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FORMING A METAL MATRIX NANOCOMPOSITE (MMNC) WITH FULLY 

DISPERSED AND DEAGGLOMERATED MULTIWALLED CARBON 

NANOTUBES (MWCNTs). 

 

 

MAHESH K. PALLIKONDA 

 

ABSTRACT 

 

 Carbon Nanotubes (CNTs) with their exceptional properties will facilitate the 

Metal matrix composites (MMC) to exhibit good mechanical properties, thermal and 

electrical conductivities, corrosion resistance, etc. The critical factor that holds the 

development of the Metal matrix Nanocomposites (MMNC) by using CNTs is the 

tendency of CNTs to form clusters (agglomerations) due to their high Van der Waals 

attractions. Due to this factor, low density and other properties of the CNTs, there has 

been a delay in harnessing their ultimate potential. 

 Existing literature in contemporary times from the works of few researches in 

Nanocomposites shows the prevalence of using surfactants / dispersing agents for 

dispersing CNTs in the metal matrix.  But the addition of these dispersing agents will 

form inclusions in the metal thus closing the avenue for developing ballistic electrical 

conductors and high purity MMNCs. Also the vol% of CNTs is limited to 1% in many 

cases and further increase reduces the mechanical strength. The reason for decreasing the 

strength is attributed to the agglomeration of CNTs and their disorderly alignment. 
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 In this work we developed a process where total dispersion and deagglomeration 

of CNTs up to 5 vol% is achieved without the addition of any surfactants / dispersing 

agents in the Magnesium Metal matrix. The process developed in this work can be 

applied to other metals with proper process parameters to develop various MMNCs with 

exceptional properties relative to the base metal. This process will open doors for the 

future works for developing high strength, High electrical and thermal conductive Metal 

Matrix Nanocomposites. 
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CHAPTER I 

INTRODUCTION 

 In the world of shrinking energy resources humans are in quest for developing 

advanced technologies with capabilities of optimal utilization of resources. Iijima’s paper 

in 1991 on Carbon Nanotubes preparation 
[1]

 created a flurry of excitement all around 

world. The exceptional properties of Carbon Nanotubes (CNTs) such as high Young’s 

Modulus (approximately 1TPa) 
[2]

, thermal conductivity of 3000 W/(mK) 
[3]

, High 

current carrying capacity (>10
9
A/cm

2
) 

[4]
 attracts researchers around the world to harness 

the potential applications from their unique properties. 

 CNTs are chemically inert and sublimate under vacuum at around 3652°C – 

3697°C making them thermally stable to mix with most of the liquid metals and embed in 

metal matrices. Since the discovery of Nanotubes and invention of preparation processes 

researchers are motivated to develop nanocomposites. 

 The process of producing Nano Composites consists of continuous mixing of 

Carbon Nanotubes with desired dispersion technique is critical. Dispersion of CNTs in 

metal matrix is difficult owing to the tendency of nanotubes to agglomerate due to their 

high Van der Waals attractions among the CNTs. Other factors such as low density, 

physical entanglements of nanotubes, waviness are need to be considered.  
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 Few dispersion techniques such as Mechanical stirring, Sonication, Electro 

Magnetic Induction and other methods individually or in combination of one or more 

methods are being used for developing nanocomposites. Few instances where scientists 

are able to develop metal nanocomposites by successful dispersion of Nanotubes in metal 

matrix, experimental results shows improvement in the results such as strength and 

thermal conductivity only to an extent of addition of CNTs at 1 vol% but further increase 

reduces the base metal properties 
[5-7]

. In few instances replication of the process is 

uncertain. The major reason behind this perplex behavior is attributed to the alignment 

and agglomeration of CNTs in the metal matrix. The anisotropic orientation of CNTs and 

low level agglomerations in metal matrix can lead to catastrophic failures in attaining 

enhanced properties such as Thermal and Electrical conduction, specific strength, Yield 

Strength, Stiffness, Hardness, corrosion resistance etc. of the nanocomposite. 

 While researchers are busy developing new methods for dispersion by adding 

surfactants for better wetting of CNTs, with these methods we might achieve new 

composite metals with higher strength 
[6]

 and thermal conductivities. But to attain high 

electric conductance it is essential for the base metal to be as pure as possible without 

adding any surfactants or dispersants. These surfactants or dispersants are impurities to 

the base metal and will lower the electrical conductivity of the nanocomposite. 

1.1 History of Ultra conductive Copper: 

 The nanocomposite materials program at CSU was started in 2006 in 

collaboration with and with seed funding from the Space Power Branch at NASA/GRC to 

develop stronger materials for use in the rotors of flywheels in order to increase the tip 

speed of rotors and thus to increase the energy stored in flywheels with a mission to 
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develop efficient processes to breakup nanotube agglomerations and to uniformly 

disperse the nanotubes in the resin base in order to produce a nanocomposite matrix with 

superior mechanical properties. Dr. Nayfeh’s observation of aligned glass fibers in the 

direction of the flow of the glass fibrils in polypropylene blends is caused by the large 

shear forces that are generated during high velocity laminar flow in injection molding. He 

concluded that fluid dynamic processes are capable of breaking up agglomerations and 

also orienting nano-scale objects such as nanotubes. 

 The success from forming strong Nanocomposite E-glass fibers at CSU attracted 

one of DARPA’s program managers to provide seed funding for using similar techniques 

to develop ultra conductive copper. The possibility of using metallic nanotubes as 

ballistic conductors was becoming popular in the literature with a large number of 

publications indicating its feasibility and the potential huge benefits that could be gained 

from the development of at room temperature, ultra conductive materials. 

 The Nanocomposite wire formed by uncontrolled injection of Mg-functionalized 

MWCNT into molten copper via high velocity die casting and subsequent wire drawing 

operations upon electron microscopy imaging revealed well dispersed and aligned 

nanotubes in the zones where higher conductivity is recorded. The results are highlighted 

in US Patent # 8347944. 
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Figure 1: Numerical results from the feasibility study. 

 

Figure 2: Electron Microscope (FESEM) image of a nanocomposite 

 In the zones where lower conductivity is recorded it is indicated that the 

nanotubes are not dispersed and acted as impurities to reduce the electrical conductivity. 

Figure 1 shows the Numerical results from the feasibility study showing gains reaching 

23+ folds (100+ beyond the range of the instruments ) and also showing large reductions 

in the conductivity. Figure 2 shows Electron Microscope image of a Nanocomposite 

steak showing areas of well dispersed and aligned Nanotubes along with large 
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agglomerations. In process of improving the process to achieve ultra conductive copper 

in large scale, this project envisions a precision system for infusing, dispersing and 

aligning the functionalized nanotubes into a magnesium precursor matrix via mixing and 

sintering followed by multiple rounds of extrusion at a temperature below the melting 

temperature of magnesium. Since copper does not wet CNTs, Magnesium was chosen as 

precursor matrix which has high surface energy with good electrical conductivity as an 

intermediate material to fabricate ultra conductive copper wire. 

1.2 History on Magnesium Melting: 

 Pressure die casting is the most commonly used casting process and because of 

the low casting temperature (650–700°C), hot chamber die casting machines can be used. 

The traditional method of casting a metal is sand casting, which is extensively used for 

producing commercial metals and alloys. Magnesium on the other hand reacts 

aggressively with fire bricks, sand moulds, refractory lining and even with quartz. 

