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CONTINUOUS HUMAN ACTIVITY TRACKING OVER A LARGE AREA WITH 

MULTIPLE KINECT SENSORS 

AKSHAT HANS 

ABSTRACT 

In recent years, researchers had been inquisitive about the use of technology to 

enhance the healthcare and wellness of patients with dementia. Dementia symptoms are 

associated with the decline in thinking skills and memory severe enough to reduce a 

person’s ability to pay attention and perform daily activities. Progression of dementia can 

be assessed by monitoring the daily activities of the patients. 

This thesis encompasses continuous localization and behavioral analysis of 

patient’s motion pattern over a wide area indoor living space using multiple calibrated 

Kinect sensors connected over the network. The skeleton data from all the sensor is 

transferred to the host computer via TCP sockets into Unity software where it is 

integrated into a single world coordinate system using calibration technique. Multiple 

cameras are placed with some overlap in the field of view for the successful calibration of 

the cameras and continuous tracking of the patients. Localization and behavioral data are 

stored in CSV file for further analysis. 
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CHAPTER I 

INTRODUCTION 

 The importance of monitoring in the management of health and well-being is 

increasingly being emphasized nowadays. Diseases such as Alzheimer, the most common 

form of Dementia among the older population pose significant health threats. Dementia 

impairs the people’s ability to do routine work. One of the primary symptoms of 

dementia is memory loss. They may prepare a meal but might even forget that they 

cooked it. Dementia can also decrease the mobility of a person. Caregivers usually find 

themselves providing reminders to the patients. Family caregivers may sometimes find 

this embarrassing and upsetting, as it may invade the privacy of the patients. Allowing 

caregivers to monitor the patient’s status regarding motion behavior and position 

localization helps to better manage such patients by classifying episodes displayed by the 

patients. 

 Indoor localization in a smart scenario can significantly assist people suffering 

from dementia. A person’s location can indicate different activities being performed, for 

example; a person may have dinner at the dining table. Location information with respect 

to time can also help detect incidents such as freezing of gait in people who have 

Parkinson’s disease. It can also help identify specific events such as leaving or entering a 
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specific area such as a bathroom, kitchen or even recognizes when the person leaves 

home without notice. 

 The goal of this thesis is to develop a monitoring application for studying and 

recording the behavioral patterns of the patients by localization and classification of 

activities such as standing and sitting. The requirements of indoor monitoring system 

were to: 

• Use multiple camera sensors to cover and monitor a large area. 

• Record patient’s trajectory along with a timestamp. 

• Classify activities and determine the total time spent in an area/room and 

sitting/standing. 

• Provide a visual representation of classified activities. 

This thesis uses RoomAlive toolkit, developed by Microsoft, which provides a 

platform for users to calibrate and create a 3D model of any room by using multiple 

Kinect cameras. RoomAlive toolkit utilizes a projector to display the gray codes for 

calibration of multiple Kinect sensors. The monitoring application records the head 

position of the tracked person with a timestamp in a CSV file. Unity game development 

engine is used to develop the application. Visual representation of classified activities is 

done using graphs. 

1.1 Thesis Organization 

Chapter II reviews previous work in human detection and tracking, it also reviews 

the latest related work using multiple depth cameras. Chapter III describes the 

background for selecting Kinect cameras. Chapter IV discusses the camera calibration 
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using the RoomAlive toolkit. Chapter V describes the hardware setup and chapter VI 

describes the software implementation of the application. Chapter VII discusses the 

experimental result.
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CHAPTER II 

LITERATURE REVIEW 

Over the past years, the increase in computer vision research activities is 

tremendous. Partly because of the improvement in computer possessing power, 

facilitating technology such as autonomous driving, Face ID, and surveillance to become 

readily available.  Many of the publication selected for this related work section contains 

multiple contributions, and few of them might be irrelevant to this thesis. Considering 

this, not all the papers will be discussed in totality but instead divided into sections that 

accompany the progression and relates to the idea of this thesis. The first section 

discusses the human detection followed by human tracking. The third section discuss 

research papers that use the skeleton model to detect and track people which are closely 

related to the idea of this thesis. 

2.1 Human Detection 

Background subtraction/separation is used to focus more on the foreground and 

eliminate the background clutter which usually creates ambiguity. Background 

subtraction extracts the foreground by calculating the difference between the sequence of 

images and the background model. Foreground can then be further processed to detect 

moving objects.
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 The most commonly used application of background subtracting is called 

‘blue/green screening’. Current it is called chroma-keying [1]. Background separation is 

used to differentiate between foreground and background based on the color hue 

(chroma). Chroma-keying can be done using evenly lit, exposed and any distinct color 

surface as the background but the blue or green color are commonly used as the 

background surface, as it differs the most in hue from the human skin. Any part of the 

subject being recorded or captured cannot reuse the color of the background surface. 

Chroma-keying is commonly used in movies, games, and TV news programs. It can also 

be utilized in the immersive virtual environment [2]. Earlier, Special dedicated hardware 

was used for performing chroma-keying. Due to the availability of low-cost PCs and 

advancement in computer vision, software-based solutions are available that deliver far 

more superior background separation, and it turns out to be much cheaper than dedicated 

hardware [3]. 

Paul et al. [4] use frame differencing for moving objects. Here, the current image 

frame is subtracted from the suitable reference frame. After which appropriate threshold 

is selected based on the hysteresis thresholding algorithm and applied to the difference 

frame to detect the pixels that may correspond to the motion. There are some problems 

with these two approaches. If the foreground contains similar colors to that of the 

background, they will be removed. Shadows can be detected as foreground. Background 

subtraction for outdoor activities without controlled lighting and exposure can be 

complicated as compared to indoor. Adaptive background separation is used to overcome 

this shortcoming. 



 

6 

 

For classifying objects as human, feature descriptor such as scale-invariant feature 

transform (SIFT) [5] and a histogram of oriented gradients (HOG) [6] can be used on 

background subtracted images. HOG is often used along with machine learning 

algorithms such as linear support vector machine which requires the training of a 

classifier or Schapire’s AdaBoost [7]. The AdaBoost algorithm selects a small number of 

week classifiers from a large pool of possible week classifiers and constructs strong 

classifier as a linear combination of selected weak classifiers. Avidan [8] train a set of 

weak classifiers to distinguish between the background and an object and then ensemble 

of weak classifiers is combined into a strong classifier using AdaBoost.  

