are two major factors which cause harmful algae blooms in lakes such as Erie: 

water depth and nutrient loading (Kim, Zhang, Watson, & Arhonditsis, 2014). The 
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average water depths for the eastern, central, and western basins are 24, 18.3, and 7.4 

meters, in that order (Ohio Department of Natural Resources, 2017). The shallow waters 

in the western basin cause an increase in water temperature promoting the growth of 

HABs. This is correlated with the seasonal changes in northeast Ohio; spring and summer 

produce more blooms because there is more sunlight. The second major factor that 

promotes bloom growth in the western basin is nutrient loading from tributaries. There 

are two major tributaries that flow into Lake Erie. They are the Detroit River and the 

Maumee River. These each contribute the two main nutrients for Microcystis, which is 

HABs to bloom: phosphorus and nitrogen. 

     Both nitrogen and phosphorus have an effect on the HABs, however, without 

phosphorus there is little effect on the blooms. Thus, it can be said, that phosphorus is a 

limiting factor, in that, when it is present, even alone, it increases HABs. 

     River Flow Impact. The amount of flow from the Maumee River into Lake Erie is 

1/35th of the Detroit River, however the concentration of nutrients from the Maumee 

results in the same amount of nutrients as the Detroit River entering the lake (Stumpf, 

Johnson, Wynne, & Baker, 2016). The remaining tributaries—of which there are 11 

water stations used for data collection – produce insignificant amounts (less than ten 

percent) of the nutrient loads, compared with the Maumee River (Stumpf et al., 2016). 

Preliminary analysis of the data indicates that the nutrient loads from the Maumee River 

are the main source of nutrients for HABs. Albeit that, the Maumee is smaller in flow, the 

amount of nutrient loading is the same as the Detroit, which indicates that the Maumee’s 

nutrient loading is more concentrated than the Detroit River (Wayne & Stumph, 2015). 
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     Western Basin Data Location. The collection site for this study is shown Figure 2. 

Great Lakes Monitoring (GLM) collection sites are shown with green and blue points on 

map. The Environmental Protection Agency (EPA), and Great Lakes National Program 

Office (GLNPO) collection sites are shown with purple and orange points on map. All 

stations, including river stations, controlling stations, and all buoys, in Western Lake Erie 

are marked in the Figure 2, and shown below. 

 

 
Figure 2. Western Lake Erie Study Area and Data Collectors’ Site (Environmental 

Protection Agency [EPA], 2017) 
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2.1.2 Prediction Variables of HABs 

     The most important phase, and the first step of modeling the algae bloom index, is 

finding the correct and correlated variables as the predictors, and a suitable predictand 

variable as a HAB index. Traditionally, researchers have looked at both nutrient loading 

and climate factors to formulate models predicting HABs. Often, these previous studies 

have focused on either nutrient loading aspects or weather aspects rather than using a 

combination of climate, nutrition, and watershed characteristics. Yet the focus on one set 

of variables as the basis for prediction has been limited, this creates a gap in proper 

understanding and predicting HABS. 

     Kang, Koch, and Gobler, (2015), selected nitrate, nitrite, ammonium, phosphate, 

silicate, urea, total dissolved nitrogen, and dissolved organic nitrogen. Based on literature 

review in the area, and nutrient amendment experiments were conducted to assess how 

specific types of nutrient loading would affect the growth of multiple groups of 

phytoplankton during brown tide blooms in Florida (Kang et al., 2015). One-way 

analyses of variance with a post-hoc Tukey test were performed to assess statistically 

significant differences, while G-tests were used to compare frequencies of experiments in 

which grazing rates were measurable on major eukaryotic and prokaryotic populations. 

     Changes in macronutrient supply and form will lead directly to a switch towards HAB 

species and bloom events in most marine environments, in contrast to the impact of 

increased phosphorus and nitrogen inputs to brackish and freshwater environments (e.g., 

Thornton et al., 2013). 

     Some studies focused on weather conditions rather than nutrient. 17 weather condition 

factors and 12 water quality factors, including Chlorophyll-a (Chl-a), monitored monthly 
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to analyze cyanobacteria bloom in the Waihai part of Dianchi Lake, China. A 

probabilistic non-linear regression use for predicting the probability of occurrence of a 0-

1 event by fitting data to a logit function, so that it recognizes the impact of dependent 

variables that may be either numerical or categorical (Sheng, Liu, Wang, Guo, Liu, & 

Yang, 2012). 

     Lou, Xie, Ung, & Mok (2015), chose 23 water quality parameters, including 

hydrological, physical, chemical and biological parameters, were monitored monthly and 

these 23 parameters were measured according to the standard methods. In order to 

identify the water parameters that were significantly correlated with phytoplankton 

abundance, correlation analysis, Particle Swarm Optimization - Support Vector 

Regression (PSO–SVR), was conducted firstly. The forecast model was based on the last 

three months data. Including the three-month data in this forecast model is to adopt the 

historical effect of the last year that have similar environmental conditions such as 

temperature influence the growth of phytoplankton (Lou et al., 2015). 

     In Rajaee, & Boroumand (2015) paper, discrete wavelet transform (DWT) with 

artificial neural network (ANN), multi linear regression (MLR), and genetic algorithm-

support vector regression (GA-SVR) models were developed for one month ahead 

prediction of eutrophication in San Francisco Bay gauging station in the USA, and were 

compared together. To achieve the best combination of input data driven from time 

series, two statistical measures of goodness of fit the Nash–Sutcliffe model efficiency 

coefficient (E) and root-mean-squared error (RMSE) between Chl-at+1 with Chl-at, Chl-

at−1, Chl-at−2, …, Chl-at−i time series were computed and presented. The combined data 

with 3, 6 and 12 months delay was used to investigating the effects of seasonal variation 
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of the Chl-a on the value of Chl-at+1 and the combination with highest R2 selected as 

input.  

     In short, historically various combinations of variables have been combined to 

produce HAB models. These are summarized in Table 2, and presented here below. 

 

Table 2. HAB Predictor Variables Selected in Other Studies 

Study Model Variables 

Lou et al. 2015 Hybrid intelligent model 1,3,4,5,6,7,8 

Wu et al. 2015 Satellite image acquisition and analysis 2, 9 

Rajaee, & 

Boroumand, 2015 

Artificial Neural Network (ANN) and Multi Linear 

Regression (MLR), and Genetic Algorithm-Support Vector 

Regression (GA-SVR) 

9 

Cho et al. 2014 Artificial Neural Network (ANN) 1,3,5,6,7 

Persaud et al. 2015 Time series analyses and Pearson pairwise correlations 1,2,3,6,7 

Maier et al. 2001 Artificial Neural Network (ANN) 1,3,6,7,8 

Håkanson et al. 2003 Coefficients of variation 9 

Qin et al. 2015 

The monitoring comprised three different elements: 

(i) remote sensing image retrieval 

(ii) unattended sensor detection, with wireless data 

transmission 

(iii) ship-borne sampling and analysis 

2,3,9 

Talib et al. 2008 
Artificial Neural Network (ANN) and Hybrid Evolutionary 

Algorithm 
1,6,7,9 

Kim et al. 2014-a Three multiple modelling approaches 1,6,7,9 

Bertani et al. 2016 Bayesian HAB model 7 

Jia et al. 2013 Statistical analysis 1 

Zhang et al. 2013 Windows-based Software integrating the EcoTaihu model 6,7,9 

Kim et al. 2014-b 
The Takagi-Sugeno fuzzy model, and Discrete wavelet 

transform algorithms 
1,3,5,6,7 

Feng et al. 2015 Two-dimensional mathematical model 1,2,9 

Chen et al. 2015 Auto-Regressive Integrated Moving Average (ARIMA) 1,6,7,9 

Stumpf et al., 2016 Non-linear relationships 5, 7, 10 

1-Temperature 2-Wind Speed 3-Precipitation 4-Alkalinity 5-Dissolved Oxygen 6-Nitrate 7-

Phosphorus 8-Turbidity 9-Chl-a 10-Cyanobacteria Index 
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2.2 Variables Selected for Current Study 

     After considering all the potential accepted variables evidenced in the literature, 

searching through several databases, and data gathered from Heidelberg University’s 

National Center for Water Quality Research (NCWQR) (National Center for Water 

Quality Research, 2017), United States Geological Survey (USGS) (United States 

Geological Survey government agency, 2017) 

     One main objective of this study was to gather all possible predictor and predictand 

variables to be considered. Initially, there are a total of twenty predictor and four 

predictand variables considered show in Table 3 and Table 4. 

     In Table 3 the first eight variables were obtained from the Heidelberg Tributary 

Loading Program operated by Heidelberg University’s National Center for Water Quality 

Research (NCWQR). Water samples were taken on the Maumee River at Waterville, OH 

at the United States Geological Survey (USGS) station (04193500), one to three samples 

are analyzed a day depending on times of high flow or turbidity. The ten variables were 

taken from Great Lakes Monitoring (GLM) from the Illinois-Indiana Sea Grant (Great 

Lakes Monitoring, 2017). The Cyanobacterial Index (CI) data was gathered from NOAA 

and Stumpf (2016). Chl-a data was taken from GLM and EPA’s Great Lakes National 

Program Office (GLNPO). Two satellites were used: the Medium Resolution Imaging 

Spectrometer for 2002-2011 and the Moderate Resolution Imaging Spectroradiometer for 

2012-2015 (Stumpf, 2016). Ten-day composite images of the maximum CI at each map 

pixel were determined by using the satellite images to determine the total biomass for the 

ten-day periods from July 11th to October 31st (Stumpf, 2016). After collecting these 

ten-day CI values, the values were converted to the max value of the month as well as the 
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average of the CI values in each month. After finalizing all the possible inputs in Chapter 

II, through the Chapter II with statistical methods final inputs for all methods are 

selected. 

 

Table 3. Collected Predictors Variables for Western Lake Erie 

Variable Source 
Data 

Preiod 
Update 

Q Flow Rate (cfs) NCWQR 

Jan 1975 

Oct 2016 

Daily 

SS Suspended Solids (mg/L) NCWQR 

TP Total Phosphorus (mg/L) NCWQR 

SRP Soluble Reactive Phosphorus (mg/L) NCWQR 

TKN Total Kjeldahl Nitrogen (mg/L) NCWQR 

CL Chloride (mg/L) NCWQR 

Su Sulfate (mg/L) NCWQR 

Si Silica (mg/L) NCWQR 

Q River Discharge (cms) USGS 
Oct 1966 

Oct 2016 

TP Phosphorus Load (mg/L) GLM 
Jan 2001 

Jan 2017 
SRP Soluble Reactive Phosphorus (mg/L) GLM 

N Nitrogen Load (mg/L) GLM 

T Turbidity (NTU) GLM 
April 

1983 - 

August 

2012 

Each Apr 

and Aug 

 

Sporadic 

A Alkalinity (mg/L) GLM 

N-N Nitrite-Nitrate (mg/L) GLM 

TP Total Phosphorus (ug/L) GLM 

DO Dissolved Oxygen (mg/L) GLM 

Water Water Temperature (C) USGS January 

2001 - 

February 

2017 

 

Air Air Temperature (C) USGS Daily 

Wind Wind Speed (knots) USGS  
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Table 4. Collected Predictand Variables for Western Lake Erie 

Variable Source Data Period Update 

Chl-a Chlorophyll a (ug/L) GLM 
April 1983 - 

August 2012 

Each Apr 

and Aug 

Chl-a Chlorophyll a (ug/L) EPA GLNPO 
April 1999 - 

October 2011 
Sporadic 

CI Cyanobacteria Index NOAA 
Jul 2002 - October 

2015 
Each 10 days 

Mc Microcystin (ug/L) EPA GLNPO 
January 1977 - 

December 2012 
Sporadic 

2.3 Harmful Algal Bloom Modeling 

     Since the 1990s, machine learning has been used to solve many complicated problems 

in various fields. Machine learning is an area of computer science and a sub-area of 

artificial intelligence concentrating on theoretical foundations (Muttil & Chau, 2006). 

Machine learning, in general, contains algorithms that estimate dependency between a 

systems inputs and outputs while improving its performance automatically through a 

training period. These different methods are then able to predict outputs from given 

inputs. These techniques are ideally suited to model the HAB dynamics since such 

models can be set up rapidly and are known to be effective in handling dynamic, non-

linear and noisy data, especially when underlying physical relationships are not fully 

understood, or when the required input data needed to drive the process-based models are 

not available (Muttil & Chau, 2006). Three artificial intelligence algorithms are examined 

in this literature review: Artificial Neural Network (ANN), Stepwise Multiple Regression 

(SMR), and Genetic Programming (GP). The strengths of each algorithm were evaluate 

using three criteria as shown in Figure 3 (Kim, 2009): 

• Knowledge Engineering Function which is the process of acquiring knowledge and 

refining it to gain additional knowledge  
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• Problem solving such as scheduling and optimization  

• Classification & prediction  

 

 
Figure 3. Strengths of Each of the Three Algorithms for Three Major Tasks 

 

     As early as in 1997, Recknagel et al. (1997) demonstrated that ANN is capable of 

modeling the non-linear and complex algal growth phenomenon. Lee et al. (2003) found 

that the algal concentration in samples from Tolo Harbor is primarily dependent on their 

antecedent concentrations in the immediately preceding weeks, and this result was 

supported by interpretation of the neural network weights. 

 

2.3.1 Genetic Algorithm and Programming Method 

     The algal bloom phenomenon (particularly the red tide) has been widely reported and 

has become a serious environmental problem due to its adverse influence on aquatic life 

and on human health. The need for a better understanding of harmful algal bloom (HAB) 
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dynamics and the complex ecological processes involved in blooms is clearly evident 

from years of research (Lee and Qu, 2004). In spite of the extensive research that has 

already been undertaken, the causality and dynamics of algal blooms are not well-

understood, and the prediction of algal blooms remains a very difficult problem due to 

the extremely complicated ecological dynamics of these systems (Taranu, Gregory‐

Eaves, Steele, Beaulieu & Legendre, 2017). Thus, it is highly desirable to obtain 

mathematical models that can give some insight into the physical properties of this 

process while having the capability to predict the occurrence of algal blooms with an 

acceptable degree of accuracy and lead-time (Michalski, Carbonell & Mitchell, 2013). 