 Magnesium on reaction with silica or silicon oxide at elevated temperatures 

readily oxides to form Magnesium silicide which can be seen as follows: 

 2Mg + SiO2 → MgO + Si 

 2Mg + Si → Mg2Si 

 2MgO(s) + SiO2 (g) → Mg2SiO4 

 This indeed causes inclusions in Magnesium cast billets in sand castings often for 

magnesium sand castings Olivine sand or Zircon sand are used as facing sand. 

 Preferably Pressure die casting is used for casting Magnesium and its alloys and 

because of the low casting temperature (650–700°C), hot chamber die casting machines 

can be used. 
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1.3 Background for Thesis: 

 The Ongoing research at Cleveland State University (CSU) in the development of 

an ultra conductive copper wire need a solid core of Mg/MWCNT composite with no 

dissolved gases or porosity in its metal matrix. The major risk to the success of achieving 

ultra conductive copper is the potential for oxygen contamination during the processing 

of Mg/MWCNT composite and during the many extrusion rounds. To mitigate the risk of 

oxygen contamination the process of developing Mg/MWCNT composite is performed in 

vacuum. Developing an ultra low porosity Mg/MWCNT composite is not a simple task 

due to the high vapor pressures of Magnesium in vacuum and readily reacting with silica, 

also Magnesium is prone to contain dissolved gases and inclusions in its as-cast form. 

 For developing the Mg-CNT composite a novel approach of low vacuum melting 

of Magnesium and mechanical stirring of the Nanotubes in a Semi solid Metal (SSM) is 

incorporated. Since Magnesium is a high shrinkage metal proper consideration of 

contraction allowance is estimated experimentally. 

1.4 Thesis past and present work: 

 This Thesis work explains the experimental procedures followed in developing 

ultra low porosity Magnesium Nanocomposite (Mg/MWCNT composite). The major 

obstacle in developing the ultra low porosity composite is the presence of dissolved gases 

in as cast Mg/MWCNT composite. The high vapor pressure of Magnesium limits the 

composite to cast under ultra high vacuums and electromagnetic stirring. 

 Initially Electro Magnetic Induction (EMI) melting is used for better dispersing of 

MWCNTs in the molten metal of Magnesium. The major advantage of using EMI is 

eliminating the inclusions in the metal matrix due to usage of alien devices in the test 
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tube for dispersion of MWCNTs in the molten Magnesium pool. But the formation of 

Magnesium vapors in the test tube under low pressure limits the experimental procedure. 

Since magnesium vapors are metallic they conduct electricity and due to this inherit 

behavior of metals it creates electrical arcing inside the test tube and thus destroys the 

experimental procedure. To compensate for the high vapor pressures of Magnesium at 

elevated temperatures Argon is added for suppressing Magnesium vapors. This indeed 

created gaseous defects in Mg/MWCNT composite, which are expanded dramatically 

during further operations of quest for Ultra Conductive Copper Wire. 

 After proving EMI is not a appropriate approach in the pursuit of developing an 

ultra low porous Mg/MWCNT composite, traditional melting process using conventional 

heating accompanied by mechanical stirring using 316 stainless steel impeller under low 

pressure is followed. 

 This thesis is focused on the development of SSM of Magnesium and dispersion 

of MWCNTs in the slurry of metal for mass scale production and industrial use. The 

success with this work can be used for mass scale manufacturing of Mg/MWCNT 

composites with slight modifications in the current manufacturing facilities of 

Magnesium and its alloys. 

1.5 Document Organization: 

 The material in this work is presented in the following order: 

Chapter two covers background information on developing Nanocomposites, different 

approaches during the current research in manufacturing of ultra low porous composites. 

Chapter three deals with previous work and literature survey on this subject. Chapter four 

describes the research methodology and phases of work. Chapter five describes the 
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experimental setup and different equipment used. Chapter six discusses the proposed 

process flow for making the Nanocomposite, and experimental results with (Scanning 

Electron Microscope) SEM images. Chapter seven discusses the results of Energy 

dispersive spectroscopy (EDS). Chapter eight presents the conclusion of this thesis and 

future recommendations. 
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CHAPTER II 

BACKGROUND 

2.1 Carbon Nanotubes: 

2.1.1 Hybridization of Carbon: 

 Carbon materials are found in various crystalline structures in nature, for 

example, Carbon fibers, fullerenes (Bucky balls), graphite, diamond, CNTs. The reason 

for exhibiting variety of structural forms is that carbon can shape a variety of orbital 

hybridization. The sp
n
 hybridization is fundamental for deciding the dimensionality of 

carbon based particles as well as carbon based solids. Carbon forms isomers that take 0-

dimension to 3-dimensions as shown in Table.  In sp
n
 hybridization, (n+1) σ bonds per 

carbon particle are formed, which frame a skeleton for the neighborhood structure of the 

n-dimensional structure. In sp hybridization, two σ bonds form a one-dimensional chain 

structure, which is known as a carbyne. 
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Figure 3: Various forms of Carbon 

Credit: © Airi Iliste/The Royal Swedish Academy of Sciences 

 In sp
2
 hybridization, which forms a planer structure in two-dimensional graphite 

also forms a planar neighborhood structure in the closed polyhedra (zero-dimensional) of 

the fullerene family and the one-dimensional cylinders called carbon nanotubes (CNTs). 

Carbon fibers are assumed to be one-dimensional materials similar to CNTs because of 

their remarkable length to width ratios but due to presence of various graphitic planes 

they exhibit electronic properties as two-dimensional structures. Amorphous Graphite 

with layers of Graphite stacked randomly exhibit sp
2 

hybridization. Due to these 

randomly stacked graphitic layers which have poor bonding are prone to slip over each 

other thus acting as solid lubricant, this behavior leads amorphous graphite to act like a 
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two dimensional material.  In sp
3

 hybridization four σ bonds form a tetrahedron, a 

three dimensional structure similar to diamond. Thus carbon in its amorphous form can 

produce various structures depending on the arrangement of layers or hybridization. 

Table 1: Isomers of Carbon 
[8]

: 

Dimension 0-D 1-D 2-D 3-D 

Isomer C60, fullerene Nanotube, 

carbyne 

Graphite fiber Diamond 

amorphous 

Hybridization sp
2
 sp

2
 sp

2
 sp

3
 

Density (g/cc) 1.72 1.-2.0 2.26 3.515 

Bond Length 

(Å) 

1.4 (C=C) 

1.46 (C-C) 

1.44 (C=C) 1.42 (C=C) 

1.44 (C=C) 

(C-C) 

Electronic 

Properties 

Semiconductor 

Eg = 1.9eV 

Metal or 

Semiconductor 

Semimetal Insulating Eg = 

5.47eV 

 

2.1.2 Classification of CNTs:- 

 CNTs, which are sometimes termed as quasi one dimensional carbon whiskers, 

are essentially categorized into two types depending on number of layers of graphene 

sheets wrapped to form cylindrical tubes. 

1. Single walled Carbon Nanotubes (SWNT) 

2. Multi walled Carbon Nanotubes (MWNT) 

 Few researchers use Double walled Carbon Nanotubes to describe the properties 

of interlayer interactions of nanotube systems. They provide an ideal working model for 

investigation of the physical and chemical properties of MWCNTs.  
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2.1.2.1 Single Walled Carbon Nanotube: 

 Single walled carbon nanotubes (SWCNTs) are graphene wrapped into a seamless 

cylinder. Graphene is one atom thick layer of carbon. It can also be treated as single layer 

of graphite sheet rolled into a cylinder shape. The way the graphene sheets are rolled 

results in different chirality/helicity of the nanotubes. A single-wall nanotube is a 

graphene sheet rolled into a cylindrical structure with diameter of about 0.7 - 10.0 nm, 

typically most of observed single-wall nanotubes have dimensions of diameters <2 nm. 

