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HIGH-THROUGHPUT METABOLISM-INDUCED TOXICITY ASSAYS 
ON A 384-PILLAR PLATE 

SOO-YEON KANG 

ABSTRACT 

The U.S Environmental Protection Agency (EPA) launched the Transform 

Tox Testing Challenge in 2016 with the goal of developing practical methods that can 

be integrated into conventional high-throughput screening (HTS) assays to better 

predict the toxicity of parent compounds and their metabolites in vivo. In response to 

this need and to retrofit existing HTS assays for assessing metabolism-induced 

toxicity of compounds, we have developed a 384-pillar plate that is complementary to 

traditional 384-well plates and ideally suited for culturing human cells in three 

dimensions (3D) at a microscale. Briefly, human embryonic kidney (HEK) 293 cells 

in a mixture of alginate and Matrigel were printed on the 384-pillar plates using a 

microarray spotter. These cells were then coupled with 384-well plates containing 

nine model compounds provided by the EPA, five representative Phase I and II drug 

metabolizing enzymes (DMEs), and one no enzyme control. Membrane integrity and 

viability of HEK 293 cells were measured with the calcein AM and CellTiter-Glo® kit, 

respectively, to determine the IC50 values of the nine parent compounds and DME-

generated metabolites. Out of the nine compounds tested, six compounds showed 

augmented toxicity with DMEs and one compound showed detoxification with a 

Phase II DME. This result indicates that the 384-pillar plate platform can be used to 

measure metabolism-induced toxicity of compounds with high predictivity. In 

addition, the Z’ factors and the coefficient of variation (CV) measured were above 0.6 

and below 14%, respectively, indicating that the assays established on the 384-pillar 

plate are robust and reproducible. 
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CHAPTER I 

INTRODUCTION 

High attrition rates of drug candidates in clinical trials and increases in 

societal concerns for animal welfare have driven in vitro and in silico human 

toxicology testing innovations [1]. Lead compounds selected for traditional high-

throughput screenings (HTS) using two-dimensional (2D) cell monolayers and 

preclinical evaluations with animal models are often inaccurate due to lacking 

correlations between in vitro cell-based models and in vivo models and differences in 

genetic makeup between animals and humans. The poor predictivity of in vitro 

models to in vivo models is due to a lack of drug metabolism in these systems. Drugs 

are primarily metabolized in the liver by a variety of drug-metabolizing enzymes 

(DMEs), including cytochromes P450 (CYP450s), UDP-glucuronosyltransferases 

(UGTs), sulfotransferases (SULT), glutathione S-transferases (GSTs), etc. [2][3]. 

These DMEs are involved in the initial clearance of drugs from the body and generate 

drug metabolites; however, some of these compounds are unstable and toxic, leading 

to undesirable biological consequences, not only in the liver, but in other organs as 

well [4][5]. Inter-individual variability in DMEs levels and polymorphisms result in 

significant diversity for drug metabolism, which eventually leads to differences in the 
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response of patients to drugs and their adverse drug reactions (ADRs) [6][7]. 

Therefore, maintaining physiologically relevant levels of DMEs in HTS assays and 

understanding the roles of these enzymes in drug metabolism are essential in human 

toxicology testing. However, incorporating physiological levels of chemical 

metabolism into traditional HTS assays are still challenging, as addressed in “The 

Transform Tox Testing Challenge: Innovating for Metabolism” (TTTC) promoted by 

the EPA and the National Institutes of Health (NIH) subsidiaries, such as the National 

Center for Advancing Translational Sciences (NCATS) and the National Institute for 

Environmental Health Science (NIEHS). 

To address drug metabolism issues and develop better predictive toxicity 

assessment tools, the National Toxicology Program (NTP), housed within the NIEHS, 

has led the innovation in high-throughput in vitro assays. The data generated from the 

ToxCast and Tox21 programs demonstrated methods to evaluate and prioritize the 

toxicity of chemicals using a panel of assays and provided potential insight into 

chemical toxicity in vivo [8][9]. In addition, the European Union Reference 

Laboratory for Alternatives to Animal Testing (EURL ECVAM) of the European 

Commission’s Joint Research Centre has published an article on the possible use of a 

simple modelling approach to avoid the use of chronic fish testing in chemical risk 

assessment [10]. The EU policies on endocrine disruptors, multiple efficacy of 

chemicals, and nanomaterials are good examples, demonstrating that traditional risk 

assessment is coming to an end. The EURL ECVAM intensely participates in the 

research of the replacement, reduction or refinement (3R) of laboratory animals using 

alternative tests [11]. Alternative test methods developed by research laboratories 

have been submitted to the EURL ECVAM for reliability, robustness, and predictivity 

to be widely accepted as new tools for hazard and risk assessment [10]. 
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In response to this need, we have been making important contributions to 

metabolism-induced toxicity assessment by using several microarray chip platforms, 

including the metabolizing enzyme toxicology assay chip (MetaChip), the data 

analysis toxicology assay chip (DataChip), and the transfected enzyme and 

metabolism chip (TeamChip) [12-14]. However, these microarray chip platforms 

were too small in size for robotic systems commonly adopted for HTS assays and 

require difficult retrofitting for existing HTS assays. Thus, we have developed a new 

384-pillar plate that can be coupled with standard 384-well plates for 3D cell cultures 

and high-throughput, high-content imaging (HCI) assays (Figure 1). This 384-pillar 

plate can be sandwiched with standard 384-well plates, compatible with existing HTS 

equipment such as microtiter plate readers, which allows for rapid absorbance, 

fluorescence, and luminescence measurements in situ (Figure 2). By demonstrating 

cell printing technology on the 384-pillar plate, we participated in Stages I and II of 

the Transform Tox Testing Challenge. To rapidly predict metabolism-induced toxicity 

of compounds, we printed human embryonic kidney (HEK) 293 cells in a mixture of 

alginate and Matrigel on the 384-pillar plates using a microarray spotter, which were 

coupled with a 384-well plate containing model compounds from the EPA and DMEs. 

Representative DMEs, including CYP3A4, CYP1A2, CYP2B6, CYP2C9, CYP2D6, 

CYP2E1, and UGT1A4, have been used to emulate metabolic reactions in the human 

liver and evaluate augmented toxicity and detoxification by metabolism of the 

compounds. 
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Figure 1. Picture of the 384-pillar plate and the 384-well plate. 

 

Figure 2. The sandwiched 384-pillar/well plate. The close-up image shows the  

cut plane of the sandwiched plate. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Chemical Toxicity Testing 

In the past year, more than 85,000 chemicals have emerged in the United States 

[Toxic Substance Control Act Inventory List]. Although the number of new chemicals 

continues to increase, most of these have yet to be adequately tested for their effects 

on human health. Chemical toxicity is generally evaluated by using animal-based test 

methods, which have provided useful information on the safety of chemicals [15][16]. 

However, these traditional methods are relatively expensive and low throughput, 

which make it difficult to define the mechanism of action, and continue to face 

mounting ethical concerns [17]. Furthermore, intra- and inter-species differences 

make it difficult to extrapolate results to human outcomes [18]. Thus, there is great 

interest in alternative test models for measuring potential toxicities of new chemicals. 

The National Research Council (NRC) recognized the dramatic advances in molecular 

and cellular biology and proposed a new roadmap in 2004, ‘A National Toxicology 

Program for the 21st Century.’ This roadmap focuses on three main areas: refining 

traditional toxicology 
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assays, developing rapid mechanism-based predictive systems, and improving the 

overall quality of data for making public health decisions. This plan placed an 

increased emphasis on in vitro systems for identifying key mechanisms of chemicals 

[19]. The U.S Environmental Protection Agency (EPA) faced the same difficulty of 

evaluating chemical toxicity and launched the ToxCast program in 2007 [20]. 

ToxCast is currently in its third and final phase, during which it has tested over 1800 

possibly hazard compounds [20][21]. The goal of the program is to evaluate the 

toxicity of thousands of chemicals using automated HTS technologies. HTS has been 

developed by the pharmaceutical industry to evaluate the biological mechanisms of 

drug candidates [22]. HTS technology optimized for drug discovery is now being 

transferred to toxicological screening, representing a new paradigm in toxicological 

testing [23]. However, ToxCast assays have two major pitfalls. First, ToxCast assays 

are extremely limited in their ability to determine the effects of metabolism on 

chemical toxicity. In other words, ToxCast assays are not able to measure how a 

chemical might change in toxicity (i.e., become more or less toxic) as it is processed 

by our bodies. Second, ToxCast assays are limited in their ability to analyze the full 

range of chemical compounds. For example, chemicals that are not soluble in the 

solvent dimethyl sulfoxide (DMSO), such as heavy metals, make high-throughput 

analysis more difficult. 