Machine learning has been used to explain many different complicated problems since 

the 1990s. Machine learning is an area of computer science and a sub-area of artificial 

intelligence concentrating on the theoretical foundations (Muttil, 2006). 

     Muttil & Chau (2006) reported that both ANN and GP correctly identified the 

ecologically significant variables and that long term algal growth can be predicted using 

only chlorophyll-a as an input. They also observed that, when the ‘maximum initial tree 

size’ and ‘maximum tree size’ are restricted to 45 and 20, respectively, the evolved 

equation contains only 4–8 variables, and thus, the equation is easy to interpret. 

     Whigham & Recknagel (1999) compared GP-evolved equations with ANN models to 

demonstrate the applicability of GP to nonlinear processes in natural systems such as 

freshwater systems. They concluded that the transparent nature of GP solutions may 

allow inferences about underlying processes to be made, and they highlighted issues with 

scaling data for machine learning and the difficulty involved with producing 

understandable models. 
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     Recknagel, Bobbin, Whigham, & Wilson (2002) compared the potential of ANN and 

GA in terms of prediction and understanding algal blooms in Lake Kasumigaura, Japan 

and found that models evolved by GA perform better than ANN models. Muttil & Lee 

(2007) studied modeling of algal bloom with GP to relate hydrometeorological and water 

quality data in Hong Kong. Final analysis of the results of GP models demonstrate that 

GP is cable of finding the connection between the natural auto-regressive of bloom peak 

time and dynamics and identifying the important input variables properly, in accordance 

with ecological reasoning. This study demonstrates that GP can be a practicable 

alternative to model the HABs with analytical system of the developed equations. 

     The use of GP in forecasting HABs is not without its advantages and disadvantages. 

One disadvantage of using the GP algorithm is that the user must decide a number of 

parameters before applying the algorithm to model the data, such as number of equations 

and number of calculation generations. The main advantage of GP is its ability to produce 

models that build a definitive formula or equation (Whitley, 2014). 

 

2.3.2 Stepwise Multiple Regression Method 

     SMR and principal components analysis have long been used to select descriptive 

variables for relating runoff to climate and watershed descriptors. Statistical prediction 

methods, on the other hand, rely on past historical data for prediction. Techniques such as 

regression analysis, time-series analysis and artificial intelligence analyze the historical 

dataset to forecast the algal bloom (Chang, Shen & Chen, 2004). 

     Many researchers used different methods to select the best variables and also find a fit 

model to predict a data set, commonly used methods include SMR and Linear Regression 
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(Heuvelmans, Muys & Feyen, 2006; Brandes, Hoffmann & Mangarillo, 2005; Barnett, 

Gray & Tootle, 2009; Gong, Wang, Condon, Shearman & Lall, 2010; Peña-Arancibia, J. 

L., Van Dijk, A. I. J. M., Mulligan, M., & Bruijnzeel, 2010). The main difference 

between for example conventional inventory-based models and the SMR method of 

modeling approach is that the SMR model is less complex and, such a model approach 

allows the simulation of different scenarios by varying the values of input variables. 

(Chen, Shi, Shu & Gao, 2013) 

     Common problems relating to the SMR model include its lower performance with 

respect to artificial intelligence techniques and its lack of ability to extend the response to 

non-central positions of explanatory variables (Ul-Saufie, Yahya, Ramli & Hamid, 2012; 

Sayegh, Munir & Habeebullah, 2014). However, it is still generally used due to its 

simplicity. 

     Thus, SMR has an advantage in avoid the collinearity, however, out of range events 

can be neglected. SMR is a type of multiple linear regression that can select the best-

fitted combination of predictor variables for predictand variable prediction with forward-

adding and backward deleting variables (Abdelmutalab, Assaleh & El-Tarhuni, 2016). 

The stepping procedure begins as an initial model definition, with a stepped forward 

addition of a variable to the previous model. The critical F value is then used to check the 

eligibility of the added variable (Sharma & Yu, 2015). With a new variable added, the 

previous variables in the model may lose their predictive ability. Thus, stepping criteria 

are used to check the significance of all the included variables. If the variable is 

insignificant, then the backward method is used to delete it. Forward adding and 

backward deleting are repeated until no variable is added or removed. The stepping 
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procedure is eliminated when the optimized model is established (Dudek, 2016; 

Darlington & Hayes, 2016; Faraway, 2016). 
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CHAPTER III 

METHODS AND MATERIALS 

 

     This chapter presents the potential predictor variables of HAB for both SMR and GP 

methods; the selection criteria of the input variables after the initial set of variables is 

narrowed down; and an overview of the forecasting models used in this study. 

3.1 Data Analysis Methods and Input Selection 

     The current study looked at structural models for forecasting HABs in Lake Erie. Both 

SMR and GP models need predictor variables as the inputs among the pre-selected 

variables presented in Chapter II (Tables 3 and 4). To determine the final important and 

effective variables, in the Chapter II the influence and importance on HABs for the 

variables was explored. In Lake Erie, the two key sources of nutrients for the HABs are 

nitrogen and phosphorous. Phosphorous considered as the critical nutrient which is 

required for metabolic reactions in plant life and in Lake Erie the limiting nutrient factor 

is nitrogen. Maumee River is the most significant river in the Maumee River watershed 

conveying all the nutrient to Western Lake Erie and thus the river discharge of Maumee 
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River directly related to amount of nutrient in Western Lake Erie. HABs are dependent 

on temperature also, and that’s why the algae bloom starts in June and July and there is 

no bloom in January and February. Western Lake Erie has the shallowest part of Lake 

Erie, thus air temperature effects the water temperature. Another important factor on 

HABs is wind speed and direction, which not only affects the intensity and mass of the 

HABs, but also can control where the HAB travels. Wind speed is not a resonator always, 

because the high wind speed can disrupt bloom growth. 

 

3.1.1 Bloom Loading Periods and Individual Correlations 

     First step is to find the best match for predictor variables among predictand variables. 

The study looked at chlorine (Chl-a) and found it not to be a good match, but CI had a 

good correlation with Q and nutrient such as phosphorous and nitrogen. All variables are 

calculated based on monthly average method, except total phosphorus which is total mass 

of each month, in this case bloom loading period is selected from March to June and 

average of this period is calculated and presents as a number which stands for each year 

from 2002 to 2011.  

     The Figure 4 presents the correlation between the representative predictor variables 

(Q, TP, and PM) against Chl-a, which all predictor variables are averaged for the loading 

period of March to June for each year from 2002 to 2011, and the Chl-a is the peak 

concentration of each month from 2002 to 2011. 

     Figure 4 indicates that there was an attempt to find the best correlation between all 

three variables against the peak Chl-a values. All the three coefficient of determination 

(R2) were lower than 0.2 which is not statistically significant. 
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Figure 4. Correlation of Peak Chl-a and Nutrient Contributing Variables Averaged from 

March to June (a) Q vs. Peak Chl-a, (b) TP vs. Peak Chl-a, (c) PM vs. Peak Chl-a 

 

     The next step is to evaluate the correlation of same variables against CI instead of Chl-

a. Figure 5 presents the correlation between those three predictor variables (Q, TP, and 

PM) against CI, which all predictor variables are averaged for the loading period (March 

to June) from 2002 to 2011, and the CI is the peak value of each month for from 2002 to 

2011. 

     As presented in Figure 5(a), Q and CI shows the highest correlation, and it explains 

that nutrient transport heavily relies on rainfall-runoff. The correlation between TP and 

CI is weaker than Q vs. CI, yet still statistically significant. This study thus included TP 

as a predictor variable. The high correlation of PM and CI shows that there can be 

periods of high concentration of TP but lower precipitation resulting in a lower amount of 
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total phosphorus load, which is PM, entering the Lake. This study selected CI as a final 

response variable as an output for both SMR and GP models because CI showed higher 

correlation with predictor variables than Chl-a. 

 

 

 
Figure 5. Correlation of Peak CI and Nutrient Contributing Variables Averaged from 

March to June (a) Q vs. Peak CI (b) TP vs. Peak CI (c) PM vs. Peak CI 

 

     Although phosphorus and nitrogen are the two main sources of nutrients for the HABs 

in Lake Erie, it is well known that phosphorus promotes bloom growth more, which is 

often the nutrient that there is less of in freshwater whereas nitrogen is the limiting 

nutrient factor in saltwater. The variables were analyzed and narrowed down to the eight 

predictors and one predictand variables based on the availability in the study area and 

correlation with CI (Table 3 and Figures 4 and 5) as presented in Table 5 and Table 6. 
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Table 5. List of Final Predictor Variables 

Variable (Unit) Source Method 

Q Flow Rate (cfs) NCWQR Monthly average 

TP Total Phosphorus (mg/L) NCWQR Monthly average 

PM Phosphorus Mass (ton) NCWQR Monthly total 

SRP Soluble Reactive Phosphorus (mg/L) NCWQR Monthly average 

TKN Total Kjeldahl Nitrogen (mg/L) NCWQR Monthly average 

Water Water Temperature (°C) USGS Monthly average 

Air Air Temperature (°C) USGS Monthly average 

Wind Wind Speed (knots) USGS Monthly average 

 

Table 6. Final Predictand Variable 

Variable (Unit) Source  

CI Cyanobacteria Index (1020 cells) NOAA Monthly average 

 

3.1.2 Spearman Rank Correlation Analysis 

     After selecting variables, various lengths of lag time and average period were used to 

compute predictor variables as an input to SMR and GP. For example, there is a delay in 

timing between Q and CI in Western Lake Erie (Figure 6). Many previous HAB studies 

revealed that nutrition features (i.e., both amount and timing) and seasonal water 

temperature are the most important watershed variables among many others that can 

substantially impact on HAB in a receiving waterbody. HAB is active and starts growing 

when the water temperature is over 25 °C (Indiana University, 2017). As the average 

water temperature of Western Lake is generally over 25 °C from July to October, another 

controlling factor should be the characteristics of nutrient loading. As discussed earlier, 

nutrition (Phosphorous and Nitrogen) is transported from the Maumee River basin during 

February to April or May and thus active growing of algal bloom bacteria is delayed 

(promoted) about 2 to 5 months until water temperature is amicable for HAB (Stumpf, 

2012). However, timing of nutrition application and rainfall-runoff in the watershed are 
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not in agreement and varies year by year resulting not clear trend in lag time for each 

HAB month. 

 

 
Figure 6. Observed CI and Monthly Q from 2002~2007 

 

     To consider this correlation, the Spearman rank correlation coefficient was used to 

determine the time to lag each variable was by analyzing the correlations between input 

variables and CI values. 

     First, various lag time and average period for all variables counted are presented in 

Table 7 for September as a demonstration to define the notations. Same methods were 

applied to July, August, and October. 

     Significant lag times and average periods were selected using the Spearman 

correlation coefficient that showed p-value less than 0.05. The selected variables are used 

as final inputs to both SMR and GP models. Through the analysis of individual 

correlations, the variables averaged over common time periods were eliminated to avoid 

multicollinearity. 
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Table 7. Various Lag Times and Average Periods for September 

Lag 

No. of 

months used 

in average 

Months used in calculation Lag and Period 
Subscript 

for variables 

1 1 Aug t-1 1,1 

2 1 Jul t-2 2,1 

3 1 Jun t-3 3,1 

4 1 May t-4 4,1 

5 1 Apr t-5 5,1 

6 1 Mar t-6 6,1 

1 2 Aug-Jul t-1,t-2 1,2 

2 2 Jul-Jun t-2,t-3 2,2 

3 2 Jun-May t-3,t-4 3,2 

4 2 May-Apr t-4,t-5 4,2 

5 2 Apr-Mar t-5,t-6 5,2 

1 3 Aug-Jul-Jun t-1,t-2,t-3 1,3 

2 3 Jul-Jun-May t-2,t-3,t-4 2,3 

3 3 Jun-May-Apr t-3,t-4,t-5 3,3 

4 3 May-Apr-March t-4,t-5,t-6 4,3 

1 4 Aug-Jul-Jun-May t-1,t-2,t-3,t-4 1,4 

2 4 Jul-Jun-May-Apr t-2,t-3,t-4,t-5 2,4 

3 4 Jun-May-Apr-March t-3,t-4,t-5,t-6 3,4 

1 5 Aug-Jul-Jun-May-Apr t-1,t-2,t-3,t-4,t-5 1,5 

2 5 Jul-Jun-May-Apr-March t-2,t-3,t-4,t-5,t-6 2,5 

1 6 Aug-Jul-Jun-May-Apr-March t-1,t-2,t-3,t-4,t-5,t-6 1,6 

 

     Spearman method calculates ρ presented in Eq. (1) and then transforms ρ into a p-

value by using exact permutation distributions. After transforming, the predictor variables 

with p-values less than 0.05, can represent high importance frequently in statistical 

analyses. 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
                                                                                                                        (1) 

where 𝜌 is Spearman rank correlation coefficient, 𝑑𝑖 is difference in ranks between 

corresponding x and y variables, and 𝑛 is total number of values in the data set. Two 

training periods from 2002 to 2011 and 2002 to 2014 were considered for Spearman 

method. Spearman method considered three hundred and thirty-six different 
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combinations of averaging and lag periods and all p-values calculated for the predictor 

variables separately for each bloom month for two training periods of 2002-2011 and 

2002-2014. 

     After applying Spearman selection method, the selected variables with significant 

overlapped period were removed in order to reduce bias in the both SMR and GP models. 