The substantial aspect ratio (length/diameter) of CNTs is 104-105 which enables 

nanotubes to be considered as one dimensional nanostructure. 

 Depending on the distortion of curvature of carbon nanotube, CNTs can be 

classified as Achiral and Chiral. As per the name Achiral (symmorphic) carbon 

nanotubes are mirror images of their original structures and they were further classified 

into Armchair and Zigzag depending on the shape of cross section. Chiral (non-

symmorphic) carbon nanotubes are not identical to the mirror image of the original 

structure but exhibit spherical symmetry.  

2.1.2.2 Multi Walled Carbon Nanotubes: 

 Multi walled carbon nanotubes (MWCNTs) are nanotubes that consists of more 

than one layer of graphene sheet, more formally more than one wall. Depending on the 

formation of the layers MWCNTs can be classified into two models. One Russian Doll 

which is like a concentric SWCNTs with different diameters. Second Parchment model 

which is graphite (Graphene) sheet rolled in around itself. Figure 5 shows TEM images 

of Multi walled Carbon Nanotubes (MWCNT). Figure6 shows the cross section of 
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MWCNT, this image was taken by Ultra Conductive Copper research team at CSU in 

collaboration with Zeiss. 

 

Figure 4: Classification of CNTs. a) arm chair, b) zigzag and c) chiral nanotubes 

 

Figure 5: TEM images of CNTs 

Fig. a) Tube consisting of five graphitic sheets, diameter 6.7 nm. b) Two-sheet, diameter 5.5 

nm. c) Seven-sheet, diameter 6.5 nm, which has the smallest hollow diameter (2.2 nm) 
[9]
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Figure 6: SEM image of MWCNT 

2.1.3 Properties of Carbon Nanotubes 

2.1.3.1 Mechanical  

 Carbon Nanotubes are considered to poses high tensile strength and elastic 

modulus. Studies revealed individual axially loaded CNT shells have strength of about 

100GPa with agreement to the quantum models. They also have high strength to weight 

ratio and Low density. Due to their high aspect ratio and hollow structures CNTs are 

prone to buckling under compression tests. 

2.1.3.2 Chemical 

 CNTs show enhanced chemical reactivity in comparison with a graphene sheet. 

CNTs reactivity directly related to pi-orbital mismatch. Thus a distinction must be made 

between the sidewall and the end caps of the nanotube. Due to this reason, a smaller 

nanotube diameter results in increased reactivity. 
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2.1.3.3 Optical 

 The useful optical absorption, photoluminescence and Raman spectroscopy allow 

us to characterize the quality of nanotube in terms of their structures, carbon content and 

defects. Optical activity of chiral nanotubes disappears as nanotube becomes larger. 

These features determine other properties such as mechanical and electrical. 

2.1.3.4 Electrical 

 Depending upon the chirality or helixity of nanotube, they can be either metallic 

or semi-conducting. Experimental results show the ballistic and super conductivity of 

nanotubes. For embedding Nanotubes into metal matrix composites for developing higher 

conductive composites scientists are using Multi walled carbon nanotubes because of 

their multi channel electron transmission which leads a ballistic quantum channel. In 

theory, metallic nanotubes can carry an electric current density of 4 × 10
9
 A/cm2, which 

is more than 1,000 times greater than those of metals such as copper 
[10]

.  

2.1.3.5 Thermal 

 Carbon Nanotubes possesses very high thermal conductors and exhibit ballistic 

thermal conduction. Thermal conductivity of SWNT along its axis is about 3500 

W·m
−1

·K
−1

 
[11]

, which is almost 10times higher than copper (385 W·m
−1

·K
−1

). Thermal 

stability of carbon nanotube is estimated to 2800
o
C in vacuum and 750

o
C in air. 

2.1.3.6 Toxicity 

 Due to the structural similarity of carbon nanotubes to that of asbestos safety 

concerns are raised by few organizations. Studies showed CNTs can enter human cells 

and accumulate in cytoplasm leading to death. Organizations such as   United states 

https://en.wikipedia.org/wiki/Copper
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National Institute for Occupational Safety and Health (NIOSH), European 

Union's Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 

have taken measures in recommending exposure limits of nanotubes and 

commercialization of nanotubes. 

2.2 Nanocomposites: 

 A composite is a material made from two or more constituent materials with 

significantly different physical or chemical properties that, when combined, produces a 

material with characteristics different from the individual components. The individual 

components remain separate and distinct within the finished structure. A composite 

material is also defined as a macroscopic combination of two or more distinct materials, 

having a recognizable interface between them. 

 Nanocomposites are composite materials that are formed by incorporating one or 

more nano sized particles or structures in a metal matrix or an alloy. By definition 

Nanocomposite is a multiphase solid material where one of the phases has either one, two 

or three dimensions of less than 100 nanometers (nm), or structures having nano-scale 

repeat distances between the different phases that make up the material. Table 2 shows 

the different kinds of Nanomaterials at each Dimension. 

Table 2: Nanomaterials with various dimensions 
[12]

 

Dimension Nanomaterial 

One (1D) 

Surface coatings, Engineered surfaces, 

Thin films 

https://en.wikipedia.org/wiki/National_Institute_for_Occupational_Safety_and_Health
https://en.wikipedia.org/wiki/Physical_property
https://en.wikipedia.org/wiki/Chemical_property
https://en.wikipedia.org/wiki/Nanometers
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Two (2D) 

Carbon nanotubes or CNT, Inorganic 

nanotubes, Biopolymers, Nanowires 

Three (3D) 

Quantum dots, Nanoparticles, 

Fullerenes or carbon 60, Dendrimers, 

Precipitates, Colloids 

 

 Nanoscale reinforcement of a metal matrix in larger amounts will lead to 

significant changes of its properties on macroscopic levels. Addition of CNTs into a 

metal matrix dramatically enhances the electrical and thermal properties of the base 

metal. While not restricting to electrical and thermal properties the inclusion of CNTs 

often alter optical, dielectric and mechanical properties such as strength, stiffness and 

corrosion properties etc. In general, the nano reinforcements are dispersed in the metal 

matrix during processing. The orientation and alignment of nanoparticles, concentration 

and polydispersity of nanoparticles also have a predominant role in the macroscopic 

properties of the base metal 
[13]

.  

2.2.1 History  

 The existences of nanocomposites are pre historic but the science behind it is 

being studied vigorously in recent years. Damascus steel which was used to forge 

weapons during eight century A.D.
 [14]

 indeed contains carbon nanotubes 
[15]

 encased in 

cementite nano wires. Mesopotamia potters in ninth century generated glittering effect on 

the surface of pots
 [16]

. 

2.2.2 Classification 

 Nanocomposites can be broadly classified into three types: 

https://en.wikipedia.org/wiki/Electrical_conductivity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Optics
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1. Ceramic-matrix Nanocomposites 

2. Polymer-matrix Nanocomposites 

3. Metal-matrix Nanocomposites 

2.2.2.1 Ceramic-matrix Nanocomposites 

 To overcome intrinsic brittleness, lack of containing crack propagation, low 

fracture toughness 
[17]

 without defying their desired properties of high-temperature 

stability, high corrosion resistance, light weight and electrical insulation, CNTs are used 

to reinforce the Ceramic composites. In addition to these, depending upon the type of 

Nanotube embedding in a ceramic matrix will also benefit other properties such as 

electrical, thermal conductivities, thermal shock resistance, hardness, thermal expansion 

coefficient. 