To resolve these issues and continue working on the ToxCast results, the 

Toxicology in the 21st century (Tox21) program was developed with several federal 

agencies: the US EPA, the NIH, the NIH Chemical Genomics Center (NCGC), the 

NTP, and the Food and Drug Administration (FDA). With this combined expertise, 

over 12,000 compounds were screened [24]. Both programs have generated a broad 

spectrum of high-throughput/high-content biochemical and cell-based data used to 
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predict in vivo toxicity endpoints [25]. The ToxCast and Tox21 purposes were to 

create in vitro “signatures” that are relevant to in vivo toxicity and to develop 

biologically predictive models based on multiple HTS assays. Combining 

computational toxicology and in vitro models provide a complement approach to 

identify untested environmental chemical toxicities as an alternative to animal models 

for chemical safety evaluation [26]. The purpose of these programs was to move 

toxicology from a predominantly observational science at the disease specific level to 

a predominantly predictive science focused on a broad inclusion of target-specific, 

mechanism-based biological observations. The EPA established the TTTC with the 

goal of incorporating physiological levels of chemical metabolism into conventional 

HTS assays to better predict toxicity of parent compounds and their metabolites in 

vivo. 

2.2  The Role of the Liver in Drug Metabolism 

When chemicals are ingested or inhaled by living organisms, the liver is the “first 

pass” organ for administered compounds [27]. The liver, which is mainly composed 

of hepatocytes, contains a wide variety of enzymes to process a myriad of chemicals 

[28]. The term metabolism used here is to define all transformations of drugs and 

chemicals by an enzyme(s) [29]. Metabolism of environmental chemicals is 

composed of two different phases. Phase I reactions involve the modification of 

compounds, where hydrolysis is the most common [28]. Phase II reactions involve 

conjugation reactions by transferases, which play a crucial role in increasing the 

solubility of compounds in order to facilitate excretion out of body [30-32]. 

Metabolism of chemicals is highly affected by drug-metabolizing enzymes (DMEs) 

and their isoforms. Thus, knowledge in the role of DMEs in metabolism is an 

important area to assess human toxicology testing. 
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2.2.1 Phase I 

Cytochrome P450 (CYP450s) enzymes are a family of monooxygenases and 

play a crucial role in phase I metabolism by performing oxidation, reduction, and 

hydrolysis [28][29]. CYP450 enzymes mostly focus on the initial modification of 

drugs, which decrease the plasma concentration and affect the bioavailability [28][29]. 

During this process, phase I metabolites are generated, some of which are biological 

activity to perform desired pharmacological effects [33][34]. On the other hand, 

interactions of DMEs with drugs or other chemicals can inhibit other enzymes, 

leading to severe toxicity or even death [35]. Furthermore, levels of CYP450 enzymes 

vary among individuals, leading to broad variations of drug efficacy [36]. DMEs 

typically exist in a variety of isoforms. Isoforms are enzymes that share the same 

general reaction mechanism, but are encoded for by different genes [37]. Within as 

many as 18 families of DMEs, there are important subfamilies and isoforms that have 

substantial involvement in metabolism during drug exposure. Of the P450s, CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4 account for the majority of drug 

metabolism, with additional contribution from CYP2E1, CYP2A6, CYP2C8, and 

CYP2B6 [38-40]. However, CYP450 enzymes involved in chemical metabolism can 

be dangerous. Oxidation by CYP450 enzymes can also convert a parent compound 

into a more highly toxic metabolite, such as a carcinogen [29][33]. Biologically 

reactive intermediates by CYP450 enzymes, such as epoxides, hydroxylamines, acyl 

halides, can attach to deoxyribonucleic acids (DNA) or proteins, causing cell damage 

because of their inherent instability [41]. Compared to drug metabolism, CYP1A1, 

CYP1A2, CYP1B1, CYP2A6, CYP2E1, and CYP3A4 were reported to have a greater 

contribution to carcinogen activation rather than drug metabolism [42]. Thus, 
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understanding of CYP450 enzymes is important in drug metabolism and chemical 

toxicology. 

2.2.2 Phase II 

In Phase II, subsequent conjugation reactions (e.g. glucuronidation, sulfation, 

acetylation, and the addition of amino acids and peptides, including glutathione, are 

carried out by phase II enzymes, such as UDP-glucuronyltransferases (UGTs), 

glutathione S-transferases (GSTs), sulfotransferases (SULTs), methyltransferases, and 

aryl-amine N-acetyltransferases (NATs). Phase II biotransformation mostly leads to 

detoxification of reactive metabolites and results in increased hydrophilicity, allowing 

excretion of these metabolites via transporter proteins of hepatocytes [30][43]. For 

example, GST catalyzes the conjugation of reduced glutathione to various 

bioactivated metabolites generated by CYP450 enzymes, resulting in detoxification of 

the active metabolites [43]. In another example, UGT catalyzes the conjugation of D-

glucuronic acid to metabolites possessing carboxylic acid groups [43]. Both of these 

reactions account for the majority of detoxification of reactive metabolites. 

2.3 Existing In Vitro Toxicity Test Platforms 

Currently, animal models are widely used for the prediction of in vivo drug 

metabolism. However, animal models cannot correctly reflect the in vivo conditions 

due to interspecies differences. In addition, animal models are difficult to use in HTS, 

due to cost. Therefore, there is need for a novel, efficient, inexpensive model, which 

can be applied for drug toxicity screening. In this decade, in vitro modeling has been 

largely improved. In vitro models are cost-effective and suitable for large-scale 

screening. 
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2.3.1 Traditional Liver-Derived In Vitro Systems  

Over the past few decades, liver-derived in vitro model systems have been 

developed to provide insights into in vivo drug metabolism and toxicity. Liver tissue 

slices, primary hepatocytes, and immortalized cell lines are extensively used for in 

vitro models of liver toxicity testing. Advantages and disadvantages of these systems 

vary greatly. 

Liver tissue slices can retain liver structure and preserve all the cell types 

found in vivo. Thus, it is an appropriate system to correlate metabolism in vitro to in 

vivo [44]. Liver slice models are stable for 20-96 hours, with slightly decreased phase 

II enzyme activity and albumin production [45][46]. However, metabolic enzyme 

levels are greatly reduced after 6-72 hours and cellular necrosis occurs after 48-72 

hours [47-49] 

Primary hepatocytes cultures are considered to be the gold standard for in 

vitro toxicity testing [50]. Primary hepatocyte cultures can retain morphology and 

complete liver-specific functionality, such as DMEs, similar to in vivo situations for 

the short term [51]. Therefore, primary hepatocyte cultures have been used for in vitro 

studies such as enzyme induction, inhibition, and drug testing [52]. Nevertheless, 

primary hepatocytes cultures are expensive and difficult to obtain in large quantities 

with uniform cell function for large scale toxicity screening. In addition, these models 

have drastic morphological alterations and rapid loss of liver-specific functions with 

variable expression levels of DMEs when the cells are maintained in monolayer 

cultures [51][53]. After the cell loses liver specific functions, response to chemicals 

are different to in vivo. 

To maintain liver-specific functionality over long periods of time, a simple 

sandwich culture was introduced. In this system, hepatocytes are placed between two 
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layers of matrix (traditionally collagen or Matrigel®) [54]. This configuration 

prevented the loss of cell viability, increased enzyme activities, and mimicked in vivo 

conditions [54][55]. With this platform, liver-specific functionalities or positive 

effects are maintained for extended periods of time due to contributions of the 

extracellular matrix (ECM) [54]. 

Commercially available immortalized liver-derived cell lines include HepG2, 

Hep3B, and HepaRG [56][57]. The advanced cell line, HepaRG, derived from a 

human hepatocellular carcinoma, can differentiate into both the biliary and hepatocyte 

lineage. HepaRG cells have expression levels of liver-specific functions, including 

CYPs and phase II enzymes [58]. HepaRG retains a high proliferative capacity and 

improved reproducibility for experiments [58][59]. HepaRG represents a phenotype 

derived from a single donor, thereby reducing its predictive value for inter-individual 

variances [58]. 

2.3.2 Novel In Vitro Toxicity Test Platforms 

With progress in the manufacturing of micro-scale channels on biocompatible 

plastics, such as polydimethylsiloxane, microfluidic platforms have become valuable 

for in vitro toxicity testing [60][61]. The semi-automated system called the 

HepaChip®, is a highly advanced microfluidic system mimicking hepatic sinusoids 

with two electrodes [62]. Schutte et al. were able to demonstrate that hepatocytes 

from HepaChip® had a higher activity of DMEs, compared to those co-cultivated in 

96-well plates [62]. While small volumes are required, it is limited due to its complex 

system of tubing lines and reservoirs. A major advantage of microfluidic devices over 

other platforms is its ability to emulate physiological conditions in vitro by providing 

mechanical stress, nutrient exchange, and drug exposure [61]. The microfluidic device 

was able to maintain 3D tissue-like cellular morphology and cell-specific 
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functionality of human hepatocytes [63]. However, these sophisticated systems will 

have difficulty when being adjusted for high throughput [61]. 