When two sets of variables share longer than two-third of their average period, the 

shorter variable set is removed from the final set of inputs. For instance, if PM from 

March to June was selected from Spearman method, it would be removed if PM from 

February to July was also selected by Spearman method. The result of this step reduced 

the total number of variables and presents the finalized inputs for both models for each 

training period of 2002 to 2011 and 2002 to 2014. The final selection of input variables 

from the Spearman rank correlation analysis are shown in Table 8.  
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Table 8. Final Selected Inputs for SMR and GP Models by Spearman for Both Training 

Periods 

Month Jul Aug Sep Oct 

Training 

period 
(02-11) (02-14) (02-11) (02-14) (02-11) (02-14) (02-11) (02-14) 

Q 

Q5,1* 

Q4,2 

Q3,3 

Q1,6 

Q3,1 

Q4,1 

Q6,1 

Q2,2* 

Q3,2 

Q1,5 

Q5,1 

Q4,2 

Q1,6 

Q5,1* 

Q4,2* 

Q1,6* 

Q3,1 

Q6,1 

Q3,3 

Q1,6* 

Q3,1* 

Q6,1 

Q3,3 

Q1,6 

Q5,2 

Q1,6* 

Q5,2 

Q1,6 

TP 
TP1,5 TP3,1 

TP1,5 

  TP3,4*  TP1,6* TP1,6 

PM 

PM3,1 

PM4,1 

PM6,1 

PM2,2 

PM1,5* 

PM3,1* 

PM2,2 

PM3,2 

PM1,5 

PM5,1 

PM1,6* 

PM5,1* 

PM4,2* 

PM1,6 

PM3,1 

PM3,3 

PM1,6* 

PM3,3* 

PM1,6 

PM5,2 

PM1,6 

 

PM5,2* 

PM1,6* 

SRP 
  SRP6,1 

SRP5,2 

     

TKN 

TKN5,2 

TKN3,3 

TKN4,3 

TKN1,6* 

TKN5,2 

TKN2,3 

TKN1,6* 

TKN1,6*  TKN1,1* 

TKN3,4* 

TKN3,4* TKN1,2 

TKN4,2 

 

Water 

Water3,4 Water3,4 Water2,1 

Water1,2 

Water2,2 

Water1,3* 

Water1,6* 

Water2,1     

Air 
      Air3,2 

Air3,4 

Air3,4 

Wind 
      Wind3,2 

Wind1,4* 

Wind3,2* 

Wind1,4* 

Note) Italicized and * marked variables were selected by SMR and GP, respectively. 

3.2 Stepwise Multiple Regression Model 

     In the first prediction model, SMR was used to create a linear model that relates the 

predictor variables of the system linearly to a single predictand variable using Eq. (2) 

(Kalogirou & Sencan, 2010). 
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𝐶𝐼 = 𝛽0 + (𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑛𝑋𝑛) + (𝛽𝑛+1𝑋1𝑋2 + ⋯+ 𝛽𝑚𝑋𝑛−1𝑋𝑛)

+ (𝛽𝑚+1𝑋1𝑋2𝑋3 + ⋯ ) + ⋯ + 𝛽𝑘𝑋1𝑋2 … 𝑋𝑛                                                (2) 

where CI is the predictand variable, 𝑋𝑖 represents a predictor variable, and 𝛽𝑖 is the 

counterweight value of the predictor variables. A coefficient 𝛽𝑖 measures the effect of 

each predictor variable taking into account the effect of all predictor variables in the 

model and it is calculated by the least squared error method. The regression coefficient 

for the i th predictor variable is the expected change in the predictand variable per unit 

change in the i th variable provided that all the other predictor variables are kept constant 

(Ramsami & Oree, 2015). 

     SMR is a modification of the forward collection so that after each phase in which a 

variable was selected, all considered variables in the model are analyzed to see if their 

significance has been decreased below the specified tolerance level. If a non-significant 

variable recognized by the model, SMR removes the founded variable from the model. 

SMR requires two significance levels: one for selecting variables and one for deselecting 

variables. To avoid an infinite loop of adding and removing in the procedure, the cutoff 

probability for deselecting variables should be greater than the cutoff probability for 

selecting variables. 

     In this study, the selection technique starts with unfilled set of predictors in the model. 

In each phase, it adds the predictor variable with the lowest p-value until there is no 

variables having p-value less than 0.05, the entrance tolerance. Then the exclusion 

technique is activated which eliminates from the model the variables with the largest p-

value, if it is greater than 0.1, the exit tolerance. The selection and removal procedures 



35 
 

are repeated consecutively until there is no variable for elimination. Those processes 

were performed using the function ‘stepwiselm’ built in Matlab. 

3.3 Genetic Programming Model 

     An evolutionary or genetic algorithm applies the ideologies of development found in 

nature to the problem of finding an optimal answer to a Solver problem. In a genetic 

algorithm, the problem is encoded in a series of bit strings that are operated by the 

algorithm; in an evolutionary algorithm, the problem functions and decision variables are 

used directly. Most commercial Solver products are based on Genetic Algorithms. 

     Rather than working on bit strings GP works on analyze trees, which GA use them to 

in a symbolic form estimate the equation that best defines how the output, which is the 

predicted variable in this paper, relates to the input variables, which are the predictors. 

The procedure considers a primary population of randomly generated equations, derived 

from the random combination of the given random numbers, pre-selected functions, and 

also given predictor variables as inputs. The pre-selected functions include arithmetic 

operators such as: plus, minus, multiply, divide, and power, mathematical operators such 

as: sin, cos, exp, and log, and transferring functions. Although preselection enables the 

GP simulation fast, functions must be properly selected based on reasonable 

understanding of the process. The population of potential answers is then subjected to an 

evolutionary process, and a measure of how well they solve the problem, the fitness, of 

the advanced programs are calculated. Finally, from the initial population, individual 

generated formulas are selected based on the fit to the target variables for a next iteration. 

     User must choose a number of GP limits before applying the algorithm to generate the 

formulas, such as generations’ population number and size as well as crossover and 
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mutation probability. The generated formula that fit the outputs less well are rejected. 

This development procedure is repeated over successive generations and is driven 

towards finding symbolic expressions describing the outputs, which can be scientifically 

interpreted to derive knowledge about the process being modeled. This study used 

Discipulus 5.2 (Francone, 1998) to build optimal GP models for HAB months in Western 

Lake Erie. 

     The generated formula performance is internally evaluated using two methods to 

measure the error and correlation, the root-mean-square-error (RMSE) and the correlation 

coefficient (CC) as defined in Eqs. (3) and (4). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑[(𝑋𝑚)𝑖 − (𝑋𝑠)𝑖]

2

𝑛

𝑖=1

                                                                                            (3) 

𝐶𝐶 = ∑
[(𝑋𝑚)𝑖 − (𝑋𝑚

̅̅ ̅̅ )][(𝑋𝑠)𝑖 − (𝑋𝑠
̅̅ ̅)]

√∑ [(𝑋𝑚)𝑖 − (𝑋𝑚
̅̅ ̅̅ )𝑖]

2𝑛
𝑖=1 √∑ [(𝑋𝑚)𝑖 − (𝑋𝑠

̅̅ ̅)𝑖]
2𝑛

𝑖=1

𝑛

𝑖=1

                                         (4) 

where 𝑋 is any variable that is being forecasted; the subscripts 𝑚 and 𝑠 represent the 

measured and simulated values; the average value of the associated variable is 

represented by ‘bar’ above the variable; and 𝑛 is the total number of training records. 

     To select the best model among the all generated models by GP, the process approved 

in this study is described as follow: 

Step 1. Identification of the maximum and minimum value of CI in the time series. 

Step 2. Separation of the time series into two groups: (i) for training the GP model in a 

specified range of CI and (ii) validating the GP model outside this range i.e., for values of 

CI close to its low and high extremes. 
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Step 3. The GP is trained with those input vectors that does not contain intermediate 

values of CI to avoid overlap. 

Step 4. The GP-evolved models for each experiment are validated separately for the 

values that are close to the low and high extremes. This is done to test how various 

models perform for CI values that are extrapolated outside of the training range of CI. 

Step 5. From the models obtained in Step 4 above, the best models with almost equal 

error measures are selected. These are then analyzed to determine their meaningfulness in 

explaining the physical aspects of the process. 

Step 6. The best model obtained from Step 5 above is subjected to sensitivity analysis to 

identify the significance of the input variables. 

     GP is carried out for multiple runs using different factors including mutation rate, 

crossover rate, number of generations, population size, etc., which are adjusted by trial 

and error and are presented in Table 9 (Sivapragasam, 2010). 

 

Table 9. Parameter Values Used in GP Runs for Discipulus 

GP Parameter value 

Population size 500 

Maximum equation size 50 

Crossover rate 0.96 

Mutation rate 0.05 

Elitism used Yes 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Stepwise Multiple Regression Model 

     SMR generated different formulas for individual months using the predictor variables 

selected by the Spearman test, which are Q, TP, PM, SRP, TKN, Water, Air and Wind for 

various lag time and average period. For each month two different training periods were 

used; rom 2002 to 2011 training period to predict HABs of 2012 to 2015 and from 2002 

to 2014 training period to predict 2015 HABs. Figures 7 to 10 present the former and 

latter results. 

     A SMR CI prediction model for July was trained for 2002-2011 and presented in 

Table 10 - Eq. (5). Five variables were automatically selected, which are 𝑄5,1, 𝑇𝐾𝑁5,2, 

 𝑇𝐾𝑁3,3, 𝑇𝐾𝑁4,3, and 𝑇𝐾𝑁1,6. The variables with higher importance than other variables 

in CI prediction for July are discharge (Q) and nitrogen concentration (TKN) in Western 

Lake Erie. Based on the training period of 2002 to 2011 in SMR, Q in February and TKN 

inflowed during June to January are correlated with the July CI values significantly. Eq. 
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(6) also presents CI prediction model for July for extended training period of 2002-2014. 

Selected variables in Eq. (6) are 𝑄6,1, 𝑇𝑃1,5, 𝑃𝑀3,1, 𝑃𝑀2,2, 𝑃𝑀3,2, and 𝑃𝑀1,5. The 

variables with more effects on CI prediction for July are discharge (Q), phosphorous 

concentration (TP), and total phosphorous mass (PM) in Western Lake Erie. With longer 

training period, nitrogen concentration lost its effects on CI prediction; however, 

phosphorous shows more affectivity in Eq. (6) than Eq. (5). Extending the training period 

shows that, Q in January has more effect than February, and phosphorous inflowed 

during June to February is correlated with July CI values meaningfully; However, PM in 

April has the highest effect on CI predicted for July 2015. 

 

Table 10. SMR Prediction Model for Two Different Training Periods 

Target 

Month 

Training 

Period 
Equation Eq. No. 

July 

2002~2011 
 

(5) 

2002~2014 
 

(6) 

Aug. 

2002~2011 
 

(7) 

2002~2014 
 

(8) 

Sep. 

2002~2011 
 

(9) 

2002~2014 
 

(10) 

Oct. 
2002~2011 

 
(11) 

2002~2014 
 

(12) 

 

     Training and prediction results are shown in Figure 7. Overall, the training 

performance in Table 11, shows R2 = 0.99 for both 2002-2011 and 2002-2014 training 

periods. Predicted CI values for 2012 to 2014 are very close to the observed CI values. 

−47.002 + 0.0024921 𝑄5,1 − 165.74 𝑇𝐾𝑁5,2 + 1.3122 𝑇𝐾𝑁3,3 

+159.28 𝑇𝐾𝑁4,3 + 46.463 𝑇𝐾𝑁1,6 + 6.4971 𝑇𝐾𝑁5,2𝑇𝐾𝑁3,3 

+102.32 𝑇𝐾𝑁5,2𝑇𝐾𝑁1,6 − 116.75 𝑇𝐾𝑁4,3𝑇𝐾𝑁1,6 

16.92 − 0.00065632 𝑄6,1 − 98.88 𝑇𝑃1,5 − 0.062375 𝑃𝑀3,1 + 0.041184 𝑃𝑀2,2 

−0.028678 𝑃𝑀3,2 + 0.065138 𝑃𝑀1,5 + 0.22066 𝑇𝑃1,5𝑃𝑀3,1 + 0.016089 𝑇𝑃1,5𝑃𝑀3,2 

−4.7082 × 10−5 𝑃𝑀3,1𝑃𝑀3,2 + 0.00018153𝑃𝑀2,2𝑃𝑀3,2 − 0.00028966𝑃𝑀2,2𝑃𝑀1,5 

−2.5522 − 0.009642 𝑄4,2 + 0.024167 𝑄1,6 + 0.020692 𝑃𝑀5,1 

−0.057463 𝑃𝑀1,6 + 4.3077 × 10−5 𝑄4,2𝑃𝑀1,6 − 3.06 × 10−5 𝑄1,6𝑃𝑀5,1 

33.15 + 0.010711 𝑄1,6 + 0.19691 𝑃𝑀5,1 − 0.37351 𝑃𝑀4,2 − 0.044604 𝑃𝑀1,6 

−1.7113 𝑊𝑎𝑡𝑒𝑟2,1 − 0.00012461 𝑃𝑀5,1𝑃𝑀1,6 − 0.0091984 𝑃𝑀5,1𝑊𝑎𝑡𝑒𝑟2,1 

+0.0002285 𝑃𝑀4,2𝑃𝑀1,6 

2.7139 + 0.00033942 𝑄6,1 − 0.015274 𝑄3,3 + 0.013085 𝑄1,6 

+4.9469 𝑇𝐾𝑁1,1 − 67.17 𝑇𝐾𝑁3,4 + 0.1471 𝑄3,3𝑇𝐾𝑁1,1 

+0.12714 𝑄3,3𝑇𝐾𝑁3,4 − 0.19429 𝑄1,6𝑇𝐾𝑁1,1 

−44.173 − 0.0030401𝑄3,1 − 0.4514𝑄1,6 − 0.24826𝑃𝑀3,3 + 1.8759𝑃𝑀1,6 

+31.146𝑇𝐾𝑁3,4 + 0.31372𝑄1,6𝑇𝐾𝑁3,4 + 0.0001405𝑃𝑀3,3𝑃𝑀1,6 

+0.1506𝑃𝑀3,3𝑇𝐾𝑁3,4 − 1.2922 𝑃𝑀1,6𝑇𝐾𝑁3,4 

74.965 + 0.0088𝑄5,2 − 0.46538𝑇𝑃1,6 + 0.17332𝑃𝑀5,2 − 5.2045𝑃𝑀1,6 

−13.25 𝑊𝑖𝑛𝑑3,2 + 0.073485 𝑇𝑃1,6𝑊𝑖𝑛𝑑3,2 − 0.02632 𝑃𝑀5,2𝑊𝑖𝑛𝑑3,2 

+0.92584𝑃𝑀1,6𝑊𝑖𝑛𝑑3,2 

−313.53 − 0.31369 𝑃𝑀1,6 + 1.3896 𝐴𝑖𝑟3,4 + 44.044 𝑊𝑖𝑛𝑑3,2 + 63.344 𝑊𝑖𝑛𝑑1,4 

+0.12524 𝑃𝑀1,6𝑊𝑖𝑛𝑑3,2 − 0.078379 𝑃𝑀1,6𝑊𝑖𝑛𝑑1,4 − 9.7783 𝑊𝑖𝑛𝑑3,2𝑊𝑖𝑛𝑑1,4 
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However, the 2015 CI value is much underestimated because such high CI values have 

not included in the training period of July. This issue may be considered as one of 

weakness of data-driven models trained for a short period that may not include both high 

and low limit of observations; however, July CI predicted for 2015 with extended training 

period is more accurate than July CI prediction with shorter training Period. Based on 

Table 11, accuracy of the final SMR model for July increased significantly from R2 = 

0.52 with shorter training period to R2 = 0.98 with extended training period. 

