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SYNTHESIS AND BIOLOGICAL EVALUATION OF SMALL 

MOLECULAR DRUG CANDIDATES FOR THE TREATMENT OF 

HER2 OVEREXPRESSED BREAST CANCER 

ANRAN ZHAO 

ABSTRACT 

In the US breast cancer is the most common cancer after skin cancer. Currently in 

the US the average risk of a woman to develop breast cancer in her life is roughly 12%. 

About 25-30% of breast cancer patients have HER2 overexpressed tumor, and the growth 

of tumor cell is depend on HER2 pathway. It has been well-documented that patients with 

over-expressed HER2 are associated with increased disease recurrence, worse prognosis 

and lower survival. Currently there are two type of HER2 targeting drug. The first group 

is HER2 monoclonal antibody drugs such as trastuzumab approved by FDA in 1998; the 

second type is intracellular tyrosine kinase inhibitors such as lapatinib approved by FDA 

in 2007. Presently trastuzumab is one of the most efficient in clinic for HER2 

over-expressed breast cancer patients, however many patients didn’t gain benefit due to 

the de novo or acquire resistance. The resistance of trastuzumab involves multiple 

cellular pathway, research indicates that HSP27 participate in the development of 

resistance. There are studies indicate that HER2 is one of the client proteins of HSP27. 

HER2 would be downregulated via inhibition of HSP27.  

Previously, a lead compound JCC76 which generated from COX-2 inhibitor 
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Nimesulide was found to target HSP27. Herein, 23 analogs of JCC76 were synthesized. 

Cell viability assay was used for screen the analogs that selectively inhibit HER2 

overexpressed cell proliferation. Western-blot and chaperone assay were used to 

investigate the anti-proliferate cellular mechanism. The selected compounds, 16 and 17, 

inhibited the protective function of small chaperone. In the HER2 downregulation 

experiment, the results indicate a dose-dependent downregulation of HER2 for both 

compounds. 

In the second study we try to improve the druggable characteristics of the 

compounds by reducing the compound size and molecular weight. Totally 60 compounds 

were synthesized and screen for cell growth inhibitory ability against variance cell line, 5 

compounds with potent proliferate inhibitory activity were identified. The SAR study 

indicates several compounds with 3-trifluoromethylbenzamide groups showed potent and 

selective inhibition of HER2 overexpressed breast cancer cells.  
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Breast Cancer 

Cancer is a generic term for a large group of diseases that can affect any part of the 

body with one defining feature of rapid generation of abnormal cells that grow beyond 

their usual boundaries that can then invade adjoining parts of the body and spread to 

other organs. 
[1]

 Most cancers will form a lump or mass called a tumor, which can 

proliferate and spread throughout the body in a process known as metastasis. 

In the US, breast cancer is the second most common cancer in women after skin 

cancer, with a life time risk of about 12.4%. There are three major histopathology 

classifications of breast cancer: Ductal carcinoma in situ, Lobular carcinoma in situ, and 

Invasive breast cancer which consists of 80% of breast cancer. The American Cancer 

Society estimated there will be 252,710 cases of invasive breast cancer and 63,410 in situ 

breast carcinoma will be diagnosed among women, and 40,160 women are expected to 

die from breast cancer in 2017. 
[2] 
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The treatment of breast cancer depends on the stage of cancer. For early and locally 

advanced breast carcinoma the intention of treatment is to cure before metastasis, but for 

the later stage carcinoma there is no cure and the treatment is focused on increasing the 

overall survival rate. Various approaches employed for breast cancer management include 

surgery, radiation treatment, endocrine treatment and chemotherapy 
[3]

. Lumpectomy, a 

surgery to remove the tumor and a small, cancer-free margin of healthy tissue around the 

tumor will be used for stage I and II patients followed by radiation therapy. For local 

advanced carcinoma and patients with former radiation therapy to the breast or chest wall 

will go through mastectomy, which is the surgical removal of the entire breast, instead of 

lumpectomy. For stage IV breast cancer, only endocrine therapy and chemotherapy is 

available. To achieve best therapeutic results and improve the overall survival rate, an 

understanding of molecular biology behind breast cancer is necessary.  

Based on the expression level of classic immunohistochemistry (IHC) markers such 

as estrogen receptor (ER), progesterone receptor (PR) and human epidermal grow factor 

receptor 2 (HER-2) breast cancer can be divided into five intrinsic subtypes: Luminal A, 

Luminal B, HER2 over-expression, Basal and Normal-like (Table I). 
[4]

 In this study we 

are focusing on HER-2 over-expression subtype which tends to grow and spread more 

aggressively and has a poor prognosis and overall survival rate compared to the other 

subtypes. 
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Figure 1.1 Breast Cancer  

Astrid. Deodorant Alternatives for Avoiding Breast Cancer 

https://www.healyounaturally.com/deodorant-alternatives-for-avoiding-breast-cancer-ema

xhealth/ (accessed Mar 7, 2018). 
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Table 1.1   Summary of the breast tumor molecular subtypes 
[4]

 

 

 

  

Intrinsic subtype IHC status Grade Outcome 

Luminal A [ER+|PR+] HER2-KI67- 1/2 Good 

Luminal B [ER+|PR+] HER2-KI67+ 2/3 Intermediate 

 [ER+|PR+] HER2+KI67+  Poor 

HER2 over-expression [ER-PR-] HER2+ 2/3 Poor 

Basal [ER-PR-] HER2-, basal marker+ 3 Poor 

Normal-like [ER+|PR+] HER2-KI67- 1/2/3 Intermediate 
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1.2  Human Epidermal Growth Factor Receptor 2 (HER-2) 

 

1.2.1  HER2 in cancer 

Human Epidermal Growth Factor Receptor 2 (HER-2) is a 185 kDa glycoprotein 

encoded on gene 17q12 which is localized on the long arm of chromosome 17. It is 

normally expressed in the epithelia of various organs such as bladder, lung, breast, 

pancreas and prostate. HER-2 belongs to the transmembrane receptor tyrosine kinase 

(RTK) family, ErbB, which is a family of cell surface growth-factor receptors that play an 

important role in proliferation, migration, metabolism, differentiation, and survival of 

cells.
[5]

  

The ErbB family of proteins consists of four members: HER1 (EGFR, ErbB1), 

HER2 (Neu, ErbB2), HER3 (ErbB3), and HER4 (ErbB4) which are structurally related 

(Figure 1.2). Members of ErbB family have three major domains: ligand binding domain, 

transmembrane domain and kinase domain. The ligand binding domain can recognize and 

bind to various ligands with different specificity. Upon ligand binding, ErbBs will be 

active and be ready to form a homodimer or heterodimer. The numerous ErbB ligands can 

be divided into four categories based on their binding affinity toward different receptors. 

First category includes EGF, AR and TGFα which exclusively bind to EGFR. A second 

family consisting of BTC, HB-EGF and EPR show dual specificity toward HER1 and 

HER4. NRGs comprise the third and fourth family, and NGR-1 and NRG-2 can bind 

HER3 and HER4, NRG-3 and NRG-4 bind HER4 but not HER3.
[6]

 ErbB ligands have a 
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bivalence characteristic which shows high binding affinity toward the receptor and low 

affinity binding toward the dimerization partner. For instance, the ligand NRG–1’s 

preferential dimerization partner is HER2.
[7]

 There is no HER2 ligand that has been 

identified which is a characteristic related to HER2’s unique extracellular domain 

structure. The extracellular domain of the ErbB family consists of four subdomains (I-IV): 

subdomain I, II and III form the ligand binding pocket and the helic fold in subdomain I 

and III are critical for ligand binding. During ligand binding the receptor dimerization is 

through interaction between a beta hairpin in subdomain II. In contrast, in the inactivated 

ErbB the intramolecular interactions between subdomains II and IV will prevent 

dimerization. HER2 has a fixed conformation that resembles a ligand-activated state, and 

its subdomains I and III are very close where this interaction makes ligand binding 

impossible. 
[8]

 This unique extracellular domain of HER-2 allows it to exhibit ligand 

independent activity. 

   Upon ligand binding and dimer formation, the intrinsic tyrosine kinase will be 

activated and lead to the autophosphorylation of specific C-terminal tyrosine residues, 

except HER3 which has an impaired autophosphorylation function.
[9]

 Various proteins 

containing Src homology 2 and phosphotyrosine binding domain will bind to the 

C-terminal of receptor and initiate cell signaling via different pathways which include: 

RAS/RAF/MAPK, PI3K/AKT,  Phospholipase Cγ, Src kinase pathways, and STAT 

pathways.
[10]

 Apart from those tyrosine kinase pathways, there are studies that indicate 

that there is a novel pathway where the EGFR will be transported from the cell 
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membrane to the nucleus to regulate gene expression directly. 
[11]

 HER2 can only recruit 

Grb2 and shc on its intracellular domain to activate the RAS/RAF/MAPK pathway and 

the HER2 homodimer signaling is relatively weak. 
[6]

 Unlike the homodimer’s weak 

signal, the heterodimer of HER2 has prolonged and enhanced downstream signalling 

through two different layers of regulation. At the ligand binding and activation layer 

HER2 heterodimers exhibit a relaxed ligand specificity and a decreased ligand 

dissociation rate which prolongs the downstream signal. At the endocytosis and recycling 

layer ErbB dimerizes with HER2 which will decrease the endocytosis rate. The HER2 

heterodimer will readily dissociate in early endosome and will be recycled back to the 

membrane. 
[12] 



 

8 

 

 

Figure 1.2  The ErbB receptors and their ligands. 
[6] 

Binding specificities of the EGF‐related peptide growth factors. There are four 

categories of ligands that bind ErbB family receptors. EGF, AR and TGFα bind ErbB1; 

BTC, HB‐EGF and EPR bind ErbB1 and ErbB4; NRG‐1 and NRG‐2 bind ErbB3 and 

ErbB4; and NRG‐3 and NRG‐4 bind ErbB4. 
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Among all ErbBs heterodimers, HER2/HER3 dimer can generate the most potent 

downstream signal to stimulate proliferation through the PI3K/AKT pathway. Hence 

there is research which indicate that HER3 is an indispensable HER2 dimerization 

partner and is essential for HER2 overexpressed tumor cell proliferation. Therefore 

HER2/HER3 dimer can be regarded as an oncogenic unit of HER2 overexpressed cancer. 

[13] 

 

 

1.2.2 HER2 targeting drug trastuzumab and its resistance 

Currently, two groups of HER2 targeting drugs exist. The first group is HER2 

monoclonal antibody which includes trastuzumab approved by the FDA in 1998 and 

pertuzumab approved in 2012. The second group is intracellular tyrosine kinase inhibitors 

such as lapatinib approved in 2007. 
[14]

 The exact mechanism of trastuzumab targeting 

HER2 overexpressed cancer remains unclear today. There are several proposed 

mechanisms, including blocking HER2 dimerization and extracellular domain proteolysis, 

recruiting immune effector cell and activating ADCC (antibody-dependent cellular 

cytotoxicity), receptor down regulation through endocytosis and degradation, and 

inhibiting DNA repair. 
[15],[16]

 

Although trastuzumab is one of the most effective treatments against HER2 

overexpressed breast cancer, a great number of patients do not benefit from it due to the 

resistance. There are multiple reasons for the resistance and the most intensively studied 
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trastuzumab resistance mechanisms can be divided into four: (1) obstacles for 

trastuzumab binding to HER2; (2) upregulation of HER2 downstream signalling 

pathways; (3) enhancing signalling through alternative pathways; and (4) failure to 

trigger immune-mediated mechanisms to destroy tumor cells. 
[15]  
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Figure 1.3  EGFR signalling pathway and targeted therapies
 [14] 

Currently there are two type of HER2 targeting agents They are targeting extracellular 

domain or kinase domain of HER2, see text for more detail  
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Besides these well studied mechanisms HSP27 (Heat shock protein 27) was also 

found to be involved in trastuzumab resistance. HSP27 expression was shown to be 

upregulated in trastuzumab resistance cells. The sensitivity of trastuzumab resistant cells 

to trastuzumab increased after HSP27 suppression by specific siRNA transfection. 

Co-immunoprecipitation analysis indicates that HSP27 can bind to HER2 in the absence 

of trastuzumab. 
[17]

 Based on another study, the neuropeptide, neuromedin U (NmU), is 

also involved in HSP27 induced trastuzumab resistance.
 [18]

 The proposed resistance 

mechanism is that the overexpressed HSP27 and NmU cooperatively stabilize HER2  

to downregulate its degradation which results in reduced trastuzumab susceptibility 

(Figure 1.4).  
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Figure1.4 Proposed mechanism of HSP27 induce trastuzumab resistance 
[18]

. HSP27 

is forming complex with neuromedin U to stabilize HER2 



 

14 

 

1.3 HSP27 and its regulation on client proteins 

 

1.3.1 HSP27 overview 

Heat shock proteins (HSPs) are a family of protein produced by the cell when 

exposed to stress conditions. HSPs are highly conserved proteins among species which 

were first discovered at 1962. This family of proteins were name after heat shock because 

they were first described related to heat shock, but now are known to be expressed when 

cells are exposed to various environmental, metabolic, and pathophysiological stress 

conditions.
 [19,20]

 HSPs are divided into six major families based on their molecular 

weight: HSP100, HSP90, HSP70, HSP60, HSP40 and small HSP (30KDa-15KDa). 
[21]

 

The higher molecular weight HSPs are ATP-dependent chaperones whereas small 

molecular HSPs are ATP-independent chaperones. Heat shock protein 27 (HSP27/HSPB1) 

belongs to the small heat shock protein family which contains 10 members characterized 

by a highly conserved central domain and less conserved N- and C-terminal domains. 

Small chaperone exists in monomer, dimer, and oligomers, and the dynamic 

oligomerization and function of the small chaperones is regulated by phosphorylation of 

the protein 
[22]

 

 

1.3.2 The ability of HSP27 regulate level of certain client proteins 

Besides chaperone function and protect cell against various stress, HSP27 also play 

an important role in diverse cellular pathway due to its complicate and dynamic oligomer 
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structure and phosphorylation statue. Among these interactions there are several proteins 

that are stabilized by HSP27, the category of these proteins including: receptors, 

transcript factors and some enzymes.
 [23] 

These proteins are stabilized by HSP27 and 

directly interact with HSP27, they can consider as the client proteins of HSP27. 

There are three transcript factors identified as the client proteins of HSP27 including: 

signal transducer and activator of transcription 2 (STAT2), signal transducer and activator 

of transcription 3 (STAT3) and zinc finger protein SNAI1 (Snail).
 [24]

 STAT2 as one of the 

HSP27’s client proteins was report by Gibert et al.
 [21]

 In this research the downregulation 

of STAT2 in HSP27 depletion cell was revealed by western-blot analysis. The reduction 

of STAT2’s activity was confirmed by monitoring the expression of luciferase in HSP27 

depletion cell transfected with a STAT1/STAT2-responsive luciferase construct encoding 

the firefly luciferase reporter gene. In further investigation of HSP27 regulation 

mechanism STAT2 degradation obstructed via proteasomal pathway inhibited by MG132, 

in qPCR test STAT2 mRNA slightly induce when level of STAT2 decrease in HSP27 

depletion cell. All these results support that HSP27 stabilizes STAT2 through preventing 

STAT2 degradation by proteasome.
 [25]

 In a study done by Rocchi et al, the 

downregulation of STAT3 via HSP27 knocked down with allele-specific oligonucleotide 

(ASO) has been reported. Although the exact mechanism is not clear about how HSP27 

regulates STAT3, at least that HSP27 participates in STAT3 protein complex was 

confirmed.
 [26]

 Inhibiting HSP27 resulting in to the reduction of STAT3 was also be 

observed in first trimester human placenta.
 [27]

 The upregulation of Snail was found in 
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adenocarcinoma cell due to overexpression of transforming growth factor beta 1 (TGF-β1) 

or HSP27. The result of Western-blot and qPCR studies on HSP27 depleted but TGF-β1 

overexpressed cell suggest that HSP27 regulate Snail at protein level instead of mRNA 

level. To confirm whether HSP27 stabilized Snail by decreasing proteasome degradation, 

HSP27 knocked down cells were treated with MG132 and the induction of Snail was 

restored. This result indicates that HSP27 upregulates Snail by preventing it from 

degradation.
 [28]

  

Two enzymes including human double minute 2 homolog (HDM2) and Histone 

deacetylase 6 (HDAC-6) are also identified as HSP27 client proteins.
 [24] 

In a study done 

by Ocallaghan-Sunol et al, HSP27 was found to stabilize HDM2 which further activates 

Tumor protein p53 (p53) pathway. 
[29] 

In the study done by Gibert et al, HDAC-6 was 

found to be downregulated in HSP27 knocked down cells and qPCR study suggests that 

HDAC-6 reduction was post-translationally regulated. To better understand the 

mechanism of HDAC-6 regulation by HSP27, HSP27 depletion HeLa cells were treated 

with proteasome inhibitor MG132 or ALLN. Both proteasome inhibitors were found to 

block the reduction of HDAC-6, suggest that HSP27 regulates HDAC-6 through 

degradation pathway.
 [25] 

HER2 and androgen receptor (AR) have been identified as client proteins of HSP27 

and they are important cancer therapeutic targets.
 [23] 

In a study done by Zoubeidi et al the 

interaction between HSP27 and AR was investigated. Androgen binding AR induces the 

phosphorylation of HSP27, and HSP27 could facilitate the AR complex shift to the 
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nucleus and induces the transcription activity of AR. HSP27 knocked down could reduce 

AR stability, which has been confirmed. They propose a pathway of HSP27 and AR 

interaction: androgen and androgen receptor binding could induce the phosphorylation of 

HSP27 and exchange partner from HSP90 to phosphorylated HSP27. The HSP27/AR 

complex will relocate into nucleus and promote transcription. inhibition of HSP27 

phosphorylation or reducing HSP27 with siRNA could reduce AR translocation and 

increase AR degradation.
 [30] 

There is another study suggest that HSP27 also mediates AR 

through regulating AR mRNA level.
 [31]

 

The interaction of HSP27 and HER2 were first reported by Kang et al. They found 

in trastuzumab resistance breast cancer cell line that the expression of HSP27 has been 

upregulated. Treatment with trastuzumab could lead to HER2 degradation in both 

trastuzumab resistance and naïve HER2 positive cell line. However HER2 reduction in 

resistance cell line is much less after the treatment, suggesting that increase of HER2 

stability may involve in trastuzumab resistance. The co-immunoprecipitation study shows 

that HSP27 can bind to HER2. After HSP27 knock down, trastuzumab resistance cell 

showed greater response when treated with trastuzumab and cell viability assay suggest 

that knock down HSP27 results in sensitizing resistance cells to trastuzumab. All this 

results suggest that downregulation of HER2 by trastuzumab can be blocked by the 

formation of HER2/HSP27 complex.
 [17] 

In another research done by the same group, the 

relationship between HSP27 phosphorylation and HER2 stabilization was investigated. 