Several bioreactors have been developed for toxicology studies with 

hepatocytes [64]. Schmelzer et al. utilized a hollow-fiber bioreactor where cells are 

seeded into the extracapillary space and are surrounded by three independent capillary 

membrane systems [65]. The capillary systems are composed of porous 

polyethersulphone and hydrophobic multilaminate hollow fiber membranes, which 

allow for gas exchange. The capillary layers are interwoven around the extracapillary 

space and two of the capillary systems are perfused in a counter-current flow with 

culture medium or plasma, while the third allows for decentralized oxygenation and 

supply of nutrients. Oxygen delivery to hepatocytes is essential to retain of liver-

specific functions. When the cells are exposed to low oxygen concentrations, gene 

expression related to liver-specific functions rapidly was decreased [66]. Hollow fiber 

bioreactors increased expression of phase I and phase II enzymes and transporters 

[67-70]. Miranda et al., were able to demonstrate that hepatocytes cultured in small 

stirred bioreactors allow for improved functionality [71]. The bioreactors also allow 

for a well-defined culture environment with control culture parameters, such as pH 

and temperature [72][73]. The main disadvantage of bioreactors is that they required a 

high number of cells and large amounts of reagents, increasing costs. More recent 

developments concentrate on the miniaturization for routine application in research. 

2.4 Mechanisms of Toxicity of Model Compounds 

In the following section, we will discuss the mechanisms of toxicity of the 

model compounds used in our experiment. The nine model test compounds, 

benzo[a]pyrene, aflatoxin B1, cyclophosphamide, 2-naphthlyamine, acrylamide, 

doxorubicin hydrochloride (HCl), 6-aminochrysene, 8-methoxypsoralen, and 4-
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nitrophenol were provided by the EPA. Prior to testing model compounds, 

acetaminophen was used to measure the error range and the quality of the new assay. 

The model compounds were selected from a wide range of carcinogens to 

chemotherapy agents to induce various mechanisms of toxicity so that we could 

demonstrate our ability to detect metabolism-induced toxicity on the 384-pillar plate. 

2.4.1 Acetaminophen 

Acetaminophen (APAP) is widely known to be an analgesic and antipyretic 

medication. When APAP is ingested, there are two phases of APAP metabolism. The 

majority of APAP is metabolized via CYP450s, particularly CYP2E1, CYP1A2, and 

CYP3A4, to N-acetyl-p-benzoquinone imine (NAPQI), which is a highly reactive 

toxic metabolite [74][75]. NAPQI can bind to membrane proteins, resulting in 

oxidative stress and mitochondrial dysfunction. This leads to the disruption of 

adenosine triphosphate (ATP) production, ultimately causing cell necrosis [76][77]. 

Another portion of APAP is neutralized via the phase II enzymes UGT and SULT to 

form glucouronidated and sulfated conjugates that can be eliminated from the body 

through urine [78]. 

2.4.2 Benzo[a]pyrene 

Benzo[a]pyrene (BAP) is a carcinogen categorized as a poly-cyclic aromatic 

hydrocarbon (PAH) [79]. PAH are initially lipophilic and inert, but can be activated to 

become reactive molecules by DMEs [80]. The metabolism of BAP is defined by its 

several conversions through CYPs subfamilies and epoxide hydrolase [79][80]. BAP 

is first oxidized to Benzo[a]pyrene-7,8-oxide by CYP1A2, CYP2C9, and CYP3A4 

[79-82]. Then benzo[a]pyrene-7,8-diol is produced by opening the epoxide ring [83]. 

Benzo[a]pyrene-7,8dihydrodiol-9,10-epoxide is the ultimate product of BAP through 
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enzymatic reactions [80]. This final molecule binds to DNA and can introduce 

mutations, ultimately becoming a carcinogenic process [79]. 

2.4.3 Aflatoxin B1 

Aflatoxins are mycotoxins produced by fungi in the genus Aspergillus, like 

Aspergillus flavus [84]. There are over 20 isolated aflatoxin derivatives produced by 

several fungal species [84]. Aflatoxins cause acute and chronic effects after human or 

animal consumption [85, IARC (1993)]. Aflatoxin B1 (AFB1) is the most toxic with 

respect to the cytotoxic effects among the known mycotoxins [84][85]. AFB1 has 

been demonstrated to cause oxidative damage in cultured rat hepatocytes, leading to 

cell injury [86]. In the human liver, CYP3A4 and CYP1A2 play important roles in the 

biotransformation of AFB1 [87]. CYP3A4 is an important enzyme that catalyzes the 

reaction of AFB1 to AFB1-8,9-epoxide (AFBO), while CYP1A2 catalyzes the 

reaction of AFB1 to Aflatoxin Q1 (AFQ1) [88]. The epoxide can be conjugated with 

glutathione [88][89]. AFM1 and AFM2 are the metabolites formed by the 

hydroxylation of AFB1 [90]. AFM1 is considered a detoxified product [91]. Another 

study demonstrated AFB1 was found to be more toxic than AFM1 on intestinal cells 

both before and after differentiation in Caco-2 cells, leading to membrane damage 

[92]. 

2.4.4 Cyclophosphamide 

Cyclophosphamide (CPA) is commonly used as an anticancer agent against 

breast cancer and lymphomas [93]. CPA itself is a prodrug, meaning it is 

therapeutically inactive. Thus, metabolites of CPA have been investigated [93]. 

Cyclophosphamide is initially hydroxylated to 4-hydroxycyclophosphamide and 

aldophosphamide, eventually leading to the generation of the therapeutically active 

phosphoramide mustard and the toxic by-product, acrolein [93][94]. Oxidation of 
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CPA occurs through one or more of the CYPs isoforms [95][96]. CYP2B6 displayed 

the highest activity in CPA 4-hydroxylation activity, followed by CYP3A4 and 

CYP2C19. CYP1A1, CYP2C9, and CYP3A7 contributed to low rates of CPA 4-

hydroxylation [96][97]. CYP3A4 is also involved in N-dechloroethylation, another 

oxidative pathway [97]. 

2.4.5. 2-Naphthylamine 

2-Naphthylamine (2-NA) is classified as a bladder carcinogen found in 

cigarette smoke [98][99]. 2-NA is metabolized via N-hydroxylation and N-

glucuronidation in the liver and its N-glucuronide is transported to the urinary bladder 

[100]. 2-NA is metabolized via N-hydroxylation by CYP1A2 to N-hydroxy-2-

naphthylamine (N-OH-NA). N-OH-NA and 2-Amino-1-naphthol generate reactive 

oxygen species and causes damage to DNA [101]. Enzymes in the UDP-

glucuronosyltransferase 1 family, including UGT1A4, can convert 2-NA and 2-

Hydroxyamino-naphthalene to form 2-Naphthylamine-N-beta-D-glucuronoside and 2-

Hydroxyamino-naphthalene-N-beta-D-glucuronoside,respectively [100-103]. 

2.4.6 Acrylamide 

Acrylamide (AA) has been detected in high concentrations in fried and baked 

starch-enriched food [104]. AA is known to be a potential carcinogen in humans and 

rats [105][106]. Glycidamide (GA) is a metabolite of acrylaminde and has been 

demonstrated to cause somatic cell mutagenicity in in vivo studies [107]. CYP2E1 in 

the human liver is a major player in the production of GA [108]. Kurebayashi et al. 

has shown that GA is more toxic than AA by measuring the decrease in hepatocyte 

viability [109]. Koyama et al. has also identified that GA is much more reactive with 

DNA than AA [110]. GA can be further conjugation, resulting in the formation of N-

acetyl-S- 
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(carbamoyl-2-hydroxyethyl)cysteine and N-(R,S)-acetyl-S-(2-hydroxy-2- 

carbamoylethyl)-cysteine by several GSTs [111-112]. 

2.4.7 Doxorubicin HCL 

Doxorubicin (DOX), an anthracycline glycosidic anticancer drug, impairs 

DNA synthesis during tumor cell division and is used for the treatment of lymphoma, 

osteosarcoma, and other cancers [113]. DOX is metabolized to doxorubicinol and 

both can be metabolized to their aglycones, doxorubicinone and 7-

deoxydoxorubicinone, respectively, by cytoplasmic NADPH-dependent aldo-keto 

reductase [114-116]. Doxorubicinol is a more cardiotoxic metabolite of DOX [117]. 

2.4.8 6-Aminochrysene 

6-Aminochrysene (6-AC) is characterized as a potent mutagen and 

metabolized by liver CYP450S to N-hydroxylated metabolites and epoxide 

intermediates [118][119]. 6-AC is bioactivated through two pathways (N-

hydroxylation and epoxidation). 6-AC is mainly transformed by CYP450s via N-

hydroxylation pathways. These conjugation reactions are followed by N-

acetyltransferases, forming carcinogenic products [120]. Another reaction is the 

diolepoxide pathway. By using S. typhimurium TA1535/pSK1002, Shimada et al. 

have proven that CYP3A4 is the most important isoform involved in 6-AC activation 

[121]. Yamazaki et al. have shown that CYP2B6 and CYP3A4 are involved in 

actively transforming 6-AC to form reactive N-hydroxylated products, whereas 

CYP1A2 catalyzes 6-AC through the diolepoxide pathway [122][123] 

2.4.9 8-Methoxypsoralen 

8-Methoxypsoralen (8-MOP) has been used as a photochemotherapeutic 

agent, treating various skin diseases, including psoriasis [124]. 8-MOP metabolism in 

human is characterized by the formation of 8-hydroxypsoralen. Deeni et al. revealed 
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that CYP1B1 is abundant in human skin and is the key contributor to 8-MOP 

metabolism [125]. They showed CYP1A1, CYP1A2, CYP1B1, CYP2A6 and 

CYP2E1 influence 8-MOP metabolism by using E.coli membranes co-expressing 

various CYP450s and CYP450 reductase. 