2.2.2.2 Polymer-matrix Nanocomposites 

 A polymer or copolymers having nanoparticles or nanofillers in their matrix well 

dispersed are considered as Polymer Nanocomposites. The higher surface area of the 

nano-particles, the interaction with the other particles within the mixture is more and this 

increases the strength, heat resistance, etc. of the composite. Many bio degradable 

polymer nanocomposites are being developed for bone tissue engineering and their novel 

properties of high strength, light weight and corrosion resistance are being used for 

making bone implants. 

2.2.2.3 Metal-matrix Nanocomposites 

 Metal matrix nanocomposites (MMNCs) are still being developed and are 

considered as next generation composites because of their remarkable properties. By 
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embedding CNTs into metal matrix the range of applications are almost into every field. 

The high strength to weight ratio, high electrical conductivity, high thermal stability, 

increased tensile strength are the expected outcomes. Different traditional and 

nontraditional manufacturing techniques are being investigated for manufacturing 

MMNCs, with every method having its own advantages and limitations. 

2.3 Methods of Producing Nanocomposites 

 Metal Matrix Nanocomposites (MMNCs) can be fabricated by variety of 

processing techniques. Figure7 shows various processing techniques for fabricating 

MMNCs. As per S. R. Bakshi et al
[7]

 review on processing metal matrix Nanocomposites, 

powder metallurgy is widely used to process Metal matrix-CNT composites where as 

liquid metal processing techniques such as melting and solidification is viable method to 

process low melting point metals such as Mg and bulk metallic glasses. 



20 
 

 

Figure 7: Various processing techniques for fabricating MMNCs.
 [7]

 

2.3.1 Stir Casting: 

 For producing Metal matrix composites Stir Casting is considered as the most 

economical and productive process. Stir Casting as the name implies melting metal in a 

crucible by conventional route and dispersing any reinforcing material into this molten 

metal by mechanical stirring. After mechanical stirring of discontinuous reinforcements 

in molten metal, it is allowed to solidify. The major advantage of stir casting is in its 

design, flexibility and simplicity. According to M.K. Surappa
 [18]

 classification of various 
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manufacturing processes, Liquid metallurgy (stir Casting) have high economical and 

yield aspects compared with other major manufacturing processes for producing 

Discontinuously Reinforced Metal Matrix Composites (DRMMC). 

 

Table 3: A comparative evaluation of the different techniques used for DRMMC 

fabrication
 [18]

: 

Method 

Range of Shape 

and Size 

Metal 

Yield 

Range of 

vol. 

fraction 

Damage to 

reinforcement 

Cost 

Liquid 

Metallurgy 

(stir 

Casting) 

wide range of 

shapes; larger 

size; up to 500 kg 

very 

high>90% 

up to 0.3 No damage 

least 

expensive 

Squeeze 

casting 

limited by 

preform shape; up 

to 20 cm height 

Low Up to 0.45 Severe Damage 

Moderately 

Expensive 

Powder 

metallurgy 

wide range; 

restricted size 

High Up to 0.4 

Reinforcement 

Fracture 

Expensive 

Spray 

casting 

limited shape;  

large size 

Medium - - Expensive 

Lanxide 

technique 

limited by 

preform shape; 

restricted size 

- 0.3 - 0.7 - Expensive 



22 
 

2.3.2 Stages of Stir Casting 

 Depending upon the desired outcome in the product, stir casting can be classified 

in different stages but the most general phases of stir casting are 

1. Incorporation of reinforcements into metal matrix 

2. Homogenous mixing/dispersing of reinforcements in molten metal matrix 

3. Solidification of Metal Matrix Composite. 

2.3.2.1 Incorporation of reinforcements into metal matrix 

 Depending on the criteria and requirements of experimental procedure 

reinforcements are added before melting or after melting the base metal/alloy. This thesis 

is focused on developing an ultra low porous composite which requires minimum 

atmospheric contaminations and gases in the melting crucible (in this case it is a test 

tube). High vacuum is generated in the test tube containing pre mixed dispersoids and 

base metal chips, shots and solid billet in predefined weigh fractions. 

2.3.2.2 Homogenous mixing/dispersing of reinforcements in molten metal matrix 

 Once the base metal/alloy is melted in crucible, reinforcements are stirred into 

molten metal pool with the help of a mechanical stirrer which is made up of corrosion 

free metal or a non reacting material with the metal pool or the usage of electromagnetic 

stirring to eliminate any alien particle contamination in metal pool. Molten metal is 

stirred for significant time to disperse the dispersoids and break any agglomerations 

within molten pool. 
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2.3.2.3 Solidification of Metal Matrix Composite 

 The homogenous MMC slurry is allowed to solidify after dispersing the 

reinforcement particles in the metal slurry. The rate of cooling is crucial in attaining the 

desired microstructures. If slower cooling rates are used, due to buoyancy reinforcements 

will have the tendency to either float to surface of liquid metal or segregate at the bottom. 

It is essential to have a proper cooling rate and a mechanism to ensure the composite 

slurry is in a homogenous state.  

2.3.3 Impeller 

 The device that provides required shear force for breaking the agglomerations and 

dispersing of the particles for homogenous mixing of two or more phases of fluid with 

the help of an external motor. It is also used to increase or decrease the pressure and flow 

of a fluid. Depending upon the flow pattern impellers can be classified into two types 

1. Axial flow impellers 

2. Radial flow impellers 

2.3.3.1 Axial flow impellers 

 Axial flow impellers are used when homogenous fluid is required with bulk 

motion from bottom of the crucible to top. They are preferred when mixing solid-liquid 

suspensions as they prevent the solid particles from segregating at the bottom. 

2.3.3.2 Radial flow impellers 

 Radial flow impellers are used when high shear stresses are essential to mix 

immiscible fluids. They are preferred when high shear rates such as dispersion are 

required.  
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Figure 8: Direction of flow in Impellers 

Direction of flow in Axial flow impellers (left) and Radial flow impeller (Right)
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CHAPTER III 

LITERATURE REVIEW 

3.1 Metal Matrix Composites (MMCs): 

 Metal matrix Composites (MMCs) can be fabricated either by liquid metal 

processing or by powder particle processing. The reinforced composites generally have 

enhanced mechanical properties when compared with monolithic or unreinforced base 

metal or alloy 
[19]

. In MMNCs when isotropic dispersion of reinforced material is 

achieved, then the composites are expected to be Orowan strengthened 
[20]

.  Pure Orowan 

strengthening effect is explained by Ashby-Orowan Equation by assuming all the 

precipitates are widely arranged and spherical
 [21]

. 

                
  

   

 
   

 

 
 

Where       is increase in yield strength by Orowan strengthening in MPa,   is the 

shear modulus of the matrix in MPa, b the Burgers vector,     is the Volume fraction of 

precipitate and r is the average particle radius in m. 

 Strengthening of Metal Matrix Composites (MMC) is also facilitated by other 

strengthening mechanisms such as Hall-Petch strengthening due to grain size. The 
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strengthening effect of MMC due to their grain refinement is expressed by the equation 

[22] 

          
    

 

where σyis the yield stress, σ0is the lattice friction stress which includes contribution 

from solutes and particles,  1is a material dependant constant and dgis the grain diameter. 

