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FEASIBILITY OF USING AN EQUILIBRIUM POINT STRATEGY TO CONTROL

REACHING MOVEMENTS OF PARALYZED ARMS WITH FUNCTIONAL

ELECTRICAL STIMULATION

MATTHEW P. HUFFMAN

ABSTRACT

Functional electrical stimulation (FES) is a technology capable of improving the

quality of life for those with the loss of limb movement related to spinal cord injuries.

Individuals with high-level tetraplegia, in particular, have lost all movement capabilities 

below the neck. FES has shown promise in bypassing spinal cord damage by sending 

electrical impulses directly to a nerve or muscle to trigger a desired function. Despite 

advancements in FES, full-arm reaching motions have not been achieved, leaving

patients unable to perform fundamental tasks such as eating and grooming.

To overcome the inability in current FES models to achieve multi-joint 

coordination, a controller utilizing muscle activations to achieve full-arm reaching 

motions using equilibrium point control on a computer-simulated human arm was 

developed. Initial simulations performed on the virtual arm generated muscle activations 

and joint torques required to hold a static position. This data was used as a model for 

Gaussian Process Regression to obtain muscle activations required to hold any desired 

static position. The accuracy of the controller was tested on twenty joint positions and 

was capable of holding the virtual arm within a mean of 1.1 ± 0.13 cm from an original 

target position.
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Once held in a static position, external forces were introduced to the simulation to

evaluate if muscle activations returned the arm towards the original position after being

moved away within a basin of attraction. It was found that the basin of attraction was

limited to a 15 cm sphere around the joint position, regardless of position in the

workspace. Muscle activations were then tested and found to successfully perform

movements between points within the basin. The development of a controller capable of

equilibrium point controlled movement is the initial step in recreating these movements

in high-level tetraplegia patients with an implanted FES.
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CHAPTER I

INTRODUCTION

Spinal cord injuries (SCI) affect over 282,000 people in the United States alone 

(National Spinal Cord Injury Statistical Center, 2017). Of these individuals, 58.3% have 

some level of tetraplegia - an injury that results in the partial or total loss of movement in 

all four limbs and torso - while 41.7% have some degree of paraplegia - an injury that 

results in the partial or complete loss of the movement of the lower body (National Spinal 

Cord Injury Statistical Center, 2017). Loss of movement occurs because an injury to the 

spinal cord disrupts the proper communication channels of electrical impulses from the 

brain to the rest of the body. Individuals who have an injury anywhere below the C4 

vertebrae have some functional ability in their arms and shoulders and can potentially 

lead an independent lifestyle, as they require help only with fine finger movements and 

larger muscle group movement. However, the most severe level of spinal cord injury that 

can occur is high-level tetraplegia - an injury to the spinal cord that occurs anywhere 

between the C1 to C4 vertebrae - which results in the complete loss of any movement 

below the neck, including the shoulders. These individuals require the highest level of 

care as they are unable to utilize any motion in their arms, leaving them completely 

dependent on others for daily activities such as eating and grooming. We aim to restore
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functional reaching in individuals with high-level tetraplegia as it is considered their

highest priority as current methods are lacking in these advances (Anderson, 2004).

A vital aspect of improving the quality of life for those who live with high-level 

tetraplegia is attempting to supplement nonfunctioning muscles to regain some level of 

movement or functionality. One method that attempts to bridge the communication gap 

to support restoration of movement is Functional electrical stimulation (FES), a technique 

that applies small independent electrical impulses to paralyzed muscles to restore or

improve their function (Ho, 2014). When only one or very few muscles or nerves were

stimulated in various spinal cord injury patients across multiple studies, FES successfully

restored and improved hand functionality (Keith, 1996), lower limb functions (Zhang,

2007), respiratory functions (Jarosz, 2012), and even bowel and bladder functions (Ho,

2014). Additionally, FES electrodes placed on various areas of the body for recurrent

physical therapy have been shown to reduce common physiological problems associated 

with the loss of supraspinal control of voluntary movements such as increased body fat, 

leg edema, blood clots, decreased muscle bulk and endurance, pressure ulcers,

osteoporosis, and depression (Ho, 2014).

Research focused on sending electrical impulses to damaged arm muscles

utilizing FES has been promising in single-joint and coordinated multi-joint arm

movements, but limited due to the complexity of the arm and shoulder system (Ajiboye,

2017). The complex structure of the human arm and the necessity for several joints and

large muscle groups to be stimulated to achieve movement leaves FES less successful

when attempting full-arm reaching movements. The most recent successes in FES-

controlled full-arm reaching are the MUNDUS project (Pedrocchi, 2013) and the
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Braingate clinical trial (Ajiboye, 2017), both of which have significantly improved the 

subject's abilities in laboratory demonstrations to perform everyday activities such as 

picking up a cup and reaching towards objects by the direct training of a controller 

specifically for these tasks. The MUNDUS project achieves joint motion by controlling a

single degree of freedom at a time while an exoskeleton locks the other motions

(Pedrocchi, 2013). However, the MUNDUS project does not exploit the redundancy of 

the arm to achieve different paths to the same target or modulate stiffness, limiting the 

flexibility of the tasks to be achieved. The Braingate clinical trial uses an intracortical 

brain-computer interface combined with FES to cortically command single-joint and 

coordinated multi-joint arm movements for point-to-point target acquisitions (Ajiboye, 

2017). Despite the Braingate's advances, it currently lacks efficient control of multi-joint 

movements. The Braingate uses a fixed muscle activation pattern for flexion and 

extension of each independent joint and when attempting to control more than one joint at 

a time, the activation pattern of one joint conflicts with the others (Ajiboye, 2017). 

Furthermore, it uses an exoskeleton to control the shoulder, separating the shoulder and 

elbow into separate units and allowing only muscles below the shoulder to have freedom 

of movement. Developing a method of upper limb movement that can exploit the 

redundancy of the arm and control the shoulder and elbow as one unit outside of a 

laboratory would overcome the current disadvantages in the most modern FES systems as 

they rely on separating the shoulder and elbow into separate units to train a controller.

With full-arm reaching yet to be realized, patients with high tetraplegia are unable 

to completely utilize full motion of their arms to perform simple tasks such as holding a 

fork or brushing their hair. To restore movement and functions similar to what they were
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pre-injury, an individual must be able to attain any goal-directed task by being able to

move their arm anywhere within their field of movement. However, the sheer number of

possible goal tasks makes direct training of a controller to meet each goal improbable.

Therefore, there exists a need for the development of a controller which can determine

the stimulation commands necessary to achieve any desired task.

We hypothesized that equilibrium point control is one appropriate method to 

achieve this goal. We intend to use the same basic principles of the Equilibrium Point

Hypothesis by determining which muscle groups to activate to achieve a given static

equilibrium position and then attempt movements between these static positions.

Equilibrium point control requires less strict direct training of a controller compared to

the other research methods and instead can categorize movements into transitions

between equilibrium points. This research uses the objectives below to develop a method 

capable of full-arm reaching movements through equilibrium point control of muscle 

activation in a computer-simulated human arm model. We aim to implement this

research into an FES neuroprosthesis implanted in an individual with high-level

tetraplegia to attempt to replicate the successes of the computer-simulated model into that 

of an actual patient with high tetraplegia. To test this hypothesis, our research focused on 

three main objectives:

1. Determine if muscle activations can maintain holding for static positions

2. Determine the existence and size of the basin of attraction around static

positions

3. Determine the feasibility of changing muscle activations to move between

static positions

4



We focused our research on a computer-simulated virtual human arm model 

developed to mimic a physical arm's response to muscle activation and output static and 

dynamic arm data (Chadwick, 2014). The success of the equilibrium point control 

strategy would give us confidence in its achievements in later experiments in human 

subjects. The controller was used to determine open-loop activation inputs to achieve a 

variety of arbitrary static hand positions. Gaussian Process Regression then utilized the

static arm data to estimate joint dynamics and muscle activations necessary to achieve

any specified static position within the field of movement. The feasibility of maintaining 

static positions allowed for further examination of movements between static points 

along a trajectory. The method of movement between static equilibrium points is the 

fundamental basis of the Equilibrium Point Hypothesis - the idea that the body moves 

equilibrium points which triggers shifting of the equilibrium point of the arm and

generates movement (Feldman, 1986).

For individuals with high tetraplegia, the loss of purposeful motion in their upper 

extremities severely limits their quality of life, and restoring this functionality is their 

greatest priority to improving their independence (Anderson, 2004). Refining the

accuracy of full-arm reaching movements can significantly increase the number of 

functional tasks they could perform and decrease their level of dependence. Current 

research has already confirmed that muscle stimulations implemented into an FES 

neuroprosthesis is successful in holding the arm static at various joint positions (Wolf, 

2017). Our simulations will expand on this research and allow for control of the shoulder 

and elbow as one functional unit to perform motion control while preserving the arms 

natural ability to choose different paths or muscle combinations to perform the same
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action instead of a fixed stimulation pattern. This research was completed as an initial

step in developing a practical FES control strategy for functional reaching in individuals

with high tetraplegia and presents an individualized equilibrium point controller capable

of full-arm reaching movements for a static position from a set of muscle activations.