Although HSP27 phosphorylation inhibitor suppressed cell proliferation and induced 
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apoptotic cell death in both HER2 positive breast cancer cell and trastuzumab resistance 

cells, there is no evident to support that the interaction between HER2 and HSP27 could 

be directly targeted by HSP27 phosphorylation inhibitor.
 [33] 

Neuromedin U (NmU) has 

been report to stabilize HER2 as a partner protein directly binding HSP27
 [34] 

  

 

1.3.3 HSP27 inhibition could induce degradation of certain client proteins 

Upregulation of HSP27 results in the enhanced stability of several client proteins 

which are critical cancer therapeutic targets. Therefore inhibition of HSP27 serves as a 

promising strategy to develop new anti-cancer agents. Currently there are four class of 

inhibitor that can regulate the expression level and function of HSP27.
 [35]

 First class is 

antisense oligonucleotide (ASO) that is a chemically modified or unmodified 

single-stranded DNA which binding to mRNA to prevent translation. OGX-427 is an 

ASO HSP27 inhibitor which can sensitize no-small cell lung cancer and bladder cancer to 

chemotherapy. 
[36,37] 

Downregulation of HSP27 by OGX-427 leads to the increased 

degradation of eukaryotic translation initiation factor 4E (eIF4E) in prostate cancer cells.
 

[38] 
Currently the phase II trial of OGX-427 on pancreatic cancer and no-small cell lung 

cancer are completed.
 [39] 

Second class of inhibitor is siRNA which is a double-stranded 

RNA which binding to mRNA and preventing its translation. Currently there is no siRNA 

drug on clinical trial but its ability to downregulate client protein of HSP27 has been 

reported. 
[25-31] 

The third class of inhibitor is peptide aptamers which is a selected or 

engineered peptide that can bind to specific target. Two sequence-specific aptamers has 
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been generated and prove to be able to reducing HSP27 but whether they can modify 

client protein or not has not been investigated.
 [40]

 The fourth class is small molecular 

inhibitor such as RP101, KRIBB3 and quercetin, which has been reported to inhibit 

HSP27 in the in vitro assays. RP101 has been prove to bind to mRNA coding therefore 

inhibit the translation leading to the downregulation of HSP27. 
[41] 

KRIBB3 was reported 

binding to HSP27 and inhibit its phosphorylation which lead to obstruct of tumor cell 

migration.
 [42] 

Quercetin was first reported to reduce the expression of HSP90, HSP70 and 

HSP27.
 [43] 

But late study indicate quercetin also capable to inhibit the phosphorylation of 

HSP27
 [44] 

However there is no research investigate the interaction between these small 

molecular inhibitor and client proteins. Our group has identified Copalic acid and its 

analogs as small chaperone inhibitor. This natural product inhibits the chaperone activity 

of HSP27 and α-crystallin in the in vitro insulin aggregation assay. In addition, the 

compounds were also found to induce AR degradation. Targeting the small chaperone 

proteins with small molecule inhibitors has the potential to induce onco-protein 

degradation, and be used as novel anti-cancer agents in the future.
[45] 
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CHAPTER II 

STATEMENT OF RESEARCH AND SPECIFIC AIMS 

 

 

2.1 Statement of research 

Cancer is the second cause of death in the US and the leading cause of death 

worldwide. Among various cancers, breast cancer is the most common one in females 

with 268,670 new cases expected in the United States in 2018. There are five intrinsic 

sub-types of breast cancer which are classified by the expression level of classic IHC. In 

this five sub-type HER2 overexpressed breast cancer accounts for about 20% of all breast 

cancer cases which is the most aggressive sub-type among the other four. And patients 

with this type of breast cancer have the lowest survival rate and the poorest prognosis. 

HER2 is a member of EGFR family and is overexpressed in multiple cancer types 

including breast cancer, ovarian cancer and lung cancer. HER2 has been a target for 

cancer therapy for decades; there are several drugs that have been developed. 

Trastuzumab, a monoclonal antibody drug, is the most successful HER2 targeting 
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therapeutic agent. However, half of HER2 positive breast cancer patients eventually 

ceased to respond to Trastuzumab due to the resistance caused by multiple different 

mechanisms. One of the resistance mechanisms is through the upregulation of the 

expression of HSP27 which stabilizes HER2. Therefore, inhibiting HSP27 could potential 

down-regulate HER2 protein and overcome the Trastuzumab resistance for breast cancer 

treatment. 

HSP27 a small chaperone protein is a novel target for cancer therapy since it has 

anti-apoptotic effects. Currently existing HSP27 targeting agents function through 

reducing expression, inhibiting kinase phosphorylation of HSP27 or interrupting the 

interaction between HSP27 and apoptosis proteins. The present situation suggests the 

need for developing an HSP27 inhibitor which can specifically interrupt the 

HSP27-HER2 pathway. 
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2.2 Specific aim 

(1) Synthesise a series of new compound by modify moiety B (Figure 2.1) to 

sulfonyl amide which should improve compounds’ solubility in aqueous phase and 

evaluate their ability of suppress cancer cell proliferate and inhibit Hsp27 function 

 (2) Synthesise a series of new compound by substitute moiety A (Figure 2.1) twith 

smaller functional groups which should reduce the hydrophobicity and improve 

compounds’ solubility in aqueous phase. Evaluate their anti-proliferate activity by cell 

viability assay. 
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Figure 2.1 structure of HSP27 inhibitor JCC76 
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CHAPTER III 

SYNTHESIS AND BIOLOGICAL EVALUATION OF 

ANTI-CANCER AGENTS THAT SELECTIVELY INHIBIT HER2 

OVER–EXPRESSED BREAST CANCER CELL GROWTH VIA 

DOWN-REGULATION 

OF HER2 PROTEIN 

 

 

3.1  INTRODUCTION 

About 25–30% of breast cancer patients have human epidermal growth factor 2 

(HER2) over-expressed tumors, and the tumor cells depend on the HER2 pathway to 

proliferate.
[1]

 There are multiple factors that contribute to the high level of HER2 protein in 

tumors,
 [2,3]

 which results in constitutive activation of the receptor and cell growth. It has 

been well-documented that patients with over-expressed HER2 are associated with 

increased disease recurrence, worse prognosis and lower survival.
[4]

 Targeting the 

extracellular domain of Her2 receptor could result in an efficient inhibition of breast 
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cancer cell proliferation.
[1,2,5,6]

 In addition, inhibition of intracellular signaling pathways of 

HER2 downstream could lead to the suppression of cancer cell growth as well.
[7]

 Currently, 
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there are two types of drugs that target HER2. The first group is HER2 monoclonal 

antibody drugs such as trastuzumab approved by FDA in 1998; the second type is 

intracellular tyrosine kinase inhibitors such as lapatinib approved by FDA in 2007.
 [8,9]

 
 

Even though treatment with these drugs showed great efficiency in clinic for HER2 

over-expressed breast cancer patients, resistance has been reported in patients who use 

trastuzumab as the treatment.
 [9]

 There are multiple reasons for the resistance, and further 

increased HER2 expression in the cancer cells after the treatment is one of them.
 [10]

 

Researchers used different strategies to reduce the HER2 level and found that the cancer 

cells regained the sensitivity to trastuzumab. 
[10]

 Therefore, new agents that can reduce the 

amount of HER2 in breast cancer cells indirectly needs to be used for the HER2 

overexpressed breast cancer treatment, which may also have the potential to overcome 

trastuzumab resistance.
 [11-13] 

Our goal is to identify new anti-cancer compounds that would selectively inhibit the 

growth of HER2 over-expressing breast cancer cells, and then investigate the mechanism 

of the pharmacological activity. Previously we identified a small molecule, JCC76 that 

showed selectivity to inhibit the growth of HER2 over-expressed breast cancer cells
 
. In 

this study, structural optimization was performed to improve the biological activity and the 

selectivity of the lead compound. The new analogs were evaluated with a panel of breast 

cancer cell lines including SKBR-3, MCF-7 and MDA-MB-231. The compounds that 

selectively inhibited the proliferation of SKBR-3 cells that is a HER2 overexpressed breast 

cancer cell line were selected. They were further examined with western blot assay to 

analyze their effect on the HER2 protein level. The results indicate that the new compound 
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significantly decreased the HER2 level in breast cancer cells. In addition, the compounds 

inhibited the small chaperone protein in the in vitro assay.  

 

  

3.2  RESULTS AND DISCUSSION 

 

3.2.1  Lead optimization and summarization of the structure-activity relationship 

(SAR) studies 

Previously, compound JCC76 was shown to selectively inhibit the growth of SKBR-3 

cells with an IC50 of 1~3 µM. JCC76 was also found to inhibit a small chaperone protein 

heat shock protein 27 kDa (HSP27). It has been reported that HER2 is a client protein of 

HSP27, which may explain the selectivity of JCC76 to HER2 over-expressed SKBR-3 

cells. To improve the potency, selectivity and ligand efficiency, we further optimized the 

structure of JCC76. Based on the structure activity relationship (SAR) summarized before, 

we either retained the 2, 5-dimethylbenzyl moiety or changed it to 2, 5-dimethoxybenzyl 

group (Figure 3.1). Then the sulfonamide moiety of JCC76 was changed to a flipped new 

sulfonamide structure and two carbons were removed to increase the ligand efficiency 

and solubility. Further, the amide moiety was constructed with various substituted 

benzamides to explore what the best function group could be for this moiety. The 

synthesis of the new analogs is described in schemes 1 and 2.   

These new compounds were synthesized using method adapted from previous studies. 

Since the sulfonamide moiety was flipped in the new analogs compared to JCC76, the 
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construction of the sulfonamide is different to the previous synthetic method. The rest of 

the benzyl and amide moieties were synthesized in a similar way. A total of 23 final 

compounds were synthesized. 

Consequently, they were examined for the potency and selectivity on the growth 

inhibition of three different breast cancer cells lines including SKBR-3, MCF-7, and 

MDA-MB-231. SKBR-3 cells are HER2 positive and estrogen receptor (ER) negative, 

while MCF-7 cells are HER2 negative and ER positive. MDA-MB-231 cells are HER2 

and ER negative. The results are summarized in Table 3.1.  

The IC50s of the cell growth inhibition of the compounds range from 0.13 µM to 

25.69 µM for SKBR-3 cells, 1.18 µM to 60.49 µM for MCF-7 cells, and 0.27µM to 38.99 

µM for MDA-MB-231cells. The selectivity is calculated by dividing the IC50s of the 

compounds from different cell lines (Table 1). Most compounds exhibited more potent 

growth inhibition of SKBR-3 cells compared to MCF-7 and MDA-MB-231 cells, as 

indicated by most of the selective index that are greater than 1. For SKBR-3 cells, SAR 

analysis suggests that the benzamide group of these compounds is critical for the 

biological activity. The electron-donating substitute such as the iodo group on the 

benzamide moiety overall enhanced the activity, as indicated by compounds 3 and 6. The 

electron-withdrawing groups such as trifluromethyl harmed the activity, as indicated by 

compounds 7 and 15. In terms of the 2, 5-dimethoxybenzyl and 2, 5-dimethylbenzyl 

moiety, it seems that the methoxy group is more beneficial to the activity than the methyl 

group. Compounds 19-23 are relatively less potent compared to the corresponding 
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dimethoxy analogs, even though they have electron-donating substitutes on their 

benzamide moiety. Compounds 16 with a napheylamide moiety and 17 with a 

4-methxyphenyl moiety showed the best potency and selectivity.   
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Figure 3.1. Lead optimization of JCC76 to improve the ligand efficiency and 

biological activity   
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Figure 3.2 (a) NH3,H2O,THF; (b) CH2Cl2, BBr3; (c) 2,5-dimethoxybenzyl 

chloride, K2CO3, DMF; (d) 2,5-dimethylbenzyl chloride, K2CO3, DMF 
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Figure 3.3. (e) FeCl3, Zn, DMF/H2O; (f) RCOCl, K2CO3, 1,4-dioxane  
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Table 3. 1. Comparison of the growth inhibitory effects of 

the new analogs on different breast cancer cell lines 

 

Entry IC50(µM) 

(SKBR-3) 

IC50(µM) 

(MDA-231) 

IC50(µM) 

(MCF-7) 

Selectivity 

MDA231/SKBR-3 

Selectivity 

MCF-7/SKBR-3 

1 4.03±2.47 7.95±4.34 4.1±0.22 2.0 1.0 

2 3.44±1.35 15.92±2.56 8.02±1.65 4.6 2.3 

3 1.09±0.97 4.58±1.7 5.25±1.53 4.2 4.8 

4 4.38±1.25 23.01±7.67 10.52±0.69 5.3 2.4 

5 25.07±6.64 36.74±25.02 14.7±3.25 1.5 0.6 

6 0.52±0.15 1.63±0.61 2.26±0.36 3.1 4.4 

7 25.69±11.03 60.49±23.83 38.99±14.65 2.4 1.5 

8 3.14±1.03 4.08±1.1 5±1.76 1.3 1.6 

9 3.14±0.46 6.91±3.42 9.01±4.48 2.2 2.9 

10 6.84±3.18 7.44±2.25 6.44±0.4 1.1 0.9 

11 6.25±1.28 13.5±7.83 21.71±0.69 2.2 3.5 

12 1.97±0.4 3.7±2.02 2.61±0.14 1.9 1.3 

13 0.71±0.34 1.54±0.94 2.87±0.31 2.2 4.0 

14 0.67±0.15 2.22±0.85 0.63±0.17 3.3 0.9 

15 15.81±6.98 15.77±7.39 24.58±3.14 1.0 1.6 
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16 0.13±0.06 1.18±0.86 0.27±0.09 9.1 2.1 

17 2.09±0.11 12.8±8.98 3.38±0.62 6.1 1.6 

18 4.17±0.78 10.79±1.36 4.91±0.4 2.6 1.2 

19 3.01±0.49 6.63±0.62 4.44±0.71 2.2 1.5 

20 15.74±5.35 48.88±15.8 11.9±1.17 3.1 0.8 

21 15.05±3.89 10.29±0.72 9.7±2.16 0.7 0.6 

22 2.94±0.75 6.5±0.77 3.72±0.6 2.2 1.3 

23 11.22±1.16 20.99±0.81 10.18±0.41 1.9 0.9 

    

 

 

3.2.2 Compounds 16 and 17 down-regulate HER2 protein level    

 

Based on the selectivity and potency, compounds 16 and 17 were selected for further 

investigation. JCC76 was demonstrated to be a small chaperone inhibitor which also 

selectively inhibited SKBR-3 cell growth. As a client protein of the small chaperones, we 

hypothesize that JCC76 may be able to increase the degradation of HER2 via the 

inhibition of small chaperone protein. Previously, we demonstrated that small chaperone 

inhibitors could induce the degradation of the client proteins of the chaperones. SKBR-3 

cells were treated with JCC76 and compounds 16 and 17 for 48 h, and the Her2 level was 

determined by western blot assay. As exhibited in Figure 3.4,  
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Figure 3.4  Effect of compounds 16 and 17 on Her2 protein.  

SKBR-3 cells were treated with DMSO, JCC76 (1μM), compounds 16 (0.1, 0.3, 1μM) 

and 17 (0.1, 0.3, 1μM) for 48 h. Level of Her2 was analyzed by Western blot of cell 

extracts with specific antibodies. The bands of Her2 were quantified using ImageJ (NIH) 

and normalized to β-actin. The results are representative of three independent 

experiments. *p<.05 with unpaired t test, compound 16 vs JCC76 
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Her2 level was decreased by these candidates, and compounds 16 and 17 showed 

improved activity compared to JCC76, particularly compound 16 at 1 and 0.3 µM. The 

results demonstrate that the lead optimization increased the potency and selectivity of 

JCC76. In addition, the targeting effect of the compound is significantly increased as 

well.       

SKBR-3 cells were treated with DMSO, JCC76 (1µM), compound 16 (0.1, 0.3, 1µM) 

and 17(0.1, 0.3, 1µM) for 48h. The level of HER2 was analyzed by Western blot of cell 

extracts with specific antibody as described in experimental section. The bands of HER2 

were quantified using ImageJ (NIH) and normalized to β-actin. The results are 

representative of three independent experiments. * p<0.05 with unpaired t test, compound 

16 vs JCC76. 

 

 

3.2.3 Compounds 16 and 17 slightly inhibit small chaperones    

To examine if the new compounds could interfere with the chaperone function of 

small chaperone proteins, an in vitro chaperone assay was performed. As indicated in 

Figure 3, compounds 16 and 17 inhibited the protective function of small chaperone, 

α-crystalline, against DTT induced insulin denaturation and aggregation. The results 

demonstrate that the new analogs retained the chaperone inhibition property of the lead 
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compound. It has been reported that HER2 protein is a client protein of small chaperone 

protein HSP27, and inhibition of the small chaperone could induce HER2 degradation. 

Our new analogs showed inhibitory activity here. However, it is still unclear if the 

chaperone inhibition was the only mechanism for the decreased HER2 in SKBR-3 breast 

cancer cells. Further investigation is needed to look for other possible mechanisms.     

The kinetics of the DTT-induced insulin aggregation was monitored in the absence of 

a chaperone protein, or in the presence of a chaperone protein without or with compounds. 

The mixture of insulin and DTT with or without other components in the assay buffer 

was incubated for 45min at 37 ℃ and the absorbance at 400 nm was measured. The 

compounds at this concentration did not interfere with DTT and insulin interaction. The 

results are representative of three independent experiments.   
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Figure 3.5  α-Crystalline lost the activity to prevent DTT induced insulin aggregation in 

the presence of compounds 16 (10μM) and compound 17 (10μM). 
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3.3  CONCLUSION 

 

 We lead optimized JCC76 to improve the selectivity and potency of the compound 

to inhibit HER2 over-expressed breast cancer cell growth. By flipping the sulfonamide 

moiety of JCC76, we generated new analogs with better ligand efficiency, potency, and 

selectivity against SKBR-3 cells. Two compounds, 16 and 17, decreased the HER2 

protein level in SKBR-3 cells, which is speculated to be one of the main mechanisms of 

the selectivity and potency of the compounds. In addition, the compounds inhibited the 

small chaperone, α-crystalline, suggesting that they are potential small chaperone 

inhibitors.  

 

3.4.  EXPERIMENTAL 

 

3.4.1. Chemistry   

  

3.4.1.1 Synthesis of the new analogs(AZ) 

Chemicals were commercially available and used as received without further 

purification. Moisture sensitive reactions were carried out under a dry argon atmosphere 

in flame-dried glassware. Thin-layer chromatography was performed on silica gel TLC 

plates with fluorescence indicator 254 nm (Fluka). Flash column chromatography was 
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performed using silica gel 60Å (BDH, 40-63 μM). Mass spectra were obtained on the 

ABI QStar Electrospray mass spectrometer at Cleveland State University MS facility 

Center. All the NMR spectra were recorded on a Bruker 400 MHz (
13

C NMR at 100 MHz) 

using DMSO-d6 as solvent. Chemical shifts () for 
1
H NMR spectra were reported in 

parts per million to residual solvent protons. Reversed-phase HPLC analysis of 

compounds was conducted on a Beckman HPLC system with an Auto Sampler. The 

chromatographic separation was performed on a C18 column (2.0 mm × 150 mm, 5 μm) 

from Phenomenex (Torrance, CA). The mobile phase of 80% acetonitrile and 20% water 

was employed for isocratic elution with a flow rate of 0.2 mL/min. The injection volume 

was 20 µL and the UV detector was set up at 260 nm.  

 

 

The reaction procedure is illustrated in Schemes 1 and 2. Most of the steps follow the 

general methods described in our previous studies. Only the de-methylation is new and 

the procedure is described here. 