2.4.10 4-Nitrophenol 

4-Nitrophenol (4-NP) is commonly used as pesticide [126]. Ingested or 

inhaled 4-NP is hydroxylated to form 4-nitrocatechol (4-NC) by CYP2E1 [127]. A 

major role of the CYP2E1 in 4-NP hydroxylation in laboratory animals has been 

demonstrated [128][129]. CYP2E1 is involved in the hydroxylation of 4-NP to 4-NC 

in at least 85% of humans [127]. Zerilli et al. used individual CYP450s (CYP2E1, 

CYP3A4, CYP3A5, and CYP2A6) with human β-lymphoblastoid cells to demonstrate 

hydroxylation of 4-NP in the presence of cytochrome b5, a stimulator. CYP2E1 was 

found to be the most sensitive isoforms [130]. The ability of CYP3A4 was shown to 

metabolize 4-NP somewhat when complexed with cytochrome b5 [130]. 

2.5 Endpoints 

Various mechanisms (such as redox potential, integrity of cell membrane, and 

activity of cellular enzymes) were assessed to detect cell viability. Each factor 

indicates a different aspect of cell health, which can be used to assess and quantify 

cell viability. Indicators for cell viability have been developed to make them 

compatible with fluorescence microscopes, microplate readers, or flow cytometers, 

and have sensitivity, specificity, and compatibility for different cell lines. 

2.5.1 Cell Membrane Integrity 

Calcein acetomethoxy diacetylester (Calcein AM) is a well-known 

fluorescent cell permeant dye used to measure cell viability or cytotoxicity [131]. 

Calcein AM has enhanced hydrophobicity compared to Calcein, allowing passive 
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diffusion through viable cell membranes. After Calcein AM permeates into the 

cytoplasm, it is hydrolyzed by intracellular esterases to Calcein, which is a green 

fluorescent compound. Fluorescent cells indicate intact cell membranes. Calcein does 

not inhibit any cellular functions, such as proliferation. Calcein is detected with the 

excitation/emission spectra of 495/515 nm. 

2.5.2 Cellular ATP Levels 

Mitochondria are found in all eukaryotic cells and are responsible for 

generating ATP, playing a central role in living processes as an energy source. 

Measuring ATP levels is a fundamental method to detect viability [132]. Historically, 

firefly luciferases extracted from Photinus pyralis (LucPpy) have been used for ATP 

assays [133][134]; however, LucPpy luciferase has only moderate stability in vitro 

and is sensitive to environmental factors, such as pH. These characteristics prevent its 

potential of developing a robust homogenous ATP assay. However, Promega has 

successfully established a stable form of luciferase purified from Photuris 

pennsylvanica (LucPpe2). Luciferases from LucPpe2 show improved stability, 

improving the robustness of the assay. During cell death, levels of ATP drop rapidly 

as metabolism shuts down and ATP is degraded by endogenous ATPases. The 

CellTiter-Glo® assay generates a stable luminescent signal while simultaneously 

blocking the activity of ATPases during cell lysis. The assay uses the luciferase 

reaction to measure ATP as an indicator of metabolically active cells [133][134]. The 

enzyme luciferase acts on luciferin in the presence of Mg2+ and ATP to provide 

oxyluciferin, which emits energy in the form of luminescence [133]. Generation of a 

luminescent signal is proportional to the amount of ATP present, indicating cellular 

metabolic activity. The CellTiter-Glo® assay allows us to quickly and efficiently 
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detect luminescence for HTS. Detection of cell viability with luciferase and 

biochemical markers are powerful tools for identification of compound mechanisms. 

2.6 Dose-Response Curves 

The effects of DMEs can be plotted using a graph representing the 

concentration of the compound versus the physiological effect, also known as a dose 

response curve. To understand the effect of compound metabolites on the cells, the 

logarithm of test compound concentration is plotted on the x-axis, while the 

physiological response from different mechanisms is plotted on the y-axis. Dose-

response curves are able to show the IC50 values, which represent the concentrations 

of compounds where 50% of the biological cellular response is inhibited. 
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CHAPTER III 

METHODS 

3.1 Culture of Human Embryonic Kidney (HEK) 293 Cells in T-75 Flasks 

As a target cell model to evaluate the performance of metabolism-induced toxicity, 

HEK 293 cells from the American Tissues Culture Collection (ATCC, Rockville, MD, USA) 

were used in Stage II of the TTTC. HEK 293 cells were cultured in Dulbecco’s modified 

eagle medium (DMEM, Corning, Corning, NY, USA) supplemented with 10% fetal 

bovine serum (Corning) and 1% penicillin/streptomycin (Gibco, Gaithersburg, MD, 

USA) in T-75 flasks in a 5% CO2 incubator at 37°C and passaged when it is around 

80% confluent. Cell suspensions were prepared by adding 2 mL of 0.25% trypsin in 

the T-75 flask, incubating for 2 - 3 minutes at 37°C, adding 7 mL of growth media, 

breaking apart big cell clumps by rigorous aspiration and dispensation, centrifuging at 

500 x g for 3 minutes to form a cell pellet, removing the supernatant gently, and re-

suspending the cells with 2 mL of growth media. The cell number was counted with a 

Moxi Z automated cell counter by loading 75 µL of the cell suspension in a Moxi Z 

cassette. 

3.2 Culture of HEK 293 Cells in 3D on 384-pillar Plates 

To ensure robust cell spot attachment to the 384-pillar plate (Medical & Bio 

Device (MBD), Republic of Korea), the surface of the 384-pillar plates was coated 

with 0.01% (w/v) poly (maleic anhydride-alt-1-octadecene) (PMA-OD from Sigma-
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Aldrich, St. Louis, MO, USA).  Briefly, a 0.01% (w/v) PMA-OD working 

solution was prepared in 50 mL conical tubes by diluting 0.1% (w/v) PMA-OD 

dissolved in ethanol 10-fold with ethanol and proper mixing. The 384-pillar plates 

were immersed in 20 mL of the 0.01% (w/v) PMA-OD in the lid of a 384-well plate 

and then dried in a sterile bioassay plate at room temperature for 2 - 3 hours. For 

robust spot attachment by ionic interactions and gelation with alginate, a 2 µL mixture 

of 0.0033% poly-L-lysine (PLL from Sigma-Aldrich) and 16.66 mM barium chloride 

(BaCl2 from Sigma-Aldrich) was printed on each pillar of the PMA-OD-coated 384-

pillar plate using a microarray spotter (S+ MicroArrayer from Advanced Technology 

Inc. (ATI), Incheon, South Korea). After drying overnight, 1.5 µL of the HEK 293 

cell suspension in a mixture of 0.75% low-viscosity alginate (Sigma-Aldrich) and 1 

mg/mL growth factor reduced (GFR) Matrigel (Corning) at 0.67 x 10 6 HEK 293 

cells/mL was printed on each pillar of the PLL-BaCl2-treated 384-pillar plate using 

the S+ MicroArrayer (Figure 3). After 4 minutes of gelation on the chilling deck of 

the S+ MicroArrayer, the 384-pillar plate containing 1000 HEK 293 cells per pillar 

was sandwiched with a 384-well plate containing 60 µL of complete DMEM growth 

medium supplemented with 10% FBS and 1% P/S in each well. After pre-incubation 

for 4-6 hours to remove excess BaCl2, the 384-well plate containing the complete 

growth medium was discarded and the 384-pillar plate was sandwiched overnight 

with a new 384-well plate containing 40 µL of the complete DMEM growth medium 

supplemented with 50 μM buthionine sulfoximine (BSO) in each well. BSO, which is 

an inhibitor of gamma-glutamylcysteine synthetase, was supplemented in the growth 

medium to reduce cellular levels of glutathione and increase the sensitivity of reactive 

metabolites generated by DMEs [14]. 
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Figure 3. Schematic of the 384-pillar plate for 3D cell culture. 

 

3.3 Measurement of DME Activity 

Prior to metabolism-induced toxicity assays with HEK 293 cells, we 

confirmed activities of the DMEs with fluorogenic substrates. For CYP450 activity 

assays, 2 mM stock solutions of fluorogenic substrates, including BOMCC (for 

CYP2B6, CYP2C9, and CYP3A4, Invitrogen, Carsbad, CA, USA) and EOMCC (for 

CYP1A2, CYP2D6, and CYP2E1, ThermoFisher) were prepared in acetonitrile. A 

CYP450-NADP-regeneration system mixture of 1000 nM CYP450 isoform 

(ThermoFisher), 10 mM NADP+ (ThermoFisher) in 100 mM potassium phosphate 

buffer (pH 8.0), and Vivid® regeneration system (100X from ThermoFisher) 

containing 333 mM glucose-6-phosphate and 30 U/mL glucose-6-phosphate 

dehydrogenase in 100 mM potassium phosphate buffer (pH 8.0) was prepared at a 

ratio of 2:1:1. The fluorogenic substrates were diluted 200-fold in complete DMEM to 

prepare a final 10 μM of the substrates. For enzymatic reactions, 47.5 μL of 10 μM 

BOMCC (or 10 μM EOMCC) was added into 384-well plates, which was followed by 

adding 2.5 μL of the CYP450-NADP-regeneration system mixture (final enzyme 

concentrations can be found in Table 1). The fluorescence intensity was immediately 

recorded using a microtiter plate reader (Synergy H1, BioTek instruments, Winooski, 
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VT, USA) at an excitation wavelength of 405 nm and an emission wavelength of 460 

nm. 