 

Table 11. R2 Values of SMR Models Trained for Two Different Training Periods 

Target 

Month 

Training R2 Whole Model R2 

Training Period Training Period 

2002~2011 2002~2014 2002~2011 2002~2014 

July 0.99 0.99 0.52 0.98 

Aug. 0.99 0.98 0.91 0.53 

Sep. 0.99 0.98 0.79 0.74 

Oct. 0.99 0.99 0.95 0.94 

 

     Figure 7(a), shows the over-fitting of the model, because R2 in training period is 0.99, 

but R2 for whole model is 0.52. Over-fitting may be considered as one of weakness of 

data-driven models trained for a short period. Table 12 presents the observed CI and 

estimated CI for 2015, which shows July CI 2015 with longer training period is more 

accurate than July CI 2015 with shorter training period. Based on Table 11, the SMR 

model for August does not present an accurate formula, regarding lower accuracy in short 

training period than extended training period. 
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Figure 7. SMR Results for July Prediction with Training Period of (a) 2002~2011 and (b) 

2002~2014 

 

Table 12. 2015 CI Values Predicted by SMR Trained for Two Different Training Periods. 

Target 

Month 
CI2015 

Training Period 

2002~2011 2002~2014 

July 13.94 0.45 11.71 

Aug. 29.2 18.60 4.56 

Sep. 16.95 37.80 4.22 

Oct. 7.07 9.32 12.30 

 

     A SMR CI prediction model for August was trained for 2002-2011 and presented in 

Table 10 - Eq. (7). Five variables were automatically selected, which are 𝑄4,2, 𝑄1,6, 

𝑃𝑀5,1, and 𝑃𝑀1,6. The variables with higher significance than other variables in CI 

prediction for August are discharge (Q) and PM in Western Lake Erie. Based on the 

training period of 2002 to 2011 in SMR, Q in March and PM amount in April and March 

are correlated with the August CI values significantly; however, Q and PM in July to 

February have a meaningful correlation. Eq. (8) also displays CI prediction model for 

August for extended training period of 2002-2014. Selected variables in Eq. (8) are 𝑄6,1, 

𝑃𝑀5,1, 𝑃𝑀4,2, 𝑃𝑀1,6, and 𝑊𝑎𝑡𝑒𝑟2,1. The variables with more effects on CI prediction for 

August are discharge (Q), PM like Eq. (7), and water temperature (Water) in Western 

Lake Erie. Longer training period shows that water physical characters will get involved 
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with CI prediction in long-term period. Extending the training period shows that, Q in 

February, phosphorous total mass amount in July to February, and finally water 

temperature in May and April is correlated with August CI values meaningfully; 

However, PM in March has the highest effect on CI predicted for August 2015. 

     Training and prediction results of August are shown in Figure 8. Overall, the training 

performance in Table 11, shows R2 = 0.99 for 2002-2011 training period and R2 = 0.98 

for 2002-2014 training period, implying the training no longer improves under current 

training data set up to 2014. Predicted August CI values for 2012 and 2014 is very close 

to the observed CI values. However, the 2013 and 2015 August CI values are 

underestimated in training period 2002-2011 and 2002-2014, respectively. CI predicted 

for 2015 with extended training period does not show improvement compared to shorter 

training period (Figure 8(b) and Table 12). It is assumed that the HAB in August 2015 is 

a unique event that is hard to represent under given data set because R2 in training period 

is 0.98 and it deteriorates to 0.53 for all period.  

 

 
Figure 8. SMR Results for August Prediction with Training Period of (a) 2002~2011 and 

(b) 2002~2014 
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     A SMR CI prediction model for September was trained for 2002-2011 and presented 

in Table 10 - Eq. (9). Five variables were automatically selected, which are 𝑄6,1, 𝑄3,3, 

𝑄1,6, 𝑇𝐾𝑁1,1, and 𝑇𝐾𝑁3,4. The variables with higher significance than other variables in 

CI prediction for September are Q and TKN in Western Lake Erie. Based on the training 

period of 2002 to 2011 in SMR, Q and TKN inflowed in June to March is correlated with 

the September CI significantly; however, August Q and TKN is correlated to September 

CI meaningfully. Eq. (10) also displays CI prediction model for September for extended 

training period of 2002-2014. Selected variables in Eq. (10) are 𝑄3,1, 𝑄1,6, 𝑃𝑀3,3, 𝑃𝑀1,6, 

and 𝑇𝐾𝑁3,4. The variables with more impacts on CI prediction for August are Q, PM, and 

TKN. Longer training period shows that phosphorous is another variable to predict 

September CI value. Extending the training period shows that, Q in June and PM from 

June to April are correlated with September CI values significantly; however, Q and PM 

in August and July and TKN in June to March has a meaningful correlation with 

September CI. 

     Training and prediction results of September are shown in Figure 9. Overall, the 

training performance in Table 11 shows R2 = 0.99 for 2002-2011 training period and R2 = 

0.98 for 2002-2014. Similar to August, training does not improve significantly by adding 

three more training data (i.e., observations). In Figure 9(a), September CI in all years 

except 2013 shows over-estimation in prediction period. In Figure 9(b), September CI 

2015 is much underestimated even with longer training period. This observation is 

consistent with August 2015, which is hard to detect the consistent mechanism of HAB 

occurred in 2015. 
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Figure 9. SMR Results for September Prediction with Training Period of (a) 2002~2011 

and (b) 2002~2014 

 

     A SMR CI prediction model for October was trained for 2002-2011 and presented in 

Table 10 - Eq. (11). Five variables were automatically selected, which are 𝑄5,2, 𝑇𝑃1,6, 

𝑃𝑀5,2, 𝑃𝑀1,6, and 𝑊𝑖𝑛𝑑3,2. The variables with higher importance than other variables in 

CI prediction for October are Q, TKN, TP, PM, and Wind. Based on the training period of 

2002 to 2011 in SMR, Q in April and May, TP and PM in September to April, and Wind 

speed in July and June are correlated with the October CI values meaningfully. Eq. (12) 

also presents CI prediction model for October for extended training period of 2002-2014. 

Selected variables in Eq. (12) are 𝑃𝑀1,6, 𝐴𝑖𝑟3,4, 𝑊𝑖𝑛𝑑3,2, and 𝑊𝑖𝑛𝑑1,4. With longer 

training period, physical characteristics of Lake Erie involved more variables such as 

wind speed and air temperature; however, discharge has indirect effect on October CI 

because PM includes discharge in its calculation. Extending the training period shows 

that, PM in September to April, air temperature of July to April, wind speed during 

September to June is correlated with October CI values significantly. 

     Training and prediction results of October are shown in Figure 10. Overall, the 

training performance in Table 11 shows R2 = 0.99 for both 2002-2011 and 2002-2014 

training period. SMR model in October is more accurate than previous months, the 
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accuracy for the whole period is R2 = 0.95 for both training periods. However, October 

CI for 2013 is significantly underestimated in short training period, while October CI for 

2012 is overestimated compared to longer training period. This inconsistent observation 

in particular months is still in question to analyze clearly when longer observations (e.g., 

more than 30 years) are available to train the model and will explain this issue better in 

the future. Interestingly, October CI 2015 is predicted in more acceptable and consistent 

accuracy in both training period than other months. 

 

 
Figure 10. SMR Results for October Prediction with Training Period of (a) 2002~2011 

and (b) 2002~2014 

 

     The individual SMR models trained for the two training periods are aggregated in 

Figure 11 to present the overall performanc of the SMR models. R2 values for the training 

are 0.99 and 0.98 for the period of 2002-2011 and 2002-2014, respsectively. R2 values for 

the whole prediciton model are 0.78 and 0.80, respectively.  
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Figure 11. Comparison Between Observed and Predicted Results of SMR (a) Training 

Period of 2002~2011 and (b) Training Period of 2002~2014 

 

     The SMR model when trained up to 2011 (Figure 11(a)) is able to forecast the lower 

magnitude blooms well. However, the model had most of the predictions underpredicted 

for the higher magnitude blooms. When increasing the training period to 2014, the new 

SMR model is able to forecast the low magnitude blooms well and is able to forecast the 

higher magnitude blooms better when compared to the shorter training period. 

     Table 13 summarizes the selected variables by SMR models for each month. 

Commonly, discharge (Q) was selected in all HAB months except October with 2002-

2014 training period. Then, nutrient and other climatic variables were selected as 

predictors by SMR automatically while air temperature and wind speed affect only 

October HAB events. This remains as future analysis when more solid evidences are 

available. It should be noted that the SMR model can be substantially improved when 

trained for a wide range of target values. 
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Table 13. SMR Variable Used for Both Training Periods 

 July August September October 

Variable (02-11) (02-14) (02-11) (02-14) (02-11) (02-14) (02-11) (02-14) 

Q × × × × × × ×  
TP  ×     ×  
PM  × × ×  × × × 
SRP         
TKN ×    × ×   
Water    ×     

Air        × 
Wind       × × 

NOTE: Empty boxes represent variables that were not considered. 

4.2 Genetic Programming Model 

     GP generates optimal prediction models (i.e., formulas) for individual months using 

all Spearman-selected inputs. Similar to SMR, for each month two different training 

period were used; from 2002 to 2011 and from 2002 to 2014. Prediction was made up to 

2015. GP generated about 20 different formulas at each run for each month that show 

equal performance of training. Generated formulas are highly nonlinear and hard to 

explain in physical sense because GP finds “optimal numerical solution” disregarding 

physical mechanism of HABs. Table 14 presents the optimal formulas for HAB 

prediction generated by GP based on both short and long training periods.  
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Table 14. GP Prediction Model for Two Different Training Periods 

Target 

Month 

Training 

Period 
Equation Eq. No. 

July 

2002~2011 

 

(13) 

2002~2014 

 

(14) 

Aug. 

2002~2011 

 

(15) 

2002~2014 

 

(16) 

Sep. 

2002~2011 

 

(17) 

2002~2014 
 

(18) 

Oct. 

2002~2011 
 

(19) 

2002~2014 

 

(20) 

 

     The July CI prediction model trained for 2002-2011 is expressed in Table 14 - Eq. 

(13) showing 𝑄5,1, 𝑇𝐾𝑁1,6, and 𝑃𝑀1,5 were selected as predictors. These variables are Q 

of February, TKN averaged from June to January, and PM averaged from June to 

February in Western Lake Erie. Compared to the SMR July model, Q5,1 is commonly 

selected and TKN during April to January was commonly included. Eq. (14) also presents 

CI prediction model for July with extended training period of 2002-2014. Selected 
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variables in Eq. (14) are 𝑄2,2, 𝑇𝐾𝑁1,6, and 𝑃𝑀3,1. The variables with more effects on CI 

prediction for July are Q, PM, and TKN. With longer training period, TKN of same lag 

time and average period is selected by GP with different lag time and average period of Q 

and PM. Commonly, Q, PM, and TKN are the key factors for July HAB prediction in 

both training periods. Extending the training period shows that, PM in April, Q of May 

and April, and TKN inflowed during June to January are correlated with July CI values 

significantly. 

     Training and prediction results of July are shown in Figure 12. In Table 15, R2 for 

training period is 0.60 and predicted CI values for 2012 to 2014 are very close to the 

observed, except 2015, similar to the July SMR model. As GP could not train the model 

using 2002-2012 target values for the very high CI value observed in 2015, it is 

underestimated but superior than SMR result. This issue may be considered as one of 

weakness point of machine learning modeling, which cannot find an exact relationship 

between inputs and outputs while the output is unpredictably out of the regular range. R2 

for all period is 0.98 showing reasonable prediction performance. Extending the training 

period increases the R2 from 0.60 to 0.64 (Table 6). 

 

Table 15. R2 Values of GP Models Trained for Two Different Training Periods 

Target 

Month 

Training R2 Whole Model R2 

Training Period Training Period 

2002~2011 2002~2014 2002~2011 2002~2014 

July 0.596 0.640 0.981 0.983 

Aug. 0.993 0.982 0.412 0.923 

Sep. 0.983 0.959 0.915 0.973 

Oct. 0.998 0.996 0.986 0.996 
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Figure 12. GP Results for July Prediction with Training Period of (a) 2002~2011 and (b) 

2002~2014 

 

     As presented in Table 15 clearly, accuracy of the model for both training part and 

whole prediction generally increases with extending the training period. R2 is increased 

from 0.60 to 0.98 in training period, and the whole model accuracy also is increased from 

0.64 to 0.98. The results in Table 16, shows that July CI predicted for 2015 with longer 

training period is closer to observed July CI than July CI predicted with short training 

period. The final R2 values of both periods are similar indicating the training is consistent 

and not overfitted. 

 

Table 16. 2015 CI Values Predicted by GP Trained for Two Different Training Periods 

Target 

Month 
CI2015 

Training Period 

2002~2011 2002~2014 

July 13.94 7.80 10.32 

Aug. 29.20 2.70 16.86 

Sep. 16.95 12.61 15.18 

Oct. 7.07 3.21 7.42 

 

     The August CI prediction model trained for 2002-2011 is expressed in Table 14 - Eq. 