Chapter II defines the underlying principles of motor control strategies of the Equilibrium

Point Hypothesis and how it is utilized in this research. Chapter III defines the

underlying principles of Gaussian Processes and Gaussian Process Regression and how

they will be utilized in this research. Chapter IV identifies a virtual model and calculates 

muscle activations capable of holding static positions throughout a workspace. This 

leads to Chapter V in which muscle activations are used to quantify the size of the basin 

of attraction. Employing the data and information gathered from the previous Chapters, 

Chapter VI examines the capabilities of muscle activations within the basin of attraction 

to achieve full-arm reaching movements utilizing principles of the Equilibrium Point 

Hypothesis. Finally, Chapter VII will discuss the results and future aims of the research 

presented in this thesis.
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CHAPTER II

EQUILIBRIUM POINT HYPOTHESIS

The Equilibrium Point Hypothesis has been a central theory in motor control since 

its introduction almost 30 years ago, and is the basis of the control strategy we are using 

to control the virtual arm (Feldman, 2009). The Equilibrium Point Hypothesis was

originally developed for single joint arm movements, with more recent adaptations

expanding into multi-joint arm movements. The hypothesis states that movements arise

from shifts in the equilibrium position of the limb and that the equilibrium is a

consequence of the interaction of reflex mechanisms, muscle properties, and external

loads under the control of central neural commands (Feldman, 2009). The most common 

model within the Equilibrium Point Hypothesis, the λ model, defines movements of the 

limbs as being generated by the nervous system through a gradual transition of

equilibrium points along a desired trajectory (Feldman, 1986). In this model, equilibrium 

points are defined as a state where a field has zero force, meaning opposing muscles are 

in a state of balance with each other, with λ corresponding to a unique configuration for a 

muscle, joint, or combination of joints. The λ model has been shown to account for a

range of physiological data and research has verified its accuracy as a representation of

how the human nervous system controls movement (Feldman, 1986). Utilizing the
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Equilibrium Point Hypothesis as a basis of a control strategy allows us to examine its

possibility as a simplified method of limb movement along a path.

The basis of the λ model originates from the suggestion that limb movements 

arise from the shifting of the equilibrium state of the motor system due to changes to 

neural control signals. Motor innervation to muscles arises from α motor neurons, which 

innervate the main body of the muscle, and from γ motor neurons, which contribute to α

motor neuron excitation through reflexes. Electrochemical influences from the brain, in

the presence of proprioceptive feedback to motor neurons, are transformed into changes

in the threshold muscle lengths (λ) or joint angles at which the motor neurons begin

recruiting. In response, muscle activations and forces vary in relation to the difference

between the actual and the threshold muscle lengths and the rate of muscle length change.

The change in activation results in joint torques and the resulting motion depends upon

the muscle torques and external loads (Feldman, 1986). That is, muscle activation

thresholds of various muscles shift between positions along a trajectory, simulating the

movement between equilibrium points within the system. Thus, by shifting λ through

changes to the central facilitation of motor neurons, the system can produce movement to

a new equilibrium position (Sainburg, 2015). This allows control levels of the CNS to

specify where, in spatial coordinates, muscles are activated to more accurately identify

which muscle groups are required.

The Equilibrium Point Hypothesis has been used as a control strategy in several 

studies related to limb movement and robot control. Several studies performed focused 

on implementing an external force to the arm to verify if the arm returns to the initial

equilibrium point once the force is removed. This is similar to the second aim of our
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research where an external force is used to move the arm out of place to estimate how far

the arm can be moved before it will not return. One of the most common studies utilizing

Equilibrium Point Hypothesis is the concept of muscle unloading, in which weights are 

hung on ropes attached to pulley systems attached by small electromagnetic locks and 

connected to a subject's arm (Archambault, 2005). The subject's arm initially establishes 

a specified position while counteracting a certain load torque to establish an initial target 

equilibrium point. Once the equilibrium point was established, the load was decreased, 

resulting in the motion of the forearm to another combination of the static torque and 

position (a new equilibrium point). The initial load was then restored and the subject 

established the same initial equilibrium point, and the trial was repeated with the same or 

a different randomly chosen final load. Thus, it was possible to record a set of 

equilibrium points resulting from unloading from the same initial equilibrium point. The

tonic EMG activity of pre-loaded muscles was not the same for different equilibrium 

points as it monotonically decreased with the decreasing amount of the residual load and 

the displacement of the arm increased with the increasing amount of unloading 

(Archambault, 2005). In another study, a robotic arm was used to slowly displace a 

subject's hand from an origin and measured the restoring forces. The subject is then told 

to attempt to reach to a target while the robot measures the force the subject is generating 

to perform the movement. The magnitude and direction of movement-related forces 

agree with the hypothesis that movement is generated through a shift of the equilibrium 

position of the postural force field toward the target (Shadmehr, 1993). Several other 

studies focused on generating movement in a robotic arm outside of human control or a 

central nervous system by manipulating stiffness quantities to change equilibrium points
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(Byeong-Sang, 2013; Gu, 2007). In these experiments, principles of the Equilibrium 

Point Hypothesis were used to potentially generate human arm-like motion by using 

actuators or damped springs in place of a nervous system to directly control the robotic 

arm. Control of the actuators or damped springs allowed for manipulation of the joint 

torques responsible for holding the equilibrium points to examine movement between 

these points without higher level control. These experiments proved that direct control of 

a robotic arm, in place of a central nervous system, utilizing the Equilibrium Point 

Hypothesis is possible.

The similarity of previous research studies to our hypothesis that full-arm

reaching motions can be achieved through the transitioning of muscle activations

between equilibrium points further solidifies our decision to use Equilibrium Point 

Hypothesis as a control strategy. In equilibrium point control, the general central 

equation of a control strategy is

where

where muscle activation, α, is proportional to the difference between the current muscle

length, ι, and the centrally specified threshold length, λ, as well as on the rate of muscle 

length change, ί, with μ specifying the dependence of the muscle's threshold length on 

velocity and provides damping due to proprioceptive feedback (Feldman, 1986). In this 

equation, the muscles act as a spring-damper with a dependence on velocity. We 

designed our central equation of a control strategy
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based on the underlying mechanics of our system where α ∈ R10x1 is a matrix of muscle 

activations, M∈ R5x10 is a matrix of linear mapping of activations of muscles to joint

torques, and τ ∈ R are the joint torques required to maintain an arm configuration, q. 

The desired arm configuration, q, is chosen and the joint torques and muscle activations 

are developed to maintain the configuration. Generating these muscle activations by 

selecting a desired arm configuration is similar to generating muscle activations from the 

selected threshold length in Equation 1. In this respect, both equations identify 

equilibrium points from a selected set of initial conditions and corresponding activations, 

effectively moving between these points by only having to specifying either q or λ. 

However, since we are not receiving neural commands, as in Equation 1, our developed 

equation was based off a mechanical control strategy to achieve muscle activations, but 

still utilizing the underlying principles of the equilibrium point hypothesis control 

strategy. This control strategy develops muscle activations that are dependent on joint 

configuration and joint torques instead of muscle lengths and velocity as in Equation 1. 

Our strategy is used to identify muscle activations at static positions in which the arm 

would not be moving, in which velocity and muscle length would be constant. This 

means that maintaining the static position would be dependent on the configuration of the 

arm and the joint torques required to hold the arm in place instead of muscle length or 

velocity. Although the arm is moved using an external force in the basin of attraction 

simulations, which would implement a muscle length change and velocity into the model, 

the muscle activations aim to evaluate if configuration and joint torque dependency can 

overcome these factors. Our control strategy model allows for M and τ to be calculated
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from Gaussian Process Regression for a given arm configuration to determine the

corresponding muscle activations.

There has been a great deal of controversy regarding the Equilibrium Point 

Hypothesis and a desire to reject the hypothesis entirely due to several unresolved 

limitations. The current limitations of the Equilibrium Point Hypothesis include 

violations in predictions of the principle that a given end position can be reached by 

many potential means in an open system, whether muscle resistance to displacement is

adequate to support motor control, and a limited description of how the complexity of

spinal circuitry might be integrated to yield a unique and stable equilibrium position for a

given motor neuron threshold (Feldman, 2005). However, despite these limitations, the 

Equilibrium Point Hypothesis is still widely used today because it offers a unique 

solution to issues that other methods, such as the force control hypothesis and dual­

strategy hypothesis, have not been able to overcome. These issues include resolving the

posture-movement paradox - when posture-stabilizing mechanisms resist deviations 

produced by external forces but not those produced by voluntary movements - and 

including the co-activation of opposing muscle groups (Feldman, 2005). The force 

control and dual-strategy hypotheses neglect these factors, leaving them physiologically 

infeasible (Feldman, 2003; Monohar, 1998). The Equilibrium Point Hypothesis 

continually adapts to new information and technologies, further strengthening its 

underlying principles and making it a strong hypothesis to utilize despite its limitations.

