
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

ETD Archive

2018

Continuous Human Activity Tracking over a Large Area with Continuous Human Activity Tracking over a Large Area with

Multiple Kinect Sensors Multiple Kinect Sensors

Akshat C. Hans
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

 Part of the Other Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Hans, Akshat C., "Continuous Human Activity Tracking over a Large Area with Multiple Kinect Sensors"
(2018). ETD Archive. 1079.
https://engagedscholarship.csuohio.edu/etdarchive/1079

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for
inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information,
please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/etdarchive
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/1079?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

CONTINUOUS HUMAN ACTIVITY TRACKING OVER A LARGE AREA WITH

MULTIPLE KINECT SENSORS

AKSHAT HANS

Bachelor of Engineering in Electronics and Telecommunication

University of Mumbai

December 2012

Submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

August 2018

We hereby approve this thesis

For

AKSHAT HANS

Candidate for the Master of Science in Electrical Engineering degree

Department of

Electrical Engineering and Computer Science

And

CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Committee Chairperson, Dr. Wenbing Zhao

Department & Date

Committee Member, Dr. Lili Dong

Department & Date

Committee Member, Dr. Yongjian Fu

Department & Date

 June 21, 2018

Student’s

Date of Defense

ACKNOWLEDGMENTS

Thanks go out to my thesis advisor and chairperson, Dr. Wenbing Zhao. I feel

very fortunate to get a chance of taking his Computer Vision course which helped me to

gain insight on one of the widely used camera sensor in computer vision research. I am

incredibly thankful for his guidance, patience, perseverance and constant support during

the completion of this thesis.

 It is an honor for me to have Dr. Yongjian Fu and Dr. Lili Dong on my thesis

committee. Finally, I would like to thank my friends and family for the unknowing

sacrifice and moral support during the completion of this thesis.

iv

CONTINUOUS HUMAN ACTIVITY TRACKING OVER A LARGE AREA WITH

MULTIPLE KINECT SENSORS

AKSHAT HANS

ABSTRACT

In recent years, researchers had been inquisitive about the use of technology to

enhance the healthcare and wellness of patients with dementia. Dementia symptoms are

associated with the decline in thinking skills and memory severe enough to reduce a

person’s ability to pay attention and perform daily activities. Progression of dementia can

be assessed by monitoring the daily activities of the patients.

This thesis encompasses continuous localization and behavioral analysis of

patient’s motion pattern over a wide area indoor living space using multiple calibrated

Kinect sensors connected over the network. The skeleton data from all the sensor is

transferred to the host computer via TCP sockets into Unity software where it is

integrated into a single world coordinate system using calibration technique. Multiple

cameras are placed with some overlap in the field of view for the successful calibration of

the cameras and continuous tracking of the patients. Localization and behavioral data are

stored in CSV file for further analysis.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 I. INTRODUCTION ... 1