To de-methylate the methoxy group, a solution of 2-methoxy- 4-nitrobenzene 

sulfonamide (2.32 g, 10.0 mmol) in CH2Cl2 (30 mL) was cooled to -20 °C, and boron 

tri-bromide (6.01 g, 12.0 mmol) was added. The mixture was allowed to warm to room 

temperature over a period of 4 h and was then cooled to -20 °C; methanol (30 mL) was 

added, and the solution was concentrated. The solid residue was washed with ethyl 

acetate to obtain 2-hydroxy-4-nitrobenzenesulfonamide.  

The synthesis of the 2, 5-dimenthoxy benzyl intermediate and 2, 5-dimethyl benzyl 
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intermediate, the reduction of the nitro group, and the following benzamide construction 

are same to our previous published methods. The yield of the last step and the final 

compound characterization are described below.   

 

3.4.1.2 Structural characterization of 23 compounds of the new analogs(AZ)  

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-methoxybenzamide (1) 

3-methoxybenzoyl chloride was used, white solid, yield 71.7%. 1H-NMR (400MHz, 

DMSO-d6) δ 10.645 (1H,s), 7.810 (1H,s), 7.744 (1H,d), 7.540 (2H,t), 7.500 (1H,s), 7.464 

(1H,d), 7.269 (1H,d), 7.197 (1H,d), 7.000 (1H,s), 6.929 (2H,s), 6.871 (1H,m), 5.249 

(2H,s), 3.855 (3H,s), 3.817 (3H,s), 3.710 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 

166.109， 159.701， 155.525， 153.728， 150.845，144.441， 136.296， 130.127， 

128.744， 126.838， 125.462， 120.401， 118.101，114.720， 114.035， 113.569， 

112.190， 111.596， 105.144, 65.555， 56.288， 55.866， 55.807; DUIS-MS calculated 

for C23H24N2O7S, [M-H]-: 471.14, found 471.0; Purity: 99.8%. 
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Figure 3.6 The Chemical construction of N-(3-((2,5-dimethoxybenzyl) 

oxy)-4-sulfamoylphenyl)-3-methoxybenzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-methylbenzamide(2) 

3-methylbenzoyl chloride was used, white solid, yield 36.7%. 1H-NMR (400MHz, 

DMSO-d6) δ 10.462 (1H,s), 7.798 (2H,d), 7.744 (2H,d), 7.552 (1H,s), 7.439 (2H,d) 7.272 

(1H,d), 7.000 (1H,d), 6.928 (2H,s), 6.871 (1H,m), 5.251 (2H,s), 3.818 (3H,s), 3.711 

(3H,s), 2.418 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 166.502, 155.530, 153.729, 

150.842, 144.556, 138.282, 134.925, 132.998, 128.849, 128.752, 128.639, 126.743, 

125.478, 125.402, 114.716, 114.019, 112.194, 111.489, 105.047, 65.557, 56.294, 55.811, 

21.424; DUIS-MS calculated for C23H24N2O6S, [M-H]-: 455.15, found 455.0; Purity: 

99.7%   
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Figure 3.7  The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-3-methylbenzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-iodobenzamide (3) 

3-iodobenzoyl chloride was used, white solid, yield 46.3%. 1H-NMR (400MHz, 

DMSO-d6) δ 10.555 (1H,s), 8.309 (1H,s) 7.976 (2H,t), 7.751 (2H,d), 7.530 (1H,d), 7.366 

(1H,t), 7.263 (1H,d), 7.000 (1H,d), 6.944 (2H,s), 6.870 (1H,m), 5.251 (2H,s), 3.817 

(3H,s), 3.781 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 164.838, 155.521, 153.729, 

150.826, 144.222, 140.932, 136.909, 136.451, 131.113, 128.792, 127.769, 127.026, 

125.446, 114.679, 114.022, 112.188, 111.639, 105.181, 95.192, 65.564, 56.293, 55.811; 

DUIS-MS calculated for C22H21IN2O6S, [M-H]-: 567.03, found 566.9; Purity: 93.7% 
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Figure 3.8 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-3-iodobenzamide 

 

 3-bromo-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide(4) 

3-bromobenzoyl chloride was used, white solid, yield 33.2%. 1H-NMR (400MHz, 

DMSO-d6) δ 10.581 (1H,s), 8.159 (1H,s), 7.969 (1H,d), 7.833 (1H,d), 7.758 (2H,d), 

7.540 (2H,d), 7.264 (1H,s), 7.002 (1H,d), 6.949 (2H,s), 6.871 (1H,m), 5.255 (2H,s), 

3.819 (3H,s), 3.710 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 164.828, 155.520, 

153.723, 150.813, 144.187, 137.056, 135.136, 131.213, 130.771, 128.809, 127.466, 

127.062, 125.437, 122.185, 114.657, 113.999, 112.171, 111.642, 105.177, 65.549, 56.283, 

55.801;DUIS-MS calculated for C22H21BrN2O6S, [M-H]-: 519.04, found 520.9; Purity: 

99.5% 
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Figure 3.9  The Chemical construction of 3-bromo-N-(3- 

((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide 

 

 3-cyano-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide (5) 

3-cyanobenzoyl chloride was used, white solid, yield 52.4 %. 1H-NMR (400MHz, 

DMSO-d6) 10.663 (1H,s), 8.417 (1H,s), 8.259 (1H,d), 8.104 (1H,s), 7.779 (1H,s), 7.758 

(2H,s), 7.528 (1H,s), 7.253 (1H,s), 7.001 (1H,d), 6.980 (2H,s), 6.870 (1H,d), 5.259 (2H,s), 

3.816 (3H,s), 3.703 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 164.542, 155.533, 

153.709, 150.790, 144.044, 135.930, 135.797, 133.095, 131.862, 130.393, 128.877, 

127.184, 125.405, 118.728, 114.601, 113.959, 112.156, 112.047, 111.632, 105.127, 

65.525, 56.280, 55.790; DUIS-MS calculated for C23H21N3O6S, [M-H]-: 466.13, found 

466.0; Purity: 99.9% 
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Figure 3.10  The Chemical construction of 3-cyano-N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-4-iodobenzamide (6) 

4-iodobenzoyl chloride was used, white solid, yield %.  1H-NMR (400MHz, 

DMSO-d6) 10.539 (1H,s), 7.950 (1H,d), 7.747 (2H,s), 7.727 (1H,s), 7.701 (1H,d), 7.523 

(1H,d), 7.250 (1H,s), 6.997 (1H,d), 6.952 (2H,s), 6.876 (1H,d), 5.243 (2H,s), 3.811(3H,s), 

3.700 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.715, 155.517, 153.718, 150.848, 

144.280, 137.835, 137.476 , 134.251, 131.923, 130.135, 128.774, 126.937, 125.433, 

114.705, 114.026, 112.210, 111.612, 105.158, 100.257, 65.556, 56.296, 55.807; 

DUIS-MS calculated for C22H21IN2O6S, [M-H]-: 567.03, found 567.0; Purity: 94.2% 
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Figure 3.11 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-4-iodobenzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-2,4-bis(trifluoromethyl)be

nzamide(7) 

2,4-bis(trifluoromethyl)benzoyl chloride was used, white solid, yield 24.3%. 

1H-NMR (400MHz, DMSO-d6) 10.992 (1H,s), 8.246 (2H,d), 8.018 (1H,d), 7.763 (1H,d), 

7.630(1H,s), 7.356 (1H,s), 7.235 (1H,s), 6.986 (3H,s) 6.872(1H,d), 5.248 (2H,s), 3.793 

(3H,s), 3.698 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.128, 155.658, 153.679, 

150.928, 143.607, 139.659, 131.295, 130.973, 130.508, 129.058, 127.449, 125.250, 

124.900, 124.686, 124.005, 122.187, 121.960, 114.806, 114.153, 112.230, 111.115, 

104.628, 65.535, 56.266, 55.785; DUIS-MS calculated for C24H20F6N2O6S, [M-H]-: 

577.10, found 576.9; Purity: 99.5% 
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Figure 3.12 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-2,4-bis(trifluoromethyl)benzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-4-(trifluoromethoxy)benza

mide (8) 

4-trifluoromethoxybenzoyl chloride was used, white solid, yield 61.3%. 1H-NMR 

(400MHz, DMSO-d6) 10.593 (1H,s), 8.092 (2H,d), 7.772 (1H,s), 7.751 (1H,d), 7.555 

(2H,d), 7.518 (1H,d), 7.251 (1H,s), 7.000 (1H,d), 6.944 (2H,s), 6.874 (1H,m), 5.253 

(2H,s), 3.815 (3H,s), 3.704 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.213, 155.514, 

153.701, 151.161, 150.813, 144.258, 134.033, 130.673, 128.813, 126.981, 125.415, 

121.226, 114.647, 113.971, 112.161, 111.570, 105.0855, 65.510, 56.274, 55.786;  

DUIS-MS calculated for C23H21F3N2O7S, [M-H]-: 525.11, found 525.0; Purity: 99.9% 
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Figure 3.13 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-4-(trifluoromethoxy)benzamide 

 

 3-chloro-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide (9) 

3-chlorobenzoyl chloride was used, white solid, yield 52.0 %. 1H-NMR (400MHz, 

DMSO-d6) 8.031 (1H,s), 7.936 (1H,d), 7.768 (2H,d), 7.734 (1H,d), 7.605 (1H,d), 7.549 

(1H,d), 7.271 (1H,s), 7.000 (1H,d), 6.877 (2H,m), 5.262 (2H,s), 3.821 (3H,s), 3.713 

(3H,s); 13C-NMR (100MHz, DMSO-d6) δ 164.924, 155.521, 153.716, 150.812, 144.202, 

136.863, 133.741, 132.236, 130.963, 128.815, 127.953, 127.086, 127.050, , 125.429, 

114.660, 113.979, 112.151, 111.639, 105.168, 65.549, 56.268, 55.791; DUIS-MS 

calculated for C22H21ClN2O6S, [M-H]-: 475.09, found 475.0; Purity: 99.6% 
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Figure 3.14 The Chemical construction of 3-chloro-N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-4-ethylbenzamide(10) 

4-ethylbenzoyl chloride was used, white solid, yield 56.0 %. 1H-NMR (400MHz, 

DMSO-d6) 10.417 (1H,s), 7.98 (2H,d), 7.810 (1H,s), 7.734 (1H,d), 7.543 (1H,d), 7.394 

(2H,d), 7.267 (1H,s), 7.000 (1H,d), 6.922 (2H,s), 6.870 (1H,d), 5.247 (2H,s), 3.817 

(3H,s), 3.709 (3H,s), 2.705(2H,m), 1.228 (3H,t); 13C-NMR (100MHz, DMSO-d6) δ 

166.255, 155.523, 153.725, 150.841, 148.675, 144.618, 132.335, 128.736, 128.355, 

128.303, 126.665, 125.479, 114.711, 114.020, 112.183, 111.458, 105.006, 65.538, 56.286, 

55.806, 28.555, 15.799; DUIS-MS calculated for C24H26N2O6S, [M-H]-: 469.16, found 

468.9;Purity: 99.9%. 
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Figure 3.15 The Chemical construction of N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-4-ethylbenzamide 

 

 4-cyano-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide (11) 

4-cyanobenzoyl chloride was used, white solid, yield 31.3 %. 1H-NMR (400MHz, 

DMSO-d6) δ 10.720 (1H,s), 8.114 (2H,d), 8.044 (2H,d), 7.772 (1H,s), 7.760(1H,d), 7.246 

(1H,d), 6.995 (1H,d), 6.967(2H,s), 6.866 (1H,m), 5.255 (2H,s), 3.812 (3H,s), 3.701 

(3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.041, 155.544, 153.739, 150.843, 144.019, 

138.922, 132.991, 129.092, 128.842, 127.273, 125.426, 118.705, 114.661, 114.034, 

112.215, 111.715, 105.254, 65.564, 56.306, 55.809; DUIS-MS calculated for 

C23H21N3O6S, [M-H]-: 466.13, found 466.0; Purity: 91.3%. 
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Figure 3.16 The Chemical construction of 4-cyano-N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide 

 

 4-chloro-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-nitrobenzamide 

(12) 

4-chloro-3-nitrobenzoyl chloride was used, white solid, yield 52.1 %. 1H-NMR 

(400MHz, DMSO-d6) δ 10.761 (1H,s), 8.642 (1H,s), 8.266 (1H,d), 7.995 (1H,s), 7.778 

(1H,s), 7.737 (1H,s), 7.516 (1H,d), 7.250 (1H,s), 7.000 (1H,d), 6.973 (2H,s), 6.871 

(1H,d), 5.262 (2H,s), 3.817 (3H,s), 3.704 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 

163.368, 155.543, 153.728, 150.805, 147.838, 143.819, 134.904, 133.415, 132.510, 

128.895, 127.392, 125.409, 114.615, 113.997, 112.191, 111.798, 105.299, 65.561, 60.226, 

56.298, 55.800; DUIS-MS calculated for C22H20ClN3O8S, [M-H]-: 520.08, found 520.0; 

Purity: 97.6% 
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Figure 3.17 The Chemical construction of 4-chloro-N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-nitrobenzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-ethoxybenzamide(13) 

3-ethoxybenzoyl chloride was used, white solid, yield 52.5 %. 1H-NMR (400MHz, 

DMSO-d6) δ 10.445 (1H,s), 7.816 (1H,s), 7.749 (1H,d), 7.545 (2H,d), 7.500 (1H,s), 

7.460 (1H,t), 7.276 (1H,s), 7.181 (1H,d), 7.000 (1H,d), 6.929 (2H,s), 6.875 (1H,d), 5.254 

(2H,s), 4.123 (2H,m), 3.819 (3H,s), 3.714 (3H,s), 1.375 (3H,t);13C-NMR (100MHz, 

DMSO-d6) δ 166.128, 158.944, 155.507, 153.705, 150.869, 144.432, 136.199, 130.163, 

128.718, 126.789, 125.424, 120.318, 118.437, 114.766, 114.070, 114.048, 112.209, 

111.604, 105.155, 65.563, 63.8435, 56.282, 55.799, 15.049; DUIS-MS calculated for 

C24H26N2O7S, [M-H]-: 485.16, found 485.1; Purity: 98.6% 
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Figure 3.18 The Chemical construction of N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3-ethoxybenzamide 

 

 4-bromo-N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide(14) 

4-bromobenzoyl chloride was used, white solid, yield 53.3 %. 1H-NMR (400MHz, 

DMSO-d6) δ 10.563 (1H,s), 7.922 (2H,d), 7.788 (1H,s), 7.770 (2H,s), 7.743 (1H,d), 

7.525 (1H,d), 7.251 (1H,s), 7. 000(1H,d), 6.957 (2H,s), 6.867 (1H,d), 5.246 (2H,s), 

3.8115 (3H,s), 3.700 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.412, 155.505, 

153.704, 150.803, 144.274, 133.948, 131.978, 130.360, 128.798, 126.945, 126.263, 

125.425, 114.640, 113.968, 112.156, 111.584, 105.110, 65.516, 56.273, 55.790; 

DUIS-MS calculated for C22H21BrN2O6S, [M+H]+: 521.04, found 520.9; Purity: 98.7% 
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Figure 3.19 The Chemical construction of 4-bromo-N-(3-((2,5- 

dimethoxybenzyl)oxy)-4-sulfamoylphenyl)benzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-3,5-bis(trifluoromethyl) 

benzamide(15) 

3,5-bistrifluoromethylbenzoyl chloride was used, white solid, yield 30.0 %. 

1H-NMR (400MHz, DMSO-d6) δ 10.875 (1H,s), 8.612 (2H,s), 8.394 (1H,s), 7.802 

(1H,d), 7.7571 (1H,s), 7.264 (1H,s), 7.000 (1H,d), 6.986 (2H,s), 6.871 (1H,m), 5.275 

(2H,s), 3.818 (3H,s), 3.709 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 163.489, 155.557, 

153.723, 150.791, 143.758, 137.180, 131.158, 130.827, 129.130, 128.902, 127.482, 

125.376, 124.909, 122.195, 114.608, 113.990, 112.168, 111.971, 105.422, 65.587, 56.259, 

55.776; DUIS-MS calculated for C24H20F6N2O6S, [M-H]-: 577.10, found 577.0; Purity: 

97.6%. 
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Figure 3.20 The Chemical construction of N-(3-((2,5-dimethoxybenzyl)oxy)-4- 

sulfamoylphenyl)-3,5-bis(trifluoromethyl)benzamide 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-1-naphthamide(16) 

1-naphthoyl chloride was used, white solid, yield 52.8 %. 1H-NMR (400MHz, 

DMSO-d6) δ 8.606 (1H,s), 8.110 (1H,d), 8.073 (1H,s), 8.040 (2H,s), 7.845 (1H,s), 7.768 

(1H,s), 7.663 (2H,m), 7.280 (1H,s), 7.007 (1H,d), 6.877 (1H,d), 5.2720 (2H,s), 3.825 

(3H,s), 3.714 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 166.466, 155.557, 153.721, 

150.835 144.635, 134.893, 132.490, 132.208, 129.499, 128.802, 128.734, 128.596, 

128.520, 128.180, 127.428, 126.778, 125.479, 124.869, 114.713, 113.988, 112.169, 

111.562, 105.108, 65.578, 56.282, 55.806; DUIS-MS calculated for C26H24N2O6S, 

[M-H]-: 491.15, found 491.1;Purity: 98.7% 
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Figure 3.21 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-1-naphthamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)-4-methoxybenzamide(17) 

4-methoxybenzoyl chloride was used, white solid, yield 38.6 %. 1H-NMR (400MHz, 

DMSO-d6) 10.468 (1H,s), 7.807 (1H,s), 7.742 (1H,d), 7.520 (4H,m), 7.264(1H,s), 

7.200(1H,d), 7.003 (1H,d), 6.932 (2H,s), 6.870 (1H,m), 5.248 (2H,s), 3.856 (3H,s), 3.817 

(3H,s), 3.711 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 166.116, 159.700, 155.520, 

153.721, 150.849, 144.431, 136.287, 130.136, 128.739, 126.831, 125.453, 120.401, 

118.111, 114.726, 114.041, 113.555, 112.199, 111.603, 105.145, 65.553, 56.290, 55.867, 

55.807; DUIS-MS calculated for C23H24N2O7S, [M-H]-: 471.14, found 471.0; Purity: 

98.1% 
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Figure 3.22 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)-4-methoxybenzamide 

 

 N-(3-((2,5-dimethoxybenzyl)oxy)-4-sulfamoylphenyl)cyclohexanecarboxamide(1

8) 

Cyclohexanecarbonyl chloride was used, white solid, yield 77.0 %. 1H-NMR 

(400MHz, DMSO-d6) δ 10.149 (1H,s), 7.660 (2H,d), 7.246 (2H,m), 6.992 (2H,d), 6.864 

(2H,m), 5.200 (2H,s), 3.807 (3H,s), 3.701 (3H,s), 2.341 (1H,t), 1.785 (4H,t), 1.658 (1H,d), 

1.3939 (32H,m), 1.228 (3H,m); 13C-NMR (100MHz, DMSO-d6) δ 175.370, 155.614, 

153.704, 150.867, 144.766, 128.774, 126.128, 125.463, 114.732, 114.069, 112.199, 

110.359, 103.865, 65.482, 56.298, 55.802, 45.4049, 29.484, 25.629;DUIS-MS calculated 

for C22H28N2O6S, [M-H]-: 447.18, found 447.0; Purity: 99.0% 
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Figure 3.23 The Chemical construction of N-(3-((2,5-dimethoxy 

benzyl)oxy)-4-sulfamoylphenyl)cyclohexanecarboxamide 

 