For the UGT activity assay, a 100 μM 4-methylumbelliferone (4-MU, Sigma-

Aldrich) working solution was prepared by mixing 1 μL of the stock 100 mM 4-MU 

in methanol with 1 mL of complete DMEM. For the enzymatic reaction, 30 μL of the 

100 μM 4-MU was mixed with 1 μL of UDPGA (Corning) into 384-well plates, 

which was followed by adding 2.5 μL of 5 mg/mL UGT1A4 (Corning). The 

fluorescence intensity was immediately recorded using the microtiter plate reader at 

an excitation wavelength of 372 nm and an emission wavelength of 445 nm. 

Table 1. Activity of representative drug metabolizing enzymes (DMEs) and their 

substrates. 

Enzymes Substrates 
Substrate 

conc. 
(μM) 

Enzyme 
conc. [E0] 

Initial rate 
measured 

(RFU/min) 

Initial 
rate/[E0] 

Literature 
Km 

(μM) a 

Literature 
Vmax 

(nM/min) 
a 

CYP1A2 EOMCC 10 38 nM 655 26 3 5 
CYP2B6 BOMCC 10 38 nM 640 26 51 87 
CYP2C9 BOMCC 10 38 nM 21 1 13 1 
CYP2D6 EOMCC 10 38 nM 52 2 43 5 
CYP2E1 EOMCC 10 75 nM 45 1 20 5 
CYP3A4 BOMCC 10 38 nM 277 11 10 95 

UGT1A4 4-MU 100 
0.38 

mg/mL 
3045 8013 61 1500 b 

 

a The Km and Vmax values were obtained from the Vivid CYP450 screening kit 
protocol provided by Thermo Fisher Scientific. 
b pmol/min/mg 
 

3.4 Preparation of 384-well Plates Containing Test Compounds and Drug 

Metabolizing Enzymes 

HEK 293 cells on the 384-pillar plate were exposed to different concentrations 

of compounds and DMEs. The nine test compounds, benzo[a]pyrene, aflatoxin B1, 

cyclophosphamide, 2-naphthlyamine, acrylamide, doxorubicin hydrochloride (HCl), 
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6-aminochrysene, 8-methoxypsoralen, and 4-nitrophenol, were obtained from the 

EPA. The highest dosage of the compounds tested was 250 μM, by creating a 1:200 

dilution of the 50 mM compound stock solutions in DMSO with 50 μM BSO-

supplemented DMEM. Using the highest dose, 2-fold serial dilutions of the 

compound were performed with 50 μM BSO-supplemented DMEM containing 0.5% 

DMSO in 1.5 mL Eppendorf tubes. Eight dosages at 1:200, 1:400, 1:800, 1:1600, 

1:3200, 1:6400, 1:12800, and 1:25600 dilution and one solvent-alone control (DMSO 

control) were prepared for each compound. A single compound was serially diluted 

and then added in sections 1 – 9 of the 384-well plate, with section 1 being a DMSO 

only control (Figure 4). 

 

Figure 4. Layout of the 384-well plate (216 spots/plate) for in-situ drug 
metabolism. 
 

For Phase I DME reactions, CYP450 solutions, including CYP3A4, CYP1A2, 

CYP2B6, CYP2D6, CYP2E1, CYP2C9 (ThermoFisher), were prepared in 96-well 

plates by mixing 125 µL of 1000 nM CYP450, 62.5 µL of 10 mM NADP+, and 62.5 

µL of Vivid® regeneration system (100X) on ice until use. Baculosome® Plus was 

used as a no enzyme control (ThermoFisher). For Phase II DME reactions, the UGT 
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Reaction Mix A (25 mM UDPGA from Corning) was diluted with 50 μM BSO-

supplemented DMEM to prepare a final 0.75 mM UDPGA solution. This was 

followed by preparing a mixture of UGT1A4 solution using 2.5 µL of 5 mg/mL 

UGT1A4 (Corning) and 31 µL of 0.75 mM UDPGA.  

Finally, 30 µL of each dilution of compound were dispensed in a 384-well 

plate using a multichannel pipette and 2.5 µL of the five DMEs and one baculosome® 

control were printed in 6 regions of the 384-well plate (Figure 4). As shown in Figure 

4, region A specifically contained the baculosome® control as a test compound only 

control; regions B - E contained 4 CYP450 isoforms; and region F contained 

UGT1A4 as a representative phase II enzyme. The 384-pillar plate with HEK 293 

cells was then sandwiched with the 384-well plate containing one test compound and 

DMEs and incubated in the 5% CO2 incubator at 37C for 24 hours (Figure 5). This 

was repeated for all test compounds. 

 

Figure 5. Schematic of the 384-well plate containing single compound with 
DMEs. 
 

3.5 Cell Staining with Calcein AM and with CellTiter-Glo® Luminescent Kit for 

Assessing Membrane Integrity and Measuring Cellular ATP Levels 

For cell staining, compound and DME-treated HEK 293 cells on the 384-pillar 

plate were rinsed once for 10 minutes by immersing the 384-pillar plate in a fresh 
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384-well plate containing 60 µL of a saline solution containing 140 mM NaCl and 20 

mM CaCl2. After discarding the 384-well plate with saline solution, the 384-pillar 

plate was sandwiched with a new 384-well plate containing 40 µL of 0.5 μM calcein 

AM (ThermoFisher) and incubated for 1 hour in the dark. After cell staining, excess 

calcein AM in the cell spots were removed by rinsing the 384-pillar plate with 60 µL 

of the saline solution for 10 minutes. To obtain fluorescent images of cell spots, the 

384-pillar plate was sandwiched with a fresh 384-well plate with saline solution and 

scanned with the S+ Scanner (ATI, Republic of Korea), an automated epifluorescence 

microscope developed for rapid image acquisition at 15 frames per second (FPS). 

Green fluorescent cell images were obtained at 4X magnification with the Olympus 

UPLFLN 4X (numerical aperture (NA) 0.13, f-number 26.5, and depth of field (DOF) 

~ 32.3 µm) (Olympus, Tokyo, Japan) and a green filter (XF404 from Omega Optical). 

ImageJ was used to extract fluorescent intensity from the images obtained. 

Immediately after calcein AM staining and scanning, the cells on the 384-

pillar plate were immersed in 40 µL of CellTiter-Glo® luminescent cell viability kit 

(Promega, Madison, WI, USA) in a 384-well plate to measure cellular ATP levels. To 

induce cell lysis, the sandwiched 384-pillar/well plates were shaken on an orbital 

shaker for 2 minutes. After stabilizing the luminescence for 10 minutes at room 

temperature, the luminescent signals were recorded using the plate reader at an 

emission wavelength of 560 nm. Overall experimental procedures are illustrated in 

Figure 6. 
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Figure 6. Schematic of experimental procedures for metabolism-induced toxicity 
assays 
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CHAPTER IV 

IMAGE AND DATA ANALYSIS 

4.1 Image Analysis 

Since the background luminescence (or fluorescence) of completely dead 

HEK 293 cells (following treatment with 70% methanol for 1 h) was negligible due to 

background subtraction, the percentage of live HEK 293 cells was calculated using 

the following equation: 

ܛܔܔ܍܋	܍ܞܑۺ	% ൌ ൤
࢔࢕࢏࢚ࢉࢇࢋࡾࡲ
࢞ࢇࡹࡲ

൨  ૚૙૙	ܠ

where FReaction is the luminescence (or fluorescence) intensity of the reaction spot and 

FMax is the luminescence (or fluorescence) intensity of fully viable cells. 

To produce a conventional sigmoidal dose-response curve with response 

values normalized to span the range from 0% to 100% plotted against the logarithm of 

test concentration, we normalized the luminescence (or fluorescence) intensities of all 

cell spots with the luminescence (or fluorescence) intensity of a 100% live cell spot (a 

cell spots contacted with no compound) and converted the test compound 

concentration to their respective logarithms using Prism 4 (GraphPad Software, San 

Diego, CA). The sigmoidal dose-response curves (variable slope) and IC50 values (i.e., 

concentration of the compound where 50% of cell viability/growth inhibited) were 
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obtained using the following equation: 

܇ ൌ ܕܗܜܜܗ۰ ൅	൤
	࢖࢕ࢀ െ ࢓࢕࢚࢚࢕࡮	

૚	 ൅	૚૙ሺ࡯ࡵࢍ࢕ࡸ૞૙ିࢄሻൈࡴ
൨ 

where IC50 is the midpoint of the curve, H is the hill slope, X is the logarithm of test 

concentration, and Y is the response (% live cells), starting from the top plateau (Top) 

of the sigmoidal curve to the bottom plateau (Bottom). 

 
4.2 Calculation of the Coefficient of Variation (CV) and the Z’ Factor 

The CV is the ratio of the standard deviation (SD) to the average (Avg). It 

represents variability in relation to the average signal strength, thus the inverse of the 

signal-to-noise ratio [135]. 