1.1 Thesis Organization .. 2

 II. LITERATURE REVIEW ... 4

2.1 Human Detection .. 4

2.2 Human Tracking ... 7

2.3 Depth Cameras and Skeleton Tracking ... 8

2.4 Tracking with Multiple Sensors .. 10

2.5 Indoor Localization and Motion Monitoring .. 10

 III. BACKGROUND .. 12

3.1 Kinect V1 vs Kinect V2 .. 12

3.2 Depth Camera Technology ... 14

3.2.1 Structured Light .. 14

3.2.2 Time-of-Flight... 16

3.3 Disadvantage of Kinect V2 ... 17

vi

 IV. CALIBRATION OF CAMERAS USING ROOMALIVE TOOLKIT 18

4.1 The ProCam Unit .. 19

4.2 Camera Calibration ... 20

4.2.1 The Pinhole Camera model ... 21

4.3 Calibration Process ... 24

4.3.1 Acquisition .. 25

4.3.2 Solving .. 27

4.4 Code Components ... 29

4.4.1 ProCamEnsembleCalibration.dll .. 29

4.4.2 KinectServer ... 30

4.4.3 ProjectorServer ... 30

4.4.4 CalibrateEnsemble .. 31

 V. HARDWARE SETUP ... 32

5.1 Hardware Specification ... 32

5.2 ProCam Unit Placement .. 33

5.3 Configuring Calibration.xml ... 34

5.4 Practical Issues .. 36

 VI. SOFTWARE IMPLEMENTATION .. 37

6.1 Environment Setup.. 37

6.2 Revision Control ... 37

vii

6.3 User Interface .. 38

6.4 Creating 3D Model ... 39

6.5 World Coordinate System ... 40

6.6 User Tracking.. 40

6.7 Recording Data ... 41

6.8 Activity Classification Model ... 43

6.9 Graphs ... 45

 VII. EXPERIMENTAL RESULT .. 46

 VIII. CONCLUSION .. 49

8.1 Conclusion .. 49

8.2 Future Work .. 50

 REFERENCES ... 51

viii

LIST OF TABLES

Table Page

I. The specification for the Kinect v1 and v2 ... 13

ix

LIST OF FIGURES

Figure Page

1. Kinect v2 on the left, Kinect v1 on the right... 13

2. Infrared image of the dot emitted by the Kinect v1 to calculate depth [39] 15

3. Two discrete projector camera groups setup .. 19

4. Two projector camera groups connected by an overlapping camera 20

5. The pinhole camera model .. 22

6. Vertical gray code as seen by the first Kinect camera .. 25

7. Horizontal gray code as seen by the first Kinect camera 26

8. Vertical gray code as seen by the second Kinect camera 26

9. Horizontal gray code as seen by the second Kinect camera 27

10. Establishing global extrinsic by chaining together correspondences [36] 27

11. A unified 3D model of the room generated during calibration 28

12. ProCamEnsembleCalibration.dll UML class diagram .. 29

13. Hardware connection of ProCam unit ... 33

14. Kinect sensors and projector placement in the room .. 34

15. Calibration XML file showing the default pose matrix of the first Kinect

camera ... 35

16. Kinect Trajectory Tracking GitHub repository... 38

17. The user interface of Kinect Tracker .. 39

18. Skeleton data overlaid on the 3D model ... 41

19. Code for tracking and recording head joint .. 42

20. CSV log file with timestamp and X, Y, Z world coordinate location of the

tracked joints ... 42

21. Code for setting the threshold for Zones... 43

22. List for each classified activity ... 44

x

23. Code for total time calculation for standing category ... 44

24. Code for setting the value of pie chart .. 45

25. Trajectory of the tracked person in the world coordinate system 47

26. Walking dataset as recorded by the application .. 48

1

CHAPTER I

INTRODUCTION

 The importance of monitoring in the management of health and well-being is

increasingly being emphasized nowadays. Diseases such as Alzheimer, the most common

form of Dementia among the older population pose significant health threats. Dementia

impairs the people’s ability to do routine work. One of the primary symptoms of

dementia is memory loss. They may prepare a meal but might even forget that they

cooked it. Dementia can also decrease the mobility of a person. Caregivers usually find

themselves providing reminders to the patients. Family caregivers may sometimes find

this embarrassing and upsetting, as it may invade the privacy of the patients. Allowing

caregivers to monitor the patient’s status regarding motion behavior and position

localization helps to better manage such patients by classifying episodes displayed by the

patients.

 Indoor localization in a smart scenario can significantly assist people suffering

from dementia. A person’s location can indicate different activities being performed, for

example; a person may have dinner at the dining table. Location information with respect

to time can also help detect incidents such as freezing of gait in people who have

Parkinson’s disease. It can also help identify specific events such as leaving or entering a

2

specific area such as a bathroom, kitchen or even recognizes when the person leaves

home without notice.

 The goal of this thesis is to develop a monitoring application for studying and

recording the behavioral patterns of the patients by localization and classification of

activities such as standing and sitting. The requirements of indoor monitoring system

were to:

• Use multiple camera sensors to cover and monitor a large area.

• Record patient’s trajectory along with a timestamp.

• Classify activities and determine the total time spent in an area/room and

sitting/standing.

• Provide a visual representation of classified activities.

This thesis uses RoomAlive toolkit, developed by Microsoft, which provides a

platform for users to calibrate and create a 3D model of any room by using multiple

Kinect cameras. RoomAlive toolkit utilizes a projector to display the gray codes for

calibration of multiple Kinect sensors. The monitoring application records the head

position of the tracked person with a timestamp in a CSV file. Unity game development

engine is used to develop the application. Visual representation of classified activities is

done using graphs.