 Kang et al 
[23]

 reported increase in hardness and tensile behaviors of Aluminum 

matrix composites reinforced with nanometric Al2O3particulates. However the 

strengthening effect leveled off as the concentration of Al2O3 increased over 4% 

volumetrically, which is attributed to the clustering of Al2O3. He also reported that the 

major strengthening mechanism of Orowan strengthening is due to the evenly distributed 

Al2O3 in particles in the metal matrix. 

3.2 Nanocomposites: 

 Goh et al 
[24]

 synthesized monolithic and CNT reinforced magnesium materials 

using disintegrated melt deposition (DMD) process where ingots were hot extruded at 

350C with an extrusion ratio of 20.25. They reported that lighter nanocomposites are 

fabricated by incorporating CNTs into the Monolithic Magnesium metal matrix. They 

found that the increase in yield, tensile strengths and ductility of the CNT-Mg composite 

up to a threshold of 1.3wt% CNT. Their results are summarized in the tables 4 & 5. 
[24]
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Table 4: Effect of conc. of CNTs on Macrohardness of CNT-Mg Composite: 

Material CNT (wt%) Density (g/cc) Macrohardness 

(HR15T) 

Mg (99.9%) 0.0 1.738±0.010 45±1 

Mg-0.3wt% CNT 0.3 1.731±0.005 48±1 

Mg-1.3wt% CNT 1.3 1.730±0.009 46±1 

Mg-1.6wt% CNT 1.6 1.731±0.003 42±1 

Mg-2.0wt% CNT 2.0 1.728±0.001 39±1 

 

Table 5: Effect of Conc. of CNTs on Mechanical properties of CNT-Mg Composite: 

Material 0.2% YS (MPa) UTS (MPa) Elongation (%) 

Mg (99.9%) 126±7 192±5 8.0±1.6 

Mg-0.3wt% CNT 128±7 194±9 12.7±2.0 

Mg-1.3wt% CNT 140±2 210±4 13.5±2.7 

Mg-1.6wt% CNT 121±5 200±3 12.2±1.7 

Mg-2.0wt% CNT 122±7 198±8 7.7±1.0 

 

 Muhsan et al 
[6]

 used Metal Injection Molding technique for fabricating Copper 

based Nano Composite by dispersing MWCNTs with in the copper matrix by using 

paraffin wax as a medium to disperse nanotubes in the copper powder to form Cu-

MWNTs-Binder feed stock. They reported to follow a multilevel mixing approach of 

Nanoscale dispersion for preparing feedstock of Cu-MWNTs-Binder followed by Metal 

Injection Molding process (MIM). In their experimental study they reported to have 11% 
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increase in the thermal conductivity with addition of 1 vol% of MWNTs to the Copper 

powder upon further increase in concentration of MWCNTs the thermal conductivity of 

the composite decreased. The decrease in the conductivity is attributed to the 

agglomerations of MWNTs in the metal matrix.  

 The work from Muhsan et al shows the necessity for the development of an 

approach for dispersing and aligning of reinforcing material in the metal matrix is 

essential for attaining unique and enhanced properties of Nano Composites. 

3.3 Ballistic Conductance of Carbon Nanotubes: 

 Metallic Carbon Nanotubes (CNTs) are known as ballistic conductors 
[25]

. 

Researchers are working on developing composite materials that can replicate high 

conductance of CNTs at Nanoscale to macro scale applications. In 1997 Smalley et al and 

Tans et al reported the electron transport measurements in nanotube devices many other 

researchers tried to address questions on fundamental physics and device performance. 

 Collins and Avouris 
[26]

 reported in their experimental analysis that in MWCNTs 

unlike the outer wall or inner wall contributing to electron conduction, all the shells in a 

MWCNT are actually contributing for conduction this break through discovery paved 

path for the future works on developing ultra conductive materials. 

 Li et al 
[27]

 reported in their experimental observations that MWCNTs have the 

capability to carry higher currents at low bias voltage with perfect ohmic contacts. They 

reported the behavior of MWCNT is due to quasi-ballistic conductance of inner walls of 

the CNT. Their experimental results showed higher conductance of MWCNT compared 

with theoretical value of SWCNT. 
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 In the report submitted by Oak Ridge National Laboratory (ORNL) in 2015 for 

priority research areas for developing Ultra conductive Copper Conductors
[28]

, fabrication 

route of Nayfeh et al from ISSL, CSU have been highlighted which shows the importance 

of developing ultra conductive materials. Nayfeh et al reported in their patent (US 

Patent#8,347,944) electrical conductivity of 113% IACS by copper nanocomposite 

produced by die casting. These results encourage researchers in pursuit for developing 

Nano composites which can exhibit higher conductive behavior. 

3.4 Stir Casting: 

 Ghosh et al 
[29]

 reported size of impeller and stirring speeds are among the crucial 

factors that influence the development of porosity in stir casting. The porosity formed in 

casting can be related both due to the shrinkage porosity and gas entrapment.  

 According to Harnby et al 
[30]

, study on different designs of impellers that provide 

shear force and stirring in the molten metal, turbine blade stirrer is popular. Impellers are 

essential for transferring particles into liquid and to maintain the reinforcements in the 

state of suspension such that it avoids both segregation of particles on the bottom of mix 

or float onto the top of mix due to buoyancy. 

 The formation of vortex in stir casting has both positive and negative 

implications. Due to pressure difference in inner and outer layers of the melt the particles 

are pulled into the molten pool of mix thus enabling the reinforcements to stay in the 

suspension. Also rigorous stirring will cause air bubbles in the mix which will create 

porosity in the composite. So it is essential to have optimal speed of rotation of stirrer.
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CHAPTER IV 

RESEARCH METHODOLOGY 

 The objective of this research is to develop a manufacturing process for producing 

Metal Matrix Nano Composites (MMNCs) without the addition of surfactants or 

dispersing agents. The necessity for eliminating such agents is to reduce the percentage of 

impurities in the metal matrix.  

 According to the patent on Nano-engineered ultra-conductive nanocomposite 

copper wire (US Patent No. US 8347944) by Nayfeh and Weiderholt, they propose a 

novel approach for developing Copper Nano Composite wire. In the process of 

development, the team at CSU used MgCl2 as an aid for coating Carbon Nanotubes 

(CNT) with Magnesium by ultrasonically mixing the graphitized CNTs with an MgCl2 

Solution and followed by flow-milling for predetermined number of cycles, thus 

functionalizing MWCNTs with Magnesium.  

 On further iterations for scaling up of the ballistic conducting zone of Copper 

Nanocomposite wire a new research methodology is proposed and investigated by the 

team of Cleveland State University (CSU) lead by Nayfeh for developing ultra 

conductive copper composites materials. 
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4.1 Research Methodology 

 The work in this research is carried out in different phases to explore the 

feasibility of fabricating Magnesium and Copper based Nanocomposites. To develop a 

reliable process the mechanism for breaking the agglomerating the Carbon Nanotubes 

and dispersing them in the metal matrix is critical. In this thesis the process for breaking 

agglomerations and dispersing Carbon Nanotubes in the magnesium metal matrix are 

discussed. Different phases in the research are summarized below: 

 Phase 1: Investigated layering of MWCNTs in the experimental setup which will 

lead to low sedimentation on bottom of test tube and low amount of MWCNTs 

floating on to the surface of molten metal.  