܄۱ ൌ 	
ࡰࡿ
ࢍ࢜࡭

ൈ ૚૙૙ 

To establish the robustness of the assays on the 384-pillar plate, the 

reproducibility and range of error were measured using the Z’ factor and the 

coefficient of variation (CV). The Z’ factor can be explained by the following 

equation: 

ᇱ܈ ൌ 	
ሺ࢞ࢇࡹࢍ࢜࡭ 	െ 	૜࢞ࢇࡹࡰࡿሻ 	െ	ሺ࢔࢏ࡹࢍ࢜࡭ 	൅ 	૜࢔࢏ࡹࡰࡿሻ

࢞ࢇࡹࢍ࢜࡭ 	െ	࢔࢏ࡹࢍ࢜࡭
 

where AvgMax is the average of all maximum luminescence intensity from fully viable 

HEK 293 cells on the 384-pillar plate, SDMax is the standard deviation of maximum 

luminescence intensity, AvgMin is the average of all minimum luminescence intensity 

from the dead cells affected by the highest dose of acetaminophen, and SDMin is the 

standard deviation of minimum luminescence intensity.  
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4.3 Statistical Analysis of IC50 Values 

Statistical analysis was performed with GraphPad Prism 4.0 to calculate IC50 

values and standard errors obtained from triplicate 384-pillar plates, with each plate 

containing four replicates of each test condition. One-way analysis of variance 

(ANOVA) was used to compare the mean IC50 values of test compounds obtained 

from HEK 293 cells and individual DMEs. Statistically significant IC50 difference 

between no enzyme control and enzyme test conditions was indicated by * for P < 

0.05 and ** for P < 0.01. 
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CHAPTER V 

RESULTS AND ANALYSIS 

5.1 Encapsulation of HEK 293 cells on the 384-pillar Plate and Measurement of 

DME Activity in the 384-well Plate 

Prior to testing for metabolism-induced toxicity, robust surface chemistry was 

developed to prevent the detachment of HEK 293 cell spots from the surface of 384-

pillars. In addition, the basal toxicity of DMEs originated from cryo-protectants added 

has been investigated. To minimize the basal toxicity issues, dilution ratios of DMEs 

in growth media and cell seeding density have been adjusted to maintain cell viability 

above 80% (data not shown). In general, a minimum of a 10-fold dilution of the stock 

1000 nM DME was necessary for 1000 HEK 293 cells seeded per 384-pillar. For 

robust spot attachment and cell encapsulation, the 384-pillar plate (2 mm pillar 

diameter, 10.42 mm pillar height, and 4.5 mm pillar-to-pillar distance) was coated 

with 0.01% PMA-OD and then treated with 0.0033% PLL and 16.66 mM BaCl2. The 

maleic anhydride groups within PMA-OD were used to covalently bond the amine 

groups within PLL . This surface chemistry application allowed negatively charged 

alginate to bind to positively charged PLL by ionic interaction. BaCl2 was added to 

the PLL solution for the gelation of the alginate matrix. An array of 216 spots (1000 

HEK 293 cells 
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entrapped in 1.5 μL of 0.75% alginate and 1 mg/mL Matrigel) were printed in 5 

minutes using the microarray spotter. The alginate matrices with HEK 293 cells were 

found to be strongly attached to the surface of 384-pillars by the applied surface 

chemistry. Scanned images of the HEK 293 cells show that they had been suspended 

in 3D within the alginate matrix, indicating cell encapsulation was successful (Figure 

7). 

 

Figure 7. Enlarged images of calcein AM stained HEK 293 cells on the 384-pillar 
plate 
 

Bio-printed HEK 293 cells on the 384-pillar plate were cultured in 3D by 

sandwiching with a 384-well plate containing DMEM supplemented with 10 % FBS, 

1 % antibiotics, and BSO. BSO was used to increase the sensitivity of reactive 

metabolites generated by DMEs. After 24-hour pre-incubation, HEK 293 cells on the 

384-pillar plate were exposed to nine test compounds combined with six 

representative DME conditions in a new 384-well plate. For example, representative 

Phase I DMEs, such as CYP1A2, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and 

CYP3A4, and a Phase II DME, UGT1A4, have been used (Figure 6). Lee et al. 

demonstrated that encapsulated CYP450 isoforms in alginate, such as CYP1A2, 

CYP3A4, and CYP2D6, were highly active [136]. The activities of all DMEs used in 

this study were determined in 384-well plates prior to testing for metabolism-induced 

toxicity against HEK 293 cells with nine compounds. All enzymes tested were highly 

active in DMEM with the fluorescent substrates and cofactors (Figure 8 and Table 1). 
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Figure 8. Enzyme activity determined with fluorogenic substrates. (A) BOMCC 
substrate. (B) EOMCC substrate (C) UGT1A4 activity was measured with 4-
methylumbeliferone (4-MU). Fluorescence intensity decreased over time due to 
transfer of the glucuronic acid component of UDPGA to 4-MU via UGT1A4. 
 

5.2 Robustness of the Assays Established on the 384-pillar Plate 

For robust assay development on the 384-pillar plate, it is important to 

measure the range of errors and plate-to-plate and day-to-day reproducibility. The Z’ 

factor and the coefficient of variation (CV) have been commonly calculated to 

evaluate the robustness and error ranges of an assay [135]. The robustness of the 

CellTiter-Glo® assay on the 384-pillar plate was determined by calculating Z’ factors 

with acetaminophen incubated with CYP450 isoforms. The Z’ factors calculated from 
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the 384-pillar plate were between 0.57 - 0.93 (Table 2). Since the acceptable range of 

the Z’ factor is between 0.5 - 1 [135][137], we concluded that the CellTiter-Glo® 

luminance assay on the 384-pillar plate is robust and suitable for accurately 

identifying changes in compound toxicity by DMEs. In addition, the CV values were 

measured at three different dates to evaluate day-to-day variability of the CellTiter-

Glo® assay. The data was collected from HEK 293 cells on the 384-pillar plate 

exposed to no compound and no enzyme. This method allowed us to calculate the CV 

values and understand variability of cell printing and day-to-day experimental 

variability (Figure 9). Our overall CV value of 13.8% indicates that the experimental 

errors are within acceptable ranges (typically below 20%) for HTS [135][137].  

Table 2. Robustness of the CellTiter-Glo® assay tested with acetaminophen 
 

Test conditions Z’ factor IC50 values (M) 

Control baculosome 0.75 125.7 ± 3.3 
CYP1A2 0.63 79.1 ± 3.5 
CYP2B6 0.57 77.1 ± 3.5 
CYP2C9 0.79 66.3 ± 3.9 
CYP2E1 0.69 62.5 ± 2.6 
CYP3A4 0.93 89.2 ± 12.8 

 

 
Figure 9. Variability of CellTiter-Glo® luminance intensities obtained from 
several 384-pillar plates prepared on different days 
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5.3 Dose Response Curves and IC50 Values Obtained from Calcein AM Staining 

and the CellTiter-Glo® Luminescence Assay 

Cell membrane integrity and cellular ATP levels in HEK 293 cells on the 384-

pillar plate were assessed using calcein AM staining followed by a CellTiter-Glo® 

assay after 24-hour exposure to various concentrations of nine compounds, five 

DMEs, and one no enzyme control. Each assay was performed with nine dosages 

(1.95 μM – 250 μM) in four replicates, resulting in 1944 data points (i.e., 9 

compounds x 6 enzyme conditions x 9 dosages x 4 replicates). The percent of HEK 

293 cells viable after 24-hour exposure to various concentrations of test compounds 

and five DMEs at different dosages were compared with those of 100% viable cells 

exposed to no compounds (DMSO alone control) to calculate IC50 values. We marked 

IC50 values showing more than a 50% difference with the control as a meaningful 

indication of metabolism-induced effects, where red-marked IC50 values indicate 

compound toxicity is enhanced (augmented toxicity) due to DMEs added and blue-

marked IC50 values indicate compound toxicity is reduced (detoxification) in the 

presence of DMEs. Black-marked IC50 values indicate no changes in compound 

toxicity in the presence of DMEs. Calcein AM, which is a fluorogenic compound, can 

be transported through the cellular membrane and produce a green fluorescent signal 

when the cell membrane is intact, making it useful for cell viability assessment [138]. 

However, it tends to be less sensitive compared to other viability endpoints, such as 

mitochondrial membrane potential with tetramethyl rhodamine methyl ester or ATP 

level measurement with the CellTiter-Glo® assay [139]. This cell viability assay, 

which uses ATP amount detection in the cell, is the fastest and most sensitive assay 

and has less artifacts than other cell viability assay methods [140].  
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We also observed relatively higher IC50 values with calcein AM staining, 

presumably due to cell staining immediately after 24-hour incubation with compounds 

and DMEs. Nonetheless, benzo[a]pyrene, cyclophosphamide, 2-naphthlyamine, and 

6-aminochrysene clearly showed augmented toxicity on multiple CYP450 isoforms 

(Table 3). For example, 2-naphthlyamine incubated with CYP2E1, CYP2B6, 

CYP1A2, and CYP3A4 induced striking decreases in HEK 293 cell viability (Figure 

10). The dose response curves and the IC50 values of the nine compounds and their 

potential DME-generated metabolites are summarized in Table 3 and Figure 11 for 

calcein AM staining. 