Fundamentally, the Equilibrium Point Hypothesis suggests that simple, direct 

control signals from the brain may underlie smooth joint movement of a system along a 

trajectory from a starting position to an ending position using equilibrium points. Using
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the basic principles of the Equilibrium Point Hypothesis, we calculated muscle

activations at specified equilibrium points in a reachable space to examine limb

movement between these equilibrium positions. This was accomplished by examining

the basin of attraction around several joint positions in the workspace using activations of

various muscle groups and external forces (Chapter V). If a joint is in equilibrium, any

deviation caused by external sources will generate muscle forces to bring the joint back to

its equilibrium. In this case, the basin of attraction - a set of points from which a system

approaches a stable position - exists around the equilibrium point for a set of initial joint 

position conditions. Consequently, if a basin of attraction exists for joint positions and 

muscle activations throughout the workspace, we can use this data to examine the 

feasibility of an equilibrium point control strategy along a trajectory utilizing the 

principles of the Equilibrium Point Hypothesis (Chapter VI).
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CHAPTER III

GAUSSIAN PROCESS REGRESSION

Gaussian Processes (GPs) and Gaussian Process Regression (GPR) are statistical 

modeling methods that were critical in this research for their utilization in estimating 

joint torques required to hold any joint position in the workspace. In general, statistical 

models are mathematically-formalized models, embodying a set of assumptions 

concerning the generation of sample data from a larger population, to approximate a real 

system and, optionally, to estimate probabilistic future behavior from this approximation 

(Rasmussen, 2006). In this research, joint torques required to hold static positions will be 

accumulated to utilize GPR to determine joint torques for any joint configurations that 

correspond to equilibrium positions.

One of the most common methods of statistical modeling is a GP, a collection of 

random variables, any finite number of which have a joint Gaussian distribution. Figure 

1 below shows a distribution of functions drawn from a Gaussian Process. Before any 

data is observed for a GP, a prior probability distribution (prior) must be identified. A 

GP defines a prior over functions by implementing constraints on the system, such as 

limiting the domain, specifying the mean, and describing the smoothness to produce ideal 

functions over the prior distributions. The covariance function specifies the smoothness
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of the GP by relating the outputs for two different inputs and ensuring that values that are

close together in the input space will produce comparative output values and, along with

the mean function, completely defines a GP (Rasmussen, 2006). The generalized

equation for a squared exponential covariance function can be seen in Equation 3 below

where k(x, x') is the covariance function that describes unity between variables whose 

corresponding inputs are very close, and decreases as their distance in the input space 

decreases, x and x' are two points in the input space, and l is the characteristic length-scale.

Figure 1 Example Gaussian Process A distribution of functions drawn from a Gaussian Process

Once the prior has been defined, it can be converted into a posterior over 

functions using observed data. Remaining points of the function are estimated by 

generating a probability distribution that assumes that the observed and estimated data are 

jointly Gaussian. After implementing the observed data points into the prior, the 

posterior becomes the joint probability of outcome values of both observed and 

unobserved values, generating a distribution over all possible functions that are consistent
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with the observed data. This reduces the set of all possible functions in the prior to only

the functions that connect the observed data points in the posterior, as seen in Figure 2

below. Generating a posterior ensures that observed data and test data fall within the

mean and covariance parameters of the GP to accurately quantify the distribution.

Figure 2 Example Prior and Posterior Gaussian Process In a prior Gaussian Process, a 
probability distribution is expressed about an uncertain quantity before observations are taken into account. 
Once observations are identified, a posterior can narrow down the probability distribution to only functions

that include observation points and that follow the mean and covariance parameters 

Once a GP is established, it can be used as a model for GPR to predict outputs for

inputs not in the observed dataset by assuming the training and test data are jointly

Gaussian. GPR is used to compare observed training data in a posterior to predict test

output values from a desired test input. Training data is the data accumulated during

previous trials of the simulation that are used for learning and fitting of the covariance

function and hyperparameters. Test data is a dataset that is independent of the training

data, but follows the same probability distribution so that output for the test data can

therefore be interpreted. In this research, the training and test data consists of an input of 

joint angles that correspond to a joint configuration and an output of joint torques 

required to hold the arm in the desired configuration. GPR was used to estimate joint 

torques and muscle activations necessary to hold any desired input position from
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observed joint torques and activated muscle groups in various positions throughout the 

workspace. The joint distribution of the observed target values and the function values at 

the test locations under the prior that defines the mean and covariance under the prior is 

defined in Equation 4. The key predictive Equations 5 and 6 define the predictive 

distribution of the output given a new input and training data

where X are the training inputs, X* are the test inputs, f* is the GP posterior mean, f* is 

the GP posterior prediction, σ2n is noise variance, K(X,X*) is a covariance matrix of 

training inputs and test inputs, and I is an identity matrix (Rasmussen, 2006). These 

equations are used to define the predictive distribution of output given new input and 

training data. In this research, several joint configurations were examined as training 

data and the torques required to hold configurations static were found. GPR was then 

used with the training data to calculate torques for a desired joint configuration. An 

optimization problem was then used on the output from GPR to calculate the muscle 

activations required to maintain any joint position in the workspace (Chapter IV).

In addition to GPR, there are numerous methods of statistical modeling that can 

potentially be used for predictive learning including: linear regression, Kernel Ridge 

Regression, Locally Weighted Projection Regression, and neural networks. Linear 

regression is a linear approach for modeling the relationship between a scalar dependent 

variable and one, or multiple, independent variables. It works similar to GPR, but the
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output is a linear combination of fixed linear regression basis functions that use

parameters that are adjusted to fit the model to the data, often using the least squares

approach. However, linear regression outputs optimal results when relationships between

the fixed basis functions and dependent variables are almost linear, which tends to lead to

over fitting of data if too many basis functions are chosen or too big of an error if not

enough basin functions are chosen (Murphy, 2012).

Kernel Ridge Regression (KRR) is a method for performing nonparametric

regression - regression analysis in which the predictor is constructed according to 

information derived from the data, not from a predetermined form such as linear 

regression - similar to GPR (Murphy, 2012). However, unlike GPR, KRR is able to learn 

a linear function in the kernel space, based on the mean-squared error loss with ridge 

regularization, which corresponds to a non-linear function in the original space, as seen 

below in Equation 7.

where f( ) denotes an arbitrary function, K denotes the kernel, I is an identity matrix of

the relevant dimension, λ is the regularization parameter that adds rank to K, and k is the

vector of inner products between the data and the new point, x. However, GPR can 

define hyperparameters - parameters of the prior distribution such as length-scale, signal, 

and noise - based on gradient-ascent on the marginal likelihood function while KRR 

needs to perform a grid search on a cross validated loss function. The marginal 

likelihood - the likelihood of observing the data given the hyperparameters marginalized 

over the distribution of functions defined by the hyperparameters - is equivalent to the 

integral of the likelihood times the prior and can be seen in Equation 8 below.
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Choosing hyperparameters allows GPR to learn a generative, probabilistic model of the

target function capable of providing meaningful confidence intervals and posterior

samples along with predictions, while KRR is limited to only providing predictions.

Locally Weighted Projection Regression (LWPR) achieves nonlinear function 

approximation by using locally linear models, spanned by a few univariate regressions in

selected directions in input space, and cycles through datasets multiple times. However,

LWPR is inefficient at computing non-local points and requires large sample sizes

(greater than 2,000); otherwise, samples need to be presented multiple times in random

order (Murphy, 2012). GPR is more successful and practical at handling smaller sample

sizes as accurately as LWPR without repeatedly cycling through a dataset. In this

research, we are limited to a small sample size due to the limitations in human

experiments that can be performed as there is a limited amount of time to collect training

data and we are constrained to a relatively small workspace when working with human

subjects.

Finally, neural networks are commonly used because of their iterative learning

process and are comprised of a set of input values, associated weights, and a function that

sums the weights and maps the results to an output. A neural network consists of nodes

in multiple layers, with the connections between nodes of adjacent layers having weights

associated with them. Initially, weights are randomly assigned and, for every input in the

training dataset, the neural network is activated and its output is observed. This output is

compared with the desired output that is already known, and the error is propagated back

to the previous layer. The error is noted and the weights are adjusted accordingly, with
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the entire process repeating until the output error is below a predetermined threshold 

(Nielson, 2015). This creates a learned neural network which can then work with new 

inputs. However, neural networks are difficult to train, depend crucially on initial 

parameters, and are not probabilistic.

Despite its advantages over other methods, one of the largest drawbacks of GPR 

is that it becomes computationally expensive for larger dataset (greater than 1,000). Due 

to our small sample size, the ability of GPR to compute confidence intervals and 

marginal likelihoods, and the ability to automatically choose the model, GPR was chosen 

as the most appropriate statistical modeling method for our research.
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CHAPTER IV

MAINTAINING HOLDING FOR STATIC POSITIONS 

Generating the ability to maintain holding for static positions was a necessary first

step in determining if equilibrium point control of full arm reaching motions was feasible. 