Viola and Jones [9] [10] proposed a widely recognized face detection system. 

They introduced a new image representation called ‘Integral Image’ for fast computation. 

Once computed, based on the idea of Haar wavelets [11],  Haar-like features are 

computed. The classifier is constructed by selecting a small number of essential features 

using AdaBoost. Lienhart and Maydt [12] extended this work by introducing a novel set 

of rotated Haar-like features for publicly available initially developed by Intel, Open 

Source Computer Vision Library, OpenCV [13]. 

 Template matching is also widely used for detecting humans. In [14], a group of 

average normalized precomputed histogram template of people in different posture is 

compared with the current silhouette to detect humans. In [15], the binary head template 

is used to compare with edge image. Before matching, a distance transform is computed 

to increase the efficiency of the matching process. This distance transform is then used to 

create a distance map of the edge image. The template is then translated and positioned at 

various locations of the distance map and matching is done to determine head like object. 
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2.2 Human Tracking 

Tracking is the essential component for surveillance applications. Many 

methodologies have been proposed for tracking humans based on variations of the same 

Bayesian framework [16], such as Kalman Filters [17], Particle Filters and Mean-Shift 

algorithm. Kalman Filters have been utilized widely to track in many domains. A large 

number of works [18], [19], [20], [21], [22], [23] have used Kalman filters for Tracking. 

In particle filtering, the posterior is at first approximated by the arrangement of discrete 

samples with related weights. The particle with smaller weight is disposed of in the 

following iteration, while those with the substantial weight is replicated to maintain the 

population size. The particle filter will converge on a hypothesis after several iterations. 

For tracking people in the cluttered scene, many papers make use of particle filtering. In 

[24], Breitenstein et al. proposed a multi-person tracking-by-detection in a particle 

filtering framework. Detection and detection confidence are used for propagating the 

particles. The method proposed by Comaniciu et al. [25] provides basic tracking 

framework based on a mean-shift algorithm. Tracking is done by finding the peak in the 

probability density function calculated on each pixel using color similarity. 

Occlusion makes tracking difficult. In single camera systems, to cope with the 

occlusion, approaches such as the predicted position of the occluded person until the 

person re-appears [26] is common to find. In partial occlusion, the visible part of the 

person can still be used to track the person. The camera can also be placed higher facing 

downwards to reduce the effect of occlusion. With the continuous increase in computing 

power, many researchers are inclined towards the use of multiple overlapping cameras to 

reduce the effect of occlusion [27]. 
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2.3 Depth Cameras and Skeleton Tracking 

RGB-D cameras provide an additional stream of depth data along with the color 

stream. Human detection and tracking from color frames can be difficult due to a range of 

factors. Detection of humans using 2D color image can become difficult with the change 

in illumination, color, clutter, and occlusion as it becomes cumbersome to separate 

background and foreground. On the other hand, depth image greatly simplifies the 

problem of inconsistent color and illumination. Color frames represent the 3D world in a 

2D image. This conversion of 3D space into the 2D image can be represented by a 

pinhole camera model. The depth image is a simple representation of the 3D space. 

Background separation is a lot easier in a depth image as compared to the 2D color 

image. Spinello and Arras [28] proposed people detection using a histogram of oriented 

depth (HOD), inspired by HOG but using depth information instead. Stereo cameras are 

also used for range (depth) imaging. Masuyama et al. [29] detect humans by using 

subtraction stereo to the images captured by a stereo camera to obtain foreground region 

and corresponding depth information.  

During recent years, different types of depth cameras have emerged. However, 

earlier depth cameras were expensive. Microsoft Kinect [30] was launch by Microsoft 

back in 2010 and was initially developed for the Xbox gaming console. Later, many 

computer vision research communities and other less apparent communities such as 

Design, Materials Science, Robotics, Biology, and Medicine started using the Kinect 

because of its reasonable depth accuracy and affordability. Lun et al. [31] published a 

comprehensive survey on Kinect sensor’s application and technological front covering 

variety of areas, including healthcare, robotics, education and performing arts, retail 
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services, workplace safety training, sign language recognition and 3D reconstructions. In 

[32], Zhao et al. implemented, and field tested a Kinect based tracking system for bedside 

care in nursing homes while tackling the problem of invasion of privacy by implementing 

a unique novel privacy-aware compliance tracking system (PACTS). The Kinect sensor 

provides real-time 3D human skeleton data which used to be only possible with 

expensive computer vision systems, thereby extensively popularizing skeleton based 

human representation. In skeleton tracking, the human body is rendered by a number of 

joints representing different body parts, every joint being represents by its 3D 

coordinates. 

3D skeleton based human representation also reveal promising performance in 

real-world applications such as Kinect based motion controller. 3D skeleton data from 

Kinect is also robust to illumination changes. Skeleton detection and processing are done 

in the Kinect device itself to offload the computing power required for skeleton 

processing from user’s computer and facilitate high frame rate, real-time, online 

applications using the skeleton data provided by Kinect. Zhao et al. [33]  developed a 

Kinect-based rehabilitation exercise monitoring system which shows that the skeleton 

data provided by the Kinect can be successfully used in monitoring rehabilitation 

exercises. In [34], a rule-based human motion tracking framework is demonstrated by 

showing the detailed rules for hip abduction, bowling and sit to stand exercises 

commonly used in rehabilitation. In [35], Zhao et al. designed, implemented and 

evaluated a Kinect based system to increase the workers compliance to best practices and 

alert them discreetly on detection of noncompliant activities empowering healthier and 

more productive workplace. 
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2.4 Tracking with Multiple Sensors 

Often in applications such as surveillance and activity tracking, large field of view 

is required to cover every part of the room or area being monitored. A standard solution 

to increase the field of view is to use camera networks along with sensor fusion. In [34], 

Caon et al. used a simple method of skeleton data fusion, using Kinect v1 cameras for 

their smart environments related application. They proposed a weighted averaging 

method for joints coordinate fusion. A weighting factor of the joint coordinates depends 

on the tracking state of the joints derived from Kinect SDK and a total number of joints 

tracked. In [35], multi-Kinect sensor setup is used for dismounted soldier training. 

Similar weighting approach of the joint coordinates based on the Kinect SDK provided 

tracking state but extended by depth-to-joint cross-validation. Cross-validation is done by 

comparing the joint depth (Z) with the point cloud’s depth measurement at the same X-Y 

coordinates. In [36], Two perpendicular Kinect sensors are used. One sensor is defined as 

the primary sensor. If the primary sensor does not track a joint, coordinates of the 

untracked joint are substituted by the one tracked by the second Kinect sensor. 