(15) showing 𝑊𝑎𝑡𝑒𝑟1,6, 𝑊𝑎𝑡𝑒𝑟1,3, 𝑃𝑀1,6, and 𝑇𝐾𝑁1,6 were selected as predictors. These 

variables are PM of July to February, TKN averaged from July to February, and Water 
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averaged from July to February in Western Lake Erie. It is interesting that Water shows a 

higher correlation with August CI than other months. Compared to the SMR August 

model, PM1,6 is commonly selected and TKN and Water never selected by SMR which 

presents water physical characteristics has more effect on GP modeling than SMR. Eq. 

(16) also presents CI prediction model for July with extended training period of 2002-

2014. Selected variables in Eq. (16) are 𝑄5,1, 𝑄4,2, 𝑄1,6, 𝑃𝑀5,1and 𝑃𝑀4,2. The variables 

with more effects on CI prediction for August are Q and PM. With longer training period 

phosphorous and discharge became the two key factors of GP model for August. 

Extending the training period shows that, PM in March and April, and discharge rate 

during July to February are correlated with August CI values meaningfully; however, PM 

and Q in March are significant. 

      Training and prediction results of August are shown in Figure 13. In Table 15, R2 for 

training period is 0.99 and predicted CI values for 2012 to 2014 are very close to the 

observed except 2015, similar to the August SMR model that underestimates 2015. R2 for 

whole August GP model is 0.41, which is very lower than 0.99 showing an over-fitting. 

This issue may be considered as one of weakness point of machine learning modeling 

that tends to find overfitted relationship between inputs and outputs when training period 

is short. However, extending the training period increases the R2 value 0.41 to 0.92 for 

the whole period dramatically. For August 2015 prediction (Table 16), longer training 

period predict better than shorter training period, which can be improved more with more 

observed data in the future. 
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Figure 13. GP Results for August Prediction with Training Period of (a) 2002~2011 and 

(b) 2002~2014 

 

     The September CI prediction model trained for 2002-2011 is expressed in Table 14 - 

Eq. (17) showing 𝑄1,6, 𝑇𝑃3,4, 𝑃𝑀1,6, 𝑇𝐾𝑁1,1, and 𝑇𝐾𝑁3,4 were selected as predictors. 

These variables are Q, TP and PM of August to March, and TKN averaged from June to 

March and August. It is notable that TP averaged of June to March shows a higher 

correlation with September CI than other months. Compared to the SMR September 

model, Q1,6, TKN1,1, TKN3,4 are commonly selected; however, both GP and SMR do not 

select any water-related physical characteristics. Eq. (18) also presents the CI prediction 

model for September with extended training period of 2002-2014. Selected variables in 

Eq. (18) are 𝑄3,1, 𝑃𝑀3,3, and 𝑇𝐾𝑁3,4. For September CI prediction, GP commonly 

selected Q, PM, and TKN.  With longer training period 𝑇𝐾𝑁3,4 selected again, which 

illustrates that nitrogen is one of key factors of the September HAB model trained by GP. 

      Training and prediction results of September are shown in Figure 14. In Table 15, R2 

for training period of 2002-2011 is 0.98 and predicted CI values for 2012 to 2015 are 

very close to the observed in which SMR was not able to predict such accurately. R2 for 

whole September GP model is 0.91 which shows there is no over fitting issue in this 

model again. Extending the training period increases the R2 value from 0.91 to 0.97 for 
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whole model. The results in Table 16 shows that September CI predicted for 2015 with 

longer training period is closer to observed CI than the predicted CI by shorter training 

period. 

 

 
Figure 14. GP Results for September Prediction with Training Period of (a) 2002~2011 

and (b) 2002~2014 

 

     The October CI prediction model trained for 2002-2011 is expressed in Table 14 - Eq. 

(19) showing 𝑄1,6, 𝑇𝑃1,6, and 𝑤𝑖𝑛𝑑1,4 were selected as predictors. These variables are Q 

and TP of September to April, and wind averaged from June to September. Compared to 

the SMR of October, TP1,6 is commonly selected and wind in July and June is also 

selected. Eq. (20) also presents CI prediction model for October with extended training 

period of 2002-2014. Selected variables in Eq. (20) are 𝑃𝑀1,6, 𝑃𝑀5,2, 𝑤𝑖𝑛𝑑1,4, and 

𝑤𝑖𝑛𝑑3,2. It is noted that PM is selected instead of Q and TP. It is logical that the product 

of Q and TP results in PM mathematically, implying that GP finds an equiprobable set of 

predictor variables. Extending the training period shows that PM in September to April, 

and wind speed in September to June are correlated with October CI values significantly 

along with extra variables PM averaged for May to April and wind speed averaged for 

July and June. 
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      Training and prediction results of October are shown in Figure 15. In Table 15, R2 for 

training period of 2002-2011 is 0.99 and predicted CI values for 2012 to 2015 are very 

close to the observed, in which SMR overestimated 2015. R2 for the whole period is 0.98 

in shorter training period and improves to 0.99 when trained for longer training period 

(Table 15). 

 

 
Figure 15. GP Results for October Prediction with Training Period of (a) 2002~2011 and 

(b) 2002~2014 

 

     The individual GP models trained for the two training periods are aggregated in Figure 

16 to present the overall performanc of the SMR models. R2 values for the training are 

0.98 and 0.99 for the period of 2002-2011 and 2002-2014, respsectively. R2 values for the 

whole prediciton period are 0.80 and 0.96, respectively. 

     The GP model when trained up to 2014 is able to forecast the blooms very well except 

July 2015 that exceed the range of the training data. This untrained data has been better 

predicted by GP than SMR because GP is capable of detecting highly nonlinear process 

hidden in data. 
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Figure 16. Comparison Between Observed and Predicted Results of GP with (a) Training 

Period of 2002~2011 and (b) Training Period of 2002~2014 

 

     Table 17 summarizes the selected variables by GP models for each month. 

Commonly, Q was selected in all HAB months except August with 2002-2011 training 

period and October with 2002-2014 training period. Then, nutrient and other climatic 

variables were selected as predictors by GP automatically while wind speed affect only 

October and water temperature affect only August HAB events. This remains as future 

analysis when more solid evidences are available. It should be noted that the GP model 

can be substantially improved when trained for a wide range of target values. 

 

Table 17. GP Variable Selected for Both Training Periods 

 July August September October 

Variable (02-11) (02-14) (02-11) (02-14) (02-11) (02-14) (02-11) (02-14) 

Q × ×  × × × ×  
TP     ×  ×  
PM × × × × × ×  × 
SRP         
TKN × × ×  × ×   

Water   ×      
Air         

Wind       × × 
NOTE: Empty boxes represent variables that were not considered. 
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4.3 Comparison of SMR and GP models 

     As discussed in Chapters 4.1 and 4.2, GP showed superior performance than SMR. 

SMR is a process to find an optimal linear model to explain target variables by 

considering both individual and product of predictor variables, while GP searches 

numerous numerical expressions to represent the nonlinear relationship between 

predictors and predictand. SMR is relative easy to express its formula compared to GP. 

Both models showed weakness in predicting target values that were not included in the 

range of training data. However, GP predicted substantially better than SMR in 

September, both training period, and October for long training period in 2015, although 

2015 HAB events were not trained by GP. As SMR is a multi-variables linear model, 

there is a limitation to represent highly nonlinear behaviors that GP can detect and predict 

more easily. Very complicated and inexplicable mathematical expressions generated by 

GP are one of its drawbacks. 

     Model performance of July by two models is compared Figure 17(a). Although both 

models overpredict in 2012, 2013 and 2014 are well predicted by both models. GP shows 

better performance in 2015 than SMR and predicted the CI as “significant (CI above 7)” 

same to observation although the predicted values is 45% less than the observed, while 

SMR predicted July CI 2015 as “safe (CI less than 2)”. The most important reason is the 

lack of various data in the training period in which all CI observations are less than 3. 

     In Figure 17(b), both models are well predicted with extended training period. Both 

models predicted July CI 2015, as “significant” same to observation. July CI predicted by 

SMR and GP is almost 25% less than July CI observation; however, the model did not 

train for any significant CI. SMR shows better fit in training period than GP, which may 
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be concluded that, with increasing the training period SMR may be more accurate than 

GP, although SMR is a basic method in comparison with GP. 

 

 
Figure 17. GP and SMR July Results: (a) 2002~2011 Training Period 

and (b) 2002~2014 Training Period 

 

     Model performance of August by two models is compared Figure 18(a) for training 

period 2002-2011. Both models for 2012 shows a good performance, because the range 

of August CI 2013 is similar to the range of training period. Although SMR prediction is 

underestimate and GP shows a better result in 2013, in 2014 and 2015 SMR performed 
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better than GP and all GP prediction was underestimated in comparison with observed 

August CI. SMR shows better performance in 2015 than GP and predicted the CI as 

“significant” same to observation although the predicted values is 35% less than the 

observed, while GP predicted August CI 2015 as “mild”. 

     In Figure 18(b), both models are not well predicted with extended training period. GP 

August CI prediction is almost 40% less than August CI observation; however, both 

observed and predicted CIs are in the “significant” zone. In the other hand, SMR August 

CI prediction is in the “mild” zone and extending the training period did not improve the 

SMR results in 2015. 
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Figure 18. GP and SMR August Results: (a) 2002~2011 Training Period 

and (b) 2002~2014 Training Period 

 

     Model performance of September by two models is compared Figure 19(a). Although 

GP model underestimates 2012 and 2013, 2014and 2015 are well predicted by the GP 

model and all predicted CI zones are in agreement with the observed CI zones. Overall 

SMR predicted CI values are underperformed compare to GP. GP shows better 

performance in 2015 than SMR and predicted the CI as “significant” same to observation 
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although the predicted values is 25% less than the observed, while SMR predicted 

September CI 2015 value 120% more than observed. 

     In Figure 19(b), GP well predicts with extended training period while SMR model 

underestimates 2015. The GP model predicts September CI 2015 as “significant” same as 

the observed CI zone. However, SMR model predicts September CI 2015 as “mild”. The 

September CI value predicted by SMR is 75% less than the observation. 

 

 

 
Figure 19. GP and SMR September Results: (a) 2002~2011 Training Period 

and (b) 2002~2014 Training Period 
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     Model performance of October by two models is compared in Figure 20(a) for training 

period 2002-2011. Although SMR model underestimates for 2013 and 2014 and 

overestimates 2012, 2015 is well predicted showing the same “significant” as the 

observed.  

 

 

 
Figure 20. GP and SMR October Results: (a) 2002~2011 Training Period 

and (b) 2002~2014 Training Period 
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GP shows overall better performance in 2012-2015 than SMR, except GP predicts 2015 

as “mild” which is “significant” in observation. It is noted that SMR predicts October 

2015 as “Significant” as observed, which outperforms GP that predicts as “mild”.  In 

Figure 20(b), both models with extended training period well predict October CI 2015 as 

“significant” same to the observed.  
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CHAPTER V 

CONCLUSION AND FUTURE WORKS 

 

5.1 Summary and Conclusion 

     HABs are important issues in most fresh water lakes and coastal areas, particularly in 

Lake Erie. To realize the HABs issue in Lake Erie, extensive literature review was 

accomplished in this thesis. Various methods or models have been developed for HABs 

forecasting or prediction and there are still room to improve the performance or 

operability in HABs prediction in Lake Erie to forecast HABs. To improve the HABs 

prediction model, widespread analyses and literature review were accomplished on all 

available variables to select the predictor variables that significantly correlated with the 

observed HABs events.  

     The success of machine learning application to natural phenomenon is to select 

relevant data and to preprocess its scale and sampling period (Brownlee, 2013, Witten, 

Frank, Hall, & Pal, 2016, Harrington, 2012, Alpaydin, 2014). To exploit the merit of 



64 
 

machine learning fully, all possible data type, its lag times, and averaging periods can be 

fed to machine learning algorithms. However, preliminary model tests showed that 1) 

SMR failed training and resulted in a meaningless prediction model and 2) GP failed to 

converge to terminate optimization due to too many combinations of variables and 

mathematical functions. Therefore, this study determined to primarily select variables 

that were commonly used in previous HAB studies. In addition, to train the SMR and GP 

models efficiently (i.e., reduce the dimension of data set, remove overlapped data, 

remove rarely correlated data) while exploiting the merit of their learning algorithms, this 

study screened the preselected variables at a reasonable level using the Spearman 

nonparametric correlation test that is less sensitive to outliers and thus capable of finding 

an overall strength and direction between two variables. 

     The Spearman’s rank correlation coefficient was adopted as a standard method to 

select the significant variables as inputs to two data driven models, SMR and GP. The 

Spearman selection technique examines up to twenty-eight different lag times and 

averaging periods for each considered variable. Then, two prediction models, SMR and 

GP, finally selected the most significant variables by optimizing model parameters that 

maximize the correlation coefficient between the simulated and the observed (or, 

minimizing prediction error). Two different training periods were tested to observe if the 

models predict better when trained for a longer period. 

     We have discussed and summarized different types of optimization to predict algal 

bloom index monthly based on different physical parameter such as discharge (Q), 

phosphorous concentration and mass (TP and PM), soluble reactive phosphorus (SRP), 

nitrogen concentration (TKN), water temperature (Water), air temperature (Air), and wind 
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speed (Wind). Two targets were chosen as: Chlorophyll (Chl-a) and Cyanobacteria Index 

(CI) and finally CI selected. Different time lags and average period calculated from the 

target month up to six months back and finally with Spearman method, some variables 

selected as final inputs for two different training periods of 2002 to 2011 and 2002 to 

2014. Among the tested time steps, biweekly, annual, and monthly, the monthly time step 

showed the best correlation between the predictor variables and the target variable CI. 

     First, SMR models were trained for individual months using the selected variables by 

the Spearman method. The SMR model generated for each month with both from 2002 to 

2011 and 2002 to 2014 training period. When the training period increased from 10 years 

to 13 years, SMR models showed overall 44% improvement in prediction accuracy, 

where the most improvement was for July and rest of the months did not show substantial 

improvement. 