To maintain a static position, we must identify the activation requirements of separate 

muscle groups to sustain a configuration while overcoming gravitational forces. Previous 

research has already shown that when stimulated with an FES neuroprosthesis, an

individual with high-level tetraplegia was capable of maintaining a desired static position 

from calculated muscle stimulations (Wolf, 2017). However, static holding is the extent 

of this research and full movements were not examined. To expand upon the results

found in Wolf, a computer-simulated virtual model of a human arm was used to

implement muscle activations on static positions to examine the feasibility of full-arm

reaching movements.

We generated our own model from the virtual arm to allow us to determine the

arm's response to muscle activation and to simulate real-world conditions in which a

ground truth model would not exist. In Section 4.1, the parameters of the virtual arm

were identified and the target muscles and joint angles were chosen. In Section 4.2,

training data throughout the workspace was accumulated using external forces and
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internal activations of the virtual arm to identify a model. Section 4.3 uses the model to

develop a controller capable of calculating muscle activations necessary to hold the arm

in any desired static position in the virtual workspace. Holding the arm in position

allowed the virtual model to output the joint angles and forces at the end of the forearm

required to maintain that position while fully activating a target muscle group. In Section

4.4, the accuracy of the controller was evaluated for twenty separate static positions in the

workspace. Sections 4.5 and 4.6 examine the results and discussion identified in this

Chapter. Determining if static holding is feasible in a virtual arm will be able to identify 

how separate muscle groups work together to maintain a variety of joint configurations 

which can be further examined for the existence of a basin of attraction. The objective of 

this chapter was to verify if identified muscle activations were capable of maintaining 

static positions.

4.1 Simulation Setup

Simulations were performed on a virtual human arm model developed with 

Matlab coding and visually represented with the OpenSim Dynamic Arm Simulator 

(DAS) (Chadwick, 2014). Inputs to the Matlab code controlled external support forces 

and internal simulations within the DAS capable of producing full-arm motions. External 

support forces were applied at the end of the forearm and were used to initially move the 

arm into desired positions while internal stimulations were used to simulate the activation 

of specified muscle groups.
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Figure 3 Dynamic Arm Simulator A virtual model of a human right arm and the corresponding OpenSim 
coordinate system

Figure 3 above shows the complete DAS, which is comprised of articulated joints,

skeletal structure, 11 degrees of freedom, and 138 muscle fibers comprising 28 separate

muscle groups of a human right arm of weight and length determined from cadaver

studies (Chadwick, 2014). The muscle fibers are individually activated to simulate

muscle stimulation, with several muscle fibers constituting one muscle group. When a

particular muscle group is activated, the entire group of related muscle fibers is

stimulated to simulate full activation of that muscle group.

First, of the 11 degrees of freedom within the DAS, only 5 were examined in this

research to define joint angles. The 5 degrees of freedom examined were shoulder

abduction, shoulder rotation, shoulder flexion, elbow rotation, and elbow flexion. The

chosen degrees of freedom defined the configuration of the shoulder and elbow to

designate the position of the wrist in the workspace. The other 6 degrees of freedom

were not examined as they were the degrees of freedom of the thorax and had limited to

no significance on the shoulder or elbow. Second, from the 28 separate muscle groups

within DAS, 10 were examined in this research as seen in Table I, chosen for having a
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strong influence on full-arm reaching movements. These muscle groups were shown to 

have the strongest effect on shoulder abduction, shoulder rotation, shoulder flexion, 

elbow rotation, and elbow flexion of the muscles during full-arm movements. The 

remaining 18 muscle groups were not examined as they dealt with the movement of 

anatomical groups we were not examining in this research such as the scapula and 

sternum. Lastly, the position of the wrist was defined in relation to the top of the sternum 

on the thorax on a 3D coordinate system, Figure 3. The X-coordinate defined the 

horizontal left and right movements of the end of the forearm of the DAS, the Y- 

coordinate defined the vertical movements of the end of the forearm of the DAS, and the 

Z-coordinate defined the horizontal forward and backward movements of the end of the 

forearm of the DAS. The chosen DAS degrees of freedom and related joint torques were 

used to define the configuration of the arm with respect to the shoulder and elbow.

Target Muscle Groups and Their Functions
Muscle Function

Serratus Anterior Anteversion of arm, aids in arm elevation
Delta Clavicle Flexes and medially rotates arm

Biceps Forearm supination and elbow flexion
Rhomboids Scapula retraction

Infraspinatus Shoulder rotation
Supraspinatus Abduction of arm at shoulder joint

Pectoralis Major Flexion and extension of shoulder, medially 
rotates arm at shoulder

Latissimus Dorsi Extension, adduction, and transverse 
extension of arm at shoulder

Brachialis Arm flexion at elbow
Triceps Retroversion and adduction of arm

Table I Muscle Groups and Functions
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4.2 Model Identification

To simulate real-world conditions in which a ground truth model would not exist,

we identified our own model from DAS to allow us to examine the arm's response to the

activation of specific muscle groups. A two-part model was developed consisting of

GPR models of inverse statics (the mapping from configuration to joint torques) and

muscle torque production (the mapping from configuration and activation to the torques

produced), seen below in Figure 4, necessary for calculating joint torques and muscle

activations for any position in the workspace. In previous experiments, model

identification has been used on a human subject to obtain muscle activations necessary to 

hold a static position. One experiment in particular used a robotic arm with a three­

dimensional force sensor at its end-effector to hold the arm of an individual with high- 

level tetraplegia in place and output forces at the end of the forearm (Wolf, 2017). To 

recreate this experiment in our simulation, an external force was used to mimic the 

actions of the robotic arm by holding the virtual arm in place to gather data and generate 

the forces at the end of the virtual forearm required to maintain its position.

(b) Identification of muscle torque production: Activation 
of one muscle group

Figure 4 Identification of Arm Statics and Muscle Torque Production The torques from DAS, τ, are the 
shoulder and elbow torques which would produce the same static position as the force applied by the model 

during a trial. For a given joint configuration, q, when no muscle groups are activated (a), the model 
torques are equal to the torques, p(q), required to hold the arm in the configuration. With one muscle group 
activated at 100%, the model torques are equal to the difference between p(q) and the torques produced by 

the muscles (b). For each trial, we chose the muscle group activation, computed the model torques, and 
used the identification technique to determine the arm statics and muscle torque production blocks.
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To gather data for the model identification, an external force held the virtual arm

at a position within the workspace. To gather joint torques and muscle activations for a

desired joint position, the DAS utilized a combination of external and internal forces to

achieve and maintain a desired joint position from an initial set of Cartesian coordinates.

Two sets of external force proportional-derivative (PD) controller gains were used to

manipulate the arm separate of muscle influence. A PD controller with an initial set of

gains was used to move the arm to a desired position without any muscle activations

while a second set of PD controller gains was used to keep the arm held in the desired

position while muscles were activated. The second PD controller was initially hand-

tuned by manipulating the proportional and derivative gains to keep the arm static when

muscle activations were implemented. The initial PD controller gains moved the arm to a 

given Cartesian point in the reachable space, corresponding to a desired position of the 

wrist, for several seconds and was then removed. The second PD controller gains were 

then implemented to hold the arm in the desired position for another several seconds

while a single muscle group was activated to 100%. This was repeated for all ten muscle 

groups at twenty separate positions throughout the workspace, seen below in Figure 5, 

chosen to reach as many distinct points in the workspace as possible to provide a wide 

sampling of the workspace while still maintaining a small dataset. We limited the

positions examined to 20, to mimic the amount of data that would reasonably be achieved 

during a real human experiment but still reach a wide variety of locations in the 

workspace. Holding the arm in position allowed the DAS to output the joint angles and 

forces at the end of the forearm required to maintain that position while fully stimulating 

a target muscle group.
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Figure 5 Training Positions Pictured is an overhead view of the virtual arm. Each green mark 
represents a target joint position for which we gathered data to identify our model. Positions were chosen

to reach a wide variety of training points in the workspace 

The accumulated data of joint angles and forces at the end of the forearm had to

be converted to joint torques to identify components of the model. The kinematic

Jacobian of the arm at the wrist was computed for each joint position and then used to

determine the joint torques about the shoulder and elbow that would sustain the specific

static position, as seen in Equation 9 below

where τ ∈ R5 are the joint torques about each degree of freedom for the static

configuration, JT is the transpose of the Jacobian matrix, and F is the vector of forces at 

the end of the forearm required to hold the virtual arm static.