2.5 Indoor Localization and Motion Monitoring 

OpenPTrack [37], is an open source multi RGB-D camera person tracking 

software. While this does not detect the skeleton, it is possible to monitor the trajectory of 

more than six people as compared to the Kinect which can only track up to six people 

over a large area using calibrated networked cameras. Streaming of the tracking data is 

done using UDP and NDN in JSON format. The RoomAlive toolkit [38] uses multiple 

calibrated Kinect cameras for dynamic projection mapping to enable immersive 
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augmented experience using projectors. RoomAlive uses a distributed network for 

tracking touch detection and body movements using optical-flow based particle tracking.  

Torres et al. [39] use a combination of computer vision and dead-reckoning for 

indoor localization. Their system is composed of wearables and fiducial markers for 

tracking. Klingbeil et al. [40] demonstrated a wireless sensor network for positioning and 

monitoring human motion in an indoor environment. They used an inertial sensor along 

with a mobile sensor node worn by the person moving inside the building. Motion data is 

processed on the onboard mobile node and transferred to a static network of seed nodes. 

Based on the person’s pedometric mapping, seed node position and indoor map 

information, location is calculated using a Monte Carlo based algorithm. Chen et al. [41] 

proposed an intelligent video monitoring system to improve the safety of old persons who 

have dementia. They used 23 cameras to record daily activity. Elopement activity is 

detected using a Hidden Markov Model (HMM). 

Even though there are many multiple Kinect activity monitoring approaches, 

these systems mostly make use of Kinect v1 sensor because up to four sensors can be 

connected to the same PC reducing the complexity of the system. Our system, on the 

other hand, uses multiple Kinect v2 sensors using distributed network because of its 

reasonably high accuracy, low interference between multiple cameras and better 

occlusion handling. We do not use any wearable devices or fiducial markers for 

localization and monitoring as it has a significant impact on acceptability, especially for 

older people.
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CHAPTER III 

BACKGROUND 

Microsoft Kinect is 3D sensing device first launched in November 2010 as a 

motion sensing input device for Xbox 360 console. Kinect v1 was the first sensor that 

made 3D sensing accessible at low cost. Kinect features an RGB camera, depth sensor 

and multi-array microphone which provides capabilities such as facial recognition, 3D 

motion capture and voice recognition along with raw color, depth, skeleton and audio 

streams. Kinect’s skeleton data does not require users to wear markers, unlike other 

skeleton tracking systems. Even though the markerless skeleton tracking systems are not 

as accurate as tracking systems with a marker, it provides excellent flexibility and 

sufficient accuracy for most of the applications. The newer version of Kinect, Kinect v2 

also provides raw infrared data. It became apparent that Kinect will not be limited to 

gaming applications. 

3.1 Kinect V1 vs Kinect V2 

Microsoft released the Kinect v2 in 2014 with significant improvements. Kinect 

v2 offers wide field-of-view, higher resolution, low latency with USB 3.0, better skeleton 

accuracy and new depth-sensing technology. Kinect v2 sensor also provides face 
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orientation of the tracked user such as pitch, yaw, and roll along with many other face 

details. Kinect v2 and Kinect v1 sensors are shown in Figure 1.

 

Figure 1: Kinect v2 on the left, Kinect v1 on the right 

 

Apart from all the new specification, Kinect v2 can track six people with more 

number of joints and with greater precision as compared to Kinect v1 which can 

recognize six people but only able to track (full skeleton) two peoples. Table I shows a 

comparison of Kinect v1 and Kinect v2 specifications. 

Table I : The specification for the Kinect v1 and v2 

Feature Kinect V1 Kinect V2 

Color Camera 

- Horizontal Field of View 

- Vertical Field of View 

640 x 480 @ 30 fps 

57 degrees 

43 degrees 

1920 x 1080 @ 30 fps 

84 degrees 

54 degrees 

Depth Camera 

- Horizontal Field of View 

- Vertical Field of View 

320 x 240 @ 30 fps 

57 degrees 

43 degrees 

512 x 424 @ 30 fps 

70 degrees 

60 degrees 

Infrared Camera 320 x 240 @ 30 fps 512 x 424 @ 30 fps 

Depth Sensing Technology Structured Light 

(PrimeSense Light Coding) 

Time of flight 

(ToF) 

Minimum Latency 102 ms 20 - 60 ms 

Skeleton Joints Defined 20 joints 25 joints 

Full Skeleton Tracked 2 6 

Connection Type USB 2.0 USB 3.0 
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Many studies show that Kinect v2 is better than Kinect v1. Wasenmuller and 

Stricker [42] evaluated the depth image of both the sensors and concluded that the Kinect 

v1 sensor’s depth data accuracy and precision decrease exponentially with the increase in 

distance, whereas Kinect v2 accur acy and precision remains constant. Further, 

Wasenmuller recommends using Kinect v2 over Kinect v1 for 3D reconstruction 

applications. Wang et al. [43] gave the insight of skeleton data accuracy of Kinect v1 and 

v2 sensor. The overall results show that the Kinect v2 sensor has better accuracy in joint 

3D position estimation and is more robust to body rotation and occlusions. However, 

possibly due to Time-of-Flight technology used in Kinect v2, the lower legs joint 3D 

positions were tracked with large offsets, which was not the case with the Kinect v1 

which employs structured light technology for obtaining depth data. 

3.2 Depth Camera Technology 

This section will describe the structured light and Time-of-Flight depth sensing 

technology. 

3.2.1 Structured Light 

Kinect v1 uses PrimeSense’s patented Light Coding™ technology which is based 

on structured light technology for depth sensing. In this structured light technology, 

infrared light generated by infrared projectors is passed through a diffraction grating 

which projects the infrared laser beam as a set of semi-random dots. These infrared dots 

are projected on to the scene as seen in Figure 2. Relatively standard CMOS sensor with 

a bandpass filter centered at the infrared band wavelength is used to detect the infrared 

dot patterns. Infrared emitter and CMOS detector are placed at a known fix distance, and 

depth data is recovered by simple triangulation.  
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Figure 2: Infrared image of the dot emitted by the Kinect v1 to calculate depth [39] 

The disadvantage of Structured light technology is that the fixed number of dots 

are projected on to the scene, irrespective of the distance of the objects. Therefore, the 

closer objects will be represented by more dots that than the object farther away from the 

sensor, resulting in decreased depth sensing precision with the increase in distance. 