     Second, GP models were trained in a similar manner to SMR. GP also showed the 

improvement in prediction accuracy about 32.9% by increasing the training period from 

10 years to 13 years, where the most improvement was for August, about 120% 

improvement, and the other months showed a similar range of improvement, average of 

3% improvement. 

     In general, the length of training period is sensitive to the efficiency of model due to 

the higher chance to include a wider range of training data in a longer training data than a 

shorter period. Based on the results of SMR and GP, it is found that there is a tradeoff 

between data length and data quality. Not always the longer training period outperformed 

over the shorter training period. One of key issues in data-driven machine learning 

techniques is how to prepare training data to cover the various behaviors of target 
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variables. By doing so, the trained model can represent the target variables in an 

acceptable level while avoiding overfitting. Ideally, a longer and wider range of training 

data is suggested and periodic model re-training is essential to detect the recent HABs 

mechanism under changing climate and watershed. 

     The range of CI values (generally from 0 to 30) gives valuable information for 

decision-making on water quality and watershed management regarding Lake Erie. When 

considering classes for blooms of HABs, an extreme bloom (exceeding ‘significant’) can 

start at a CI of 7. However, a bloom with a CI of 10 compared to 30 can have very 

different effects on the economy and ecosystem (Stumpf et al., 2016). When the blooms 

are larger in size they can have devastating effects on the local recreation in the lake as 

well as for the fisherman (Ho, & Michalak, 2015). For example, cities may see a CI value 

of 30 and decide to make preparations such as stock piling water in the more possible 

event of a water treatment plant shut down. The city decision makers may see a CI value 

of 15 and would still make preparations of a large bloom that is emanate however will 

take less precautions (Banicki, 2017). In addition, water treatment operators may respond 

differently to CI value of 10 and CI value of 15, although both CI equal to 10 and 15 

considered as ‘significant’ (Stumpf et al., 2016). Banicki (2017) declares that after the CI 

equal to 30, fish caught from the western basin of Lake Erie should only be consumed 

once a week, which means there is a significant different between each value of CI, 

although all of them are classified as ‘significant’. 

5.2 Future Research Direction 

     As both models were trained for maximum 13 years (2002-2014) of historical HAB 

events, the trained model may generate under- or over-prediction for the unexplained 
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HAB mechanism in the future. Two suggestions were extracted to handle this issue: 1) 

develop an extrapolation technique that is statistically sound and operable in the model 

and 2) test multi-model ensemble approaches to provide most possible HAB prediction. 

In the future, the finalized SMR and GP models will be coded in a web-based user 

interface system for Western Lake Erie to help many engineers, decision makers, and 

public to operate the system easily with clear operational guidance and results 

interpretation. 
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APPENDICES 

APPENDIX A: C language output of GP models for training period 2002 to 2011 

 

     GP MODEL FOR JULY 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q5,1=v[0] ;  

  double Q1,6=v[1] ;  

  double Pm1,5=v[2] ;  

  double Tkn3,3=v[3] ;  

  double Tkn1,6=v[4] ;  

 

  L0: f[0]-=-1.924433708190918f; 

  L1: f[0]-=-1.174947738647461f; 

  L2: f[0]*=Tkn1,6; 

  L3: f[0]=-f[0]; 

  L4: f[0]/=Q5,1; 

  L5: f[3]+=f[0]; 

  L6: f[0]=fabs(f[0]); 

  L7: f[0]+=Pm1,5; 

  L8: f[0]+=1.987620830535889f; 

  L9: f[0]+=f[0]; 

  L10: f[0]=cos(f[0]); 

  L11: f[3]/=f[0]; 

  L12: f[0]=cos(f[0]); 

  L13: f[0]=sin(f[0]); 

  L14: f[0]+=f[3]; 

  L15: f[0]=-f[0]; 

  L16: f[0]+=1.77857518196106f; 
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  L17: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

 

     GP MODEL FOR AUGUST 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q1,6=v[0] ;  

  double Pm5,1=v[1] ;  

  double Pm1,6=v[2] ;  

  double Tkn1,6=v[3] ;  

  double Water1,3=v[4] ;  

  double Water1,6=v[5] ;  

 

  L0: f[0]+=-0.8637528419494629f; 

  L1: f[0]-=0.6909141540527344f; 

  L2: f[0]*=Water1,6; 

  L3: f[0]=cos(f[0]); 

  L4: f[0]=cos(f[0]); 

  L5: f[1]-=f[0]; 

  L6: f[0]+=Water1,3; 

  L7: f[0]-=Pm1,6; 

  L8: f[0]+=Water1,3; 

  L9: f[0]=cos(f[0]); 

  L10: f[1]-=f[0]; 
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  L11: f[0]*=pow(2,TRUNC(f[1])); 

  L12: f[0]=fabs(f[0]); 

  L13: f[0]*=pow(2,TRUNC(f[1])); 

  L14: f[0]*=Tkn1,6; 

  L15: f[0]/=0.1240770965814591f; 

  L16: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

 

     GP MODEL FOR SEPTEMBER 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q3,3=v[0] ;  

  double Q1,6=v[1] ;  

  double TP3,4=v[2] ;  

  double Pm1,6=v[3] ;  

  double Tkn1,1=v[4] ;  

  double Tkn3,4=v[5] ;  

 

  L0: f[0]+=2.203821659088135f; 

  L1: f[0]=sin(f[0]); 

  L2: f[0]-=-0.8215113878250122f; 

  L3: f[0]-=Q1,6; 

  L4: f[0]+=Tkn3,4; 

  L5: f[0]=sin(f[0]); 
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  L6: f[0]+=4.120148658752441f; 

  L7: f[0]*=Tkn1,1; 

  L8: f[0]*=Pm1,6; 

  L9: f[0]+=-2.35340166091919f; 

  L10: f[0]-=-1.76183032989502f; 

  L11: f[0]=sin(f[0]); 

  L12: f[0]-=-0.7284336686134338f; 

  L13: f[0]-=Q1,6; 

  L14: f[1]-=f[0]; 

  L15: f[0]=sin(f[0]); 

  L16: f[1]*=f[0]; 

  L17: f[0]-=-2.294054746627808f; 

  L18: f[0]*=Tkn1,1; 

  L19: f[0]/=TP3,4; 

  L20: f[0]+=-0.67620849609375f; 

  L21: f[0]*=Pm1,6; 

  L22: f[1]/=f[0]; 

  L23: f[0]-=f[1]; 

  L24: f[0]=fabs(f[0]); 

  L25: f[0]*=Tkn3,4; 

  L26: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

 

     GP MODEL FOR OCTOBER 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 
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  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q5,2=v[0] ;  

  double Q1,6=v[1] ;  

  double TP1,6=v[2] ;  

  double PM5,2=v[3] ;  

  double PM1,6=v[4] ;  

  double Wind3,2=v[5] ;  

  double Wind1,4=v[6] ;  

 

  L0: f[0]+=Wind1,4; 

  L1: f[1]+=f[0]; 

  L2: f[1]*=f[0]; 

  L3: f[0]=cos(f[0]); 

  L4: f[0]+=f[0]; 

  L5: f[0]+=-0.1401152610778809f; 

  L6: f[0]=-f[0]; 

  L7: f[1]+=f[0]; 

  L8: f[1]*=f[0]; 

  L9: f[0]=sin(f[0]); 

  L10: f[0]*=f[1]; 

  L11: f[1]/=f[0]; 

  L12: f[0]=sin(f[0]); 

  L13: f[0]*=f[1]; 

  L14: f[1]/=f[0]; 

  L15: f[0]*=f[0]; 

  L16: f[0]+=1.744837045669556f; 

  L17: f[0]/=f[1]; 

  L18: f[0]=-f[0]; 

  L19: f[0]+=Q1,6; 

  L20: f[0]=sin(f[0]); 

  L21: f[0]*=f[1]; 

  L22: f[0]=fabs(f[0]); 

  L23: f[0]+=TP1,6; 

  L24: f[0]+=TP1,6; 

  L25: 

  if (!_finite(f[0])) f[0]=0; 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

  



83 
 

APPENDIX B: C language output of GP models for training period 2002 to 2014 

 

     GP MODEL FOR JULY 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q2,2=v[0] ;  

  double Q1,5=v[1] ;  

  double P3,1=v[2] ;  

  double P1,5=v[3] ;  

  double Pm3,1=v[4] ;  

  double Pm1,5=v[5] ;  

  double Tkn1,6=v[6] ;  

  double Water3,4=v[7] ;  

 

  L0: f[0]-=0.9177978038787842f; 

  L1: f[0]-=Pm3,1; 

  L2: f[0]=fabs(f[0]); 

  L3: f[1]+=f[0]; 

  L4: f[0]=cos(f[0]); 

  L5: f[0]+=-1.360518217086792f; 

  L6: f[0]+=f[1]; 

  L7: f[0]=sin(f[0]); 

  L8: f[0]*=f[0]; 

  L9: f[0]=sin(f[0]); 

  L10: f[0]+=f[0]; 

  L11: f[1]/=f[0]; 

  L12: f[0]-=f[0]; 

  L13: f[0]-=Pm3,1; 

  L14: f[0]=fabs(f[0]); 

  L15: f[0]+=f[0]; 

  L16: f[1]/=f[0]; 

  L17: f[1]/=f[0]; 
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  L18: f[0]-=Q2,2; 

  L19: f[0]=sin(f[0]); 

  L20: f[0]=fabs(f[0]); 

  L21: f[0]*=1.084159851074219f; 

  L22: f[0]+=Tkn1,6; 

  L23: f[0]+=-1.364008665084839f; 

  L24: f[0]+=f[1]; 

  L25: f[0]*=f[0]; 

  L26: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

 

     GP MODEL FOR AUGUST 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q5,1=v[0] ;  

  double Q4,2=v[1] ;  

  double Q1,6=v[2] ;  

  double Pm5,1=v[3] ;  

  double Pm4,2=v[4] ;  

  double Pm1,6=v[5] ;  

  double Water2,1=v[6] ;  

 

  L0: f[0]+=Q5,1; 

  L1: f[0]-=Pm5,1; 
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  L2: f[0]/=0.7233922481536865f; 

  L3: f[0]/=Q4,2; 

  L4: f[0]*=f[0]; 

  L5: f[0]-=-1.196667432785034f; 

  L6: f[0]+=Q1,6; 

  L7: f[0]/=0.7233922481536865f; 

  L8: f[0]/=Q4,2; 

  L9: f[0]*=f[0]; 

  L10: f[0]*=f[0]; 

  L11: f[0]+=f[0]; 

  L12: f[0]*=f[0]; 

  L13: f[0]*=f[0]; 

  L14: f[0]/=Pm4,2; 

  L15: f[0]+=Q5,1; 

  L16: f[0]-=Pm5,1; 

  L17: f[0]/=0.7233922481536865f; 

  L18: f[0]/=Q4,2; 

  L19: f[0]*=f[0]; 

  L20: f[0]*=f[0]; 

  L21: f[0]*=f[0]; 

  L22: f[0]+=Q1,6; 

  L23: f[0]/=0.7233922481536865f; 

  L24: f[0]/=Q4,2; 

  L25: f[0]*=f[0]; 

  L26: f[0]-=-1.364777803421021f; 

  L27: f[0]-=Pm5,1; 

  L28: f[0]=cos(f[0]); 

  L29: f[0]*=f[0]; 

  L30: f[0]+=f[0]; 

  L31: f[0]*=f[0]; 

  L32: f[0]*=f[0]; 

  L33: f[0]+=0.9177978038787842f; 

  L34: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 
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     GP MODEL FOR SEPTEMBER 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q3,1=v[0] ;  

  double Q6,1=v[1] ;  

  double Q3,3=v[2] ;  

  double Q1,6=v[3] ;  

  double Pm3,3=v[4] ;  

  double Pm1,6=v[5] ;  

  double Tkn3,4=v[6] ;  

 

  L0: f[0]=cos(f[0]); 

  L1: f[0]+=Q3,1; 

  L2: f[0]+=-1.549970149993897f; 

  L3: f[0]=sin(f[0]); 

  L4: f[0]*=f[0]; 

  L5: f[0]*=f[0]; 

  L6: f[0]*=f[0]; 

  L7: f[3]+=f[0]; 

  L8: f[0]+=f[3]; 

  L9: f[0]*=f[0]; 

  L10: f[0]*=Pm3,3; 

  L11: f[0]*=0.03275442123413086f; 

  L12: f[0]-=-1.259177207946777f; 

  L13: f[0]*=Tkn3,4; 

  L14: f[0]*=1.086833715438843f; 

  L15: f[0]*=Tkn3,4; 

  L16: f[0]*=Tkn3,4; 

  L17: f[0]=sqrt(f[0]); 

  L18: 

 

  if (!_finite(f[0])) f[0]=0; 
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  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 

 

 

     GP MODEL FOR OCTOBER 

#include <math.h> 

#include <float.h> 

#define TRUNC(x)(((x)>=0) ? floor(x) : ceil(x)) 

#define C_FPREM (_finite(f[0]/f[1]) ? f[0]-(TRUNC(f[0]/f[1])*f[1]) : f[0]/f[1]) 

#define C_F2XM1 (((fabs(f[0])<=1) && (!_isnan(f[0]))) ? (pow(2,f[0])-1) : 

((!_finite(f[0]) && !_isnan(f[0]) && (f[0]<0)) ? -1 : f[0])) 

 

float DiscipulusCFunction(float v[]) 

{ 

  long double f[8]; 

  long double tmp = 0; 

  int cflag = 0; 

 

  f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; 

 

  double Q5,2=v[0] ;  

  double Q1,6=v[1] ;  

  double TP1,6=v[2] ;  

  double PM5,2=v[3] ;  

  double PM1,6=v[4] ;  

  double Air3,4=v[5] ;  

  double Wind3,2=v[6] ;  

  double Wind1,4=v[7] ;  

 

  L0: f[0]+=0.002621650695800781f; 

  L1: f[0]*=f[0]; 

  L2: f[0]+=1.505081653594971f; 

  L3: f[0]*=PM5,2; 

  L4: f[0]=cos(f[0]); 

  L5: f[0]+=f[0]; 

  L6: f[0]+=f[0]; 

  L7: f[0]=sin(f[0]); 

  L8: f[0]=fabs(f[0]); 

  L9: f[0]*=-0.9765300750732422f; 

  L10: f[0]-=PM1,6; 
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  L11: f[0]-=Wind3,2; 

  L12: f[0]=cos(f[0]); 

  L13: f[0]+=f[0]; 

  L14: f[0]+=f[0]; 

  L15: f[0]=fabs(f[0]); 

  L16: f[0]*=1.77857518196106f; 

  L17: f[1]-=f[0]; 

  L18: f[0]/=PM5,2; 

  L19: f[0]-=Wind1,4; 

  L20: f[1]-=f[0]; 

  L21: f[0]*=pow(2,TRUNC(f[1])); 

  L22: f[0]/=PM5,2; 

  L23: f[0]=cos(f[0]); 

  L24: f[0]*=pow(2,TRUNC(f[1])); 

  L25: 

 

  if (!_finite(f[0])) f[0]=0; 

 

  return f[0]; 

} 

float DiscipulusCRegressionFunction(float  v []) 

{ 

   float ret = DiscipulusCFunction(v) ; 

   return ret; 

} 
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APPENDIX C: Step by Step User Guide to Run Discipulus 

 

     How to Apply the Inputs and Run the GP 

     Every time you start Discipulus, the Project Setup Wizard comes up automatically 

(Francone, 1998). Figure C-1 shows Discipulus right after it has started. The first page of 

the Project Setup Wizard is showing: 

 

 
Figure C-1. The Project Name and Location Window of the Project Wizard 

 

The project setup wizard takes you through five simple steps: 

1. Name and Save Your Project. 

When you first start the project wizard, you see the Project Name and Location Window. 