Calculating joint torques from the combination of joint angles and forces at the 

end of the forearm was necessary in finding the arm statics and muscle torque production 

to fully identify the two part model. To determine arm statics, the virtual arm was held in 

the joint position with the PD controller without any muscles activated (Figure 4(a)).
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That is, the activation of muscles, α, was equivalent to zero. As such, p was defined as

the vector of torques necessary to hold the arm in the static configuration while no

muscles were activated, determined by the joint angles of the shoulder and elbow, where

the joint angles are defined in (Wu, 2005). To determine the torque contribution of a

single muscle group, the arm was moved to a target position, and a muscle group was

100% activated while being held in place by the second PD controller gains. The DAS

then outputs the joint angles of the position and forces at the end of the forearm produced

by that specific muscle group (Figure 4(b)). The joint torques for both arm statics and

muscle torque production were determined from the ending forces and Jacobian, a

function of the joint angles, as seen in Equation 9 above. The joint torque calculations

with muscle torque production included both the passive torque and active muscle torque 

contributions as seen below

where R ∈ R5x10 is the linear mapping of activations of muscles to joint torques, p are

the passive joint torques found when no muscles are activated, α is a muscle activation

vector of all zeros except for a value of one for the muscle group being activated, and τm

is the total torque contribution when a muscle group is activated. The elements of R were 

found by manipulating Equation 10 and subtracting the passive torques from the model 

torques as seen below

where the element of α that corresponds to the activated muscle group is equal to one and 

R is the linear mapping of activations of muscles to joint torques without a passive
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influence. For the examined joint positions, each row of R corresponds to the torque

about a specific degree of freedom, and each column represents the torque produced by

the 100% activation of a target muscle group.

To train a GPR model capable of determining p(q) and R(q) for any joint 

configuration, q, within the workspace, arm statics and muscle torque production values, 

p and R, were calculated for the 20 target positions to estimate mean and covariance

functions. Using Equations 5 and 6 from Chapter III and repeated below, we can

implement the p and R values into the predictive equations for GPR.

Using Equation 5 with our data, we can find the GP posterior mean, f*, where X is the 

training data of joint angles for arm configurations we examined, X* is the test data of 

joint angles for the joint position desired, y is the vector of our arm static data p, K(X,X) 

is the covariance matrix between points of the training data with added noise variance, 

σ2n, and K(X*,X) is the covariance matrix between points of similar training data and test 

data. Utilizing Equation 6 with our data, we can find the GP posterior covariance, 

cov(f*), where K(X*,X*) is the covariance matrix between points of the test data, I is an 

identity matrix, and K(X, X*) is the covariance matrix between training and test data.

The combination of Equations 5 and 6 predict the torques given the training data and new 

joint angles. These equations are repeated for all 5 DOFs that constitute the joint 

position. Therefore, using the identity equations for GPR, the accumulated p and R

training data can be used to estimate p(q*) and R(q*) values for a set of desired test

inputs.
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4.3 Controller

Using the model identified in the previous section, our controller applies open- 

loop simulation inputs to GPR models necessary to hold a desired set of joint angles. An 

overview of the controller comprised of the two GPR models can be seen below in Figure 

6. The input to the controller is a set of joint angles, q, ∈ R5, corresponding to a desired 

joint position in the workspace. The elements of the joint position are comprised of the 

shoulder elevation plane, shoulder elevation, shoulder rotation, elbow flexion, and elbow 

pronation. Given the joint angles of a desired joint position, the controller uses GPR to 

first generate the static joint torques required to hold the desired position. The controller 

process along with GPR is necessary in determining the activations of the chosen muscle 

groups required to achieve the desired joint position.

Figure 6 Controller Block Diagram

Utilization of a GPR model with the developed controller calculated arm statics 

and muscle torque production data required to hold a desired position. GPs and GPR are 

described in detail above in Chapter III. The first block of the controller used the GPR 

model of arm statics to calculate the desired joint torques, p(q*), necessary to hold the 

desired configuration. The second block of the controller used the GPR model of muscle 

torque production to identify the elements of the mapping from muscle group activations 

to joint torques, R(q*).
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To determine the required output of each muscle group to maintain the desired

joint position, accumulated training data of joint torques for various joint configurations

was used to calculate desired muscle activations. Once the desired joint torques, p(q*), 

and mapping, β(q*), were identified, the muscle activations, α, required to hold q* could 

be calculated by solving R(q*)α = p(q*). However, since there were more muscle groups 

than there were degrees of freedom, R(q*) was not square and the equation had to be 

solved via optimization. To achieve a feasible set of activations, we minimized the sum 

of squares of muscle activations and optimization in the form of

was used and then solved via the Matlab quadratic programming function ‘quadprog'. A 

set of muscle activations, corresponding to each muscle group, was returned if the 

quadratic program is feasible and a flag was returned if no solution could be found. With 

α,p(q*), and R(q*) identified, the GPR model with the developed controller had 

successfully identified all information necessary to examine if a static position could be

maintained.

4.4 Static Hold Simulations

To assess the controller's ability to hold static positions, we quantified its 

accuracy at 20 joint positions in the workspace that were different than the positions used 

to train the model. Targets were selected at various locations throughout the DAS 

workspace to simulate a wide range of reaching motions close to and far away from the 

front, left, and right side of the body, as well as at locations at, above, and below the
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middle of the chest, as seen in Figure 7 below. The controller from Figure 6 was then 

used to determine the muscle activations for the desired target position. To move the arm 

initially into the target position, the initial PD controller gains were used to position the 

arm while no muscles were activated to allow the beginning of every simulation to be 

identical. Once the arm was at the target position, muscle activations were applied while 

the second set of PD controller gains were used to hold the arm stationary. After holding 

for one second, the PD controller was turned off, allowing the arm to move freely for 5 

seconds exclusively using the activation of the muscles. The joint angles and coordinates 

of the wrist were output from the DAS and recorded. An ideal controller would result in 

a stationary joint position for the entire trial, while a less than perfect model would result 

in the arm moving away from the target position.

Figure 7 Controller Positions Twenty positions, separate from the training positions, were used 
to assess the controller's ability to identify muscle activations to hold static positions at varying distances 
away from the training positions. Positions were chosen at varying distances away from training positions

to examine the capability of the controller to reach additional positions.

32



4.5 Results

A controller capable of determining joint torques and muscle activations to 

successfully hold twenty desired joint positions was developed. Using the accumulated 

data of the training positions and the identified model, the controller was able to calculate 

desired muscle activations, ranging from 0 to 1 (corresponding to 0% to 100% 

activation), required from each target muscle group to achieve a set of desired joint 

angles, as seen in Figure 9 below. Comparing the distances between the final joint 

position obtained and the target joint position for the static holding simulations, an 

averaged Euclidean distance of 1.1 ± 0.13 cm standard deviation for all 20 joint positions 

was obtained. The distribution of all final distances from the target can be seen in the 

histogram in Figure 8 below, with half of the final distances from the designated target 

falling around roughly 1.1 cm. The success of the controller to maintain desired static 

positions implies that our process of accumulating data and identifying a model was 

effective in the development of the controller and that the underlying statics of the arm 

can be identified and used to our advantage.

Figure 8 Histogram Frequency of ending distances of twenty target positions from the original static 
position
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Figure 9 Controller Muscle Activations Muscle activations generated from the controller GPR models 
required to hold each of the controller positions throughout the workspace. It is apparent that, depending 
on the position in the workspace, varying activations of muscles are needed, stressing the importance of 

developing a controller

4.6 Discussion

Static holding simulations were used to determine if muscle activations capable of 

maintaining a desired joint position could be generated from a model and a controller.

The capability of generated muscle activations to successfully sustain a static position 

without external assistance within 1.1 ± 0.13 cm of the target position demonstrated that 

static holding is feasible and reasonably precise. The static holding simulations focused 

on a model composed of only 20 joint positions and a larger sample size may have

resulted in a more accurate controller. Current human research studies have

demonstrated that, with the aid of a robotic arm, muscle stimulations for a specified 

position can be generated from a controller using a human subject with high-level

34



tetraplegia as the model (Wolf, 2017). Calculated muscle stimulations were then 

implemented into an implanted FES neuroprosthesis to provide electrical stimulation to 

various arm muscles in the human subject and can maintain the desired position. Using 

this knowledge, the controller we developed can be expanded for implementation into 

human trials by adding a third controller block to invert recruitment curves to convert 

muscle activations obtained by the second block of the controller to muscle stimulation 

inputs. Stimulation inputs are necessary for implementation into an FES neuroprosthesis 

implant as they are the electrical amplitude equivalents of the muscle activations required 

to recreate movement in a human arm. Future research will add this third controller 

block to attempt to recreate simulations into human high-level tetraplegia subjects. This 

thesis focused on least squares muscle activations to reduce potential muscle fatigue 

when implementing into human subjects. The ability to identify muscle activations 

capable of static holding allows for further investigation into the development of 

transitional movement between these points.
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CHAPTER V

BASIN OF ATTRACTION SIMULATIONS

To be able to move successfully between equilibrium points, we first need to 

identify static points as equilibrium points and the size of the basin of attraction to detect 

feasible moveable distances between potential equilibrium points. One important aspect 

of the Equilibrium Point Hypothesis is that it resolves the posture-movement paradox, the 

idea that posture-stabilizing mechanisms resist deviations produced by external forces but 

not those produced by voluntary movements (Feldman, 2009). That is, equilibrium 

positions of a system will resist externally implemented deviations to maintain its stable 

condition at the given equilibrium point. Utilizing the principles of the Equilibrium Point