 N-(3-((2,5-dimethylbenzyl)oxy)-4-sulfamoylphenyl)-4-iodobenzamide (19) 

4-iodobenzoyl chloride was used, white solid, yield 58.3%. 1H-NMR (400MHz, 

DMSO-d6) 10.547 (1H,s), 7.939 (2H,d), 7.776 (1H,s), 7.731 (3H,d), 7.461 (1H,d), 7.362 

(1H,s), 7.076 (2H,m), 6.963 (2H,s), 5.241 (2H,s), 2.333 (3H,s), 2.251 (3H,s); 13C-NMR 

(100MHz, DMSO-d6) δ 165.846, 155.849, 144.190, 137.844, 135.154, 134.473, 134.289, 

133.421, 131.549, 130.515, 130.143, 129.074, 128.937, 126.930, 111.492, 105.264, 

100.226, 68.702, 21.151, 18.504; DUIS-MS calculated for C22H21IN2O4S, [M-H]-: 

535.04, found 534.9; Purity: 96.7% 
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Figure 3.24 The Chemical construction of N-(3-((2,5- 

dimethylbenzyl)oxy)-4-sulfamoylphenyl)-4-iodobenzamide 

 

 N-(3-((2,5-dimethylbenzyl)oxy)-4-sulfamoylphenyl)-3-iodobenzamide(20) 

3-iodobenzoyl chloride was used, white solid, yield 55.8%.1H-NMR (400MHz, 

DMSO-d6) 10.566 (1H,s), 8.288 (1H,s), 7.975 (2H,t), 7.779 (1H,s), 7.745 (1H,d), 7.477 

(1H,d), 7.380 (1H,s), 7.084 (2H,m), 6.942 (2H,s), 5.248 (2H,s), 2.343 (3H,s), 2.264 

(3H,s); 13C-NMR (100MHz, DMSO-d6) δ 164.960, 155.859, 144.124, 136.953, 136.440, 

134.484, 131.148, 130.515, 129.117, 128.944, 127.757, 127.045, 111.550, 105.342, 

95.157, 68.749, 21.151, 18.510; DUIS-MS calculated for C22H21IN2O4S, [M-H]-: 535.04, 

found 534.9; Purity: 99.8% 
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Figure 3.25 The Chemicalstruction of  N-(3-((2,5- 

dimethylbenzyl)oxy)-4-sulfamoylphenyl)-3-iodobenzamide 

 

 N-(3-((2,5-dimethylbenzyl)oxy)-4-sulfamoylphenyl)cyclohexanecarboxamide 

(21) 

Cyclohexanecarbonyl chloride was used, white solid, yield 53.7%. 1H-NMR 

(400MHz, DMSO-d6) 10.097 (1H,s), 7.659 (2H,d), 7.352 (1H,s), 7.227 (1H,d), 7.110 

(1H,d), 7.075 (2H,m), 6.872 (2H,s), 5.205 (2H,s), 2.327 (3H,s), 2.252 (3H,s), 1.778 

(4H,t), 1.654 (1H,d), 1.399 (2H,m), 1.239 (3H,m); 13C-NMR (100MHz, DMSO-d6) δ 

175.386, 155.934, 144.688, 135.088, 134.522, 133.429, 130.477, 129.149, 128.952, 

128.881, 126.086, 110.156, 103.935, 68.587, 45.421, 29.485, 25.815, 25.622, 21.143, 

18.512. UIS-MS calculated for C22H28N2O4S, [M-H]-: 415.19, found 415.6; Purity: 

95.3% 
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Figure 3.26  The Chemical construction of N-(3-((2,5- 

dimethylbenzyl)oxy)-4-sulfamoylphenyl)cyclohexanecarboxamide 

 

 N-(3-((2,5-dimethylbenzyl)oxy)-4-sulfamoylphenyl)-4-methoxybenzamide(22) 

4-methoxybenzoyl chloride was used, white solid, yield 64.2%.1H-NMR (400MHz, 

DMSO-d6) 10.347 (1H,s), 7.964 (2H,d), 7.818 (1H,s), 7.718 (1H,d), 7.382 (1H,s), 7.082 

(4H,m), 6.9072(2H,s), 5.241(2H,s), 3.390(3H,s), 2.343 (3H,s), 2.261 (3H,s); 13C-NMR 

(100MHz, DMSO-d6) δ 162.679, 155.872, 144.659, 135.153, 134.543, 133.437, 130.509, 

130.248, 129.149, 128.940, 128.822, 126.919, 126.546, 114.194, 111.3683, 105.1611, 

68.731, 55.962, 21.151, 18.512 ; DUIS-MS calculated for C23H24N2O5S, [M-H]-: 

439.15, found 439.0; Purity: 98.9% 
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Figure 3.27 The Chemical construction of N-(3-((2,5- 

dimethylbenzyl)oxy)-4-sulfamoylphenyl)-4-methoxybenzamide 
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 4-bromo-N-(3-((2,5-dimethylbenzyl)oxy)-4-sulfamoylphenyl)benzamide(23) 

4-bromobenzoyl chloride was used, white solid, yield 58.1%.1H-NMR (400MHz, 

DMSO-d6) δ 10.561 (1H,s), 7.921 (1H,s), 7.901 (1H,s), 7.788 (2H,s), 7.767(1H,s), 7.743 

(1H,d), 7.479 (1H,d), 7.378 (1H,s), 7.118 (1H,d), 7.047 (1H,d), 6.940 (2H,s), 5.248 

(2H,s), 2.343(3H,s), 2.261 (3H,s); 13C-NMR (100MHz, DMSO-d6) δ 165.491, 155.862, 

144.211, 135.134, 134.525, 134.021, 133.388, 131.979, 130.496, 130.373, 129.061, 

128.915, 127.004, 111.485, 105.266, 68.698, 21.176, 18.527; DUIS-MS calculated for 

C22H21BrN2O4S, [M+H]+: 489.05, found 488.9; Purity: 99.4% 
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Figure 3.28  The Chemical construction of 4-bromo-N-(3-((2,5- 

dimethylbenzyl)oxy)-4-sulfamoylphenyl)benzamide 
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3.4.2.  Biological studies 

 

3.4.2.1. Cell culture.  

Three breast cancer cell lines including SKBR-3, MCF-7, and MDA-MB-231 

were obtained from ATCC (Rockville, MD). The cells were maintained in RPMI1640 

medium supplemented with 10% fetal bovine serum (FBS), 2 mmol/L L-Glutamine, 1 

mmol/L sodium pyruvate, 100 U/mL
 
penicillin-streptomycin. FBS was heat inactivated 

for 30 min in a 56 ºC water bath before use. Cell cultures were grown at 37 ºC, in a 

humidified atmosphere of 5% CO2 in a VWR CO2 incubator (Bridgeport NJ).  

 

 

3.4.2.2. Cell viability analysis 

The effects of the new derivatives on the viability of three breast cancer cell lines 

were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H- tetrazolium 

bromide assay in four replicates. Cells were grown in RPMI1640 medium in 96-well, 

flat-bottomed plates for 24 h, and were exposed to various concentrations of the 

compounds dissolved in DMSO (DMSO final concentration 0.1%) in media for 48 h. 

Controls received DMSO vehicle at a concentration equal to that in drug-treated cells. The 

medium was removed, replaced by 200 µL of 0.5 mg/ml of 3-(4,5-dimethylthiazol-2-yl) 

-2,5-diphenyl-2H- tetrazolium bromide in fresh media, and cells were incubated in the CO2 

incubator at 37°C for 2 h. Supernatants were removed from the wells, and the reduced 
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3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl- 2H-tetrazolium bromide dye was solubilized 

in 200 µL/well DMSO. Absorbance at 570 nm was determined on a plate reader. Statistical 

and graphical information was determined using GraphPad Prism software (GraphPad 

Software Incorporated) and Microsoft Excel (Microsoft Corporation). IC50 values were 

determined using nonlinear regression analysis.  

 

 

3.4.2.3. Western blot 

SKBR-3 cells were treated with JCC76 (1µM), compound 16 (0.1, 0.3, 1µM) and 

compound 17 (0.1, 0.3, 1µM) for 48 h. The cells were lysed, briefly sonicated, and 

centrifuged at 12000g 

loading
 
buffer for 5 minutes, electrophoresed on a 10% SDS-polyacrylamide

 
gel, and 

transferred onto polyvinylidene difluoride (PVDF) membrane. The membrane was 

blocked for 1 hour with 5% nonfat milk in PBST and then incubated with specific 

primary antibody (Cell Signaling). After
 
washing, the membrane was incubated

 
with 

horseradish-conjugated secondary antibody (Cell Signaling). The bands were visualized 

by chemiluminescence with ECL reagent (Thermo Scientific). 
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3.4.2.4. Small chaperone activity assay.  

Alpha-crystalline chaperone activity assay: 24 µlmg/ml insulin stock solution was 

added to the single well of 384 well plate, 3µl 5mg/ml alpha-crystalline, 71 µl PBS buffer 

with appropriate concentration of compound dissolved inside were added as well.  The 

mixture was thoroughly mixed and incubated at 37 ºC for 5 min, whereupon 2 µL of 1M 

DTT in water was added to initiate the insulin aggregation. The absorbance (A) at 400 

nm was monitored over 45min using a plate reader. A mixture of insulin in the absence or 

presence of alpha-crystalline with 0.1% DMSO was used as control.  
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CHAPTER IV 

 

SYNTHESIS AND BIOLOGICAL EVALUATION OF SMALL 

MOLECULES WITH IMPROVED DRUG CHARACTERISTICS TO 

INHIBIT THE GROWTH OF HER2 OVER-EXPRESSED BREAST 

CANCER CELL 

 

 

4.1 INTRODUCTION 

About 25-30% of breast cancer patient have human epidermal growth factor receptor 

2 (HER2) overexpressed tumors, and the tumor cell rely on HER2 pathway to survive and 

proliferate.
 [1]

 HER2 is a ligand independent RTK, overexpress HER2 result in constitutive 

activation of the receptor which stimulate cell growth and metastasis.
 [2]

 It has been well 

documented that overexpressed HER2 in breast cancer relate to poor prognosis and lower 

survival rate. 
[3]

 Targeting HER2 has become a promising strategy to develop breast cancer 

therapeutic agent. Currently there are three type of drug that targeting HER2. The first 

group is HER2 monoclonal antibody drugs such as trastuzumab approved by FDA in 1998; 
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the second group is antibody-drug conjugate base on first group drug such as 

trastuzumab emtansine approved by FDA in 2013; the third group is intracellular tyrosine 

kinase inhibitors such as lapatinib approved by FDA in 2007.
[4-6] 

Even though trastuzumab has become a successful drug for treating HER2 

overexpressed breast cancer, still there are a great number of patient didn’t gain benefit 

from this therapy due to de novo or acquire resistance.
 [5]

 There is several pathways involve 

in trastuzumab resistance development.
 [7]

 Up-regulated HER2 is one of the resistance 

mechanisms. It has been reported that long term treatment of breast cancer cells with 

trastuzumab leads to HER2 expression increase. The further increased HER2 compensate 

the targeting effect of trastuzumab, which is the main reason of the resistance. Based on the 

resistance mechanism, targeting HER2 to decrease its expression and increase its 

degradation could solve the resistance. 

Previously, we found that small chaperone inhibitors have the potential to increase 

HER2 degradation. In this study our goal is to develop drug candidates with better 

druggable characteristics to selectively target HER2 overexpressed breast cancer, and 

further examine if the identified compounds induce HER2 degradation via small chaperone 

inhibition. Ligand efficiency is an important factor that may affect the efficacy of the 

compound. Drug candidates with better ligand efficacy have better permeability in the in 

vivo system. Therefore, the in vivo activity of these compounds should be better than 

compounds with lower ligand efficacy. In this study we tried to reduce the size and 

hydrophobicity of lead compound JCC76 from our previous study to maintain selectivity 

and improve solubility and cell uptake. 
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Figure 4.1 structure of lead compound JCC76 
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4.2 RESULTS AND DISCUSSION 

 

4.2.1 Lead optimization and summarization of structure-activity relationship (SAR) 

studies 

In last chapter, we tried to improve compound’s solubility by flipping the 

sulfonamide moiety of JCC76. Via flipping the sulfonamide we expose two hydrogen 

bond proton donors which should improve compound’s aqueous phase solubility. 

Through biology study we have confirmed those compound preserve ability to inhibit 

small chaperone, and induce HER2 degradation. Following the same principle, we 

hypothesize that further increase the ligand efficacy may even lead to better drug 

candidates.  

In this study we attempt to improve compound’s solubility and cell uptake by reduce 

molecule size and increase polarity. In previously study we have confirmed that by 

replace the 2,5-dimethylbenzyl in B moiety with 2,5-dimethoxylbenzyl the potency of 

inhibitor induce. We wonder if remove this highly hydrophobic group on the compound 

will it preserve the ability to inhibit HSP27 and selectively constrain the growth of HER2 

overexpressed breast cancer cell. To reduce molecule weight the 2,5-dimethylbenzyl 

group in B moiety was substitute with smaller function groups including methyl, 

methoxy, fluoro and chloro. 

In previously study the general order of potency of sulfonamides for inhibition of 

SKBR-3 cell growth has been identity which is methanesulfonamides > 



 

81 

 

ethanesulfonamides ≥ propylsulfonamides > benzylsulfoylamides > phenylsulfonamides. 

The larger of the sulphonamide the less cell growth inhibition which suit our compound 

design. In A moiety three sulfonamide substitutions: methanesulfonamide, 

ethanesulfonamide and trifluoromethanesulfonamide were choose to synthesized the new 

derivatives, methanesulfonamide and ethanesulfonamide were choose because of their 

potency and low molecular weight. We select trifluoromethanesulfonamide not just 

because of its small molecule size but we also interesting in whether this highly polar 

substitution could be tolerated or not. 

In previously study we discover that at C moiety bulky electron donating group is 

favour over electron withdraw group. However bulky electron donating group will induce 

the hydrophobicity of the compound and limit the solubility and cell uptake. From the 

result of cell viability assay of previously study 5 highly polar substitution groups exhibit 

potent SKBR-3 cell proliferate inhibition were choose. The substation group at C moiety 

are: 4-chloro benzylamide, 4-cyano benzylamide, 3-trifluroumethyl benzylamide, 3-nitro, 

4-chloro benzylamide and 3,5-bis trifluroumethyl benzylamide. The potency of 

synthesized compounds inhibition against HER2 overexpressed breast cancer cell growth 

inhibition were test by cell viability assay.  

For SKBR-3 cell only two types of analogs exhibited potent anti-proliferate activity. 

First type is compound with 3-nitro, 4-chloro benzoyl amide substitution group. However, 

this category of analogs lack selectivity which may be related to the general cytotoxicity 

of the nitro group. The second type of analogs contain 3-trifluoromethybenzoyl amide 
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substitution group. The SAR analysis indicates that the strong electronegative group on B 

moiety favor SKBR-3 proliferation inhibition whereas the electron withdrawing group 

trifluoromethyl on sulfonamide negatively affects the compounds’ activity. 

In C38 cells, several compounds with 3,5-bistrifluoromethybenzoyl amide 

substitution group showed some potent anti-proliferate activity, especially compound 5 

with IC50 value at 0.9μM. This result suggests that the new analogs may interfere with 

unknown cell growth pathway other than the HER2-HSP27 pathway. 
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Figure 4.2  Development of HSP27 inhibitor 
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Table 4.1 Comparison of the growth inhibitory effects of 

the new analogs on different cell lines(the specific structures of the compounds are 

included in the experimental section) 

 

Entry IC50(µM) 

(SKBR-3) 

IC50(µM) 

(MDA-231) 

IC50(µM) 

(MCF-7) 

IC50(µM) 

(HEK293) 

IC50(µM) 

(C38) 

1 240.13±83.26 >250 >250 50.26±13.57 69.05±20.12 

2 >250 >250 142.85±45.63 43.53±8.54 171.12±68.07 

3 126.28±23.43 79.76±5.69 84.41±41.5 17.49±14.24 13.87±6.70 

4 18.32±7.43 15.28±4.47 15.78±4.46 39.86±7.11 20.41±5.73 

5 >250 84.41±7.80 122.28±21.25 >250 0.98±0.74 

6 159.95±14.86 91.73±36.28 >250 125.43±27.20 68.71±11.88 

7 >250 145.45±21.86 >250 >250 108.76±16.77 

8 105.71±21.65 54.95±13.86 90.83±22.86 209.63±56.26 113.91±28.44 

9 19.33±20.10 28.34±8.83 28.1±14.28 35.47±8.99 71.23±29.97 

10 126.12±35.72 112.9±31.99 125.15±22.49 >250 30.60±11.92 

11 39.21±11.34 57.25±10.66 52.84±30.60 200.5±62.06 35.36±14.04 

12 233.65±49.92 >250 >250 >250 135.4±24.58 

13 65.36±9.84 153.58±32.67 247.45±120.26 130.60±32.20 8.72±6.18 

14 >250 211.6±66.65 130.99±34.85 >250 89.78±24.65 

15 37.73±6.27 0.63±0.73 74.93±25.09 38.73±14.75 19.66±7.35 
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16 >250 215.48±49.05 210.93±94.35 >250 70±16.32 

17 >250 142.98±26.55 191.2±51.02 >250 >250 

18 29.89±25.57 96.48±7.53 >250 >250 84.77±27.70 

19 19.98±14.37 >250 17.25±3.79 164.4±37.51 >250 

20 218.73±61.27 90.61±21.10 118.2±52.1 41.97±17.57 >250 

21 240.79±162.24 91.43±47.52 172.28±37.97 >250 60.09±31.85 

22 >250 149.47±42.46 >250 >250 66.44±29.82 

23 7.05±4.77 194.58±90.04 183.5±32.90 >250 84.83±41.66 

24 17.04±2.39 20.05±3.15 17.25±3.79 63.65±18.13 5.66±2.95 

25 >250 >250 >250 >250 32.71±18.78 

26 61.57±20.75 116.63±80.60 174.5±37.98 >250 108.48±46.66 

27 55.43±20.54 109.60±75.54 >250 >250 201.47±80.81 

28 107.47±40.26 100.14±36.64 >250 >250 75.23±14.75 

29 41.80±17.44 37.57±23.79 102.41±15.53 180.65±45.41 54.08±20.70 

30 >250 67.72±47.29 98.51±53.21 >250 >250 

31 147.7±47.33 217.68±15.38 >250 167.45±30.03 79.94±49.27 

 

32 

>250 156.99±41.6 >250 >250 >250 

33 178.59±104.35 >250 >250 >250 >250 

34 60.98±9.15 181.225±48.86 127.23±13.38 203.57±29.44 43.60±22.23 
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35 101.37±15.48 90.32±13.23 156.25±26.92 132.33±49.16 62.40±37.52 

36 51.89±7.99 25.24±14.54 99.07±13.13 45.64±11.6 22.18±6.19 

37 >250 126.5±16.76 >250 >250 226.08±114.47 

38 10.56±5.59 36.84±7.34 148.01±44.73 106.79±33.36 49.09±14.51 

39 14.78±3.45 8.48±3.87 10.39±5.75 35.33±6.45 8.65±4.21 

40 12.23±4.58 75.25±34.49 73.08±35.02 43.33±18.33 11.84±9.00 

41 77.14±11.92 75.70±33.31 83.74±41.06 190.9±63.12 47.15±6.39 

42 107.72±16.70 125.06±43.83 >250 >250 97.77±40.81 

43 49.98±7.08 129.3±17.82 137.2±21.13 209.85±39.02 55.82±7.79 

44 97.65±15.87 106.74±28.5 116.32±33.98 228.48±44.82 31.68±7.26 

45 79.07±15.83 113.97±38.49 79.35±57.63 >250 136.06±51.81 

46 121.66±38.63 110.63±16.50 74.25±30.12 216.2±9.88 22.25±6.64 

47 >250 97.47±9.76 >250 >250 >250 

48 21.88±12.09 88.52±51.93 >250 >250 32.29±15.69 

49 57.78±24.03 105.06±5.12 191.69±95.93 23.08±3.13 101.79±45.41 

50 67.61±22.46 141.69±89.26 >250 >250 124.94±70.28 

51 108.25±57.74 65.13±10.71 >250 53.37±4.83 151.92±73.77 

52 58.37±4.4 50.02±16.01 >250 26.36±6.79 107.38±49.13 

53 12.35±1.53 44.58±8.96 165.34±90.71 94.84±29.38 119.17±43.96 

54 9.42±3.5 25.84±8.64 24.59±14.81 6.69±0.83 34.66±14.98 
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55 92.43±9.22 163.28±42.03 104.21±18.2 >250 58.26±31.56 

56 85.86±18.92 147.97±103.29 198.82±90.25 78.98±41.12 3.27±1.78 

57 233.55±163.8 >250 0.11±0.07 171.6±40.12 >250 

58 24.79±2.46 196.165±186.2

6 

>250 151.7±31.83 34.44±20.47 

59 28.47±6.21 9.97±4.48 8.60±5.32 22.66±9.82 26.99±15.74 

60 66.41±13.63 >250 3.59±1.24 81.61±27.32 71.54±10.98 
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4.2.2  Study on the structural characterization of fluorinated compounds. 