Table 3. IC50 values of compounds tested with the calcein AM assay on the 384-
pillar/well plates 

Compounds 
No 

enzyme 
CYP 
3A4

CYP 
1A2

CYP 
2B6

CYP 
2C9

CYP 
2D6

CYP 
2E1 

UGT 
1A4

Benzo[a]pyrene >250 >250 
194 

± 9.8*** 
>250 - - >250 >250 

Aflatoxin B1 >250 >250 >250 >250 -  >250 >250 

Cyclophosphamid
e 

>250 
241 

± 14.6 
- >250 >250 - >250 >250 

2-Naphthlyamine >250 
163 
± 

35.6** 

151 
±13.8*** 

247 
± 14.3 

- - 
90 

±21.9**

* 
>250 

Acrylamide >250 >250 - >250 >250 - >250 >250 

Doxorubicin HCl >250 
241 

± 19.0 
- >250 - >250 - >250 

6-Aminochrysene >250 
80.3 

± 0.9*** 
>250 

103 
± 50*** 

- - >250 >250 

8-
Methoxypsoralen 

>250 >250 >250 - >250 - >250 >250 

4-Nitrophenol >250 >250 >250 - >250 - >250 >250 

 

- To determine statistically significant IC50 differences between no enzyme control 

and enzyme test conditions, one-way ANOVA analysis was performed and the results 

were indicated as ** for p < 0.01 and *** for p < 0.0001. No indication means p > 0.05.  

- Red highlighted IC50 values indicate augmented toxicity. 
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Figure 10. Metabolism-induced toxicity assays with HEK 293 cells on the 384-
pillar plate and drug-metabolizing enzymes (DMEs) and 2-naphtylamine in the 
384-well plate: (A) Scanned images of HEK 293 cells on the 384-pillar plate (B) 
Microscopic images of the 384-pillar plate with HEK 293 cells sandwiched with the  
384-well plate containing 2-naphtylamine and DMEs. The white dotted square 
represents the 384-well and the white dotted circle indicates the 384-pillar. (C) Dose 
response curves obtained from the green fluorescent images on the 384-pillar plate. 
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Figure 11. Dose response curves of compounds tested with the calcein AM assay 
on the 384-pillar/well plates. 
 

Additionally, ATP levels within HEK 293 cells in the presence and absence of 

DMEs have been quantified as an indicator of metabolically active cells using the 

CellTiter-Glo® luminescence assay [140]. As expected, we observed relatively lower 

IC50 values with the CellTiter-Glo® luminescence assay (Table 4). Six compounds out 
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of nine demonstrated metabolism-induced augmented toxicity. Benzo[a]pyrene, 

cyclophosphamide, 2-naphthylamine, doxorubicin, 6-aminochrysene, and 8-

methoxypsoralen demonstrated augmented toxicity on either P450 isoforms or 

UGT1A4. In particular, the 2-naphthlyamine, 6-aminochrysene, cyclophosphamide, 

and 8-methoxypsolarentest conditions decreased more than 10-fold when added with 

CYP450s, compared to Baculosome controls (Figure 12 and Figure 13). Unlike other 

compounds, acrylamide was detoxified in the presence of UGT1A4 (Table 4). This 

can be explained by metabolites of Phase I DMEs in vivo being conjugated by Phase 

II DMEs, including UGTs, SULTs, and GSTs, leading to detoxification and rapid 

excretion [141]. Two compounds, aflatoxin B1 and 4-nitrophenol, were nontoxic at 

given dosages regardless of DMEs added. 

 
Table 4. IC50 values of compounds tested with the CellTiter-Glo® assay on the 
384-pillar/well plates. 

Compounds 
No 

enzyme 
CYP 
3A4 

CYP 
1A2 

CYP 
2B6 

CYP 
2C9 

CYP 
2D6 

CYP 
2E1 

UGT 
1A4 

Benzo[a]pyrene >250 
229 

± 12.8 
245 

± 18.2 
116 

± 7.8*** 
- - 

233 
± 9.1 

>250 

Aflatoxin B1 >250 >250 >250 >250 - - >250 >250 
Cyclophosphami

de 
>250 

66 
±18.3*** 

- 
155 

± 5.8*** 
>250  >250 >250 

2-Naphthlyamine >250 
25 

± 3.6*** 
20 

± 3.3*** 
56 

± 22.5*** 
- - 

24 
± 1.4*** 

179 
± 36.9** 

Acrylamide 
186 

± 10.1 
164 

± 23.5 
- 

165 
± 25.6 

208 
± 3.3 

- 
188 

± 36.2 
246 

± 46.9 

Doxorubicin HCl 
74 

± 0.7 
25 

± 0.7*** 
- 

12 
± 3.2*** 

- 
10 
± 

2.1*** 

11 
± 1.1*** 

42 
± 1.7*** 

6-Aminochrysene 
93 

± 10.7 
9 

± 3.0*** 
32 

± 7.1*** 
9 

± 1.7*** 
- - 

19 
± 2.4*** 

26 
± 

12.3*** 
8-

Methoxypsoralen 
>250 >250 

126*** 
± 41.1

- >250 - 
213 
± 33 

>250 

4-Nitrophenol >250 >250 >250 - >250 - >250 >250 
 

- To determine statistically significant IC50 differences between no enzyme control 

and enzyme test conditions, one-way ANOVA analysis was performed and the results 

were indicated as ** for p < 0.01 and *** for p < 0.0001. No indication means p > 0.05.  
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- Red highlighted IC50 values indicate augmented toxicity whereas blue highlighted 

IC50 value indicates detoxification. 

 

 

Figure 12. Dose response curves of compounds tested with the CellTiter-Glo® 
assay on the 384-pillar/well plates. 
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Figure 13. Representative IC50 values showing strong responses when CYP450 
isoforms added. 
 
-  To determine statistically significant IC50 differences between no enzyme control 

and enzyme test conditions, one-way ANOVA analysis was performed and the results 

were indicated as *** for p < 0.0001. No indication means p > 0.05. 

To verify that our metabolism toxicity assay with the 384-pillar platform was 

accurate, the results were compared with literature. For example, cyclophosphamide, 

which has been widely used for chemotherapy, is also known to have severe side-

effects and toxicities to humans. The main active metabolite of cyclophosphamide, 4-

hydroxycyclophosphamide, is metabolized by cytochrome P450 (CYP450) isoforms, 

such as CYP3A4 and CYP2B6, which directly affects cytotoxic mechanisms [142] 

[143]. In our result, the 384-pillar platform was able to identify that CYP3A4 and 

CYP2B6 strongly activated cellular toxicity by the conversion of cyclophosphamide 

to its cytotoxic metabolite. In addition, 2-naphthlyamine is known to be a human 

carcinogen based on its metabolites, including N-hydroxylamine, which is formed by 

CYP450 isoforms, such as CYP3A4, CYP2E1, and CYP1A2, as well as UGT1A4. 

The metabolites undergo a number of conjugation reactions forming additional 

functional groups [100-103]. On the 384-pillar platform, 2-naphthlyamine was shown 

to be converted to its cytotoxic metabolites by CYP3A4, CYP1A2, CYP2B6, 
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CYP2E1, and UGT1A4. 2-Naphthlyamine was particularly susceptible to reactions 

with CYP3A4, CYP1A2, and CYP2E1. In addition, other compounds and their 

partnered DME reaction toxicities were compared to literature and found to be 

congruent (Table 5). From these results, we concluded that the 384-pillar platform has 

the capacity as an alternative in vitro test platform for in vivo metabolite toxicity 

testing. 

 

Table 5. Drug metabolizing enzymes (DMEs) involved in metabolism of the 
compounds. 