Hypothesis, equilibrium points - points where a field has zero force, meaning opposing 

muscles are in a state of balance with each other - of a system can be identified by having 

a nonzero basin of attraction size, as within this area the initial conditions are capable of 

overcoming the external forces imposed on the arm. The area around the equilibrium 

position in which the arm returns to the initial state is classified as the basin of attraction, 

a set of initial conditions from which a dynamical system spontaneously moves to a 

particular state. The previous chapter identified initial conditions for several static 

positions, but was unable to completely identify them as potential equilibrium points.
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The ability of muscle activations to maintain a static position implies that the 

combination of muscle lengths and force values potentially generates an equilibrium 

point. Examining the basin of attraction would allow us to completely validate static 

positions as equilibrium points and identify the size of the basin of attraction that would 

permit the initial conditions to move back to its stable state. In Section 5.1, a trial 

simulation was performed to determine the appropriate sample size required for further 

simulations. This leads into Section 5.2 where, using the data from the static holding 

simulations and sample size calculations, we examined how the arm responded when an 

external disturbance moved the arm out of place to estimate the existence and size of the 

basin of attraction for various static positions. To achieve this, the arm was moved using 

the respective PD controller gains to the twenty joint positions from the static holding 

simulations. An external force was used to move the arm away from the potential 

equilibrium point for 15 seconds and then removed. This allowed us to examine the 

basin of attraction size and if internal muscle activations were able to overcome the 

deviations imposed by an external force to identify the position as an equilibrium point, 

which is further discussed in Sections 5.3 and 5.4.

5.1 Sample Size Determination

To perform enough simulations so that there is enough statistical power to detect 

differences between various basin of attraction sizes and differences between achieved 

and target ending positions, a sample simulation was run on a static joint position held in 

place with muscle activations. A joint position in the workspace was chosen from the 

group of twenty simulation points and the muscle activations to hold the position static 

were generated from the developed GPR model controller. The arm was initially moved
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into the joint position without muscle activation. Muscle activations were then 

implemented to hold the arm in the static position, similar to the static arm holding 

simulations above. Once the arm was held in place with the muscle activations, an

external force was introduced for 5 seconds to force the arm to 15 different locations at

varying distanced spheres around the static joint position. The external force was 

removed and the arm was given an additional 5 seconds to move freely exclusively using 

the muscle activations. The static arm position, ending position obtained, and distance 

between the two was recorded for all 15 arm movements. Equation 13 below was used to 

estimate an appropriate sample size utilizing the information gathered from the sample

simulation,

where η is the sample size, Z is the value from the table of probabilities for a 95% 

confidence interval, σ is the standard deviation of the sample simulation in final ending 

distance between the achieved and target ending positions (σ = 0.827), and E is the 

margin of error we would like to be able to detect (E = 0.457 cm) (Sullivan, 2017). From 

the sample simulation data, it was determined that a sample size of 13 samples per basin 

size can determine changes in E 90% of the time for a 95% confidence interval.

5.2 Simulation Review

To determine the size of the basin of attraction and define static positions as 

equilibrium points, external forces were implemented onto the joint positions from the 

static holding simulations. For each static joint position chosen, muscle activations were 

generated from the developed controller. To allow every simulation to begin alike and
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reduce potential errors, an initial set of PD controller gains was used to initially move the 

arm into the static position while no muscles were activated. The PD controller gains 

were removed and the specific muscle activations for the static position were applied to 

the arm to hold the static position for 5 seconds. Once the arm had been held in place 

with the muscle activations, an external force was implemented for another 5 seconds to 

introduce a disturbance to the arm being held static. Implementation of the disturbance 

was performed by forcing the hand to 13 evenly spaced positions, determined from the 

sample size calculation, for each 5 cm, 10 cm, 15 cm, and 20 cm distance sphere around 

the static joint position. After 5 seconds, the external force was removed and the arm was 

allowed to move freely exclusively using the muscle activations. If muscle activations 

returned the arm near to the static joint position, the arm was determined to still be within 

the basin of attraction. The static position was determined to be an equilibrium point if 

the arm was moved to the 5 cm sphere and returned to the initial position within the 

sphere. The final estimated size of the basin of attraction was identified as the largest 

sphere size reached in which the arm still returned back towards the initial position and 

within the 5 cm sphere size. The chosen static position, ending position obtained, and 

distance between the two was recorded for each sphere, with the simulation being 

repeated for all 20 static joint positions. The averaged Euclidean distance between the 

static position and ending position obtained was used to determine the accuracy of the 

simulations. Additionally, a two-way Analysis of Variance (ANOVA) was conducted to 

examine the effect of sphere size and position in the workspace on the overall distance 

from the target position.
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5.3 Results

Basin of attraction simulations revealed that the static positions with their 

associated initial conditions and muscle activations acted as equilibrium points for the 

system. To determine if static positions acted similar to equilibrium positions, the 

principles of the posture-movement paradox in the Equilibrium Point Hypothesis were 

used to define equilibrium positions by the ability of the arm's internal stimulations to 

overcome external force deviations. According to the Equilibrium Point Hypothesis, 

equilibrium points are defined as the state where a field has zero force and opposing 

muscles are in a state of balance with each other, meaning that they are resistant to any 

external forces applied but can be manipulated by internal stimulations and activations. 

Since the muscle activations were able to return the arm to the initial position, it was 

determined that the initial conditions and muscle activations of the static positions acted 

as static equilibrium positions as defined by the Equilibrium Point Hypothesis.

The basin of attraction simulations revealed that a 15 cm basin of attraction exists 

around the static equilibrium positions, regardless of configuration of the joint position. 

To determine the size of the basin of attraction, basin of attraction simulations were 

performed for the same 20 static joint positions from the static holding simulations. The 

chosen static position, the ending positions obtained, and the distance between the two 

was calculated and recorded for a total of 52 points (13 points per sphere) for each static 

equilibrium position. Spheres of 5 cm, 10 cm, 15 cm, and 20 cm, and starting positions 

versus final positions for an arbitrary joint position can be seen in Figure 10 below. 

Results from these calculations determined that when the arm was moved to spheres up to 

15 cm, muscle activations could adequately return the arm back to the original static
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equilibrium position, as seen in Figure 10(a). However, when the arm was moved to 

distances greater than 15 cm from the initial position, muscle activations were unable to 

overcome the distance and the arm could not adequately return to the static equilibrium 

position, as seen in Figure 10(b) below. For all 20 static positions, the averaged distance 

between the initial and final position when moving the arm to the individual spheres was 

calculated and can be seen in Figure 11. This data verified that muscle activations were 

successful at returning the arm to its initial position when moved to distances at or below 

15 cm. Moving to distances above 15 cm, the arm was outside of the basin of attraction 

and muscle activations alone were not enough to overcome the distance. During 

simulations, it was noticed that when the arm was moved to a position on the 20 cm 

sphere below the target position, the muscle activations were unable to overcome the 

distance and gravitational forces, and the arm remained close to the position on the 

sphere. When the arm was moved to a position on the 20 cm sphere above the target 

position, the muscle activations moved the arm towards the direction of the target point, 

but the gravitational force and inadequacy of the muscle activations at further locations 

resulted in the ending position being lower than the target position. Therefore, we were 

able to limit the size of the basin of attraction to between 15 and 20 cm around the initial 

joint position, regardless of joint configuration, while using 15 cm as the more

conservative estimate.
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(a) Sphere Return Points of 5, 10, and 15 cm (b) Sphere Return Points of 20 cm 
Figure 10 Basin of Attraction For an arbitrarily chosen joint position, the return points (open) for the

5 cm sphere (white), 10 cm sphere (blue), 15 cm sphere (pink), and 20 cm sphere (yellow) can be seen 
corresponding to the points on the basin they were initially moved to (closed). This verified that muscle 

activations were successful at returning the arm to position when moved up to 15 cm away

Figure 11 Sphere Averaged Return Data The averaged Euclidean distance was calculated for each 
sphere size for all 20 joint positions. It was found that, the farther an external force moved the arm away 
from the initial position, the greater the final distance from the initial position, up until it was completely 
unable to return the arm. The standard error of the mean was included for each group to show that it also

increases with sphere size.
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When examining arm movements during the simulations, it was noticed that the arm 

did return towards the original target position, but ended up at a different ending position 

area for each simulation. Although these ending positions were relatively close to the 

original positions for the 5, 10, and 15 cm basin sizes, it was interesting to note that the 

arm did not completely return to the original equilibrium position. An example of the 

movements of the arm coordinate positions over the course of the simulation can be seen 

in Figure 12 below for one arm position that was moved to points on the 5, 10, 15, and 20 

cm spheres. These graphs show that the arm starts at the original equilibrium position 

and then is moved to coordinates of the particular sphere basin at 10 seconds. The 

external force is then removed at 15 seconds and the arm is given the rest of the 

simulation to return to the equilibrium position. It was apparent that as the arm was 

moved to the farther distanced spheres, the arm returned to ending positions further away 

from the original position, until it no longer adequately returned from the 20 cm sphere. 