 

The NMR spectra of fluorinated compounds are very complex. The reason is that the 

atomic number(I) of fluorine atoms is also 1/2. In 
1
HNMR, it can couple and splite of the 

H atoms separated by 1-4 bonds. The corresponding coupling constants are 
2
JHF=40-60Hz，

3
JHF=2-15Hz and 

4
JHF=0-5Hz

[11,12,13]
. When there is a fluorine atom on the benzene ring, 

there are coupling and splitting between the fluorine atom and the ortho-position H atoms. 

and even the meta-position H atoms. In 
13

C NMR there are coupling and splitting 

between the fluorine atom and the C atoms separated by 1-4 bonds. The corresponding 

coupling constants are 
1
JCF=150-350, 

2
JCF=20-60Hz，3

JCF=4-20Hz，4
JCF=0-5Hz

[11,12,13]
. If 

there is a fluorine atom on the benzene ring, it's going to couple and split the five carbon 

atoms but para-position carbon atoms. The three fluorine atoms in CF3 can divide the 

carbon atoms that are directly connected to the fluorine atoms or two or three bonds apart 

with the fluorine atoms into four peaks. . In this experiment the coupling and splitting of 

H-C-C-F(
2
JHF)，C-F(

1
JCF)，C-C-F(

2
JCF)，C-C-C-F(

3
JCF) were detected. According to the 

chemical shift and the coupling and splitting, compound (50) is used for the identification 

of 
1
HNMR and 

13
C NMR,as shown in figure 4X and figure 4X 
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Figure 4.3 The hydrogen spectrum signal belongs of the compound(50) 
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Figure 4.4 The carbon spectrum signal belongs of the compound(50) 
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4.3 CONCLUSION 

Some compounds from the new analogs selectively inhibited SKBR-3 cell 

proliferation with IC50 values at 10μM. However some compounds show unexpected 

potent inhibition against C38 cell proliferation, the most potent compound with IC50 

value at 0.8μM, which suggest that these compounds may have toxicity to the immune 

system, since C38 is a macrophage cell line and used here as a model of the immune 

system. 

 

 

4.4 EXPERIMENTAL 

 

4.4.1 Chemistry 

Chemicals were commercially available and used as received without further 

purification. Moisture sensitive reactions were carried out under a dry argon atmosphere 

in flame-dried glassware. Thin-layer chromatography was performed on silica gel TLC 

plates with fluorescence indicator 254 nm (Fluka). Flash column chromatography was 

performed using silica gel 60Å (BDH, 40-

ABI QStar Electrospray mass spectrometer at Cleveland State University MS facility 

Center. All the NMR spectra were recorded on a Bruker 400 MHz (13C NMR at 100 

MHz) using DMSO-d6 as solvent. Chemical shifts () for 1H NMR spectra were reported 

in parts per million to residual solvent protons. Reversed-phase HPLC analysis of 
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compounds was conducted on a Beckman HPLC system with an Auto Sampler. The 

chromatographic separation was performed on a C18 column (2.0 mm × 150 mm, 5 μm) 

from Phenomenex (Torrance, CA). The mobile phase of 80% acetonitrile and 20% water 

was employed for isocratic elution with a flow rate of 0.2 mL/min. The injection volume 

was 20 µL and the UV detector was set up at 260 nm. 

 

 

4.4.1.1 Synthesis of the new analogs(HB) 

 

The reaction procedure is illustrated in the scheme 1 and 2. The general synthesis 

method describe below, as Figure 4.5 and  Figure 4.6. 
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Figure 4.5 (a) NaH, DMF, Ethanesulfonyl chloride/ Methanesulfonyl chloride ; NaOH, 

Methanol, H2O; (b) DCM, K2CO3, Trifluoromethanesulfonic anhydride; (c) Acetone, Zn, 

FeCl3; (d) Acetone, Brine, saturated Na2CO3 solution, corresponding Benzoyl chloride 
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Figure 4.6 (a) TEA, DCM, Ethanesulfonyl chloride/ Methanesulfonyl chloride ; NaOH, 

Methanol, H2O; (b) DCM, K2CO3, Trifluoromethanesulfonic anhydride; (c) Acetone, Zn, 

FeCl3; (d) Acetone, Brine, saturated Na2CO3 solution, corresponding Benzoyl chloride. 
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 General method for the preparation of 2a-2d  

Sulfonamides 2a-2d were prepared from arylsubstituted 2-amino-5-nitrophenols 

1a-1b. Dissolve arylsubstituted 2-amino-5-nitrophenol (15.0mmol) in 40ml anhydride 

DMF add NaH (95% powder, 1.325 g, 52.5 mmol, 3.5equiv) into the solution stir at room 

temperature for 30min. After stir at room temperature for 30min corresponding sulfonyl 

chloride (45mmol, 3equiv) was added to the mixture the reaction continued overnight at 

room temperature. Quench the reaction with water and the mixture was neutralized with 

6N HCl until pH=1-2, yellow intermediate precipitated. Intermediate was collect by 

filtration and wash with water, which was used to the next reaction without further 

purification 

The intermediate was dissolve in 100ml methanol and 50ml 4N NaOH aq solution 

was added into the solution, stir at room temperature for 2h. After reaction completed 

neutralized the solution with 6N HCl until pH=1-2. The precipitate was collect by 

filtration and was with water and cold ether to provide desire product. 

 

 General method for the preparation of 2g-2j  

Sulfonamides 2g-2j were prepared from arylsubstituted 2-amino-5-nitrophenols 

1c-1d. Dissolve arylsubstituted 2-amino-5-nitrophenol (15.0mmol) in 150ml anhydride 

DCM, TEA was added into solution (105.0mmol, 7equiv). After TEA added 

corresponding sulfonyl chloride (45mmol, 3equiv) added into solution, reacted at room 

temperature overnight. After reaction completed DCM evaporated under vacuum added 
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200ml water added into the flask neutralized with 6N HCl until pH=1-2. Collect the solid 

intermediate by filtration. Wash the intermediate with water, which was used to the next 

reaction without further purification. 

 The intermediate was dissolve in 100ml methanol and 50ml 4N NaOH aq solution 

was added into the solution, stir at room temperature for 2h. After reaction completed 

neutralized the solution with 6N HCl until pH=1-2. The precipitate was collect by 

filtration and was with water and cold ether to provide desire product 

 

 General method for the preparation of 2e-2f and 2k-2l 

Trifluoroumethylsulfonamides 2e-2f and 2k-2l were prepared from arylsubstituted 

2-amino-5-nitrophenols 1a-1d. Dissolve arylsubstituted 2-amino-5-nitrophenol 

(15.0mmol) in 150ml anhydride DCM and K2CO3 (75mmol) was added to solution, then 

cool to 0℃. Trifluoromethanesulfonic anhydride (45mmol) was added into the solution 

dropwise. The resulting mixture was continuously stirred for 3 h at 0-5 °C. Water (30 mL) 

was added to quench the reaction. DCM was evaporated under vacuum, and then 6N HCl 

(10mL) was added to acidify the residue. The product was collected by filtration and 

washed with water and cool ether, then used for the next reaction without further 

purification. 
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 General method for the preparation of product 1-60 

Dissolve intermediates 2a-2l 1mmol in acetone 10ml and water 1ml. After 

intermediates dissolve into solvent Zn (10mmol, 10equiv) and FeCl3 (4mmol, 4equiv) 

were added into solution, the result mixture was stirred at room temperature for 1h. After 

the reaction completed the mixture was filtrate through celite to remove inorganic 

precipitate. The eluent was evaporated under vacuum. 

Redissolve the intermediate into 10ml acetone, the corresponding benzoyl chloride 

(1.1mmol, 1.1equiv) was added then 10ml brine and 10ml saturated K2CO3 solution. The 

result mixture was stirred at room temperature for 1h. After the reaction completed 

neutralized with 6N HCl until PH=1-2, acetone was evaporated under vacuum. The 

product was collect by filtration and purify by recrystallization in ethanol/ water (3:1). 

 

 

4.4.1.2 Structural characterization of 60 compounds of the new analogs (HB) 

 

 4-chloro-N-(4-(methylsulfonamido)-3-methylphenyl)benzamide（1） 

Yield 56.7%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.427(s,1H), 8.362(s,1H), 8.013 

(d,2H,J=8.0), 7.753(s,1H), 7.738(d,1H,J=8.0), 7.634(d,2H,J=8.0), 7.325 (d,1H,J=8.0), 

3.248(s,3H), 2.344(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.950, 138.947, 137.065, 

133.812, 133.458, 130.119(2C), 128.992(2C), 128.945,  125.696,  123.006,  119.310,  

43.628, 18.173. DUIS-MS calculated for C15H15ClN2O3S, [M-H]-: 337.04 , found336.9; 
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Purity: 95.3%. 
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Figure 4.7 The Chemical construction of 4-chloro-N-(4-(methyl 

sulfonamido)-3-methylphenyl)benzamide 

 

 4-cyano-N-(4-(methylsulfonamido)-3-methylphenyl)benzamide (2) 

Yield 60.5%.
1
H-NMR (400MHz, DMSO-d6) δ: 10.607 (s,1H), 8.362 (s,1H), 8.136 

(d,2H,J=8.4), 8.049(d,2H,J=8.4), 7.758(s,1H), 7.744 (d,1H, J=8.0),7.339 (d,1H, J=8.0), 

3.250(s,3H), 2.349(s,3H).
 13

C-NMR (100MHz, DMSO-d6) δ: 164.659，  139.127， 

133.491，132.981(2C), 132.952, 129.029,(2C), 128.964, 125.616, 123.066, 119.386, 

118.748, 114.483,43.585,18.188. DUIS-MS calculated for C16H15N3O3S, [M-H]-: 328.08, 

found 328.0,  Purity: 97.3%. 
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Figure 4.8 The Chemical construction of  4-cyano-N-(4- 

(methylsulfonamido)-3-methylphenyl)benzamide 
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 N-(4-(methylsulfonamido)-3-methylphenyl)-3-(trifluoromethyl)benzamide (3)  

Yield 62.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.447(s,1H), 9.008(s,1H), 

8.301(s,1H),  8.270(d,1H,J=8.0), 7.980, (d,1H,J=8.0) 7.799(t,1H,J=8.0), 7.679(s,1H), 

7.628(d,1H,J=8.8), 7.279(d,1H,J=8.8), 2.981(s,3H), 2.333(s,3H). 
13

C-NMR (100MHz, 

DMSO-d6) δ: 164.387, 137.523, 136.180, 135.468, 132.293, 131.706,  130.218,  

130.160,129.838,129.518,129.212(q,1C), 128.644(m,1C), 127.520, 

124.732,124.694,124.655,124.620(q,1C), 123.137, 119.159, 31.144, 18.840. DUIS-MS 

calculated for C16H15F3N2O3S, [M-H]-: 371.07, found 370.9,  Purity: 97.8%. 
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Figure 4.9 The Chemical construction of N-(4-(methyl 

sulfonamido)-3-methylphenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(4-(methylsulfonamido)-3-methylphenyl)-3-nitrobenzamide (4) 

Yield 61.7%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.733 (s,1H), 8.694(s,1H), 

8.375(s,1H), 8.316(d,1H, J=8.4),  7.790(d,1H,J=8.4), 7.757(s,1H), 7.750 (d,1H,J=8.8), 

7.353(d,1H,J=8.8), 3.270(s, 3H), 2.363(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 

162.997, 147.960, 139.503, 135.091, 133.599, 133.379, 132.566, 132.477, 128.694, 
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125.771, 125.377, 123.150, 119.449, 43.609. 18.230. DUIS-MS calculated for 

C15H14ClN3O2S, [M-H]-: 382.03, found381.9; Purity: 98.2%. 
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Figure 4.10 The Chemical construction of 4-chloro-N-(4- 

(methylsulfonamido)-3-methylphenyl)-3-nitrobenzamide 

 

 N-(4-(methylsulfonamido)-3-methylphenyl)-3,5-bis(trifluoromethyl)benzamide 

(5) 

Yield 55.4%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.593(s,1H), 9.573(s,1H), 

8.619(s,2H), 8.379 (s,1H), 7.640(s,1H) ， 7.741(d,1H,J=8.6),7.582 (d,1H,J=8.6), 

3.326(s,3H) ,2.256(s,3H), 
13

C-NMR (100MHz, DMSO-d6) δ: 160.290, 137.568, 135.467, 

132.523, 131.474,131.147,130.812,130.430(q,1C), 128.964(m,2C), 125.511(m,1C), 

124.975, 123.780, 123.086, 122.264, 119.028, 40.074，18.514 . DUIS-MS calculated for 

C17H14F6N2O3S, [M-H]-: 439.06, found 439.0, Purity: 98.8%. 
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Figure 4.11 The Chemical construction of N-(4-(methyl 

sulfonamido)-3-methylphenyl)-3,5-bis(trifluoromethyl)benzamide 

 

 4-chloro-N-(4-(ethylsulfonamido)-3-methylphenyl)-benzamide (6) 

Yield 68.9%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.295(s,1H), 8.985(s,1H), 7.985 

(d,2H,J=8.8), 7.662(d,1H,J=2.4), 7.618(d,2H,J=8.8), 7.583(dd,1H, J1=2.4, J2=8.8), 

7.233(d,1H,J=8.8), 3.075(q, 2H,J=8.0), 2.324(S,3H), 1.275(t,3H, J=8.0). 
13

C-NMR 

(100MHz, DMSO-d6) δ:  164.779, 137.547, 136.895, 135.290, 134.012, 131.542， 

130.064(2C), 128.940(2C), 127.299, 122.992, 119.043, 46.672, 18.917, 8.560 . DUIS-MS 

calculated for C1 6H17ClN2O3S, [M-H]-: 351.06 , found 351.0; Purity: 96.7%. 
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Figure 4.12 The Chemical construction of 4-chloro-N-(4- 

(ethylsulfonamido)-3-methylphenyl)-benzamide 
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 4-cyano-N-(4-(ethylsulfonamido)-3-methylphenyl)benzamide (7) 

Yield 60.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.449 (s, 1H), 8.999 

(s,1H),  8.106 (d,2H, J=8.4), 8.035 (d,2H, J=8.4), 7.668 (d,1H, J=2.4), 7.588 (dd,1H, 

J1= 2.4, J2= 8.4,), 7.250 (d,1H, J=8.4), 3.079 (q,2H, J=7.6), 2.328 (s,3H), 1.274 (t,3H, 

J=7.6). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.493, 139.338, 137.279, 135.285, 

132.949, 131.817, 128.872, 127.274, 123.027, 119.091, 118.779, 114.342, 46.702, 

18.914, 8.561. DUIS-MS calculated for C17H17N3O3S, [M-H]-: 342.09,  found  

341.8,  Purity: 96.8%. 
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Figure 4.13 The Chemical construction of 4-cyano-N-(4-(ethyl 

sulfonamido)-3-methylphenyl)benzamide 

 

 N-(4-(ethylsulfonamido)-3-methylphenyl)-3-(trifluoromethyl)benzamide (8) 

Yield 61.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.433(s,1H), 8.990(s,1H),  

8.300(s,1H), 8.269(d,1H,J=7.6), 7.980 (d,1H,J=7.6), 7.799(t,1H,J=7.6), 7.667(s,1H), 

7.610 (d,1H,J=8.4), 7.259(d,1H,J=8.4), 3.087(q,2H,J=7.2), 2.339(s,3H), 1.282 

(t,3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.373, 137.352, 136.191, 135.288, 

132.287, 131.763, 130.214, 130.162,129.842,129.524,129.183(q,1C),  128.628(m,1C), 
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127.273, 124.690(m,1C), 123.139,  119.171,  46.733, 18.995, 8.555. DUIS-MS 

calculated for C17H17F3N2O3S, [M-H]-: 385.08, found 384.8,  Purity: 97.5%. 
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Figure 4.14 The Chemical construction of N-(4-(ethylsulfonamido)-3- 

methylphenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(4-(ethylsulfonamido)-3-methylphenyl)-3-nitrobenzamide (9) 

Yield 64.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.516 (s,1H), 9.015 (s,1H), 

8.632 (d,1H, J=2.0), 8.258 (dd,1H, J=8.4, 2.0), 7.981(d,1H, J=8.4), 7.645 (d,1H, J=2.0), 

7.586(dd,1H, J1=2.0, J2=8.6), 7.260 (d,1H, J=8.6), 3.083 (q,2H, J=7.3),2.331(s,3H),  

1.274 (t,3H, J=7.3). 
13

C-NMR (100MHz, DMSO-d6) δ: 162.913, 137.060, 135.315, 

135.279, 133.299, 132.452, 131.961, 128.564, 127.292, 125.274, 123.091, 119.147, 

117.059, 46.743, 18.998, 8.554. DUIS-MS calculated for C16H16ClN3O5S, [M-H]-: 

396.04, found 396.0 Purity: 98.8%. 
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Figure 4.15 The Chemical construction of  4-chloro-N-(4-(ethyl 

sulfonamido)-3-methylphenyl)-3-nitrobenzamide 

 

 N-(4-(ethylsulfonamido)-3-methylphenyl)-3,5-bis(trifluoromethyl)benzamide 

(10) 

Yield 54.6%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.633(s,1H), 9.015(s,1H), 

8.621(s,2H), 8.377(s,1H), 7.658 (s,1H), 7.625(d,1H,J=8.4), 7.285(d,1H,J=8.4), 3.081 

(q,2H,J=7.2), 2.347(s,3H), 1.285, (t,3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 

162.948, 137.509, 136.979, 135.287, 132.094, 131.490,131.156,130.824,130.490(q,1C), 

129.018(m,2C), 127.242, 125.564(m,1C), 123.261, 119.290, 46.786, 18.881, 8.556. 