Another disadvantage of this structured light technology is that if multiple overlapping 

Kinect cameras are used, Kinect v1 cannot differentiate between the dot pattern projected 

by itself and the dot pattern projected by the other Kinect cameras causing an interference 

issue. In this thesis research, multiple Kinect cameras are used to increase the field of 

view and requires at least 10% overlapping of the cameras for the camera calibration to 

work.  
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3.2.2 Time-of-Flight 

Kinect v2 utilize Time-of-Flight technology for depth measurements. Time-of-

Flight technology works by measuring the time it takes for the modulated laser light pulse 

to travel from a laser projector to the object in the scene, and then back to an image 

sensor. Based on the modulation frequency and the speed of light, a distance of each 

pixel is calculated, resulting in a 3D image. Kinect v2 calculates the distance by dividing 

a pixel into two halves such that when the first half is on, it will absorb the light and the 

second half will reject the light. Similarly, when the second half is on, it will absorb the 

light and the first half will reject the light. The light source is being pulsed in phase with 

the first pixel half such that when the first pixel is on, the laser diode is also on. If the 

object is close to the sensor, a higher amount of laser light will be absorbed by the first 

half of the pixel than the second half. If the object is farther away from the sensor, the 

travel time of the light will increase, and more light will be absorbed by the second half 

of the pixel than the first half. The total amount of photons absorbed by both halves are 

compared and the round-trip distance of the light traveled is estimated. Hence 

maintaining the precision of depth data even if the object is far away, giving Kinect v2 

depth-sensing technology an edge over Kinect v1’s structured light technology where the 

number of infrared dots shared among pixels get reduced with the increase in distance. 

Kinect v2 also works well for outdoor applications and rejects ambient lighting by 

resetting the pixel in the middle of exposure if the pixel is over saturated by the ambient 

light. 
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3.3 Disadvantage of Kinect V2 

With the increase in the amount of data because of the higher resolution, Kinect 

v2 uses higher bandwidth USB 3.0 for data transmission and a maximum of one Kinect 

v2 can be connected to the same PC as compared to Kinect v1 which uses USB 2.0 and 

can connect up to four sensors to the same PC. In this thesis research, multiple Kinect v2 

sensors are used because of all the advantage, new technology and to increase the field of 

view, but due to this limitation, a distributed network is used to transmit skeleton data to 

the server.  
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CHAPTER IV 

CALIBRATION OF CAMERAS USING ROOMALIVE TOOLKIT 

 RoomAlive Toolkit [36] is an open source SDK developed by Microsoft for 

dynamic projection mapping research and has been in use at Microsoft Research for 

many years. RoomAlive Toolkit has been used by Microsoft for many interactive 

projection mapping and augmented reality projects. The basic building blocks of 

RoomAlive toolkit consist of an ensemble of projectors and cameras, or ‘ProCam’ unit 

and enables developers to calibrate multiple Kinect v2 sensors and video projectors 

connected over the network. RoomAlive captures and creates a unified 3D model of the 

geometry and appearance of the room. RoomAlive Toolkit consists of two separate 

projects developed in C# language. 

• ProCamCalibration - This project consists of KinectServer, ProjectorServer and 

CalibrateEnsemble applications which are used to calibrate multiple projectors 

and Kinect v2 cameras.  

• RoomAliveToolkitForUnity – RoomAlive Toolkit for Unity contains a set of 

scripts to enable dynamic projection mapping based on the Calibration data from 

ProCamCalibration. It also streams Kinect data to Unity. This thesis research only 

makes use of the streaming script from this project.
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4.1 The ProCam Unit 

RoomAlive Consists of multiple projector-camera units called ProCam. Projector 

projects out on to the room and Kinect camera also looks out on to that room. Projector 

and all the depth camera that can see some part of the gray code that projector displays 

form a projector group. Multiple projector groups will be needed to create a full 3D 

model of a room.  Another projector out someplace else in the room might have two more 

Kinect sensors next to it, and that would form another projector group, these two groups 

are a distinct group as seen in Figure 3 and there is no way to relate the geometry of both 

the groups.    

 

 

Figure 3: Two discrete projector camera groups setup 

 

To relate the geometry of one group to the other, a third camera which will 

overlap both the groups is needed as seen in figure 4. This third camera belongs to both 
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the group will help establish the geometry of the two groups together. Overlap of 

multiple camera groups is referred as an ensemble. 

 

 

Figure 4: Two projector camera groups connected by an overlapping camera 

 

4.2 Camera Calibration 

Geometric camera calibration estimates the intrinsic and extrinsic of all the 

cameras in the ensemble. Intrinsic camera parameters provide information about the 

camera focal length, optical center, and image sensor format. Extrinsic camera 

parameters describe the coordinate system transformations from 3D world coordinates to 

3D camera coordinates such as position and orientation of the camera center in world 

coordinates. Using intrinsic and extrinsic parameters, complete camera matrix can be 

derived. Complete camera matrix can be used to associate 2D points on the image plane 

with 3D points in the world coordinate system. Complete camera matrix is used in 

application such as background blur (limited depth of field effect) seen in recent mobile 

phones equipped with two cameras which uses stereo vision to calculate the 3D world 
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coordinates of the point viewed by both cameras. Calibration is essential in computer 

vision systems where more than one cameras are used and where exact geometrical 

measurements are performed. In this thesis research, the first Kinect camera establishes 

the coordinate system for the entire ensemble. The pose of the first Kinect camera in the 

ensemble will become the origin of world coordinate system and every other camera will 

be calibrated to the first Kinect camera. A simple pinhole camera model can be used to 

describe the intrinsic, extrinsic and complete camera matrix. 

4.2.1 The Pinhole Camera model 

The mathematical relationship between the coordinates of the points in 3D space 

and its projection on to the image plane of a camera can be described by the pinhole 

camera model. In pinhole camera model, camera aperture is described as a point instead 

of lens used in cameras to focus light and hence, does not consider the geometric 

distortions such as radial distortion and tangential distortion caused by the lens. These 

distortions can be modeled using Brown’s distortion model for more accurate 

representation in complex camera systems. Images produced by ultra wide-angle lens 

tends to have a strong visual barrel distortion effect also known as a fisheye effect which 

can be corrected in software by modeling the distortion. 