These results could mean that there were multiple equilibrium positions for each 

simulation pattern, that there were undamped oscillations within the PD controller, that 

there was unaccounted for elasticity that is common in muscle models, or that 

implementing activations in a static model can potentially alter the static equilibrium 

position. The graphs identify that the simulations eventually settle out to an equilibrium 

point that is different, but relatively close, to the initial position, and future research will

examine the exact cause of these results.
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Figure 12 Coordinate Positions Over Time The graphs above show the X, Y, and Z coordinates of the 
arm over time for when the arm is moved from a target joint position to the 5 cm (top left), 10 cm (top 

right), 15 cm (bottom left), and 20 cm (bottom right) sphere groups with an external force. The external
force is introduced at 10 seconds then removed at 15 seconds to allow the arm to move freely back towards 

the equilibrium position. The muscles are active during the entire time period.

It is worth noting that muscle activations could successfully discriminate between 

static equilibrium positions that were close together in the workspace. When the arm was 

moved into the basin of attraction for another position, muscle activations returned the 

arm to its initial position, instead of the alternative equilibrium position that was closer. 

This occurred regardless of location in the workspace or distance between the two 

discrete equilibrium positions. One example can be seen below in Figure 13. This 

verified that two-point discrimination exists in the system and that muscle activations can 

discern the difference between two nearby locations, illustrating that the initial conditions 

for the equilibrium point are specific to the position itself and the basin of attraction 

exists individually around each equilibrium point.
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Figure 13 Point Discrimination Example of two target positions in the subject's workspace. The arm was 
moved to varying distances denoted by the filled points. When the arm was moved into a position occupied 
by another basin of attraction, muscle activations were able to return the arm to its initial static position as 
the muscle activations could successfully discriminate between positions with no concern whether the arm 

would be attracted to multiple equilibrium points from one set of muscle activations.

A two-way ANOVA was performed and determined that the size of the basin of

attraction was the same irrespective of position in the workspace or joint configuration.

Generally, a two-way ANOVA is conducted to conclude if there is an interaction between

two independent variables on a dependent variable. In this research, the two-way

ANOVA was used to determine what effect sphere size or position in the workspace, the

independent variables, had on the overall capability of the muscle activations to return the

arm to its original position (final Euclidean distance), the dependent variable. All 20

static positions in the workspace were tested alongside the four sphere groups (5 cm, 10

cm, 15 cm, and 20 cm), generating a statistically significant p score for the sphere size

group (p < .001) compared to the position in workspace group (p = .53). This identified

that sphere size had a significant effect on the Euclidean distance while the position in the
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workspace did not. To isolate the independent variable in the sphere group responsible

for the significant interaction, a multiple comparison test was performed to compare

individual independent variables within the sphere size group and can be seen in Table II

below. From the multiple comparison test, it was determined that the 20 cm sphere size

had the only significant effect on the final Euclidean distance, compared to the other

sphere sizes. Utilizing the two-way ANOVA allowed for statistical verification that a

basin of attraction up to 15 cm caused no statistical significance in the final Euclidean

distance for all joint positions throughout the workspace while attempting to return from 

sphere sizes above this was statistically unfeasible.

Two-Way ANOVA Results
Multiple Comparison p

Between 5 and 10 cm Sphere Sizes .95

Between 5 and 15 cm Sphere Sizes .24
Between 5 and 20 cm Sphere Sizes < .001

Between 10 and 15 cm Sphere Sizes .85

Between 10 and 20 cm Sphere Sizes < .001

Between 15 and 20 cm Sphere Sizes < .001
Table II Multiple Comparison Test Two-Way ANOVA comparison to determine statistically 

significant interactions within the sphere size group

5.4 Discussion

To better understand the underlying dynamics of the initial conditions at a static 

position, an external disturbance was used to move the arm out of place to estimate basin 

of attraction and equilibrium point data. From the basin of attraction simulations, it was 

verified that the static positions with the determined initial conditions acted as

equilibrium points as defined by the Equilibrium Point Hypothesis. Additionally, a 15

cm basin of attraction was found to exist around the static equilibrium positions that
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allows the muscle activations to return the arm to the initial position. The basin of 

attraction was limited to 15 cm, as when the arm was moved to distances beyond this, 

muscle activations did not return to the equilibrium position. These results were 

significant in that they expanded on previous research that only examined the capability 

of static holding and provided an identifiable space around static positions capable of 

returning the arm. Additionally, current research has successfully utilized the basin of 

attraction with FES to develop a controller for lower limb muscle groups to stabilize 

posture, showing that a control strategy is an effective method in FES subjects 

(Ruhbakhsh, 2015). In our research, it was noted that the basin of attraction simulations 

were performed on a computer-simulated human arm of predetermined weight and 

length. The simulations would have to be recalibrated with the measured weight and 

length of the specific patient to ideally recreate the simulations in a human patient. 

Identifying static positions as equilibrium points and determining the size of the basin of 

attraction determines how far the equilibrium points can be from each other to adequately 

achieve controlled arm movements between these points.
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CHAPTER VI

POINT-TO-POINT SIMULATIONS

Simulating movement between equilibrium points is necessary in determining the 

feasibility of movement between static positions along a path. The previous chapters 

have demonstrated that muscle activations determined from a controller are capable of 

static arm holding within a 15 cm basin of attraction around a given joint position in the 

workspace. Static holding muscle activations and joint position basins of attraction are 

crucial on their own, but are unable to tell us anything about movement between static 

joint positions. To demonstrate movement between joint positions, information gathered 

from the static holding and basin of attraction simulations was used to simulate

movement between static points along a full-arm path in Section 6.1. In Sections 6.2 and 

6.3, the results from these simulations and detailed discussion will be examined. This 

chapter seeks to answer that if simulated movement between equilibrium points is

feasible, can full-arm reaching be achieved by point-to-point tracking control?

6.1 Simulation Review

To demonstrate that moving between static equilibrium points is feasible, paths 

within the workspace were chosen and broken down into several equilibrium points along 

the path. For each equilibrium point along the path, the joint torques and muscle
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activations were determined from the method seen below in Figure 14. The Cartesian

coordinates for the equilibrium position were chosen in the workspace and converted to

the corresponding joint angles from the DAS. The two-part controller was then used on

these joint angles to determine the corresponding joint torques and muscle activations

required to maintain the given equilibrium position and was repeated for all equilibrium

positions along the path. Two sets of simulations were performed to test the hypothesis

that movements are achievable within the basin of attraction by: 1) simulating movement

to an intermediate point between the starting and end position and 2) simulating

movement between two points outside of the size of the basin of attraction. The

accuracy of the simulations was determined from the distance between the final position 

obtained and the goal position of the path.

Figure 14 Determining Muscle Activations and Joint Torques Muscle activations and joint 
torques for the point-to-point stimulations were found from Cartesian coordinates of an equilibrium point in

the DAS and manipulated through the controller 

Point-to-point simulations between joint positions roughly 30 cm apart along a

path were evaluated to determine if movements were feasible within the basin of

attraction. The starting and end positions of a specific path were chosen that were outside

of the respective basins of attraction. A third joint position roughly 10 to 15 cm away

between the start and end path points was chosen to serve as the intermediate moving

point. Muscle activations were found for each of the starting, intermediate, and ending
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joint positions using the process seen above Figure 14. Once the muscle activations for 

each position were found, an initial set of PD controller gains were used to move the arm 

to the starting joint position of the path while no muscles were activated. The PD 

controller was then shut off and the muscle activations for the starting position were input 

to allow activations to keep the arm static for 15 seconds. The simulated arm comes to 

equilibrium in 5 seconds, but was given 15 seconds for these simulations to completely 

settle into the equilibrium positions and minimize muscle perturbations. The muscle 

activations for the intermediate position then replaced the muscle activations for the 

starting position and were left in place for 15 seconds to allow the arm to move freely 

from the start position and settle into the intermediate position. Lastly, the muscle 

activations for the intermediate position were replaced with the muscle activations for the 

ending position, which were again left in place for 15 seconds to allow the arm to move 

freely from the intermediate position and settle into the ending goal position of the path. 

Once the PD controller was removed, muscle activations were the only stimuli allowed to 

move the arm from point-to-point. To estimate the accuracy of the simulations, the final 

position of the arm was recorded and the distance from the final position to the ending 

goal position was calculated. The simulation was repeated for 10 different paths, chosen 

from two of the static position points that were roughly 20 to 30 cm apart in the 

workspace, with an intermediate position being chosen for simulations within the basin of 

attraction. Some of the paths were chosen to simulate a variety of typical daily activities 

such as eating, grooming, and reaching to examine the performance of obtaining every 

day movements by starting in front of the body and ending near the face or hair.
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Point-to-point simulations between joint positions roughly 20 cm apart along a

path were evaluated to determine if these movements were feasible outside the basin of

attraction. The starting and end positions for the paths above were chosen without using

a third intermediate position. The path consisted of the starting and ending joint positions

roughly 20 cm away from each other in the workspace to examine how the arm responds

beyond the basin of attraction. Muscle activations were found for each of the joint

positions using the process as seen above in Figure 14. Once the muscle activations for

each position were found, an initial set of PD controller gains were used to move the arm 

to the starting joint position of the path while no muscles were activated. The PD 

controller was then shut off and the muscle activations for the starting position were input 

to allow activations to keep the arm static for 15 seconds. The above simulation was 

repeated for the start and ending joint positions without the intermediate transition 

position. To estimate the accuracy of the simulations, the final position of the arm was 

recorded and the distance from the final position to the ending goal position was 

calculated. The simulation was repeated for the same 10 paths as above but only 

separated into the starting and ending positions roughly 20 cm apart in the workspace.