DUIS-MS calculated for C18H16F6N2O3S, [M-H]-: 453.07,  found 453.0,  Purity: 

98.8%. 
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Figure 4.16 The Chemical construction of N-(4-(ethylsulfonamido)-3- 

methylphenyl)-3,5-bis(trifluoromethyl)benzamide 
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 4-Chloro-N-(3-methyl-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

(11) 

Yield 59.7%. 
1
H-NMR (400MHz, DMSO-d6) δ: 11.341(s,1H), 10.367(s,1H), 

7.987 (d,2H,J=8.4), 7.740(s,1H), 7.636(m,3H), 7.299(d,1H,J=8.8), 2.320(s,3H). 

13
C-NMR (100MHz, DMSO-d6) δ: 164.98, 139.21, 137.02, 136.34, 133.89, 

130.10,(2C) , 128.96(2C), 128.91, 128.38, 122.90, 121.80, 119.19. DUIS-MS 

calculated for C15H12ClF3N2O3S, [M-H]-: 391.01, found  390.9,  Purity: 95.7%. 
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Figure 4.17 The Chemical construction of 4-Chloro-N-(3- 

methyl-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

 

 4-Cyano-N-(3-methyl-4-trifluoromethanesulfonylamino-phenyl)-benzamide (12) 

Yield 52.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:   11.398(s, 1H), 10.543 (s, 1H), 

8.106 (d, 2H, J=8.0), 8.041(d, 2H, J=8.0),  7.752( s, 1H)， 7.654(d, 2H, J=8.8), 7.248 (d, 

1H, J=8.8), 2.326 (s, 3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.720, 139.211, 138.969, 

136.400, 132.867(2C), 129.013(2C), 128.965, 128.636, 122.942, 119.426, 118.750, 
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114.454, 18.342. DUIS-MS calculated for C16H12F3N3O3S, [M-H]-: 382.05, found  

381.9,  Purity: 97.9%. 
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Figure 4.18 The Chemical construction of  4-Cyano-N-(3- 

methyl-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

 

 N-(3-Methyl-4-trifluoromethanesulfonylamino-phenyl)-3-trifluoromethyl-benza

mide (13) 

Yield 55.4%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.550 (s,1H), 8.274 (s,1H), 

8.246 (d, 1H, J= 8.0), 7.973 (d, 1H, J=8.0), 7.791 (t, 1H, J=8.0), 7.721 (s, 1H), 7.656 

(d,1H, J=8.4), 7.241 (d, 1H, J=8.4), 2.321 (s,3H) . 
13

C-NMR (100MHz, DMSO-d6) δ: 

164.716, 138.999, 136.502, 135.978, 132.282, 130.288, 

130.197,129.877,129.557,129.241(q,1C), 129.001, 128.771(m,1C), 128.512, 

124.703(m,1C), 123.111, 119.372, 18.290. DUIS-MS calculated for C16H12F6N2O3S, 

[M-H]-: 425.04,  found  424.8,  Purity: 98.7%. 
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Figure 4.19 The Chemical construction of N-(3-Methyl-4-trifluoromethane 

sulfonylamino-phenyl)-3-trifluoromethyl-benzamide 

 

 4-Chloro-N-(3-methyl-4-trifluoromethanesulfonylamino-phenyl)-3-nitro-benza

mide (14) 

Yield 52.9%. 
1
H-NMR (400MHz, DMSO-d6) δ:  11.382(s,1H), 10.633 (s,1H), 

8.645 (s,1H), 8.272 (d,1H, J=8.4), 7.985 (d,1H, J=8.4), 7.738 (s, 1H), 7.664 (d, 1H, 

J=8.6), 7.259 (d, 1H, J=8.6), 2. 332 (s,3H) . 
13

C-NMR (100MHz, DMSO-d6) δ: 163.025, 

147.858, 138.814, 136.456, 135.153, 133.340, 132.465, 129.014, 128.716, 128.671, 

125.341, 123.008, 119.301, 18.339. DUIS-MS calculated for C15H11ClF3N3O5S, [M-H]-: 

436.00, found 435.9,  Purity: 96.8%. 
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Figure 4.20 The Chemical construction of 4-Chloro-N-(3- 

methyl-4-trifluoromethanesulfonylamino-phenyl)-3-nitro-benzamide 
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 N-(3-Methyl-4-trifluoromethanesulfonylamino-phenyl)-3,5-bis-trifluoromethyl-

benzamide (15) 

Yield 53.6%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.693 (s, 1H), 8.611 (s,2H), 

8.462(s,1H), 8.391 (s,1H), 7.724 (s, 1H), 7.673 (d,1H,J=8.8), 7.275 (d,1H, J=8.8), 2.338 

(s, 3H). NMR (100MHz, DMSO-d6) δ: 163.073, 138.647, 137.409, 136.417, 

131.498,131.167,130.837,130.505(q,2C), 129.017(m,2C), 128.965, 125.719(m,1C), 

127.660,124.946,122.232,119.517(q,2CF3), 123.163, 121.898, 119.406, 18.319. 

DUIS-MS calculated for C17H11F9N2O3S, [M-H]-: 493.03, found  492.8,  Purity: 

98.1%.   

CONH

CH3

NHSO2CF3

CF3F3C  

Figure 4.21 The Chemical construction of N-(3-Methyl-4-trifluoro 

methanesulfonylamino-phenyl)-3,5-bis-trifluoromethyl-benzamide 

 

 4-chloro-N-(4-(methylsulfonamido)-3-methoxylphenyl)benzamide (16) 

Yield 69.8%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.339 (s,1H), 8.837 (s,1H), 

7.997 （ d,2H,J=8.4 ） ,7.627 （ d,2H,J=8.4 ） , 7.622(s,1H), 7.353 (d,1H,J=8.8), 

7.217(d,1H,J=8.8), 3.836(s,3H), 2.929(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.83， 

153.563， 139.435， 136.595， 134.001，130.056（2C） 129.922（2C）， 127.373， 

121.532 ，  112.756 ，  104.901 ，  56.151 , 40.062.  DUIS-MS calculated for 
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C15H15CllN2O4S, [M-H]-: 353.04 , found 352.9; Purity: 96.7%. 
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Figure 4.22 The Chemical construction of 4-chloro-N-(4- 

(methylsulfonamido)-3-methoxylphenyl)benzamide 

 

 4-cyano-N-(4-(methylsulfonamido)-3-methoxylphenyl)benzamide (17) 

Yield 65.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.511 (s, 1H), 8.865 (s,1H), 

8.116 (d,2H,J=8.4), 8.045 (d,2H, J=8.4), 7.623 ( d, 1H,J=2.0), 7.336 (dd,1H, J1= 2.0, J2= 

8.8),  7.233 (d,1H, J=8.8), 3.838 (s,3H), 2.933 (s,3H). 
13

C-NMR (100MHz, DMSO-d6) 

δ:164.56, 153.53, 139.31, 138.29, 132.96, 128.96, 127.33, 121.99, 118.77, 114.40, 112.81, 

104.91, 56.16, 40.07.  DUIS-MS calculated for C16H15N3O4S, [M-H]-: 344.07, found 

344.0,  Purity: 98.0%. 
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Figure 4.23  The Chemical construction of 4-cyano-N-(4- 

(methylsulfonamido)-3-methoxylphenyl)benzamide 

 

 N-(4-(methylsulfonamido)-3-methoxylphenyl)-3-(trifluoromethyl) benzamide 

(18) 

yield 65.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:    10.499 (s, 1H), 8.856 (s,1H), 

8.303 (s,1H), 8.279 (d, 1H, J=7.6), 7.989 (d, 1H, J= 7.6), 7.808 (t,1H, J=7.6), 7.618 (s, 

1H), 7.374 (d, 1H, J=8.8), 7.241 (d, 1H, J=8.8), 3.848 (s, 3H), 2.939 (s, 3H). 
13

C-NMR 

(100MHz, DMSO-d6) δ:  164.463, 153.535, 138.351, 136.179，132.281，130.233，

130.180,129.859,129.539,129.219(q,1C),  128.655(m,1C), 127.288, 124.692(m,1C),  

121.962, 112.922, 105.051, 56.187, 40.070. DUIS-MS calculated for C16H15F3N2O4S, 

[M-H]-: 387.06, found 386.9,  Purity: 97.0%. 
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Figure 4.24 The Chemical construction of N-(4-(methyl 

sulfonamido)-3-methoxylphenyl)-3-(trifluoromethyl) benzamide 

 

 4-chloro-N-(4-(methylsulfonamido)-3-methoxylphenyl)-3-nitrobenzamide (19) 

Yield 70.1%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.572 (s, 1H), 8.876 (s, 1H), 

8.645 (s,1H), 8.275 (d, 1H, J=8.4), 7.994 (d, 1H, J=8.4), 7.589 (s, 1H), 7.358 

(d,1H,J=8.4), 7.247 (d, 1H,J=8.4), 3.844 (s,3H), 2.940 (s,3H). 
13

C-NMR (100MHz, 

DMSO-d6) δ: 162.972, 153.502, 147.974, 138.041, 135.272, 133.279, 132.466, 128.602, 

127.255, 125.262, 122.195, 112.916, 106.007, 56.196, 40.064. DUIS-MS calculated for 

C15H14ClN3O6S, [M-H]-:398.02, found 397.9; Purity: 98.3 %. 
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Figure 4.25 The Chemical construction of 4-chloro-N-(4- 

(methylsulfonamido)-3-methoxylphenyl)-3-nitrobenzamide 
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 N-(4-(methylsulfonamido)-3-methoxylphenyl)-3,5-bis(trifluoromethyl) 

benzamide (20) 

Yield 63.4%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.694 (s,1H), 8.901 (s,1H), 

8.621 (s,2H), 8.394 (s,1H), 7.589 (d, 1H, J=2.0), 7.373 (dd,1H, J1= 2.0, J2= 8.8), 7.266 (d, 

1H,J=8.8), 3.854 (s, 3H), 2.948 (s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 162.952, 

153.483, 137.924, 137.486, 131.488,131.159,130.829,130.495(q,2C)，129.017(m,2C), 

127.209, 125.631(m,1C), 127.675,124.959,122.245,199.531(q,2CF3), 122.311, 113.082, 

105.149, 56.214, 40.039. DUIS-MS calculated for C17H14F6N2O4S, [M-H]-: 455.05, 

found 454.9,  Purity: 96.1%. 
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Figure 4.26 The Chemical construction of N-(4-(methylsulfonamido) 

-3-methoxylphenyl)-3,5-bis(trifluoromethyl) benzamide 

 

 4-chloro-N-(4-(ethylsulfonamido)-3-methoxylphenyl)benzamide (21) 

Yield 69.9%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.345(s,1H), 8.843(s,1H), 

7.994 (d,2H,J=8.4), 7.628(d, 2H,J=8.4), 7.608(d, 1H,J=2.0), 7.337 (dd,1H, J1= 2.0, J2= 

8.4) ,7.225(d,1H,J=8.4), 3.824(s,3H), 2.992(q,2H, J=7.2), 1.257 (t,3H,J=7.2). 
13

C-NMR 
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(100MHz, DMSO-d6) δ: 164.932， 153.380， 138.439， 136.950， 133.996， 130.059， 

128.962， 127.245， 121.733， 112.736， 104.803， 56.108， 46.606， 8.482.  

DUIS-MS calculated for C16H17ClN2O4S, [M-H]-: 367.05, found366.9,  Purity: 97.5%. 
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Figure 4.27 The Chemical construction of 4-chloro-N-(4- 

(ethylsulfonamido)-3-methoxylphenyl)benzamide 

 

 4-Cyano-N-(4-ethanesulfonylamino-3-methoxy-phenyl)-benzamide  (22) 

Yield 65.8%. 
1
H-NMR (400MHz, DMSO-d6) δ:    10.503 (s,1H), 8.856 (s,1H), 

8.114 (d,2H, J=8.4), 8.045 (d,2H,J=8.4), 7.607(d.1H, J=2.0), 7.339(dd,1H, J1= 2.0, J2= 

8.4), 7.243 (d,1H, J=8.4), 3.828 (s,3H), 2.999 (q,2H,J=7.2), 1.258 (t,3H,J=7.2) . 

13
C-NMR (100MHz, DMSO-d6) δ: 164.54, 153.32, 139.32, 138.13, 132.95, 128.96, 

127.11, 122.07, 118.76, 114.40, 112.83, 104.87, 56.14, 46.65, 8.47.  DUIS-MS 

calculated for C17H17N3O4S, [M-H]-: 358.09, found  357.9,  Purity: 96.9%. 
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Figure 4.28 The Chemical construction of 4-Cyano-N-(4-ethane 

sulfonylamino-3-methoxy-phenyl)-benzamide 

 

 N-(4-(ethylsulfonamido)-3-methoxylphenyl)-3-(trifluoromethyl)benzamide(23)  

Yield 62.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.495(s,1H), 8.853(s,1H), 

8.301(s,1H), 7.276(d,1H,J=7.6), 7.988(d,1H,J=7.6), 7.806(t,1H,J=7.6), 7.603(s,1H), 

7.358(d,1H,J=8.8), 7.252 (d,1H,J=8.8), 3.838(s,3H), 3.006(q,2H,J=7.2), 

1.264(t,3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.442, 153.344, 138.199, 

136.181, 132.276, 130.228, 130.183,129.855,129.534,129.218(q,1C), 128.677(m,1C), 

127.135, 128.524,125.813,123.102,120.379(q,CF3), 124.649(m,1C)， 121.997， 112.910， 

104.968， 56.151， 46.654， 8.481.  DUIS-MS calculated for C17H17F3N2O4S, [M-H]-: 

401.08,  found 400.9,  Purity: 97.8%. 
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Figure 4.29 The Chemical construction of  N-(4-(ethylsulfonamido) 

-3-methoxylphenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(4-(ethylsulfonamido)-3-methoxylphenyl)-3-nitrobenzamide (24) 

Yield 69.7.4%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.561(s,1H), 8.858(s,1H), 

8.639 (d,1H, J=2.0), 8.268 (dd,1H,J=8.4,2.0), 7.992(d,1H,J=8.4), 7.570(d,1H,J=1.6), 

7.339(dd,1H, J1=1.6 J2=8.8,), 7.256 (s,1H,J=8.8), 3.834(s,3H), 3.006(q,2H,J=7.2), 

1.260(t,3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 162.856, 152.327 , 147.865, 

137.902, 135.267, 133.276, 132.466, 128.600, 127.149, 125.265, 122.203, 

112.899,104.897, 56.153, 45.667, 8.484. DUIS-MS calculated for C16H16ClN3O6S, 

[M-H]-: 412.04, found 411.9,  Purity: 96.7%. 
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Figure 4.30  The Chemical construction of 4-chloro-N-(4-(ethyl 

sulfonamido)-3-methoxylphenyl)-3-nitrobenzamide 
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 N-(4-(ethylsulfonamido)-3-methoxylphenyl)-3,5-bis(trifluoromethyl)benzamide 

(25) 

Yield 62.4%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.684 (s,1H), 8.883 (s,1H), 

8.618 (s,2H), 8.397 (s,1H), 7.573 (d ,1H, J=2.0), 7.354 (q, 1H, J1=2.0, J2= 8.6), 7.275 (d, 

1H, J=8.6), 3.844 (s,3H), 3.013 (q,2H, J=7.3), 1.263 (t,3H, J=7.3). 
13

C-NMR (100MHz, 

DMSO-d6) δ: 162.932, 153.296, 137.773, 137.512, 

131.497,131.168,130.836,130.506(q,2C), 129.006(m,2C), 

127.675,124.962,122.250,119.532(q,2CF3), 127.030, 125.669(m,1C), 122.382, 113.094, 

105.107, 56.196, 46.715, 8.481. DUIS-MS calculated for C18H16F6N2O4S, [M-H]-: 

469.07,  found 468.9,  Purity: 98.2%. 
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Figure 4.31 The Chemical construction of N-(4-(ethylsulfonamido)-3- 

methoxylphenyl)-3,5-bis(trifluoromethyl)benzamide 
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 4-Chloro-N-(3-methoxy-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

(26) 

Yield 45.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:   11.141(s,1H),10.439 (s, 1H), 

7.999 (d, 2H, J=8.4), 7.662 (s, 1H), 7.635 (d, 2H, J=8.4), 7.402 (d,1H, J=8.4), 7.223 

(d,1H, J=8.4), 3.836 (s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ:  165.061, 155.451, 

140.658, 137.086, 133.862, 130.110,(2C), 129.724, 128.992(2C), 118.028, 

112.583,104.755, 56.230.  DUIS-MS calculated for C15H12ClF3N2O4S, [M-H]-: 407.01, 

found  406.9,  Purity: 97.4%. 
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Figure 4.32 The Chemical construction of  4-Chloro-N- 

(3-methoxy-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

 

 4-Cyano-N-(3-methoxy-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

(27) 

Yield 45.0 %. 
1
H-NMR (400MHz, DMSO-d6) δ:   11.219(s,1H), 10.595(s,1H)， 

8.115(d,2H, J=8.4), 8.052(d,2H,J=8.4), 7.659(d,1H, J=1.6)， 7.400(dd,1H, J1= 1.6, J2= 

8.4), 7.241(d,1H, J=8.4), 3.840(s, 3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.797, 
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155.459, 140.410, 139.185, 132.987(2C), 129.775, 129.009(2C), 118.747, 114.507, 

112.656, 107.673, 104.788, 56.254. DUIS-MS calculated for C16H12F3N3O4S, [M-H]-: 

398.04, found  397.9,  Purity: 96.2%. 

 

CN

CONH

OCH3

NHSO2CF3

 

Figure 4.33  The Chemical construction of 4-Cyano-N-(3- 

methoxy-4-trifluoromethanesulfonylamino-phenyl)-benzamide 

 

 N-(3-Methoxy-4-trifluoromethanesulfonylamino-phenyl)-3-trifluoromethyl-benz

amide (28) 

Yield 45.8%. 
1
H-NMR (400MHz, DMSO-d6) δ:   11.208(s,1H), 10.578(s,1H), 

8.300(s,1H), 8.277(d,1H, J=7.6), 7.998(d,1H, J=7.6), 7.815(t,1H, J=7.6), 7.652(s,1H), 

7.419(d,1H, J=8.4), 7.247(d,1H, J=8.4), 3.337(s, 1H). 
13

C-NMR (100MHz, DMSO-d6) δ:  

164.691, 155.474, 140.490, 138.515, 136.072, 132.033, 131.067, 

130.780,130.269,129.744,129.240(q,1C), 128.852,  128.472(m,1C), 124.739(m,1C), 

112.747, 104.912, 56.273. DUIS-MS calculated for C16H12F6N2O4S, [M-H]-: 441.03,  

found  440.9,  Purity: 98.7%. 
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Figure 4.34 The Chemical construction of N-(3-Methoxy-4-trifluoro 

methanesulfonylamino-phenyl)-3-trifluoromethyl-benzamide 

 

 4-Chloro-N-(3-methoxy-4-trifluoromethanesulfonylamino-phenyl)-3-nitro-benzamid

e (29) 

Yield 50.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  11.219(s,1H), 10.657(s,1H), 

8.647(s,1H), 8.276(d,1H, J=8.0), 7.999(d,1H, J=8.0), 7.628(s,1H), 7.407(d,1H, J=8.4), 

7.257(d,1H, J=8.4), 56.291(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ:163.107, 155.466, 

147.879, 140.188, 135.157,  133.322, 132.491, 129.761, 128.721, 125.318,  118.479, 

112.755, 104.900, 56.291. C15H11ClF3N3O6S, [M-H]-: 452.01, found  451.9,  Purity: 

97.8% 
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Figure 4.35 The Chemical construction of 4-Chloro-N-(3- 

methoxy-4-trifluoromethanesulfonylamino-phenyl)-3-nitro-benzamide 
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 N-(3-Methoxy-4-trifluoromethanesulfonylamino-phenyl)-3,5-bis-trifluoromethyl

-benzamide (30) 

Yield 52.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  11.249(s,1H), 10.769(s,1H), 

8.618(s,2H), 8.395(s,1H), 7.630(s,1H), 7.422(d,1H, J=8.6), 7.276(d,1H, J=8.6), 

3.860(s,3H).  
13

C-NMR (100MHz, DMSO-d6) δ: 163.194, 155.471, 140.141, 137.404, 

131.508,131.179,130.947,130.516(q,2C), 129.789, 129.066(m,2C), 125.700(m,1C) ，

127.656,124.939,122.226,119.515(q,2CF3), 118.529，112.900，  105.016，  56.302.  