Figure 5 shows a camera with the center of projection O also called as camera 

center. The image plane is at focal length f from the center of projection O. In actual 

pinhole camera model; the image plane is behind the center of projection resulting in a 

mirrored image, it is much easier for calculations to assume the image plane at the focus 

in front of the center of projection. Principle axis is the line passing through the center is 
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projection perpendicular to the image plane. A 3D point P = (X, Y, Z) in the world space 

is imaged on the camera’s image plane at the point 𝑃𝐶 = (u, v). 

 

 

Figure 5: The pinhole camera model 

 

 

Point 𝑃𝐶 can be found by similar triangles as 

 

𝑓

𝑍
=  

𝑢

𝑋
=  

𝑣

𝑌
 

Which we can rewrite as 

𝑢 =  
𝑓𝑋

𝑍
 

𝑣 =  
𝑓𝑌

𝑍
 

We can write 𝑃𝐶 in homogeneous coordinates as 

 [
𝑢
𝑣
𝑤

] =  [
𝑓 0 0
0 𝑓 0
0 0 1

] [
𝑋
𝑌
𝑍

] (4.1) 
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If the 2D image coordinate system’s origin does not coincide with where the principal 

axis intersects the image plane (principal point), point 𝑃𝐶 needs to be translated to the 

desired origin. Now (u, v) can be rewritten as 

𝑢 =  
𝑓𝑋

𝑍
+  𝑗𝑢 

𝑣 =  
𝑓𝑌

𝑍
+  𝑘𝑣 

Where translation is defined by (𝑗𝑢, 𝑘𝑣). 

Similarly, this can be expressed as Equation 1 as follows: 

 [
𝑢
𝑣
𝑤

] =  [
𝑓 0 𝑗𝑢

0 𝑓 𝑘𝑣

0 0 1

] [
𝑋
𝑌
𝑍

] (4.2) 

 

𝑃𝐶 is expressed in inches in Equation 2. To express it in pixels, camera resolution in pixel 

per inches needed to be known. If the pixels are square, the resolution will be equal in 

each u and v directions. For rectangular pixel, we can denote the resolution in u direction 

by 𝑔𝑢 and in v direction by 𝑔𝑣 pixels/inch. To express 𝑃𝐶 in pixels, u and v coordinates 

should be multiplied by 𝑔𝑢 and 𝑔𝑣 respectively. 

𝑢 =  𝑔𝑢

𝑓𝑋

𝑍
+  𝑔𝑢𝑗𝑢 

𝑣 =  𝑔𝑣

𝑓𝑌

𝑍
+  𝑔𝑣𝑘𝑣 

𝑃𝐶 in pixels can be expressed in matrix form as follows 

 [
𝑢
𝑣
𝑤

] =  [
𝑔𝑢𝑓 0 𝑔𝑢𝑗𝑢

0 𝑔𝑣𝑓 𝑔𝑣𝑘𝑣

0 0 1

] [
𝑋
𝑌
𝑍

] = [
𝛼𝑥 0 𝑢𝑜

0 𝛼𝑦 𝑣𝑜

0 0 1

] P = KP (4.3) 

K can sometimes have an additional parameter s for skewness of the pixel, given by 
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𝐾 =  [

𝛼𝑥 𝑠 𝑢𝑜

0 𝛼𝑦 𝑣𝑜

0 0 1
] 

K only depends on the intrinsic parameters of the camera such as focal length denoted by 

𝛼𝑥 and 𝛼𝑦 which are different for x and y for the non-square pixels, offset of the origin of 

the image plane and the principal point in pixels denoted by 𝑢𝑜 and 𝑣𝑜 and thus defines 

the intrinsic parameters of the camera and usually called as ‘intrinsic matrix’. 

If the camera is oriented arbitrarily and does not have its center of projection at (0, 0, 0), 

we need a translation and rotation to make the camera coordinates system coincide with 

the world coordinate system. Let the rotation be given by a 3 × 3 rotation matrix R and 

translation by T(𝑇𝑋, 𝑇𝑌, 𝑇𝑍). The matrix formed by first applying translation and then 

rotation is given by the 3 × 4 matrix as follows 

E = (R | RT) 

E is the ‘extrinsic matrix’. The complete camera transformation is given by 

K (R | RT) = (KR | KRT) = KR (I | T) 

Therefore 𝑃𝐶 is given by 

𝑃𝐶 = KR (I | T) P = CP 

Where C is a 3 × 4 matrix usually called the ‘camera matrix’. Because C is a 3 × 4 

matrix, P needs to be in 4D homogeneous coordinates and resulting 𝑃𝐶 will be in 3D 

homogeneous coordinates. Exact 2D coordinates of the projection on the image plane can 

be obtained by dividing the first two coordinates of 𝑃𝐶 by the third coordinate. 

4.3 Calibration Process 

Calibration finds the pose and position of every Kinect camera in the ensemble 

along with lens distortion and focal length. Calibration process consists of two phases, 
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‘acquisition phase’ and ‘solve phase’. The calibration process is completely automatic 

and does not require user interventions. Cameras are placed in the room such that it will 

extend the field of view while still having ~10% overlap between the cameras.  

4.3.1 Acquisition 

In acquisition phase, the projector displays a series of gray codes which are 

observed by the all the color cameras and takes a snapshot as seen in Figure 6, 7, 8 and 9. 

These gray codes are used to establish the mapping from a pixel in the color camera to a 

pixel coordinate in the projected display. Camera intrinsic such as focal length and lens 

distortion is obtained and stored in the XML file. It also stores the depth image and mean 

depth image for the calibration process. 

 

Figure 6: Vertical gray code as seen by the first Kinect camera 
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Figure 7: Horizontal gray code as seen by the first Kinect camera 

 

 

Figure 8: Vertical gray code as seen by the second Kinect camera 
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Figure 9: Horizontal gray code as seen by the second Kinect camera 

 

4.3.2 Solving 

 

  

Figure 10: Establishing global extrinsic by chaining together correspondences [36] 
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The calibration begins with transforming each correspondence into depth image 

using API provided by Kinect SDK. This results in 2D to 3D point correspondences. 