 Phase 2: Developing a method for breaking the agglomerations of MWCNTs and 

dispersing them in the Molten Magnesium pool. 

 Phase 3: Consolidation of Magnesium Nanocomposite to reduce the porosity in 

the sample and densification of the Mg-MWCNT composite. 

 Phase 4: Inserting the Mg-MWCNT composite in Copper billets. The copper 

billet with Magnesium based Nanocomposite is extruded to form rods, which is 

further drawn into fine wire. 
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CHAPTER V 

EXPERIMENTAL SETUP 

5.1 Material Selection 

5.1.1 Base Metal: 

 The base metal used as the matrix for forming Metal Matrix Nanocomposite is 

High purity Magnesium. Magnesium is a group 2, alkaline earth metals, and the eight 

most abundant elements in the Earth’s crust. After Iron, Oxygen and Silicon, Magnesium 

is the most common element in the Earth, is a light, silvery-white metal. Magnesium has 

high strength to weight ratio and have many potential applications in automotive, 

aerospace and structural industries.  

 Magnesium in various forms is selected in this study for facilitating in the process 

of layering in Phase 1 study. Different forms of Magnesium used in this study are briefed 

below. 

i. High Purity Magnesium Granules 

ii. High Purity Magnesium Slugs 

iii. High Purity Magnesium Billet 

iv. High Purity Magnesium Chips 
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 High purity Magnesium Granules, Shots and chips used in this study are 

purchased from Alfa Aesar and their composition are attached in Appendix. Other 

parameters of Magnesium raw material can be seen in the tables 6-9. 

 

Table 6: Magnesium Granules Parameters 

Commercial Name Magnesium Granules 

Purity 99.8% 

Average Particle Size -12+50 mesh 

Supplier Alfa Aesar 

Lot Number Z22X028 

Color Silvery White 

 

Table 7: Magnesium Slug Parameters 

Commercial Name Magnesium Slug 

Purity 99.95% 

Average Particle Size 6.35mm dia X 6.35mm width 

Supplier Alfa Aesar 

Lot Number Z05C015 

Color Silvery White 
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Table 8: Magnesium Billet Parameters 

Commercial Name Magnesium Billet 

Purity 99.9% 

Diameter 33mm 

Length 77mm 

Color Silvery White 

 

Table 9: Magnesium Chips Parameters 

Commercial Name Magnesium Turnings 

Purity 99.8% 

Average Particle Size 2.3mm wide 

Supplier Alfa Aesar 

Lot Number J03X015, K22Z043 

Color Silvery White 

5.1.2 Reinforcing Material: 

 Metallic Carbon nanotube have higher current carrying capacity and less sensitive 

to electron mitigation 
[31][32]

. Multi walled Carbon Nanotubes (MWCNTs) are selected as 

the reinforcing material for this study. MWCNTs are preferred over Single walled 

Carbon Nanotubes (SWCNTs) because of their ability to conduct electricity with lower 

resistance and conduction in multiple layers of MWCNTs also have the ability to sustain 

even after vigorous shear forces during fabrication process unlike SWCNTs and their 

relatively higher current carrying capacity over SWCNTs. 
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 MWCNTs used in this study are purchased from Applied Materials and are 

graphitized by processing them at 3000°C. The Parameters of MWCNTs are shown in 

Table10. 

 

Table 10: MWCNTs parameters 

Commercial Name Graphitized Multiwalled Carbon Nanotubes 

Average Length 10-15 µm 

Average Diameter 150 nm 

Supplier Applied Science 

Color Dark Grey 

 

5.2 Experimental Apparatus 

5.2.1 Heating Unit:  

 The heating unit is custom designed for the study by collaboration between 

Manufacturing Advocacy and Growth Network (MAGNET) and the Industrial Space 

systems Laboratory (ISSL) from Cleveland State University. WATLOW heating source 

is used for the Heating unit. Stirring unit is embedded within the system designed by 

Magnet in collaboration with ISSL. The motor for rotating stirrer is used from Caframo 

Universal Model BDC3030. To reduce weight on the linear actuator flex shaft is used for 

driving impeller. The figure shows the existing setup for casting Mg/MWCNT 

composite. Figure 9 shows the Heating unit currently in use for casting Mg/MWCNT 

composite at CSU. 
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Figure 9: Heating unit at CSU 

5.2.2 Vacuum Pump: 

 High vacuum turbo pumping system Agilent TPS-mini is used for generating 

vacuum in the test tube.  Agilent T-plus software is used to control and communicate to 

pump through computer. Input voltage of 90V to 240V AC and frequency of 50/60 HZ. 

Rotational speed of pump is 81000rpm. Figure shows the existing agilent TPS-mini 

vacuum pump.  Table shows the capabilities of TPS-mini vacuum pump. 
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Figure 10: Agilent TPS-Mini 

 

Figure 11: Parameters of Agilent TPS-Mini 

5.2.3 Pressure Gauge: 

 Various pressure gauges at different locations are used to ensure no vacuum leaks 

in the set up. Pressure gauge FRG-700/702 Pirani Inverted Magnetron Gauge from 

Agilent Technologies with measuring range of 5x10-9 to 1000mbar  (3.8 x 10-9 to 760 

Torr) and accuracy of ± 30 % of reading with repeatability of ± 5 % of reading is used to 

measure pressure at the mouth of pump. 
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Figure 12: Agilent / Varian 531 Thermocouple Gauge 

 

 

Figure 13: Pirani Inverted Magnetron Gauge 

 Agilent / Varian 531 Thermocouple Gauge model number F0472301 with 

measuring range of 1mTorr to 760 Torr and 15% accuracy is used to measure pressure in 

test tube at lower vacuum levels. Varian 531 thermocouple gauge is used to measure the 

pressure in the test tube. Since the pressure readings are not accurate in Argon 

atmosphere, the gauges need to be calibrated for Argon environments to get actual 

readings. Pirani gauges are calibrated for Argon environments, datasheet is attached in 
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appendix. To get actual readings varian 531 gauge is calibrated with respect to Pirani 

gauge for experimental purpose and the results are plotted and can be seen in figure14. 

 

 

Figure 14: Graph showing Calibration of Varian 531 with Pirani Gauge 

5.2.4 Quartz tubes: 

 Melting of metal is carried out in quartz test tubes which are purchased from 

Across International and MTI Corporation. Specifications of quartz tube are mentioned in 

table. Figure15 shows the quartz tubes used for casting Mg/MWCNT composite. 

Dimensional parameters and Maximum operating temperatures of the quartz tube can be 

seen in table 11. 
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Table 11: Parameters of Quartz tube: 

Suppliers Across International, MTI Corporation 

Diameter of tube 44mm (1.73”) 

Thickness of tube 3mm 

Length of Tube 300mm 

Maximum operating Temperature 1200°C 

 

 

 

Figure 15: Test tube for casting Mg-MWCNT Composite 

5.2.5 Vacuum Furnace: 

 Vacuum furnace is used for consolidation of as cast billet from phase 2, the as 

cast billet is pressed in the vacuum furnace custom built for ISSL by The Furnace Source 

is used. Edwards High vacuum E2M80 Oil-Sealed Rotary Vane Vacuum Pump is used 

for generating vacuum in the furnace. Figure16 shows the vacuum hot press used for 

consolidation of Mg/MWCNT composite to densify.  
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Figure 16: Vacuum Hot Pressing unit 

5.2.6 Scanning Electron Microscope: 

 Billets after hot pressing and initial drawing operations are examined to verify the 

dispersion and presence of nanotubes by using scanning electron microscope (SEM). 