6.2 Results

Point-to-point simulations revealed that arm movements between equilibrium 

points were feasible if distances remained within the basin of attraction. For simulations 

of distances within the basin of attraction, muscle activations were used to move the arm 

to joint positions approximately 10 to 15 cm apart, with the final positions being recorded 

for 10 separate paths. Comparing the distances between the final position obtained and 

the ending goal position for simulations within the basin of attraction, an averaged
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Euclidean distance of 2.2± 0.095 cm for all simulations was obtained. Majority of the

arm movements in these simulations settled at distances physically below the ending goal

position, possibly due to gravitational effects, but never fell short or overshot the targets,

as seen in Figure 15 below. For simulations of distances outside the basin of attraction,

muscle activations were used to move the arm to joint positions approximately 20 cm

apart, with the final positions being recorded for 10 separate paths. Comparing the

distances between the final position obtained and the ending goal position for simulations

outside the basin of attraction, an averaged Euclidean distance of 18 ± 0.26 cm for all

simulations was obtained. In these simulations, the muscle activations cause the arm to

move slightly to attempt movement, but stays in place near the starting position of the

path, which is akin to results from basin of attraction simulations in which the arm stayed 

at the edge of the 20 cm sphere size for a given equilibrium position. These results allow 

us to conclude that movements between static equilibrium positions is feasible for

distances within the basin of attraction. The ability of muscle activations to move

between static equilibrium points along a path from a starting position to a goal position

demonstrates that full-arm reaching movements can be achieved using equilibrium point

control.

Figure 15 Point-to-Point Simulations Comparisons between ideal arm movements along a path of 
equilibrium points with (A & B) and without (C & D) an intermediate point (green), and the observed arm 

movements along a path of obtained points (yellow)
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6.3 Discussion

Point-to-point simulations were used to determine if movement between

equilibrium points within the identified basin of attraction using muscle activations was

feasible for full-arm trajectories. The hypothesis that full-arm reaching motions can be

achieved through the transitioning of muscle activations between equilibrium points was

successfully demonstrated by the ability of the muscle activations to navigate between

discrete equilibrium points while remaining within 2.2 ± 0.095 cm standard deviation of

the final goal without external assistance. Point-to-point simulations also showed that

arm movements are only capable for distances within the basin of attraction as any

attempts to move outside the basin of attraction left the arm close to its starting position

at 18 ± 0.26 cm standard deviation from its goal. However, arm movements can start

outside the basin of attraction for an equilibrium position, as long as there is an

intermediate position to move to first before the desired equilibrium point. Point-to-point 

movements within the basin of attraction were found to be precise enough to perform 

detailed movements such as moving food to the patient's mouth or picking up smaller 

foods. Movements with less precision would be sufficient for tasks that do not require 

fine movements, but would perform poorly when tasked with movements that are more 

specific. Point-to-point simulations verified that movement along a path between static 

equilibrium positions composing full-arm reaching is possible throughout the workspace. 

These results also coincide with the underlying principles of the Equilibrium Point

Hypothesis in that movement along a path is feasible when transitioning between

equilibrium points. The addition we personally noted was that these movements were

feasible as long as they occurred at distances within the basin of attraction of
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transitioning equilibrium points. It was of interest to note that the simulations performed

point-to-point movements by direct control of muscles without access to a higher brain,

in contrast to the need for motor innervation from a higher source in the Equilibrium

Point Hypothesis principle of motor innervation. Despite the success of the findings, one

of the limitations of these simulations were that they focused only on equilibrium points

roughly 10 to 15 cm apart and 20 cm apart in the workspace. Future simulations could

evaluate a broader range of distances to examine the accuracy of the arm to perform even

more position-sensitive movements such as eating or drinking. Additionally, in these

simulations, the arm was given 15 seconds between each position to settle into place.

This is much longer than the 5 seconds necessary for the arm to settle and was used to

give the arm extra time to remove any potential perturbations. Future simulations will

reduce this settling time to achieve a more realistic timing of human arm movements. In 

these simulations, our findings determined that transitioning between equilibrium points 

along a path via the activation of various muscle groups is successful and capable of full- 

arm reaching movements in a simulated human arm.
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CHAPTER VII

CONCLUSION

In this study, full-arm reaching movements were achieved between static 

equilibrium points using identified muscle activations. A virtual human arm model 

generated in Matlab and visually represented in OpenSim was used to simulate a human 

right arm with a predetermined length and weight. External forces were used to hold the 

arm in place while internal activations were used to mimic the activation of various 

muscle groups. Simulations were performed to identify a two-part controller with GPR 

models capable of calculating muscle activations required to maintain desired joint 

positions in the workspace. Once the static holding of joint positions was achieved, 

simulations were performed to define static positions as equilibrium points and to

estimate the size of the basin of attraction. Simulations performed in this research

identified that equilibrium point control of full-arm motions was achievable for reaching 

paths throughout the workspace.

Simulations performed identified three significant findings regarding the

underlying properties of human arm movement, while also acknowledging research

limitations. First, the identification of a virtual model allowed for the development of a

two-part controller with GPR models capable of successfully holding static joint
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positions in the workspace. This finding agreed with current research that has developed

a controller capable of identifying muscle group stimulations for holding a human arm in

position with a FES neuroprosthesis (Wolf, 2017). Second, the static positions were

identified as equilibrium positions for a set of initial conditions as they could return the

arm to the initial position when the arm was moved away by an external force. Third,

basin of attraction simulations identified that a 15 cm basin of attraction exists around

each equilibrium position. Within the basin of attraction, muscle activations could return

the arm back to the initial equilibrium position, irrespective of position in the workspace. 

Identifying equilibrium points and basin of attraction size allowed point-to-point 

movements to be examined by separating distant paths into manageable equilibrium 

points within the basins of attraction. In our research, a computer-simulated human arm 

model was used in place a patient with an implanted FES, limiting the research to strictly 

virtual models. However, the virtual model allowed more simulations to be conducted as 

muscle fatigue or limited patient time would not occur. The weight and length of the 

virtual arm was obtained from cadaver studies and was used to determine the feasibility 

of our hypothesis. Once the arm data of a patient has been identified, the controller can 

be recalibrated and repeated with these measurements to allow for patient-specific joint 

data and to verify if the size of the basin of attraction is consistent among arm

measurements. The success of these simulations supported the Equilibrium Point

Hypothesis in that full-arm movements are feasible between equilibrium points. Despite 

the limitations in this research, the findings have demonstrated that arm movement 

utilizing muscle stimulations is controllable can be achieved for full-arm reaching 

throughout an identified workspace.
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Current researched focused on FES has made great strides in upper limb

movement in high-level tetraplegia, but still lacks the ability for complete mobility and

independence. One current human research study has demonstrated that muscle

stimulations for a specified joint position can be generated from a controller using a

human subject with high-level tetraplegia as the model (Wolf, 2017). In both this

research and ours, a controller was developed capable of generating muscle activations to

hold an arm in a specified joint position. However, the human subject could only achieve

static holding with the aid of a robotic arm, whereas simulations performed in our

research were capable of movement within a reasonably small basin of attraction. Other 

FES research trials have shown promise in successful muscle or nerve stimulation or 

potential full-arm movement (Ajiboye, 2017; Pedrocchi, 2013; Ho, 2014). However, 

these research trials lack effective control methods for upper limb movements as they 

focused on a single joint aided by arm support. Our research presented a more general 

method of control for upper limb movement by developing a controller capable of

determining muscle activations for movement between equilibrium points.

The potential for FES technology to allow high-level tetraplegia patients to regain 

some level of mobility in their upper limbs gives them a greater chance at leading a more 

normal and independent lifestyle. The findings in this research aim to improve the

current methods - Braingate and MUNDUS - available to high-level tetraplegia patients 

and provide them with a potential functional method of obtaining upper-limb movements. 

Future research aims to identify the physical arm data of a high-level tetraplegia patient

to recalibrate the two-part controller. The controller can then be used to implement

muscle activation data for an identified human patient. Adding a third block to the
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controller to convert muscle activations into corresponding muscle stimulations would

allow them to be utilized by an implanted FES neuroprosthesis. The simulations can then

be performed to attempt to recreate the simulations in a human arm patient. The research

presented in this thesis can provide much needed full-arm reaching movements to high-

level tetraplegia patients, which is currently lacking by current research methods present

today.
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