DUIS-MS calculated for C17H11F9N2O4S, [M-H]-: 509.03,  found  508.9,  Purity: 

97.7%. 
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Figure 4.36 The Chemical construction of N-(3-Methoxy-4-trifluoro 

methanesulfonylamino-phenyl)-3,5-bis-trifluoromethyl-benzamide 

 

 4-chloro-N-(3-chloro-4-(methylsulfonamido)phenyl)benzamide  (31) 

Yield 56.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.492(s,1H), 9.409(s,1H), 

8.062(s,1H), 7.994 (d,2H, J=8.4), 7.710(d,1H,J=8.4), 7.639(d,2H,J=8.4), 

7.444(d,1HJ=8.4), 3.032(S,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 165.095, 138.749, 

137.200, 133.623, 130.143(2C), 130.093, 129.765, 129.221, 129.033(2C), 212.422, 
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119.971, 41.305.  DUIS-MS calculated for C14H12Cl2N2O3S, [M-H]-:356.99, found 

356.8; Purity: 98.9%. 
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Figure 4.37 The Chemical construction of 4-chloro-N- 

(3-chloro-4-(methylsulfonamido)phenyl)benzamide 

 

 4-cyano-N-(3-chloro-4-(methylsulfonamido)phenyl)benzamide  (32) 

Yield 66.8%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.662 (s, 1H), 9.434 (s,1H), 

8.116 (d, 2H, J=8.4), 8.066(s,1H), 8.056 (d,2H,J=8.4), 7.712 (d,1H,J=8.4), 7.461 (d,1H, 

J=8.4), 3.037 (s, 3H) .
 13

C-NMR (100MHz, DMSO-d6) δ:  164.824, 138.938, 138.462, 

133.011(2C), 130.051, 129.187, 129.044(2C), 121.509, 120.054, 118.721, 114.594, 

99.985, 41.323. DUIS-MS calculated for C15H12ClN3O3S, [M-H]-: 348.02, found 347.9,  

Purity: 98.7%. 
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Figure 4.38 The Chemical construction of 4-cyano-N-(3- 

chloro-4-(methylsulfonamido)phenyl)benzamide 
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 N-(3-chloro-4-(methylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide (33) 

Yield 69,8%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.842(s,1H), 9.451(s,1H), 

8.343(s,1H), 8.113(s,1H), 7.994 (d,1H,J=6.8), 7.803(m,3H), 7.459(d,1H,J=8.4), 

3.039(s,3H).  
13

C-NMR (100MHz, DMSO-d6) δ: 164.708, 138.724, 135.710, 132.546, 

130.193, 130.161,129.842,129.523,129.210(q,1C), 130.130,129.928, 129.106, 

128.846(m,1C), 125.004(m,1H), 121.759, 120.242, 41.287. DUIS-MS calculated for 

C15H12ClF3N2O3S, [M-H]-: 391.01, found 390.9,  Purity: 98.7%. 
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Figure 4.39 The Chemical construction of N-(3-chloro-4-(methyl 

sulfonamido)phenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-chloro-4-(methylsulfonamido)phenyl)-3-nitrobenzamide (34) 

Yield 68.8%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.716(s,1H), 9.450(s,1H), 

8.645(s,1H), 8.268 (d,1H, J=8.4), 8.045(s,1H), 8.001(d,1H,J=8.4), 7.704(d,1H,J=8.8), 

7.473(d,1H,J=8.8), 3.041(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 163.134, 147.875, 

138.237, 134.910, 133.350, 132.534, 130.207, 130.029, 129.161, 128.934, 125.354, 

121.599, 120.116, 41.344. DUIS-MS calculated for C14H11Cl2N3O5S, [M-H]-:401.97, 

found 401.8; Purity: 98.6%. 
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Figure 4.40 The Chemical construction of 4-chloro-N-(3- 

chloro-4-(methylsulfonamido)phenyl)-3-nitrobenzamide 

 

 N-(3-chloro-4-(methylsulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 

(35) 

Yield 51.2%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.803(s,1H),  9.445(s,1H),  

8.618(s,2H),  8.402(s,1H), 8.051(s,1H),  7.727(d,1H,J=8.8), 7.495(d,1H,J=8.8), 

3.052(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ:  163.210, 138.142, 137.200, 

131.539,131.214,130.879,130.551,(q,2C) 130.334, 130.004, 129.105, 129.067(m,2C), 

127.643,124.934,122.225,119.509(q,2CF3), 125.830(m,1C), 121.803, 120.260, 40.077. 

DUIS-MS calculated for C16H11ClF6N2O3S, [M-H]-: 459.00, found 458.8,  Purity: 

99.2%. 
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Figure 4.41 The Chemical construction of N-(3-chloro-4-(methyl 

sulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-chloro-4-(ethylsulfonamido)phenyl)benzamide  (36) 

Yield 66.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.477(s,1H), 9.382(s,1H), 

8.050(s,1H), 7.992 (d,2H, J=8.0), 7.693(d,1H,J=8.6), 7.634(d,2H,J=8.0), 

7.447(d,1H,J=8.6), 3.121(q,2H,J=7.2), 1.295 (t,3H,J=7.2). 
13

C-NMR (100MHz, 

DMSO-d6) δ:  165.074, 138.571, 137.191, 133.632, 130.136, 129.874, 129.827, 129.020, 

121.399, 119.964, 99.992, 47.608, 8.564. DUIS-MS calculated for C15H14Cl2N2O3S, 

[M-H]-: 371.00, found 370.9,  Purity: 98.1%. 
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Figure 4.42 The Chemical construction of 4-chloro-N- 

(3-chloro-4-(ethylsulfonamido)phenyl)benzamide 
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 4-cyano-N-(3-chloro-4-(ethylsulfonamido)phenyl)benzamide (37) 

Yield 62.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.649(s,1H), 9.412(s,1H), 

8.058(s,1H), 8.113(d,2H, J=8.0), 8.048(d,2H,J=8.0), 7.694 (d,1H, J=8.6), 7.463 (d,1H, 

J=8.6), 3.125(q,2H,J=7.2), 1.294 (t,3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 

164.801, 138.943, 138.283, 133.000(2C), 130.162, 129.787, 129.039(2C), 128.976, 

121.475, 120.047, 118.720, 114.599, 47.631, 8.562. DUIS-MS calculated for 

C16H14ClN3O3S, [M-H]-: 362.04, found  361.9,  Purity: 97.8%. 
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Figure 4.43 The Chemical construction of 4-cyano-N-(3- 

chloro-4-(ethylsulfonamido)phenyl)benzamide 

 

 N-(3-chloro-4-(ethylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide (38) 

Yield 62.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.661 (s,1H), 9.410 (s,1H), 

8.309 (s, 1H), 8.283 (d,1H, J=7.4), 8.061 (s, 1H), 7.997 (d,1H, J=7.4), 7.811 (t,1H, J=7.4), 

7.719 (d,1H, J=8.6), 7.467 (d, 1H, J=8.6), 3.130 (q, 2H, J=7.2), 1.299 (t, 3H ,J=7.2) . 

13
C-NMR (100MHz, DMSO-d6) δ: 164.678, 138.382, 135.818, 132.381, 130.285, 

130.082, 130.211,129.892,129.571,129.251(q,1C), 129.800, 128.970, 128.879(m,1C), 
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128.487,125.781,123.073,120.360(q,CF3), 124.787(m), 121.579, 120.112，47.629，8.563. 

DUIS-MS calculated for C16H14ClF3N2O3S, [M-H]-: 405.03,  found  404.9,  Purity: 

99.1%. 
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Figure 4.44 The Chemical construction of N-(3-chloro-4-(ethyl 

sulfonamido)phenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-chloro-4-(ethylsulfonamido)phenyl)-3-nitrobenzamide (39) 

Yield 67.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.699(s,1H), 9.424(s,1H), 

8.642(s,1H), 8.266 (d,1H, J=8.4), 8.033(s,1H), 7.999 (d,1H,J=8.4), 7.686(d,1H,J=8.8), 

7.475(d,1H,J=8.8), 3.130(q,2H,J=7.2), 1.295 (t,3H,J=7.2). 
13

C-NMR (100MHz, 

DMSO-d6) δ: 163.11, 147.88, 138.06, 134.92, 133.34, 132.53, 130.31, 129.77, 128.97, 

128.82, 125.35, 121.55, 120.10, 47.65, 8.56. DUIS-MS calculated for C15H13Cl2N3O5S, 

[M-H]-: 415.99, found 415.8,  Purity: 98.8%. 
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Figure 4.45 The Chemical construction of 4-chloro-N- 

(3-chloro-4-(ethylsulfonamido)phenyl)-3-nitrobenzamide 

 N-(3-chloro-4-(ethylsulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 

(40) 

Yield 54.1%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.808(s,1H), 9.434 (s,1H), 

8.607 (s, 2H), 8.380 (s, 1H), 8.034 (s, 1H), 7.703 (d,1H, J=8.6), 7.488 (d, 1H, J=8.6), 

3.135 (q,2H, J=7.2), 1.299(t, 3H,J=7.2). 
13

C-NMR (100MHz, DMSO-d6) δ: 163.182, 

137.951, 137.164, 131.537,131.204,130.873,130.539(q,2C), 130.452, 129.730, 

129.062(m,2C), 128.886, 125.777(m,1C), 127.624, 124.911,122.198,119.483(q,2CF3), 

121.754, 120.242, 47.668, 8.532.  DUIS-MS calculated for C17H13ClF6N2O3S, [M-H]-: 

473.02,  found  472.9,  Purity: 97.2%. 
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Figure 4.46 The Chemical construction of N-(3-chloro-4-(ethyl 

sulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 
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 4-chloro-N-(3-chloro-4-(trifluoromethylsulfonamido)phenyl)benzamide (41) 

Yield 48.2%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.719(s,1H), 8.113 (d,2H, 

J=8.4), 8.102(s,1H), 8.056 (d,2H, J=8.4),7.745 (d,1H, J=8.8),7.457 (d,1H, J=8.8). 

13
C-NMR (100MHz, DMSO-d6) δ:164.960, 139.664, 138.866, 133.017(2C),131.734, 

130.443, 129.076(2C),  121.499, 120.081, 118.705, 114.657.  DUIS-MS calculated for 

C14H9Cl2F3N2O3S, [M-H]-: 410.96, found  410.8,  Purity: 98.2%. 
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Figure 4.47 The Chemical construction of 4-chloro-N-(3- 

chloro-4-(trifluoromethylsulfonamido)phenyl)benzamide 

 

 4-cyano-N-(3-chloro-4-(trifluoromethylsulfonamido)phenyl)benzamide (42) 

Yield 50.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.704 (s, 1H), 

8.112(d,2H,J=8.4), 8.082(d,1H,J=2.0), 8.055 (d,2H,J=8.4), 7.729(dd,1H,J=8.8,2.0), 7.450 

(d,1H,J=8.8). 
13

C-NMR (100MHz, DMSO-d6) δ:  164.924, 138.887, 137.632, 

133.018(2C), 131.546, 130.209, 125.353, 129.071(2C), 121.488, 120.060, 118.714, 

114.631. DUIS-MS calculated for C15H9ClF3N3O3S, [M-H]-: 401.99,  found  401.8,  

Purity: 97.2%. 

javascript:;
javascript:;


 

128 

 

O

N
H

S

O

O

H
N

F

F

F

Cl

N 

Figure 4.48 The Chemical construction of 4-cyano-N-(3- 

chloro-4-(trifluoromethylsulfonamido)phenyl)benzamide 

 

 N-(3-chloro-4-(trifluoromethylsulfonamido)phenyl)-3-(trifluoromethyl)benzami

de (43) 

Yield 49.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.730 (s,1H), 8.307 (s,1H), 

8.279(d,1H, J=7.6), 8.110(s, 1H), 8.003 (d,1H,J=7.6), 7.814 (t,1H, J=7.6), 7.775 (d,1H, 

J=8.8), 7.463 (d,1H, J=8.8). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.85, 139.87, 135.73, 

132.42, 131.80, 130.54, 130.31, 130.20,129.89,129.58,129.27(q,1C), 128.96(m,1C), 

124.83(m,1C), 128.47,125.76,123.05,120.34(q,CF3), 121.58, 120.13, 118.66. DUIS-MS 

calculated for C15H9ClF6N2O3S, [M-H]-: 444.98,  found  444.8,  Purity: 98.6%. 
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Figure 4.49 The Chemical construction of N-(3-chloro-4-(trifluoro 

methylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide 
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 4-chloro-N-(3-chloro-4-(trifluoromethylsulfonamido)phenyl)-3-nitrobenzamide 

(44) 

Yield 49.7%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.791(s,1H), 8.645(s,1H), 8.268 

(d,1H, J=8.4), 8.081(s,1H), 8.100(d,1H,J=8.4), 7.744(d,1H,J=8.8), 7.470(d,1H,J=8.8), 

13
C-NMR (100MHz, DMSO-d6) δ:  163.291， 147.871， 139.510，134.831, 133.388, 

132.544, 131.783, 130.537, 128.907, 125.408, 121.885,  121.579, 120.144. DUIS-MS 

calculated for C14H8Cl2F3N3O5S, [M-H]-: 455.94, found 455.8,  Purity: 97.8%. 
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Figure 4.50 The Chemical construction of  4-chloro-N- 

(3-chloro-4-(trifluoromethylsulfonamido)phenyl)-3-nitrobenzamide 

 

 N-(3-chloro-4-(trifluoromethylsulfonamido)phenyl)-3,5-bis(trifluoromethyl) 

benzamide (45) 

Yield 48.8%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.851 (s,1H), 8.609 (s,2H), 

8.403 (s, 1H), 8.073 (s,1H), 7.746 (d,1H, J=8.8), 7.482 (d, 1H, J=-8.8) 
13

C-NMR 

(100MHz, DMSO-d6) δ: 163.344 ， 137.156, 131.625, 

javascript:;
javascript:;


 

130 

 

131.536,131.207,130.784,130.544(q,2C), 130.874, 130.312, 129.093(m,2C),  

125.874(m,1C), 127.632,124.921,122.206119.491(q,2CF3), 121.975, 121.751, 120.253. 

DUIS-MS calculated for C16H8ClF9N2O3S, [M-H]-: 512.97,  found  512.8,  Purity: 

97.3%. 
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Figure 4.51 The Chemical construction of N-(3-chloro-4-(trifluoro 

methylsulfonamido)phenyl)-3,5-bis(trifluoromethyl) benzamide 

 

 4-chloro-N-(3-fluoro-4-(methylsulfonamido)phenyl)benzamide  (46) 

Yield 52.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.573(s,1H)， 9.478(s,1H), 

7.990 (d,2H, J=8.0)，  7.843(d,1H,J=12.8), 7.636 (d,2H,J=8.0)， 7.538, (d,1H,J=8.6) , 

7.372(t,1H,J=8.6) ，  3.011 (s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ:  165.093, 

157.637,155.207(1C), 138.871,138.767(1C), 137.168, 133.687, 130.136(2C), 

129.021(2C), 128.429, 120.470,120.339(1C), 116.747,116.718(1C), 

108.451,108.200(1C), 40.067. DUIS-MS calculated for C14H12ClFN2O3S, [M-H]-:341.02, 

found 340.9; Purity: 96.8%. 
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Figure 4.52 The Chemical construction of 4-chloro-N-(3- 

fluoro-4-(methylsulfonamido)phenyl)benzamide 

 

 4-cyano-N-(3-fluoro-4-(methylsulfonamido)phenyl)benzamide  (47) 

Yield 48.9%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.680 (s,1H)， 9.506 (s,1H), 

8.111(d,2H,J=8.4), 8.051 (d,2H,J=8.4), 7.849(d,1H, J=12.4)，  7.541(d,1H, J=8.8)， 

7.390(t,1H, J=8.8), 3.017(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ: 164.823, 

157.563,155.130(1C),  138.997, 138.551, 138.448(1C),  132.999(2C), 129.039(2C), 

128.377, 120.792,120.659(1C), 118.723, 116.841,116.810(1C), 114.574, 

108.540,108.289(1C), 56.503. DUIS-MS calculated for C15H12FN3O3S, [M-H]-: 332.05, 

found 332.0,  Purity: 98.8%. 
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Figure 4.53 The Chemical construction of  4-cyano-N-(3- 

fluoro-4-(methylsulfonamido)phenyl)benzamide 
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 N-(3-fluoro-4-(methylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide (48) 

Yield 43.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.663(s,1H), 9.504(s,1H), 

8.295(s,1H), 8.281(d,1H,J=8.0), 8.001(d,1H,J=8.0), 7.850(d,1H,J=12.8), 

7.805(d,1H,J=8.0), 7.548(d,1H,J=8.8), 7.396 (d,1H, J=8.8). 3.021(s,3H). 
13

C-NMR 

(100MHz, DMSO-d6) δ:  164.712, 157.592,155.158(1C), 138.634,138.534(1C), 135.882, 

132.364, 130.297, 130.212,129.892,129.573,129.893(q,1C), 

128.444,125.782,123.070,120.360(q,CF3), 128.378, 124.728(m,1C), 123.070, 

120.710,120.579(1C),  116.898,116.867(1C),  108.626,108.377(1C), 40.062. 