Oxford Instruments Inca X-ray spectroscopy (EDS) system is used for validating the 

distribution and presence of chemical elements in the metal matrix. 

5.2.7 X-ray Imaging: 

 The as cast Mg/MWCNT billets and NanoComposite billet after vacuum hot 

pressing are imaged using X-ray techniques. The X-ray imaging is performed at G&S 

Titanium, Wooster, Ohio.  
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CHAPTER VI 

RESULTS AND DISCUSSION 

 Different methods are investigated to get better engulfment of MWCNTs within 

magnesium metal matrix. Owing to low surface energy and density of carbon nanotubes 

it is difficult to disperse them in a metal matrix without the addition surfactants/ 

dispersants. 

 Initially Electromagnetic induction heating is employed for melting Magnesium 

billet under 10psi but due to high vapor pressure of Magnesium, the metal is sublimated 

on the low temperature end of test tube walls. Figure17 shows partially sublimated 

Magnesium billet processed via Electromagnetic Induction under low pressure regimes. 

Instead of melting and forming molten metal pool due to high vapor pressure Magnesium 

started to sublimate on the cold end of the test tube. To eliminate sublimation of 

Magnesium partial atmosphere of Argon is introduced in the test tube by purging Argon 

gas and holding pressure at 11psi. This process helped to melt Magnesium and disperse 

MWCNTs in the metal pool without contaminating the nanocomposite by introducing 

alien material for stirring. 
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Figure 17: Magnesium billet processed using Electromagnetic Induction  

 Further on later stages of processing the Mg/MWCNT composite it was 

discovered that the gas entrapped in the nanocomposite lead to catastrophic exploding of 

extruded rod during extrusion process and breaking of the rod during wire drawing 

operation.  

 

Figure 18: Exploded Cu-Mg/MWCNT composite rod. 
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 Figure18 shows the exploded Cu-Mg/MWCNT composite during extrusion 

process from the initial experiments using Electromagnetic Induction Melting process. To 

minimize the entrapped gas, conventional method of heating is opted in the later stages of 

producing Mg/MWCNT composite. Conventional heating enable uniform heating of feed 

stock and melting the material in test tube. During heating process once the metal is at 

sublimating temperature magnesium vapors increases the pressure in the test tube due to 

Magnesium sublimation and coating test tube walls by thin layer of Magnesium. At this 

part Argon gas at low pressure is purged to suppress the Magnesium vapors thus enabling 

feed stock to melt rather than sublimate. 

6.1 PHASE I - Layering mechanism: 

 Layering nanotubes is a critical step in melting the feed stock. Improper layering 

can cause either nanotubes to float onto the surface of metal pool or sediment on bottom. 

Even if nanotubes are in contact with test tube walls is it difficult to break them apart. 

Since the experimental setup is designed to work under vacuum conditions, Nanotubes 

are placed in test tube along with the other charge material for melting. 

 Initially magnesium chips are placed in test tube and then pre-defined amount of 

nanotubes are loaded over these chips and Magnesium billet is placed over them but this 

method failed due to most of the Nanotubes sediment on the bottom of the test tube.  
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Figure 19: Improper layered MWCNTs in Test tube 

 

Figure 20: Defective Mg/MWCNT composite due to improper layering of MWCNTs 
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 Figure 19 shows the improper layering method that resulted in MWCNTs 

adhering to the walls of the test tube due to poor handling. Figure 20 shows the defective 

Mg/MWCNT composite due to Nanotubes adhering to the face of the test tube and are 

not dispersed during the stirring operation. During process it was observed that the 

Nanotubes that stick to the walls do not disperse and continue to stay on the surface of 

test tube even after completion of the experimental run. After continuous improvement in 

layering process an optimized layering method was developed. The layering of the 

nanotubes is designed in such a way to ensure minimum contact with the walls of the test 

tube and loaded at relatively different heights with careful attention. This approach 

showed positive results with low amount of nanotube the sediment on bottom of the test 

tube sticking to walls. This process of layering gave flexibility for the replication of 

casting Mg/MWCNT composite.  

6.2 PHASE II – Dispersing MWCNTs: 

 The scope of this thesis is the development of a process for dispersing MWCNTs 

within a pure metal matrix Magnesium without the addition of surfactants or dispersants.  

 Once the metal is layered, the loaded test tube is fitted to vacuum sealed heating 

system. After achieving low vacuum, the temperature of the system is raised to 250ºC 

and held for 24 hours to allow nanotubes to degas. 

 The heating process is designed in a step by step process rather than continuous 

heating for facilitating uniform heating of the raw materials. Once the magnesium in test 

tube is melted, stainless steel stirrer is used to break the agglomerations of nanotubes and 

disperse them in the molten metal pool. Figure 21 shows defective Mg/MWCNT 

composite due to improper stirring resulted in non embedded Nanotubes. The molten 
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metal is stirred vigorously at different speed for a minute at each speed. The stirrer is 

moved pneumatically in the test tube to disperse the Nanotubes at different heights. The 

process of stirring is carried for five minutes. Holding Magnesium in molten form for 

longer periods will cause the Nanotubes to float onto the surface of the metal due to the 

buoyancy effect. Figure 22 shows the desired as-cast Mg/MWCNT composite with no 

visual casting defects. Once the Nano Composite is produced it was sent to G&S 

Titanium Inc. for X-Ray imaging of the billets. Figure 23 shows the X-Ray images of the 

as-cast Mg/MWCNT composite. Voids due to shrinkage during solidification and 

gaseous can be observed on the top of the composites. 

 

Figure 21: Defective Mg/MWCNT composite due to improper stirring 
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Figure 22: As-cast Mg/MWCNT Billet. 

 

Figure 23: X-ray images of as-cast Mg/MWCNT composite 

6.3 PHASE III – Consolidation of Mg-MWCNT composite: 

 The as cast Mg-MWCNT composite consists of v-neck on the top of billet. The 

piping is attributed to solidification of composite from the walls and the generation of 

vortex during stirring operation in Phase II. The as-cast Mg/MWCNT composite is prone 
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to contain micro shrinkage and micro porosity due to gas entrapment. Figure 24 shows 

casting related defects such as shrinkage and blow holes in as-cast Mg/MWCNT. 

 The as-cast billet from Phase II is cleaned to remove the silicide layer and oxide 

regions by turning operation. Figure 25 shows the cleaned Mg/MWCNT billet that will 

be further processed. The Cleaned billet from Phase II is loaded in Graphite die for hot 

pressing in Vacuum hot press. Heating and cooling cycle of vacuum furnace is 

programmed in eight steps to ensure uniform heating of the Mg-MWCNT composite. 

Figure 26 shows the X-ray images of hot pressed Mg/MWCNT composites. 

 

 

Figure 24: Casting defects in as-cast Mg/MWCNT composite. 
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Figure 25: Cleaned Mg/MWCNT composite before vacuum hot pressing 

 

 

Figure 26: X-ray images of Mg/MWCNT composite after vacuum hot pressing 

6.4 Phase IV – Embedding Mg-MWCNT composite in Copper billet and Extrusion: 

 The nanocomposite obtained from the vacuum hot press is machined to the 

desired dimensions of 1.25 inch in diameter and one inch in height. This machined 

composite is later embedded into a copper billet of 3inch diameter and 2.5 inch height. 