These correspondences between 3D points and their projections on the camera images are 

then passed to OpenCV’s calibrateCamera function to find intrinsic and extrinsic 

parameters of each unit. To increase the robustness RANSAC procedure is used. To find 

the global extrinsic between the two Kinect cameras, correspondence between two units 

is computed as shown in Figure 10. First the depth pixel in Unit 0 (𝑑0) is mapped to an 

RGB pixel in Unit 0 (𝑟0), then the corresponding projector pixel (𝑝1) is mapped in Unit 1 

by decoding the gray codes. Gray code correspondence is then inverted to look up the 

RGB pixel (𝑟1) in Unit 1. Finally, the correspondence between two units is found by 

inverting the transfer map resulting in depth pixel (𝑑1). 

 

  

Figure 11: A unified 3D model of the room generated during calibration 
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Solve phase also merge the color and the depth data collected from all the Kinect 

sensors and creates a unified 3D model of the room as seen in Figure 11. which helps the 

user to check the quality of registration. The model is also exported to an obj file which 

can be directly imported into Unity. 

4.4 Code Components 

The RoomAlive Toolkit code is completely written in C#. This section discusses 

four components used for the calibration process. 

 

Figure 12: ProCamEnsembleCalibration.dll UML class diagram 

4.4.1 ProCamEnsembleCalibration.dll 

ProCamEnsembleCalibration.dll is the core of the project and has all the 

calibration code in it. It is used in the calibration step to: 

• Acquire calibration patterns and calculate the camera parameters of Kinect and 

projector such as focal length, optical center and the dimensions of the camera. 
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• It calculates the pose, i.e. position and orientation of all the Kinect and the 

projectors. 

• It provides ways to interact and pull out the calibration results at runtime. 

Figure 12 shows the UML class diagram. ProjectorCameraEnsemble is the main 

class that uses other helper classes to checks for the connected cameras and projector, 

makes the projector display the gray code and captures them with Kinect’s color camera. 

Then it decodes the gray code and finds the pose of Kinects and projector. It also creates 

the unified 3D model of the room and saves it to .obj file.  

The KinectServer2Client and ProjectorServerClient classes are used to 

communicate with their relative servers. The Kinect2Calibration class does all the 

calibration of the Kinect sensor. GrayCode class is used to create gray code images using 

ARGBImage. The Matrix class handles the matrix calculation.  

4.4.2 KinectServer 

Single Kinect v2 sensor can be connected to a computer simultaneously, therefore 

KinectServer runs on every PC that has a Kinect sensor. KinectServer is a tool to 

distribute color data, depth data and camera intrinsic from each Kinect cameras around 

the network. It’s a standalone application with no user interface. It uses Windows 

Communication Foundation (WCF) and requires Kinect for Windows V2 SDK. 

4.4.3 ProjectorServer 

The ProjectorServer is analogous to KinectServer. It runs on every PC that has a 

projector connected to it. During the acquisition phase, each projector is assigned to an 

index specified in the XML file and displays the gray code from the projector. Projector 

server is only required during the acquisition phase of the calibration setup. 
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4.4.4 CalibrateEnsemble 

The CalibrateEnsemble provides the GUI for the calibration process. It also 

assists in setup and configuring all the Kinect sensors and projectors for calibration. 

Creates an XML file to store the calibration information and allows the user to view the 

results.
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CHAPTER V 

HARDWARE SETUP 

This chapter discusses the overall hardware setup and necessary initialization of 

all the Kinect sensors and projectors used in the system.  

5.1 Hardware Specification 

In this thesis research, only one ProCam unit is used. ProCam unit was created 

using two Kinect sensors and one projector. Optoma TX536 projector was used to 

calibrate the two Kinects. Optoma TX536 projector does not have a wide field of view 

and only covers a small portion of the room, but it is sufficient for calculating the 

position and orientation of the Kinect. Wider field of view of the projector will result in 

more accurate intrinsic calculations of the Kinect cameras.  The two Kinect v2 cameras 

were placed horizontally with a slight tilt of around 5°. The ProCam unit’s connection 

diagram can be seen in Figure 13. 

The host computer was an Intel Core i7-6820HQ 2.7GHZ CPU with 8GB DDR3 

RAM running Windows Server 2016. First Kinect v2 sensor is connected to the host PC 

via USB 3.0. Projection is also connected to the host PC because ProjectorServer.exe 

does not support distributed rendering framework. The second Kinect sensor is connected 
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to another PC with Intel Core i7 6600U 2.5GHZ CPU and 8GB DD3 RAM running 

Windows

10. At first, both the PCs were connected using Wi-Fi to the network switch which 

significantly slows down the data transfer rate between the PCs. Later we switched to a 

more stable and fast wired ethernet connection. 

 

Figure 13: Hardware connection of ProCam unit 

5.2 ProCam Unit Placement 

The primary goal of Kinect placement is to increase the field of view. A different 

arrangement of Kinect sensors in the room has been tried for successful calibration. 

Requirements for proper room setup are as follows 

• Kinect sensors should be placed such that both the sensors should view the gray 

codes projected by the projector. At least 10 % overlap should be there. 

• Precise alignment of the Kinect sensors is not required. 
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• Both the color camera and the depth camera of both the Kinect sensors must 

observe the projected gray code. 

• The projector should be configured in ‘desktop front’ projection mode. 

• Windows should be set to ‘Extend’ its desktop to the projector. 

 

 

Figure 14: Kinect sensors and projector placement in the room 

Figure 14 displays the position of the two Kinect sensors and projector in the 

room. Kinect SDK’s Color Basic and Depth Basic samples were used to make sure both 

the Kinect camera’s color and depth image observe the projected image. 

5.3 Configuring Calibration.xml 

CalibrateEnsemble.exe has a user interface which allows the user to select the 

number of cameras and projectors in the ensemble and automatically creates a new 
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calibration XML file with some of the information filled in. XML file has a number of 

cameras and projectors.  

 

   

Figure 15: Calibration XML file showing the default pose matrix of the first Kinect 

camera 

 

The user can rename the cameras and projectors listed in the XML file. We have 

to manually enter the hostname or IP address for each Kinect cameras and projectors in 

the XML file. The pose information is a 4 × 4 matrix which is by default set to identity 

matrix for the first Kinect in the XML file listed as seen in Figure 15. That means the first 

camera is in that pose within the global coordinate frame. This default pose matrix of the 

first camera will not change post calibration. Alternatively, the user can establish a 
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different position for that camera manually. We also have to change the ‘displayindex’ 

value under the projector. For an external display such as a projector, the displayindex 

value should be set to ‘1’, ‘0’ being the main display.  