DUIS-MS calculated for C15H12F4N2O3S, [M-H]-: 375.04, found 374.9,  Purity: 98.2%.   
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Figure 4.54 The Chemical construction of N-(3-fluoro-4-(methyl 

sulfonamido)phenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-fluoro-4-(methylsulfonamido)phenyl)-3-nitrobenzamide (49) 

Yield 42.6%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.733(s,1H), 9.521(s,1H), 

8.639(s,1H), 8.266 (d,1H, J=8.4), 7.999(d,1H,J=8.4), 7.830(d,1H,J=12.8), 

7,528(d,1H,J=8.8), 7.404(t,1H,J=8.8, 3.023(s,3H). 
13

C-NMR (100MHz, DMSO-d6) δ:  

163.136, 157.520,155.099(1C), 149.891, 138.312,138.209(1C), 134.965, 133.335, 
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132.516, 128.799, 128.372, 125.352, 120.951,120.922(1C), 116.917,116.556(1C), 

108.640,108.399(1C), 40.063.  DUIS-MS calculated for C14H11ClFN3O5S, [M-H]-: 

386.00, found 385.9; Purity: 96.3%. 
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Figure 4.55 The Chemical construction of 4-chloro-N-(3- 

fluoro-4-(methylsulfonamido)phenyl)-3-nitrobenzamide 

 

 N-(3-fluoro-4-(methylsulfonamido)phenyl)-3,5-bis(trifluoromethyl) benzamide 

(50) 

Yield 41.7%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.845(s,1H)， 9.537(s,1H)， 

8.613(s,2H)，8.400(s,1H)， 7.844(d,1H,J=12.8)， 7.541(d,1H,J=8.8)， 7.423(d,1H, J=8.8)， 

3.031（s,3H） . 
13

C-NMR (100MHz, DMSO-d6) δ: 163.215, 157.495,155.061(1C), 

138.210,138.109(1C), 137.232, 131.508,131.188,130.856,130.526(q,2C) ， 

129.081(m,2C), 128.270, 127.653,124.933,122.219,119.504(q,2CF3), 125.823(m1C)， 

121.081,120.950(1C)， 117.063,117.035(1C)，108.812,108.561(1C)， 40.059. DUIS-MS 

calculated for C16H11F7N2O3S, [M-H]-: 443.03, found  442.9,  Purity: 97.8%. 
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Figure 4.56 The Chemical construction of N-(3-fluoro-4-(methyl 

sulfonamido)phenyl)-3,5-bis(trifluoromethyl) benzamide 

 

 4-chloro-N-(3-fluoro-4-(ethylsulfonamido)phenyl)benzamide (51) 

Yield 50.2%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.509 (s,1H), 9.506 (s,1H), 

7.986 (d,2H, J=8.4), 7.830(dd,1H, J1= 2.0, J2= 12.8) ,  7.637 (d,2H,J=8.4), 7.518 (d,1H, 

J=8.8), 7.372 (t,1H,J=8.8), 3.078 (q,2H,J=7.2), 1.275 (t,3H,J=7.2).
 13

C-NMR (100MHz, 

DMSO-d6) δ: 165.076, 157.435,155.009(1C),  138.703,138.600(1C), 137.160, 133.676, 

130.133, 129.020, 128.327, 120.455,120.332(1C), 116.735,116.704(1C), 

108.383,108.132(1C), 46.702, 8.478. DUIS-MS calculated for C15H14ClFN2O3S, [M-H]-: 

355.03, found 354.9,  Purity: 97.5%. 
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Figure 4.57 The Chemical construction of 4-chloro-N-(3- 

fluoro-4-(ethylsulfonamido)phenyl)benzamide 
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 4-cyano-N-(3-fluoro-4-(ethylsulfonamido)phenyl)benzamide  (52) 

Yield 53.2%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.682 (s, 1H), 9.533 (s,1H), 

8.110 (d,2H, J=8.4), 8.049 (d,2H,J=8.4), 7.836(d, 1H, J=12.8), 7.526 (d,2H,J=8.8), 7.391 

(t,1H,J=8.8), 3.084 (q,2H, J=7.2), 1.276 (t,3H,J=7.2) .
 13

C-NMR (100MHz, DMSO-d6) δ:  

164.802, 157.365,154.936(1C), 138.989, 138.393,138.291(1C), 132.995(2C), 

129.038(2C), 128.252, 120.785,120.652(1C), 128.726, 116.835,116.804(1C), 114.563, 

108.482,108.232(1C), 46.724, 8.475. DUIS-MS calculated for C16H14FN3O3S, [M-H]-: 

346.07, found  345.9  Purity: 97.7%. 
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Figure 4.58 The Chemical construction of 4-cyano-N-(3- 

fluoro-4-(ethylsulfonamido)phenyl)benzamide 

 

 N-(3-fluoro-4-(ethylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide (53) 

Yield 52.3%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.662(s,1H), 9.531(s,1H),  

8.292(s,1H), 8.268 (d,1H,J=7.2), 7.997 (d,1H,J=7.2), 7.826(m, 2H), 7.530(d,1H,J=8.0), 

7.397 (d,1H,J=8.0), 3.089(q,2H,J=7.0), 1.281(t,3H,J=7.0). 
13

C-NMR (100MHz, 

DMSO-d6) δ: 164.689, 157.393,154.968(1C),  138.479,138.375(1C), 135.872, 132.357, 
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130.289, 130.211,129.883,129.562,129.242(q,1C), 128.868(m,1C), 128.261, 

124.726(m,1C), 120.708,120.576(1C),  116.886,116.854(1C), 108.565,108.313(1C), 

46.737, 8.490. DUIS-MS calculated for C16H14F4N2O3S, [M-H]-: 389.06,  found 388.9,  

Purity: 97.5%. 

O

H
N

F
F

F

S

O

O

N
H

F

 

Figure 4.59 The Chemical construction of N-(3-fluoro-4-(ethyl 

sulfonamido)phenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-fluoro-4-(ethylsulfonamido)phenyl)-3-nitrobenzamide (54) 

Yield 52.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.748(s,1H), 9.546 (s,1H), 

8.642(s,1H), 8.268(dd,1H, J1= 2.0, J2= 8.4) , 7.997 (d,1H,J=8.4), 7.826 (d,1H,J=12.8), 

7.516(dd,1H,J=8.8,2.0), 7.403 (t,1H,J=8.8), 3.089 (q,2H,J=7.3), 1.277 (t, 3H,J=7.3) .
 

13
C-NMR (100MHz, DMSO-d6) δ: 163.116, 157.328,154.999(1C), 147.872, 

138.169,138.071(1C), 134.955, 133.349, 132.502, 128.784, 128.239,128.233(1C),  

125.371, 120.943,120.811(1C), 116.911,116.880(1C),  109.583,109.331(1C),  46.766, 

6.479. DUIS-MS calculated for C15H13ClFN3O5S, [M-H]-: 400.02, found 399.9,  Purity: 

98.8%. 
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Figure 4.60 The Chemical construction of 4-chloro-N- 

(3-fluoro-4-(ethylsulfonamido)phenyl)-3-nitrobenzamide 

 N-(3-fluoro-4-(ethylsulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide (55) 

Yield 47.9%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.872 (s,1H), 9.563 (s,1H), 

8.618 (s,2H), 8.400 (s,1H), 7.842 (d,1H,J=12.8), 7.533 (d,1H,J=8.8 ), 7.423 (t, 1H, J=8.8), 

3.099 (q,2H,J=7.2), 1.283 (t,3H,J=7.2).
 13

C-NMR (100MHz, DMSO-d6) δ: 163.197, 

157.304,154.872(1C), 138.070,137.972(1C), 137.220, 

131.506,131.176,130.840,130.539(q,2C), 129.081(m,2C), 128.170, 125.772(m,1C), 

127.645,124.932,122.219,119.504(2CF3), 121.066,120.940(1C),  117.065,117.028(1C), 

108.757,108.504(1C), 46.795, 8.491.  DUIS-MS calculated for C17H13F7N2O3S, [M-H]-: 

457.05,  found  456.9,  Purity: 98.5%. 
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Figure 4.61 The Chemical construction of N-(3-fluoro-4-(ethyl 

sulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 
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 4-chloro-N-(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)benzamide (56) 

Yield 45.6%. 
1
H-NMR (400MHz, DMSO-d6) δ:   16.200(s,1H)，10.587(s,1H), 

7.986 (d,2H, J=8.4), 7.872 (d,1H, J=12.8), 7.639(d,2H,J=8.4), 7.576(d,1H, J=8.4), 

7.391(t,1H,J=8.4). 
13

C-NMR (100MHz, DMSO-d6) δ: 165.260, 159.039,158.573(1C)，

140.280, 140.311,140.132(1C)，  137.260，  133.592，  130.173(2C)，129.042(2C), 

119.343,119.136(1C), 116.821,116.789(1C), 108.320,108.069(1C). DUIS-MS calculated 

for C14H9ClF4N2O3S, [M-H]-: 394.99, found  394.9,  Purity: 97.8%. 
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Figure 4.62 The Chemical construction of 4-chloro-N-(3- 

fluoro-4-(trifluoromethylsulfonamido)phenyl)benzamide 

 

 4-cyano-N-(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)benzamide (57) 

Yield 47.6%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.770(s, 1H), 

8.111(d,2H,J=8.0), 8.055(d,2H,J=8.0), 7.892(d,1H,J=12.8), 7.587(d,1H,J=8.8), 

7.417(t,1H,J=8.8). 
13

C-NMR (100MHz, DMSO-d6) δ: 165.018, 158.667,156.213(1C), 

138.888, 133.163,133.138(1C), 133.012(2C), 130.305, 129.088(2C), 

121.943,121.911(1C)，118.704, 116.933,116.902(1C), 114.657, 108.401,108.154(1C). 
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DUIS-MS calculated for C15H9F4N3O3S, [M-H]-: 386.02, found  385.9  Purity: 97.9%. 
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Figure 4.63 The Chemical construction of 4-cyano-N-(3- 

fluoro-4-(trifluoromethylsulfonamido)phenyl)benzamide 

 

 N-(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)-3-(trifluoromethyl)benzami

de (58) 

Yield 47.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:  10.776 (s,1H),  8.299 (S,1H),  

8.286 (d,2H, J=7.6), 8.002 (d, 1H, J=7.6), 7.906 (d, 1H, J=12.4), 7.833(t, 1H, J=7.6), 

7.605 (d, 1H, J=8.2), 7.418 (t,1H, J=8.2) . 
13

C-NMR (100MHz, DMSO-d6) δ: 164.897, 

158.680,156.226(1C),  140.421,140.341(1C), 135.781, 132.419, 132.377, 130.296, 

130.265, 130.223,129.902,129.58,1129.260(q,1C), 128.917(m,1C) ， 124.806(m,1C), 

123.059,122.488(1C), 116.989,116.962(1C), 108.499,108.247(1C). DUIS-MS calculated 

for C15H9F7N2O3S, [M-H]-: 429.01,  found  428.9,  Purity: 98.3%. 
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Figure 4.64 The Chemical construction of N-(3-fluoro-4-(trifluoro 

methylsulfonamido)phenyl)-3-(trifluoromethyl)benzamide 

 

 4-chloro-N-(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)-3-nitrobenzamide 

(59) 

Yield 43.5%. 
1
H-NMR (400MHz, DMSO-d6) δ:   10.760(s,1H), 

10.483(s,1H),8.654(s,1H) , 8.279 (dd,1H, J=8.4,1.2), 7.999 (t,1H,J=8.0),  

7.855(d,1H,J=12.8,), 7.612(m,2H).
 13

C-NMR (100MHz, DMSO-d6) δ: 163.342, 

158.672,156.220(1C), 147.883, 140.242,140.139(1C), 134.865, 133.378, 132.536, 

130.371, 128.903, 125.405, 121.886,121.343(1C),  117.010,116.980(1C), 

108.500,108.251(1C).  DUIS-MS calculated for C14H8ClF4N3O5S, [M-H]-: 439.97, 

found 439.8,  Purity:98.1%. 
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Figure 4.65 The Chemical construction of  4-chloro-N- 

(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)-3-nitrobenzamide 
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 N-(3-fluoro-4-(trifluoromethylsulfonamido)phenyl)-3,5-bis(trifluoromethyl)benz

amide (60) 

Yield 40.2%. 
1
H-NMR (400MHz, DMSO-d6) δ: 10.944(s,1H), 8.612(s,2H), 

8.397(s,1H)，7.900(d, 1H, J=12.4),7.594(d, 1H, J=8.6)， 7.448(t, 1H, J=8.6). 
13

C-NMR 

(100MHz, DMSO-d6) δ: 163.430, 158.665,156.211(1C),  140.171,140.067(1C),  

137.148, 131.525,131.193,130.861,130.531(q,2C), 130.349, 129.150,129.125(3C), 

125.843（m,1C）, 127.629,124.914,122.200,119.486(q,2CF3)，   117.129,117.100(1C), 

108.645,108.396(1C).  DUIS-MS calculated for C16H8F10N2O3S, [M-H]-: 497.00,  

found  497.0,  Purity: 98.2%. 
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Figure 4.66 The Chemical construction of N-(3-fluoro-4-(trifluoromethyl 

sulfonamido)phenyl)-3,5-bis(trifluoromethyl)benzamide 
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4.4.2.  Biological studies 

 

4.4.2.1. Cell culture.  

Three breast cancer cell lines including SKBR-3, MCF-7, and MDA-MB-231; 

human embryonic kidney cell line HEK293; mice macrophages cell C-38 were obtained 

from ATCC (Rockville, MD). The cells were maintained in RPMI1640 medium 

supplemented with 10% fetal bovine serum (FBS), 2 mmol/L L-Glutamine, 1 mmol/L 

sodium pyruvate, 100 U/mL
 
penicillin-streptomycin. FBS was heat inactivated for 30 min 

in a 56 ºC water bath before use. Cell cultures were grown at 37 ºC, in a humidified 

atmosphere of 5% CO2 in a VWR CO2 incubator (Bridgeport NJ).  

 

 

4.4.2.2. Cell viability analysis 

The effects of the new derivatives on the viability of three breast cancer cell lines were 

assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H- tetrazolium bromide 

assay in four replicates. Cells were grown in RPMI1640 medium in 96-well, flat-bottomed 

plates for 24 h, and were exposed to various concentrations of the compounds dissolved in 

DMSO (DMSO final concentration 0.1%) in media for 48 h. Controls received DMSO 

vehicle at a concentration equal to that in drug-treated cells. The medium was removed, 

replaced by 200 µL of 0.5 mg/ml of 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl-2H- 

tetrazolium bromide in fresh media, and cells were incubated in the CO2 incubator at 37°C 
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for 2 h. Supernatants were removed from the wells, and the reduced 

3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl- 2H-tetrazolium bromide dye was solubilized 

in 200 µL/well DMSO. Absorbance at 570 nm was determined on a plate reader. Statistical 

and graphical information was determined using GraphPad Prism software (GraphPad 

Software Incorporated) and Microsoft Excel (Microsoft Corporation). IC50 values were 

determined using nonlinear regression analysis. 

 

 

4.4.2.3. Western blot 

SKBR-3 cells were treated with JCC76 (1µM), compound 16 (0.1, 0.3, 1µM) and 

compound 17 (0.1, 0.3, 1µM) for 48 h. The cells were lysed, briefly sonicated, and 

centrifuged at 12000g 

loading
 
buffer for 5 minutes, electrophoresed on a 10% SDS-polyacrylamide

 
gel, and 

transferred onto polyvinylidene difluoride (PVDF) membrane. The membrane was 

blocked for 1 hour with 5% nonfat milk in PBST and then incubated with specific 

primary antibody (Cell Signaling). After
 
washing, the membrane was incubated

 
with 

horseradish-conjugated secondary antibody (Cell Signaling). The bands were visualized 

by chemiluminescence with ECL reagent (Thermo Scientific). 
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4.4.2.4. Small chaperone activity assay.  

Alpha-crystalline chaperone activity assay: 24 µlmg/ml insulin stock solution was 

added to the single well of 384 well plate, 3µl 5mg/ml alpha-crystalline, 71 µl PBS buffer 

with appropriate concentration of compound dissolved inside were added as well.  The 

mixture was thoroughly mixed and incubated at 37 ºC for 5 min, whereupon 2 µL of 1M 

DTT in water was added to initiate the insulin aggregation. The absorbance (A) at 400 

nm was monitored over 45min using a plate reader. A mixture of insulin in the absence or 

presence of alpha-crystalline with 0.1% DMSO was used as control.  
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CHAPTER V 

CONCLUSION AND FUTURE DIRECTIONS 

 

 

5.1 Conclusion 

Through HSP27 inhibition several client proteins will be downregulated, HER2 is 

one of those client proteins. Inhibiting HSP27 became an indirectly HER2 overexpressed 

breast cancer therapeutic strategy. In previously study we have identified a lead 

compound JCC76 which was generated from COX-2 inhibitor, Nimesulide. The lead 

compound JCC76 exhibit selective inhibition against HER2 overexpressed breast cancer 

cell and inhibit the function of HSP27. 

In the first study totally 23 compounds were synthesized through a five steps 

reaction scheme adapted from JCC76 synthesized scheme. The structure of new analogs 

was confirm by proton and carbon NMR and LC-MS. The purity of products was exam 

by LC-UV set up wavelength at 260nm. Cell viability assay was used to test the analogs 

ability to inhibit cell proliferation. Western-blot and chaperone assay were used to 
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investigate the anti-proliferate cellular mechanism. 

The major structural difference between new analogs and lead compound JCC76 is 

the flipped sulfonamide moiety. The SAR study indicate that in the B moiety 

2,5-dimethoxybenzy group contributes more in cell proliferation inhibition compared to 

2,5-dimethybenzy group. For the B moiety, SAR study suggests that it is critical for the 

compounds’ anti-proliferate activity against SKBR-3 cells, the difference of potency 

between the least potent compound and the most potent one could be 250 folds. Electron 

withdrawing groups on the benzyl amide group harm the biological activity and bulky 

electron donating substitution groups such as iodo, methoxy on benzyl amide moiety 

enhance the compounds’ overall activity. From 23 compounds, two were selected for the 

further studies because of their potency and selectivity. In the chaperone inhibition 

experiment, the selected compounds, 16 and 17, inhibited the protective function of small 

chaperone, α-crystalline, against DTT induced insulin denaturation and aggregation. This 

result indicates that the ligand based structural optimization analogs preserved the 

chaperone inhibition of the lead compound. In the HER2 downregulation experiment, the 

results indicate a dose-dependent downregulation of HER2 for both compounds, 

especially compound 16 at 1 and 0.3μM concentration where at 1μM it showed a 3 fold 

decrease in HER2 compared to JCC76 at same concentration. 

In the second study we try to improve inhibitors’ water solubility and cell uptake by 

decrease molecular size and weight. Totally 60 compounds were synthesized. The 

structure of new analogs were confirm by proton and carbon NMR and LC-MS. The 



 

150 

 

purity of products was detected by LC-UV set up wavelength at 260nm. Cell viability 

assay was used to test the analogs ability to inhibit cell proliferation. 

To improve solubility 2,5-dimethybenzy group was replace by 4 difference small 

function groups, three sulfonamide with small alky chain were choose and 5 benzyl 

amide group which are highly polar and show potent SKBR-3 cell growth inhibition were 

used. Through the combination of these substitution groups 60 compounds were designed. 

The SAR study indicates several compounds with 3-trifluoromethylbenzamide groups 

showed potent and selective inhibition of SKBR-3 cells. However, unexpectedly, some 

analogs showed potent proliferation inhibition against macrophage cells, C38, suggesting 

that these compounds may interfere some unknown critical pathways in macrophage cell. 

 

 

5.2 Future direction 

Through cell viability assay compounds that specifically targeting HER2 

overexpressed breast cancer cell SKBR-3 have been choose. However whether this 

compounds activate by inhibiting HSP27 which destabilize HER2 result in SKBR-3 

proliferate hindrance or not haven’t been confirm. To investigate the mechanism of new 

analogs western-blot and chaperone assay will be used to approve new compounds are 

HSP27 inhibitors 

To further improve HSP27 inhibition, small molecule inhibitor may not be enough. 

A new technology Proteolysis targeting chimera (PROTAC) which can downregulate 
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selected protein through increase degradation by ubiquitin-proteasome system. Synthesis 

new compounds using PROTAC may increase HSP27 degradation which result in HER2 

downregulation and more potent inhibition against HER2 overexpressed breast cancer. 
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