Compounds 
DMEs identified from 

this study 
Known DMEs in 

literature 
References 

Benzo[a]pyrene 
CYP1A2, CYP2B6, 
CYP2C9, CYP3A4 

CYP1A2, CYP2C9, 
CYP3A4 

Luckert et al.,2013 
Yun et al., 1992 

Bauer et al., 1995 

Aflatoxin B1 - CYP1A2, CYP3A4 
Dohnal et al., 2014 
Guengerich et al., 

1992 

Cyclophosphamide 
monohydrate 

CYP2B6, CYP3A4 
CYP2B6, CYP2C9, 

CYP3A4 
Chang et al., 1993 
Huang et al., 2000 

2-Naphthylamine 

 
CYP1A2, CYP2B6, 
CYP2E1, CYP3A4, 

UGT1A4 

UGT family 
Kadlubar et al., 

1977 
Pacifici et al., 1986 

Acrylamide UGT1A4 CYP2E1 Settels et al., 2008 

Doxorubicin HCL 
CYP2B6, CYP2D6, 
CYP2E1, CYP3A4, 

UGT1A4 
Aldo-keto reductase 

Speth et al., 1988 
Minotti et al., 2001 

6-Aminochrysene 
CYP1A2, CYP2B6, 
CYP2E1, CYP3A4, 

UGT1A4 

CYP1A2, CYP2B6, 
CYP3A4 

Kadlubar et al., 
1987 

Shimada et al., 1989 

8-
Methoxypsoralen 

CYP1A2 CYP1A2, CYP2E1 Deeni et al., 2013 

4-Nitrophenol - CYP2E1, CYP3A Zerilli et al., 1997 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

There have been tremendous efforts made by regulatory agencies in the world to 

better predict toxicity of chemicals in humans using in vitro and in silico methods and 

to reduce the use of animals in toxicity assessment. In response to this need, our group 

has been developing several microarray biochip platforms to predict metabolism-

induced compound toxicity in humans: the MetaChip [12], the DataChip 

[13][135][144]  and the TeamChip [14]. Although these biochip platforms are 

ideally suited for miniaturized 3D cell cultures by bioprinting and rapid testing 

compound metabolism, their footprint is too small for commonly used robotic 

dispensing systems and cell imaging systems in HTS assays. To resolve these 

compatibility issues, we have developed a 384-pillar plate, which can be combined 

with 384-well plates for 3D cell cultures and compound toxicity testing. In addition, 

cell images and absorbance, fluorescence, and luminescence signals from cells can be 

easily obtained from HCI imagers and microtiter plate readers. With this technology 

and platform, we participated in Stages I and II of the Transform Tox Testing 

Challenge. The scope of the challenge was to test the nine model compounds against 

HEK 293 cells and rapidly identify metabolism-mediated toxicity. To address the 

scope of the work and predict metabolism-induced toxicity, we printed HEK 293 cells 

in an alginate-Matrigel mixture on the 384-pillar plate, which was sandwiched into 
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the 384-well plate containing combinations of compounds and DMEs. Our results 

indicate that the toxicity of 78% of the test compounds were significantly changed 

when DMEs were incorporated. Our 384-pillar plate offers several advantages over 

more conventional 2D and 3D cell culture models (Table 6), thus providing rapid 

generation of human organotypic cell cultures for compound screening and superior 

data quality and predictive outcomes of drug candidates’ effects in vivo. The 384-

pillar plate requires relatively small amounts of cells and hydrogels (typically 1 - 2 µL) 

for creating and evaluating bioprinted 3D cells. Cell encapsulation protocols 

developed are flexible and allow for culturing multiple cell types from different 

organs in hydrogels on the 384-pillar plate, consequently providing more insight into 

potential organ-specific toxicity of compounds. Miniaturized 3D cell cultures on the 

384-pillar plate may serve as disease models to provide a microenvironment that 

simulates specific biochemical functions and morphological features of human tissues 

found in vivo. The 384-pillar plate is compatible with standard 384-well plates and 

existing HTS equipment. Highly reproducible, high-throughput precision printing 

allows us to test a variety of cell culture conditions and drugs in combination, which 

makes it well suited for early stage HTS of compound libraries. Cell image 

acquisition from miniaturized 3D cell cultures is easy and straightforward because the 

whole sample depth fits within the focus depth of a normal objective (typically 2 x or 

4 x magnification). High-throughput, HCI on miniaturized 3D cell cultures can 

decipher toxicodynamic and toxicokinetic traits of drugs and provide more insight 

into complicated toxicology pathways and related adverse responses in early stages of 

drug discovery. This unique feature of the 384-pillar plate provides the capability to 

test the effects of multiple DMEs against 3D-cultured cells for metabolism-induced 

compound toxicity. This predictive information on toxicity will be extremely valuable 
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to minimize adverse drug responses for new and existing drugs. Thus, our approach 

may potentially lead to increased drug research success rates by enabling more 

effective and safer compounds to enter preclinical evaluations and clinical trials. 

 

Table 6. Advantages of using the 384-pillar plate platform for metabolism-
induced toxicity. 

Advantages Future directions 

Miniaturized 3D cell culture 
Perform co-culture or layered cell culture to better mimic 

tissue structures in vivo 

High-throughput 
metabolism-induced assays 

Incorporate other organ cell types to mimic effects of drug 
metabolism in multi-organ systems (e.g., 3D-cultured 

primary hepatocytes on the 384-pillar plate coupled with 
brain cells in the 384-well plate) 

Robust and straightforward 
protocols for high-

throughput compound 
screening 

Further improve the CV and the Z’ factor for printing 
colloidal samples with improved micro-solenoid valves 

Highly flexible and 
mechanistic toxicity assays 

Include additional high-content cell staining for elucidating 
mechanisms of drug-induced toxicity 

Rapid 3D cell imaging due 
to small dimensions 

Test image acquisition with conventional high-content 
imagers and further develop software for rapid 3D cell image 

processing 
High predictivity of 

hepatotoxicity in vivo 
Analyze the data obtained from the 384-pillar plate with in 

vitro–in vivo correlation (IVIVC) models 
Cost effectiveness Further miniaturize the assays on a higher density pillar plate 

 

Like all other in vitro alternative models, our current approach to predict 

metabolism-induced toxicity in high throughput faces several technical challenges 

(Table 6). One of the biggest challenges is instability of commercially available 

DMEs. Most DMEs lose their metabolic capability within 24 hours, leading to 

insufficient biotransformation of test compounds. This could potentially be an issue to 

identify metabolism-induced toxicity of slow-metabolizing compounds. Indeed, we 

have observed no response on DMEs for aflatoxin B1 and 4-nitrophenol presumably 

due to these reasons. In addition, it is difficult to test all DMEs expressed in primary 

hepatocytes on the 384-pillar plate platform, although the platform is still better suited 

for testing mechanistic pathways of drug metabolism. There are several other 
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technical challenges, including drug diffusion, contamination of commercially 

available DMEs, and basal toxicity of DMEs. However, there is plenty of room for 

improvement to further perfect the technology (Table 7). 

 

Table 7. Current challenges of the 384-pillar plate platform for metabolism-
induced toxicity and potential solutions.  

Challenges Causes Potential solutions 

Insufficient 
biotransformation 

DME stability is low (i.e., 
half-life is about 2 hours for 

P450s) 

Enhance DME stability by immobilization 
of the enzymes on lipid membranes or 
supplementation with cofactors (e.g., 

cytochrome b5) 

It may lack specific enzymes 
necessary for drug 

metabolism 

Use encapsulated primary hepatocytes and 
HepaRG cells instead of DMEs to provide 

metabolism competence 

Metabolite 
diffusion into cells 

Hydrophilic metabolites 
generated outside cells may 

not penetrate cell 
membranes 

Use hepatic cells expressing DMEs (e.g., 
TeamChip, primary hepatocytes, and 

HepaRG cells) 

Differential cellular 
responses by 
metabolites 

Metabolites generated may 
not rupture cell membranes 

or inhibit cell growth 

Measure other indicators of hepatotoxicity 
(e.g., mitochondrial damage, apoptosis, 

steatosis, phospholipidosis, etc.) 

Contamination 

Commercially available 
DMEs are often 

contaminated with 
microbials 

Test contamination of commercial DMEs 
prior to use, or produce DMEs in sterile 

conditions 

Basal toxicity of 
DMEs 

Additives (e.g., 
cryoprotectants) in DME 
solutions are cytotoxic 

Dilute DME solutions at least 10-fold or 
produce DMEs in-house with less toxic 

additives 
 

We have successfully completed Stages I and II of the TTTC with the 384-

pillar plate and cell printing technology and demonstrated metabolism-induced 

toxicity of compounds. The 384-pillar plate is a high-throughput, cost-efficient 

platform for determining the cytotoxicity of compounds and their metabolites. It is 

highly flexible for 3D cell cultures and can be tailored to include any combination of 

DMEs to investigate potential individual metabolic profiles. Although we only 

demonstrated encapsulation of HEK 293 cells on the 384-pillar plate, the cell printing 

and encapsulation technology can be easily extended to include a variety of different 

human cell types to assess organ-specific toxicity. In addition, calcein AM and 
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CellTiter-Glo® luminescent cell viability assays demonstrated on the 384-pillar plate 

can be extended to include other HCI assays to better predict hepatotoxicity of 

compounds. Changing growth media over time for 3D cell cultures and cell imaging 

on the 384-pillar plate are straightforward and convenient, allowing users to monitor 

changes in various cell signals in situ using HCI imagers and microtiter plate readers. 

Therefore, we envision that the 384-pillar plate platform can serve as a promising 

high-throughput, 3D-cell based, in vitro assay tool for predictive human toxicology. 
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CHAPTER VII 

FUTURE WORK 

1. Sufficient Biotransformation 

Commercial DMEs lose their stability within 2 hours. To give enough 

biotransformation, adding encapsulated HepaRG cells or inserting cofactors such as 

cytochrome b5 will increase the metabolism competence. 

2. Wide range of high-content assays 

We have successfully proved that the 384-pillar plate can be used to understand 

metabolism-mediated toxicity. However, we only used two endpoints related to cell 

viability. High-content imaging (HCI) assays are capable of quantifying several 

cellular responses. Further expansion of HCI assays on the 384-pillar platform is 

necessary, which will be a great benefit to understand multi-parametric mechanistic 

toxicity. This effort will help us analyze multiple endpoints of environmental 

chemicals such as target specific signals like mitochondrial dysfunction, DNA 

impairment, and apoptosis/necrosis. 
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