5.4 Practical Issues 

• When placing the objects in the scene for the projector to project on, we had to 

make sure there were no black objects in the scene. Kinect v2 sensor uses infrared 

Time of Flight technology to detect depth in the scene. Black objects absorb most 

of the infrared light and hence most of the infrared laser light transmitted by the 

Kinect sensor was getting absorbed by the black objects resulting in corrupted 

depth data and unsuccessful calibration.  

• The best Kinect sensor placement to avoid occlusion is to place the sensor higher 

than the average human height or mount the sensors on the ceiling. In both of the 

cases, the sensor needs to be tilted downwards. If the first Kinect sensor is placed 

tilted, the global coordinate system will also have a tilt as it is aligned with the 

first sensor. The global coordinate system can be corrected, so the gravity points 

downwards by using Kinect’s accelerometer data. In our hardware setup, the tilt 

of the first sensor is kept close to 0°.
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CHAPTER VI 

SOFTWARE IMPLEMENTATION 

In this chapter, we describe the implementation of human trajectory and activity 

tracking based on the Kinect skeleton data received by the host PC from two calibrated 

Kinect cameras. The system stores the skeleton data in a CSV file for further processing 

and categorizes the data based on the different area of the room and whether the person is 

sitting or standing. It calculates the total time spent by the person in each category. 

Finally, it displays the total time spent data in the form of a pie chart. 

6.1 Environment Setup 

 The language used for programming is C# throughout the implementation. The 

application is developed in Unity 2017 game development engine using Microsoft Visual 

Studio Community version as an editor. Kinect for Windows SDK V2.0 color and depth 

samples were used for proper placement of Kinect sensors. Revision control is done using 

Git Revision Control 

 Revision control is used to manage all the iterative changes of program. GitHub is 

used for revision control of the software code. It allows the user to revert to any previous 

version of the code easily and to keep track of all the changes committed to the code. 

Figure 16 shows the preview of the repository on GitHub.
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Figure 16: Kinect Trajectory Tracking GitHub repository 

6.2 User Interface 

 The user interface includes a 3D model of the room with the two Kinect sensor 

3D model placed at the exact locations in the room as determined by the calibration. 

‘Start Recording’ button records full skeleton data into a CSV file. The user can stop the 

recording of skeleton data by clicking on ‘Stop Recording’ button. ‘Process data’ button 

in the UI once clicked reads back the stored skeleton data, classify the data and calculates 

the total time spent in each category and draws a pie graph using ‘Graph and Chart’ 

plugin [44]. It also displays the total time spent in each category. The user interface of the 

application can be seen in Figure 17. 
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Figure 17: The user interface of Kinect Tracker 

6.3 Creating 3D Model 

 The calibration process generates .xml and .obj files which is used in Unity to 

create the 3D model of the room. Object file describes the geometric properties of the 

room and can be directed imported in Unity Engine. Photos captured by both the Kinect 

cameras are used to colorize the 3D model. Each Kinect sensor is linked to their 

respective empty game object. XML calibration file contains the pose matrix of the 

Kinect sensors which used to position the Kinect sensors game object in the 3D model. 

‘RATCalibrationData’ script reads the XML file to extract pose information. 

‘RATSceneSetup’ contains the helper functions that automate the connection and 

dependencies among many game objects. All the calibration files, ‘RATCalibrationData’ 

and ‘RATSceneSetup’ is linked to an empty game object and Build RoomAlive Scene 

button in ‘RATSceneSetup’ script will create a complete scene in that object. 
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6.4 World Coordinate System  

As described earlier, the coordinate system of the 3D model is centered at the first 

Kinect sensor in the ensemble. The first sensor is positioned at (0, 0, 0) and every other 

object in the scene is translated from the first Kinect sensor. The calibration data 

provided by the RoomAlive toolkit uses a right-handed coordinate system similar to 

Kinect sensor, while Unity uses a left-handed coordinate system. Real world positions 

and the RoomAlive toolkit’s coordinate system are one to one. 

6.5 User Tracking 

 Skeleton data from all the Kinect sensors is transferred to the host computer using 

Windows Communication Foundation where the main application runs. All the skeletons 

along with their tracking states are stored in RATKinectSkeleton data container. Each 

Kinect sensor can track up to six skeletons, for two Kinect sensors that are total of twelve 

tracked skeleton. RATKinectSkeleton merges the skeletons data from all the sensors 

making total tracked skeletons up to six. The skeleton data is in the coordinate system of 

the tracking Kinect sensor. All the skeleton data received by the host computer are 

assumed to be tracked by the main Kinect sensor. If the skeleton data is detected by the 

second Kinect sensor, to display the skeleton data in the 3D model, the 3D point needs to 

be converted into world coordinate system using the localToWorldMatrix. Where the 

localToWorldMatrix is derived from the pose of the second camera. Each tracked 3D 

point is multiplied with transform.localToWorldMatrix where the transform is attached to 

the game object of the respected Kinect camera. Kinect sensor v2 detects 25 joints and all 

the joint data is transferred to the host computer. In this thesis research even though all 

the tracked joints are used to display on the user interface, only 21 joints of the tracked 



 

41 

 

person are saved in the CSV file and to do all the data processing. We can also extract the 

height information of the tracked person to determine whether the person is sitting or 

standing. The Figure 18 shows the skeleton data overlaid on the 3D model using Gizmos. 

 

Figure 18: Skeleton data overlaid on the 3D model 

Gizmos are used to overlay the skeleton data on the 3Dmodel. Gizmos in Unity are 

used for visual debugging and can only be seen in scene view or by enabling Gizmos in 

game view. Gizmos contain many static methods to draw different shapes such as a cube, 

line, mesh, and sphere.  

6.6 Recording Data 

 The application starts recording the skeleton data once ‘Start Recording’ button is 

clicked. The Figure 19 shows the code iterates through all the joints for every detected 

skeleton and checks the tracking state of the joint. If the joint is tracking state is tracked, 
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the world coordinates of the joint along with the current timestamp is passed to ‘Save’ 

method of CSV class which saves the data in CSV file. First 21 joints are saved in the 

CSV file. Figure 20 shows the CSV log file. The timestamp unit is in millisecond since 

midnight.  