Click on the Browse button like Figure C-2 to select a folder and name for your project 

file. The project file stores all information about the project you will run. 
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Figure C-2. The Project Name and Location Window. Click on Browse to Name and 

Locate your Project File 

 

2. Select Data for Training. 

The second window in the project wizard lets you tell Discipulus how and where to get 

data for training. That window is shown in Figure C-3. 
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Figure C-3. Selecting Data for Training 

 

You can get data for Discipulus training by three different methods: (1) Direct import of 

text files; (2) Use Notitia data import and preparation software; or (3) Import Notitia 

XML files directly. In this study data were imported directly from excel. User should 

generate an excel file from all inputs with header such as Figure C-4. 

 

 
Figure C-4. Set of Inputs for GP software 

 



92 
 

3. Identify the Problem Type and Fitness Function.  

The third window in the project setup wizard is the Select Problem Type and Fitness 

Function Window. This window automatically detects which problem types are 

appropriate for your target output and also detects which fitness functions are part of the 

license you acquired. Thus, you may find Classification problem types greyed out if your 

target output has many different values. And, if you own the Professional version of 

Discipulus (with no add-ons), the advanced fitness functions (ranking and logistic) are 

not available. Figure C-5 shows the window that lets you choose the problem type and 

the fitness function. 

 

 
Figure C-5. The Problem Type and Fitness Function Window of the Project Wizard 

 

4. Start the Project. 

The fourth window in the Project Wizard is the "Customize Parameters and Start Project" 

window. To start the project, click on the "GO" button like in Figure C-6. Discipulus is 

entirely configured. As the project proceeds, Discipulus will intelligently adjust its own 

configuration. 

 



93 
 

 
Figure C-6. Click "GO" to start your project. 

 

The default settings for Discipulus start a project in "stepping" mode. Discipulus starts 

with very short runs and then increases the length of the runs as the project continues. In 

other words, by default, Discipulus handles run termination for you. If you want, you can 

set the run termination criterion manually in the Advanced Options window shown in 

Figure C-7. What you set will applied to all runs in the project. 

 

 
Figure C-7. The Advanced Options Window 
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In the highlighted area, you may select a run termination of either "generations since 

start" (that is, since the start of the run) or "generations without improvement" (that is, 

generations since there has been an improvement in the best program in the run.) You can 

get to the Advanced Options Window in two different ways from the main menu and 

from the Project Wizard: 

Method 1. From the Set Up Learning Menu, select, Options. 

Method 2. The final window in the Project Wizard is the Customize Parameters and Start 

Run window. Select Options from that window as shown in Figure C-8. 

 

 
Figure C-8. The Customize Parameters and Start Run Window in the Project Wizard. 

Options Button Highlighted. 

 

You can terminate a Discipulus Project manually or automatically. 

Manual Project Termination 

You can always stop a project manually by clicking on the "Finish Project" button on the 

Monitor Project Window. Alternatively, you may click on the Finish tool on the toolbar 

shown in Figure C-9. 

 

 
Figure C-9. The Discipulus Toolbar with the Finish Run Tool Highlighted 
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By default, Discipulus runs in "stepping" mode. It starts with a series of very short runs 

and then increases the length of the runs as the project proceeds. In this mode, a project 

may only be terminated manually. 

Automatic Project Termination 

You may elect to terminate your project after a fixed number of runs. To do so, go to the 

Advanced Options Window, make sure "stepping is unchecked, and enter a value for 

Maximum Number of Runs as shown in Figure C-10. 

 

 
Figure C-10. Using the Advanced Options Window to set a Maximum Number of Runs 

in a Project to 300 

 

Can I View the Predicted Outputs of an Evolved Best Program or a Best Team? 

Yes. After a project is over, Discipulus saves the thirty best evolved program models and 

the five best team models and automatically brings up the Reports Window. To see the 

outputs of one of your best program models, select that model in the Best Programs Tab 

of the Reports Window. Then Click the View Results button as shown in Figure 31. 
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Figure C-11. The Second Best Evolved Program Model Is Selected in the Best Programs 

Tab. View Results Sends that Program’s Outputs to the Data Window. 

 

When you click the View Results button, the Data Window will open. In Data Window 

chart view, the output of the program you just selected will be shown in the "Selected 

Program" data series. In the Data Window spreadsheet view, the output of the program 

you just selected will be shown in the "Selected Program" column or columns as shown 

in Figure C-12. 

 

 
Figure C-12. The Output of a Selected Program Model is Shown in the Selected Program 

Output Column of the Data Window (Highlighted) 
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You can view the outputs of a selected Team Model in a similar way. Figure C-13 shows 

the Team Solutions Tab of the Reports Window with the best five member team selected. 

 

 
Figure C-13. Best Five Member Team Selected in the Team Solutions Tab of the Reports 

Window 

 

If you click on View Results, the output of the selected team is sent to the Data Window 

in the "Selected Program" data series. Thus, in Data Windowchart view, you would see 

that selected program data as a line on the chart labeled "Selected Program." In 

spreadsheet view, you would see the output of that selected team as a column of outputs 

in a spreadsheet. The spreadsheet view is shown above in Figure C-12 with the Selected 

Program column highlighted. 

 

How Do I View an Evolved Best Program Created by Discipulus? 

When a Discipulus project finishes, Discipulus automatically opens a Reports Window. 

The Best Program Tab provides a list of the 30 best programs from that project. To save 

one of those programs, select it with your mouse and then click the Analyze Program 

button, as shown in Figure C-14. In that figure, the third best program of the project has 

been selected. 

 



98 
 

 
Figure C-14. Best Programs Tab Showing Third Best Program Selected and Analyze 

Program Button Highlighted 

 

When you click Analyze Program, the Interactive Evaluator Window will open and the 

program you just selected will be displayed along with performance statistics for that 

program as shown in Figure C-15.  

 

 
Figure C-15. Interactive Evaluator Window Displaying a Best Program 
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The functionality of the interactive evaluator window is documented in the chapter of the 

Discipulus Owner’s Manual devoted to that subject. 

 

How Do I Save an Evolved Best Program Created by Discipulus? 

When a Discipulus project finishes, Discipulus automatically opens a Reports Window. 

The Best Program Tab provides a list of the 30 best programs from that project. To save 

one of those programs, select it with your mouse and then click the Analyze Program 

button, as shown in Figure C-16. In that figure, the third best program of the project has 

been selected. 

 

 
Figure C-16. Best Programs Tab Showing Third Best Program Selected and Analyze 

Program Button Highlighted 

 

When you click Analyze Program, the Interactive Evaluator Window will open and the 

program you just selected will be displayed along with performance statistics for that 

program as shown in Figure C-17. 
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Figure C-17. Interactive Evaluator Window Displaying a Best Program 

 

At this point, you may save your selected best program using two different methods. One 

method saves the selected program as object code. The other saves it in a format that lets 

you reload the program into Discipulus later: 

 

Method 1--Save Program as Object Code: 

To save your program as object code, click on the Save Decompiled Program button. 

That will bring up the window shown in Figure C-18. 

 



101 
 

 
Figure C-18. Save Decompiled Program Window 

 

Just select a computer language to save your best program in. Then select Browse to 

designate the folder and file name for your selected program. Discipulus automatically 

adds the correct extension for the particular computer language you select. 

Method 2--Save Program in Reusable Format: To save your program in a format that 

can be loaded back into Discipulus for further use, click on the Save Program button in 

the Interactive Evaluator Window. This takes you to a Windows browser in which you 

may designate the folder and file name for the 
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     How to interpret the Output Model and Finalize the Mathematic Model Style 

 

Addition Instruction Group 

The addition instruction group includes three instructions, which are discussed in the 

following topics: 

• Add two registers: See FADD ST(0), ST(%r) 

• Add two registers: See FADD ST(%r), ST(0) 

• Add register and input or register and constant: See FADD [ESD+%d1] 

 

FADD ST(0), ST(%r) 

This instruction adds any one of the temporary computation variables (f[n]) to the value 

in f[0] and puts the sum into f[0]. 

C Code Description 

This operator is equivalent to the following C pseudo code: 

f[0]=f[0]+f[n] (or f[0]+=f[n]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any of the temporary computation variables you have configured Discipulus to use. The 

value of n is variable and is set during evolution. 

Assembler Description 

This instruction adds the value in the top of the FPU stack (ST(0)) to the value in variable 

FPU register designated as (%r). It places the sum into the top of the stack (ST(0)). The 

value in %r is variable and is set during evolution. 

 

FADD ST(%r), ST(0) 

This instruction adds any one of the temporary computation variables (f[n]) to the value 

in f[0] and puts the sum into f[n]. 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

f[n]=f[0]+f[n] (or f[n]+=f[0]); 
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Where f[0] represents the first temporary computation variable and where f[n] represents 

any one of the temporary computation variables you have configured Discipulus to use. 

The value of n is variable and is set during evolution. 

Assembler Description 

This instruction adds the value in the top of the FPU stack (ST(0)) to the value in variable 

FPU register designated as (%r). It places the sum into the variable FPU register 

designated as (%r). The value in %r is variable and is set during evolution. 

 

FADD [ESD+%d1] 

This instruction will put two different operators into your evolved programs: 

• The first adds f[0] to one of the inputs from your data file and places the result into f[0]; 

• The second adds f[0] to one of the constants from the Terminal Set and places the result 

into f[0]. 

C Code Description 

The two operators referred to above are equivalent to the following lines of C pseudo 

code in evolved programs: 

f[0]=f[0]+input (or f[0]+=input) 

f[0]=f[0]+constant (or f[0]+=constant) 

f[0] is, of course, the temporary calculation register. The input will show up in your 

evolved programs as Input001, Input002 . . . The constant will show up as a real valued 

constant, such as 9.1234567. During evolution, an input can be changed by the mutation 

operator to a constant and vice versa. Similarly, which input or constant is referenced in 

this operator may be changed by the mutation operator. 

Assembler Description 

This instruction adds the value in the top of the FPU stack (ST(0)) to the value of one of 

the inputs in your training data set or one of the constants. It places the sum into the top 

of the stack (ST(0)). The value in %d1 is variable (that is, which variable or which 

constant) and is set during evolution. 
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Arithmetic Instruction Group 

The Arithmetic Instruction Group contains four instructions that are described in the 

following topics: 

• Absolute Value. See FABS 

• Change Sign. See FCHS 

• Scaling. See FSCALE 

• Square root, See FSQRT 

 

FABS 

This instruction takes the absolute value of f[0] and places the result into f[0]. 

C Code Description 

It is equivalent to this C pseudo code: 

f[0]=ABS(f[0]); 

Assembler Description 

Takes the absolute value of the top of the FPU stack (ST(0)). It places that absolute value 

back into the top of the stack (ST(0)). 

 

FCHS 

This instruction changes the sign of f[0] and places the result into f[0]. 

C Code Description 

This instruction is equivalent to this C pseudo code: 

f[0]=–(f[0]); 

Assembler Description 

Changes the sign of the value in the top of the stack register, ST(0). 

 

FSCALE 

This instruction multiplies f[0] by two raised to the power, f[1]. It then places the result 

back into f[0]. 

C Code Description 

It is equivalent to this pseudo code: 

f[0]=f[0]*(2^f[1]); 
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Assembler Description 

Calculates ST(0)*2^ST(1) and places the result into ST(0). 

 

FSQRT 

This instruction takes the square root of f[0] and places the result into f[0]. 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

f[0]=SQRT(f[0]); 

Assembler Description 

Takes the square root of ST(0) and places the result into ST(0). 

 

 

Comparison Instruction Group 

The comparison instruction group contains only one instruction, which compares the 

values in two floating point registers. See FCOMI ST(0), ST(%r). 

 

FCOMI ST(0), ST(%r) 

Compares the values in f[0] and f[n]. If f[0] is less than f[n], it sets the temporary 

variable, cflag to 1, otherwise, it set cflag to 0. 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

cflag=(f[0]<f[n]); 

Where cflag is a Boolean variable that can have only the values of 0 or 1 and where f[n] 

is the value in one of the n temporary computation variables. 

Assembler Description 

Compares the contents of register ST(0) and ST(n) and sets the status flags ZF, PF, and 

CF in the EFLAGS register according to the results. 
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Condition Instruction Group 

The conditional instructions work with the Comparison Instruction Group. The 

Comparison Instructions set the value of cflag by comparing the values in f[0] and f[1]. 