Figure 27 shows the copper billet embedded with Mg/MWCNT composite. The 

Mg/MWCNT composite acts as the core for the copper billet, which is further extruded to 

form a rod of 0.625inch diameter. Extrusion is performed at the Air Force Research 

Laboratory (AFRL) at Wright-Patterson Air Force base, Ohio. The process parameters 

for extrusion are listed in the table 12. 
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Table 12: Process parameters of Extrusion at AFRL: 

Extrusion Die Temperature 500 F 

Ram Speed 15 rpm 

Extrusion Nose Diameter 0.55 inch 

Extrusion Ratio 22.34 

 

  
 

Figure 27: Mg/MWCNT composite embedded in Copper Billet 

6.5 SEM Results: 

 The composite rod Cu-Mg/MWCNT is further drawn to 1/8
th

 inch wire. To 

validate the process of dispersing the nanotubes within the wire, parts of wire at different 

stages of drawing process along with the Magnesium nano composite after vacuum hot 

consolidation process studied under SEM to verify the presence of nanotubes in the 

magnesium metal matrix. 
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Figure 28: Dispersed MWCNTs in Magnesium Matrix 

 Figure 28 shows the presence of the MWCNTs in the magnesium metal matrix 

and well dispersed. Although there is probability of finding agglomerations they will be 

broken on subsequent drawing operations. To get the specimen ready for imaging in SEM 

they are milled, during this process copper on the outer surface smeared onto the surface 

of the magnesium. Figure 29 shows the smeared copper on the cross section.  

 Cleaning the sample with the ethanol or water corrodes the Magnesium matrix. 

Figure 31 shows the effect of washing on the specimen. In future work a better route of 

cleaning the specimens will be studied. Polishing the specimen will also damage the 

nanotubes on the surface by tearing them and smearing the carbon on the surface. This 

approach is avoided knowing difficulties faced during washing in prior research work by 

Dr. Nayfeh and team at CSU. Figure 30 shows the Nanotubes embedded in the 

Magnesium metal matrix. Robust ways to determine the nanotubes dispersion levels and 

quantifying will be studied in future work. 
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Figure 29: Debris of nanotubes and copper examined with SEM. 

  

 

  

Figure 30: Embedded MWCNTs in Magnesium matrix 
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Figure 31: Damaged test specimen due to washing with ethanol  
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CHAPTER VII 

ENERGY DISPERSIVE SPECTROSCOPY 

 To validate the presence and concentration of the Nanotubes in the wire and to 

quantify them the test specimens that consists of 5 vol% were examined to find the 

carbon content using Energy Dispersive Spectroscopy.  

 From the EDS analysis study it can be shown that the carbon content is uniform 

within the cross section of wire but to quantify the amount of carbon Nanotubes is not 

possible. It is because of the EDS inaccuracy in identifying hydrocarbons and quantifying 

carbon.  

 The results of the EDS for wires of different diameter at varying depths are listed 

in table 13. Each wire of different diameter with each step of 1 mil height was analyzed 

for validating the presence of CNTs. 
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Table 13: Concentration of elements in Cu-Mg/MWCNT rods of different diameters at 

different depth: 

D1 (1/5th of Inch) 

Step   C O Mg Si Cu 

I 

Weight % 10.68 2.72 84.67 1.17 0.77 

Atomic % 19.35 3.69 75.79 0.9 0.26 

II 

Weight % 10.89 3.82 83.48 1.19 0.62 

Atomic % 19.58 5.16 74.14 0.92 0.21 

III 

Weight % 9 3.46 85.49 1.33 0.72 

Atomic % 16.5 4.76 77.45 1.04 0.25 

IV Weight % 10.33 5.2 82.42 1.41 0.64 

 

Atomic % 18.55 7.01 73.13 1.09 0.22 

V 

Weight % 10.01 3.65 84.59 1.18 0.57 

Atomic % 18.15 4.97 75.77 0.92 0.19 

D2 (1/6th of Inch) 

Step   C O Mg Si Cu 

I 

Weight % 13.4 5.69 77.51 1.74 1.65 

Atomic % 23.51 7.49 67.15 1.3 0.55 

II 

Weight % 15.54 4.15 79.32 0.55 0.44 

Atomic % 26.71 5.36 67.37 0.41 0.14 

III 

Weight % 16.2 3.3 78.65 1.13 0.72 

Atomic % 27.85 4.26 66.82 0.83 0.24 

IV Weight % 16.45 5.19 74.79 2.56 1.01 
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Atomic % 28.08 6.66 63.07 1.87 0.33 

V 

Weight % 14.07 5.77 75.84 1.11 3.21 

Atomic % 24.7 7.6 65.8 0.83 1.07 

D3 (1/8th of Inch) 

Step   C O Mg Si Cu 

I 

Weight % 18.54 5.19 74.72 0.94 0.91 

Atomic % 31.02 6.52 61.5 0.67 0.29 

II 

Weight % 23 4.42 71.02 0.98 0.58 

Atomic % 37.14 5.36 56.65 0.68 0.18 

III 

Weight % 21.01 4.51 72.71 1.04 0.73 

Atomic % 34.5 5.56 58.99 0.73 0.23 

IV 

Weight % 21.27 4.47 72.37 1.14 0.76 

Atomic % 34.86 5.5 58.61 0.8 0.24 

Atomic % 16.71 5.07 76.89 0.15 1.18 

Atomic % 17.18 3.1 78.43 0.11 1.18 

 

 Presence of copper is attributed to the smeared copper during milling operation to 

prepare specimens for SEM analysis. Figure 32 shows the Cu-Mg/MWCNT composite 

rod used for SEM and EDS analysis. The specimen is milled in steps to facilitate 

observing concentration of Nanotubes at different level of depths. Highlighted region in 

the figure 33 shows the area of interest for EDS analysis. Figure 34 shows the plot of the 

variation of carbon content with respect to the change in area of the site of interest for 
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EDS. It can be seen as the area of interest for EDS increases the carbon content 

decreases. These results are needed to be studied in further works. 

 

Figure 32: Specimen used for EDS analysis 

 

Figure 33: Area of interest during EDS analysis 
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Figure 34: Graph showing variation in conc. of Carbon with respect to Area of SOI for 

EDS 
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CHAPTER VIII 

CONCLUSION 

 The objective of this work is to develop a process for fabricating the Mg-

MWCNT composite material by breaking the agglomerations of nanotubes and 

dispersing them within the magnesium metal matrix. Throughout the work various 

processing techniques were investigated and resulted in a process map. By the current 

processing technique replication of the process can be achieved.  

8.1 Summary of the results: 

 Different layering techniques are investigated and came up with the method of 

using different kinds of material and layer-wise addition of nanotubes. 

 Using mechanical stirring showed promising results by breaking the 

agglomerations and dispersing them in molten metal pool. 

 EDS and SEM analysis supports the objective of dispersing nanotubes. 

 This process can be implemented in mass production within current production 

sites with few additions to the existing process route. 
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8.2 Future work: 

 Need to develop a robust method to determine the dispersion and quantify 

nanotubes in the metal matrix. 

 Wire needs to be drawn further fine into micron levels to ensure all 

agglomerations are broken. 

 Fine wires are to be sintered and observe their mechanical and electrical 

properties. 

 Use the current approach to develop more nanocomposites with Aluminum, Lead 

and other elements. 
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Product Specification of Magnesium Granules: 
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Product Specification of Magnesium Turnings:  
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Product Specification of Magnesium Slugs: 
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