 

Figure 19: Code for tracking and recording head joint 

 

Figure 20: CSV log file with timestamp and X, Y, Z world coordinate location of the 

tracked joints 
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6.7 Activity Classification Model 

 The raw skeleton data along with timestamp is stored in a CSV file. This data is 

read back and classified into two different categories as follows 

• Zones 

• Standing/Sitting 

The first category classifies the data into two different zones defined in the 3D 

model. 3D model is created using two cameras, and each zone indicates area viewed by 

their respected camera. Zone0 is the area monitored by the first Kinect camera, and 

Zone1 is the area monitored by second Kinect camera in the ensemble. The total area 

being monitored is segmented into two zones by setting a threshold of X coordinate 

precisely at the center of both the cameras. The first camera’s X coordinate is 0 and the X 

coordinate of the second camera represent the horizontal distance between both the 

cameras. The threshold is set by dividing the X coordinate of the second camera by two 

as seen in Figure 21. 

 

Figure 21: Code for setting the threshold for Zones 

 

The application also classifies the data depending on whether the tracked human 

is standing or sitting based on the height of the head joint. The threshold which decides 

whether the person is sitting or standing is hardcoded in the code based on the room 

geometry and Kinect sensor placement. The raw data is read back from the CSV file after 

clicking ‘process data’ button on the UI and stored into ‘CompleteDataList’ List for 

classification. The code then iterates through all the elements in ‘CompleteDataList’ list, 
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segments the data according to two categories as described earlier and stores the data into 

respected CSV file and list of each activity. Figure 22 shows five lists, one for storing 

complete data and other four for activities based on two classifications. 

 

Figure 22: List for each classified activity 

 

The total time spent in each category is calculated and displayed on the user 

interface. Figure 23 shows the code snippet for total time calculation in the standing 

category. Total time is calculated by subtracting the current frame time from next frame 

time and adding it to ‘TotalTimeStanding’ variable. If the time difference between two 

consecutive frames is greater than 2 seconds, it is discarded. 

 

Figure 23: Code for total time calculation for standing category 
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6.8 Graphs 

 Graphs are used to compare the total time spent in two categories efficiently. Two 

pie charts are used to compare two categories, one for Zone 0 and Zone 1, and another 

pie chart for Standing and Sitting. ‘Graphs and Charts’ plugin is used to draw pie charts. 

Once ‘Graphs and Charts’ plugin is imported as an asset in the project, a pie chart can be 

easily added to the scene as a game object. Figure 24 shows the code for setting the value 

of the pie chart. Before setting values, the total time is converted into a percentage and 

rounded to the nearest value. The Categories for the pie chart is defined in the inspector 

window.   

 

Figure 24: Code for setting the value of pie chart
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CHAPTER VII 

EXPERIMENTAL RESULT 

 This chapter describes the qualitative results that demonstrate the performance of 

the system in a highly complex environment with occlusion. In addition, some of the 

practical scenarios where the dataset created by the system can be used are discussed. 

 The Figure 25 present the scatter plot of the projected path traveled in world 

coordinates over a period in the test room as recorded by our application. The origin of 

the world coordinate system is located at the first Kinect camera in the ensemble. The 

first Kinect sensor is positioned at 0 on the X-axis in the world coordinate system and the 

sensor Kinect sensor is positioned at -2.26 on the X-axis in the world coordinate system. 

The world coordinate system in the tracking application is the same as the coordinate 

system of Kinect SDK. The scatter plot represents the motion capture over the period of 

approximately 25 seconds. The second Kinect sensor is directly connected to the host 

computer where our application runs, and the first Kinect sensor is connected to another 

computer and sends the skeleton data over the network to the host computer. Due to this 

networked configuration, the frame rate of the skeleton data of first Kinect sensor is 

significantly lower than the frame rate of the skeleton data from the second Kinect 
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sensor. The difference in the frame rate between both the sensor can be noticed in the 

scatter plot as the area covered by the first Kinect sensor consists of less number of 

markers as compare to the area covered by the second Kinect sensor. 

 

 

Figure 25: Trajectory of the tracked person in the world coordinate system 

The current implementation consisting of tracking, logging and processing the 

skeleton data, operates at around 12 frames/second. Since the small motion of 60 seconds 

capture database of 720 examples, a linear search for the corresponding joint position is 
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conducted. For the considerably larger database, clustering would allow for faster 

processing. 

 

Figure 26: Walking dataset as recorded by the application 

 

 Figure 26 shows the dataset of the person walking with respect to time across the 

room twice as represented by two peaks in the X coordinate position of the joint. The 

gaps in the dataset denote the time required by the second Kinect sensor to detect the 

skeleton. By the time the person walking across the room was in the field of view of the 

second Kinect, he was almost facing his back towards the second camera and got self-

occluded. This occlusion problem can be eliminated by using multiple cameras to cover 

the same area.   

 The skeleton data recorded by this system can also be used for other applications 

such as gesture recognition, posture analysis, and gait analysis. Gait analysis can be done 

using angular kinematics on the skeleton data recorded by the application. This system 

provides continuous skeleton tracking data over a large area which is required to do a gait 

analysis on the dataset. Furthermore, machine learning can be applied to gait analysis 

data for disease identification. 
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CHAPTER VIII 

CONCLUSION 

8.1 Conclusion 

 Assisted living technology is shifting from care facilities to patient’s home due to 

low-cost tracking solutions. Multiple inexpensive depth cameras such as Kinect 

connected over the network can cover every part of the house and provide the patient’s 

location and behavioral data, enabling better care for the patients.  

 I have presented a system to track and record the skeleton data of patients in the 

smart indoor environment. The system consists of multiple calibrated Kinect depth sensor 

for tracking and localization. The system was able to achieve real-time positioning, path 

recording and monitoring behavioral information using markerless computer vision 

tracking. It can detect humans in the dark, invariant to background lighting condition, 

clothing, and skin color. Finally, the behavioral data is stored in a CSV file and total time 

spent in each category is calculated and displayed on the user interface in text and 

graphical form. 
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8.2 Future Work 

The classification model is designed to classify the activity of only one person. 

Future work involves creating a separate data container for every tracked person and 

storing the classification data of every tracked skeleton separately. Recording frame rate 

can be improved further by storing multiple frames data at once in CSV file. The 

behavior of the Kinect skeleton tracker is not always perfect, and hence the abrupt 

changes in skeleton data need to be filtered. Future work also includes tracking and 

reidentification of multiple users using weighted bone length and particle filtering. 

Furthermore, this system is designed to work in a single large area with numerous 

Kinects and a projector with an overlapping field of view creating an ensemble. For 

multiple rooms, multiple ensemble should be incorporated in a single application running 

on the host computer.
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