Then the Condition Instructions use the value in cflag to decide whether or not to take 

one of two steps: 

• Move the value in f[n] to f[0]; or 

• Jump over one Instruction Block. 

The following topics describe the Conditional Instructions you may include in Discipulus 

programs: 

• Conditional copy of value from one register to f[0]: See FCMOVB ST(0), ST(%r) 

• Conditional copy of value from f[0] to another register: See FCMOVNB ST(0), ST(%r) 

• Conditional jump of an Instruction Block if cflag = 1: See JB EPI+6 

• Conditional jump of an Instruction Block if cflag = 0; JNB EPI+6 

 

FCMOVB ST(0), ST(%r) 

This instruction moves the value in f[n] to f[0] if the conditional flag (cflag) is equal to 1. 

(The conditional flag is set by the Comparison Group instructions.) 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

if (cflag) f[0] = f[n]; 

Assembler Description 

Tests the CF status flag and moves the source operand (ST(n)) to the destination operand 

(ST(0)), if CF=1. 

 

FCMOVNB ST(0), ST(%r) 

This instruction moves the value in f[n] to f[0] if the conditional flag (cflag) is equal to 0. 

(The conditional flag is set by the Comparison Group instructions.) 

C Code Description 

Equivalent C pseudo code is: 

if (!cflag) f[0] = f[n]; 
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Assembler Description 

Tests the CF status flag and moves the source operand (ST(n)) to the destination operand 

(ST(0)), if CF=0. 

 

JB EPI+6 

This instruction causes the program to skip execution of the next Instruction Block if the 

conditional flag (cflag) equals 1. (The conditional flag is set by the Comparison Group 

instructions.) 

C Code Description 

A C code example follows. This code tests whether cflag=1. If it does, the program skips 

over line 12: 

11: if (cflag) goto 13; 

12: f[0]+=1.234567; 

13: f[0]*=f[0]; 

Assembler Description 

Tests the CF status flag and jumps program execution by 6 bytes if 

CF=1. 

 

JNB EPI+6 

This instruction causes the program to skip execution of the next Instruction Block if the 

conditional flag (cflag) equals 0. (The conditional flag is set by the Comparison Group 

instructions.) 

C Code Description 

A C code example follows. This code tests whether cflag=0. If it does, the program skips 

over line 12. 

11: if (!cflag) goto 13; 

12: f[0]+=1.234567; 

13: f[0]*=f[0] 

Assembler Description 

Tests the CF status flag and jumps program execution by 6 bytes if 

CF=0.  
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Data Transfer Instruction Group 

The Data Transfer Instructions move values around without changing the values. The one 

such instruction implemented in Discipulus exchanges values between f[0] and another 

register. See FXCH ST(%r) 

 

FXCH ST(%r) 

The FXCH instruction swaps the values in f[0] and f[n]. This is an important instruction 

in Register Machine configurations because it allows the system to move values to and 

from the higher f[n] variables for temporary storage while other calculations are 

performed in f[0]. 

C Code Description 

The FLD instructions are equivalent to the following C pseudo code: 

tmp=f[0]; 

f[0]=f[n]; 

f[n]=tmp; 

Assembler Description 

Swap the values in ST(0) and ST(n). 

 

 

Division Instruction Group 

The Division Instruction Group includes four instructions that are detailed in the 

following topics: 

• Divide one register by another; place the result in f[0]: See FDIV ST(0), ST(%r) 

• Divide one register by another; place the result in f[n]; See FDIV ST(%r), ST(0) 

• Calculate a remainder; See FPREM 

• Divide f[0] by either a constant or an input value: See FDIV [ESD+%d1] 

 

FDIV ST(0), ST(%r) 

This instruction divides one of the temporary computation variables (f[0]) by the value in 

f[n] and puts the difference into f[0]. 

C Code Description 
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This operator is equivalent to the following C pseudo code: 

f[0]=f[0]/f[n] (or f[0]/=f[n]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any of the temporary computation variables you have configured Discipulus to use. The 

value of n is variable and is set during evolution. 

Assembler Description 

This instruction divides the value in the top of the FPU stack (ST(0)) by the value in 

variable FPU register designated as (%r). It places the difference into the top of the stack 

(ST(0)). The value in %r is variable and is set during evolution. 

 

FDIV ST(%r), ST(0) 

This instruction divides one of the temporary computation variables (f[n]) by the value in 

f[0] and puts the difference into f[n]. 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

f[n]=f[n]/f[0] (or f[n]/=f[0]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any one of the temporary computation variables you have configured Discipulus to use. 

The value of n is variable and is set during evolution. 

Assembler Description 

This instruction divides the value in the top of the FPU stack (ST(0)) by the value in 

variable FPU register designated as (%r). It places the result into the variable FPU 

register designated as (%r). The value in %r is variable and is set during evolution. 

 

FPREM 

This operator causes an evolved program calculate the remainder left when f[0] is divided 

by f[1] and to place the result into f[0]. This instruction is useful for periodic data. 

C Code Description 

This instruction is equivalent to the following C pseudo code: 

f[0]=f[0]– ((int)(f[0]/f[1])*f[1]); 

f[0] and f[1] are, of course, temporary calculation variables. 
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Assembler Description 

Computes the remainder obtained from dividing the value in the ST(0) register (the 

dividend) by the value in the ST(1) register (the divisor or modulus), and stores the result 

in ST(0). The remainder represents the following value: 

Remainder = ST(0) - (Q * ST(1)) 

Here, Q is an integer value that is obtained by truncating the real number quotient of 

[ST(0) /ST(1)] toward zero. The sign of the remainder is the same as the sign of the 

dividend. The magnitude of the remainder is less than that of the modulus. 

 

FDIV [ESD+%d1] 

This instruction will put two different types of code into your evolved programs: 

• The first divides f[0] by one of the inputs from your data file and places the result into 

f[0]; 

• The second divides f[0] by one of the constants from the Terminal Set and places the 

result into f[0]. 

C Code Description 

This operator causes an evolved program to include both of the following lines of C 

pseudo code in evolved programs: 

f[0]=f[0]–input (or f[0]–=input); and 

f[0]=f[0]–constant (or f[0]–=constant); 

f[0] is, of course, the temporary calculation register. The input will show up in your 

evolved programs as Input001, Input002. . . The constant will show up as a real valued 

constant, such as 9.1234567. During evolution, an input can be changed by the mutation 

operator to a constant and vice versa. Similarly, which input or constant is referenced in 

this operator may be changed by the mutation operator. 

Assembler Description 

This instruction subtracts the value in one of the inputs in your training data set or one of 

the constants, from the value in the top of the FPU stack (ST(0)). It places the difference 

into the top of the stack (ST(0)). The value in %d1 represents which value is subtracted 

(that is, which variable or which constant) and is set during evolution. 
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Exponential Instruction Group 

This instruction group implements only one instruction, F2XM1. The F2XM1 instruction 

calculates two raised to the f[0] power, minus one and puts the result into f[0]. 

C Code Description 

This operator is equivalent to the following C pseudo code: 

if (fabs(f[0])<1) f[0]=pow(2,f[0])-1; 

Where f[0] represents the first temporary computation variable. 

Assembler Description 

Calculates the exponential value of 2 to the power of the source operand minus 1. The 

source operand is located in register ST(0) and the result is also stored in ST(0). The 

value of the source operand must lie in the range –1.0 to +1.0. If the source value is 

outside this range, the result is undefined. 

 

 

Multiplication Instruction Group 

The four multiplication instructions implemented in Discipulus are discussed in the 

following topics: 

• Multiply two registers and place the result in f[0]. See FMUL ST(0), ST(%r) 

• Multiply two registers and place the result in f[n]. See FMUL ST(%r), ST(0) 

• Multiply a register by an input or a constant. See FMUL [ESD+%d1] 

 

FMUL ST(0), ST(%r) 

This instruction multiplies one of the temporary computation variables (f[n]) and f[0] and 

puts the product into f[0]. 

C Code Description 

This operator is equivalent to the following C pseudo code: 

f[0]=f[0]*f[n] (or f[0]*=f[n]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any of the temporary computation variables you have configured Discipulus to use. The 

value of n is variable and is set during evolution. 

Assembler Description 
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This instruction multiplies the value in the top of the FPU stack (ST(0)) and the value in 

variable FPU register designated as (%r). It places the product into the top of the stack 

(ST(0)). The value in %r is variable and is set during evolution. 

 

FMUL ST(%r), ST(0) 

This instruction multiplies the values in f[0] and f[n] together and places the results in 

f[n]. 

C Code Description 

This instruction is equivalent to the following C pseudocode: 

f[n]=f[0]*f[n] (or f[n]*=f[0]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any one of the temporary computation variables you have configured Discipulus to use. 

The value of n is variable and is set during evolution. 

 

Assembler Description 

This instruction multiplies the value in the top of the FPU stack (ST(0)) and the value in 

variable FPU register designated as (%r). It places the product into the variable FPU 

register designated as (%r). The value in %r is variable and is set during evolution. 

 

FMUL [ESD+%d1] 

This instruction will put two related operators into your evolved programs: 

• The first multiplies f[0] and one of the inputs from your data file and places the result 

into f[0]; 

• The second multiplies f[0] and one of the constants from the Terminal Set and places 

the result into f[0]. 

C Code Description 

The two related operators referred to above are equivalent to the following lines (one at a 

time) of C pseudocode in evolved programs: 

f[0]=f[0]*input (or f[0]*=input). 

f[0]=f[0]*constant (or f[0]*=constant). 
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f[0] is, of course, the temporary calculation register. The input will show up in your 

evolved programs as Input001, Input002. . . . etc. Or, if you name the input columns and 

use Notitia to import the data to Discipulus, your input names will appear in the evolved 

programs. The constant will show up as a real valued constant, such as 9.1234567. 

During evolution, an input can be changed by the mutation operator to a constant and 

vice versa. Similarly, which input or constant is referenced in this operator may be 

changed by the mutation operator. 

Assembler Description 

This instruction multiplies the value in one of the inputs in your training data or one of 

the constants, to the value in the top of the FPU stack (ST(0)). It places the product into 

the top of the stack (ST(0)). The value in %d1 represents which value is subtracted (that 

is, which variable or which constant) and is set during evolution. 

 

 

Rotate Stack Instruction Group 

FDECSTP 

This instruction decrements the FPU stack pointer by 1. It makes no changes to the 

contents of the registers. 

FINCSTP 

This instruction increments the FPU stack pointer by 1. It makes no changes to the 

contents of the registers. 

 

Subtraction Instruction Group 

The three subtraction instructions implemented by Disciples are discussed in the 

following topics: 

• Subtract two registers and put the result in f[0]. See FSUB ST(0), ST(%r) 

• Subtract two registers and put the result in f[n]. See FSUB ST(%r), ST(0) 

• Subtract an input or a constant from a register. See FSUB [ESD+%d1] 

 

FSUB ST(0), ST(%r) 
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This instruction subtracts one of the temporary computation variables (f[n]) from the 

value in f[0] and puts the difference into f[0]. 

C Code Description 

This operator is equivalent to the following C pseudocode: 

f[0]=f[0]–f[n] (or f[0]–=f[n]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any of the temporary computation variables you have configured Discipulus to use. The 

value of n is variable and is set during evolution. 

Assembler Description 

This instruction subtracts the value in the top of the FPU stack (ST(0)) from the value in 

variable FPU register designated as (%r). It places the difference into the top of the stack 

(ST(0)). The value in %r is variable and is set during evolution. 

 

FSUB ST(%r), ST(0) 

This instruction subtracts f[0] from f[n] and places the result into f[n]. 

C Code Description 

This instruction is equivalent to the following C pseudocode: 

f[n]=f[n]–f[0] (or f[n]–=f[0]); 

Where f[0] represents the first temporary computation variable and where f[n] represents 

any one of the temporary computation variables you have configured Discipulus to use. 

The value of n is variable and is set during evolution. 

Assembler Description 

This instruction subtracts the value in the top of the FPU stack (ST(0)) from the value in 

variable FPU register designated as (%r). It places the difference into the variable FPU 

register designated as (%r). The value in %r is variable and is set during evolution. 

 

FSUB [ESD+%d1] 

This instruction will put two related operators into your evolved programs: 

• The first subtracts one of the inputs from your data file from f[0] and places the result 

into f[0]; 
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• The second subtracts one of the constants from the Terminal Set from f[0] and places 

the result into f[0]. 

C Code Description 

The two related operators referred to above are equivalent to the following lines of C 

pseudocode in evolved programs: 

f[0]=f[0]–input (or f[0]–=input). 

f[0]=f[0]–constant (or f[0]–=constant). 

f[0] is, of course, the temporary calculation register. The input will show up in your 

evolved programs as Input001, Input002, etc. Or, if you assigned column names for your 

inputs and used Notitia to import the data, your column names will be used in the evolved 

programs. The constant will show up as a real valued constant, such as 9.1234567. 

During evolution, an input can be changed by the mutation operator to a constant and 

vice versa. Similarly, which input or constant is referenced in this operator may be 

changed by the mutation operator. 

 

 

Assembler Description 

This instruction subtracts an input or a constant from the value in the top of the FPU 

stack (ST(0)). It places the result into the top of the stack (ST(0)). The value in %d1 

represents which value is subtracted (that is, which variable or which constant) and is set 

during evolution. 

 

 

Trigonometric Instruction Group 

The two trigonometric functions implemented in Discipulus are discussed in the 

following topics: 

• Cosine function. See FCOS 

• Sine function. FSIN 

FCOS 

This instruction calculates the cosine of f[0] and puts the result into f[0]. 

C Code Description 
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This operator is equivalent to the following C pseudocode: 

f[0]=cos(f[0]); 

Assembler Description 

Calculates the cosine of the source operand in register ST(0) and stores the result in 

ST(0). 

 

FSIN 

This instruction calculates the sin of f[0] and puts the result into f[0]. 

C Code Description 

This operator is equivalent to the following C pseudocode: 

f[0]=sin(f[0]); 

Assembler Description 

Calculates the sine of the source operand in register ST(0) and stores the result in ST(0). 

The source operand must be given in radians. 
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