1.1 Thesis Organization

Chapter II reviews previous work in human detection and tracking, it also reviews

the latest related work using multiple depth cameras. Chapter III describes the

background for selecting Kinect cameras. Chapter IV discusses the camera calibration

3

using the RoomAlive toolkit. Chapter V describes the hardware setup and chapter VI

describes the software implementation of the application. Chapter VII discusses the

experimental result.

4

CHAPTER II

LITERATURE REVIEW

Over the past years, the increase in computer vision research activities is

tremendous. Partly because of the improvement in computer possessing power,

facilitating technology such as autonomous driving, Face ID, and surveillance to become

readily available. Many of the publication selected for this related work section contains

multiple contributions, and few of them might be irrelevant to this thesis. Considering

this, not all the papers will be discussed in totality but instead divided into sections that

accompany the progression and relates to the idea of this thesis. The first section

discusses the human detection followed by human tracking. The third section discuss

research papers that use the skeleton model to detect and track people which are closely

related to the idea of this thesis.

2.1 Human Detection

Background subtraction/separation is used to focus more on the foreground and

eliminate the background clutter which usually creates ambiguity. Background

subtraction extracts the foreground by calculating the difference between the sequence of

images and the background model. Foreground can then be further processed to detect

moving objects.

5

 The most commonly used application of background subtracting is called

‘blue/green screening’. Current it is called chroma-keying [1]. Background separation is

used to differentiate between foreground and background based on the color hue

(chroma). Chroma-keying can be done using evenly lit, exposed and any distinct color

surface as the background but the blue or green color are commonly used as the

background surface, as it differs the most in hue from the human skin. Any part of the

subject being recorded or captured cannot reuse the color of the background surface.

Chroma-keying is commonly used in movies, games, and TV news programs. It can also

be utilized in the immersive virtual environment [2]. Earlier, Special dedicated hardware

was used for performing chroma-keying. Due to the availability of low-cost PCs and

advancement in computer vision, software-based solutions are available that deliver far

more superior background separation, and it turns out to be much cheaper than dedicated

hardware [3].

Paul et al. [4] use frame differencing for moving objects. Here, the current image

frame is subtracted from the suitable reference frame. After which appropriate threshold

is selected based on the hysteresis thresholding algorithm and applied to the difference

frame to detect the pixels that may correspond to the motion. There are some problems

with these two approaches. If the foreground contains similar colors to that of the

background, they will be removed. Shadows can be detected as foreground. Background

subtraction for outdoor activities without controlled lighting and exposure can be

complicated as compared to indoor. Adaptive background separation is used to overcome

this shortcoming.

6

For classifying objects as human, feature descriptor such as scale-invariant feature

transform (SIFT) [5] and a histogram of oriented gradients (HOG) [6] can be used on

background subtracted images. HOG is often used along with machine learning

algorithms such as linear support vector machine which requires the training of a

classifier or Schapire’s AdaBoost [7]. The AdaBoost algorithm selects a small number of

week classifiers from a large pool of possible week classifiers and constructs strong

classifier as a linear combination of selected weak classifiers. Avidan [8] train a set of

weak classifiers to distinguish between the background and an object and then ensemble

of weak classifiers is combined into a strong classifier using AdaBoost.

Viola and Jones [9] [10] proposed a widely recognized face detection system.

They introduced a new image representation called ‘Integral Image’ for fast computation.

Once computed, based on the idea of Haar wavelets [11], Haar-like features are

computed. The classifier is constructed by selecting a small number of essential features

using AdaBoost. Lienhart and Maydt [12] extended this work by introducing a novel set

of rotated Haar-like features for publicly available initially developed by Intel, Open

Source Computer Vision Library, OpenCV [13].

 Template matching is also widely used for detecting humans. In [14], a group of

average normalized precomputed histogram template of people in different posture is

compared with the current silhouette to detect humans. In [15], the binary head template

is used to compare with edge image. Before matching, a distance transform is computed

to increase the efficiency of the matching process. This distance transform is then used to

create a distance map of the edge image. The template is then translated and positioned at

various locations of the distance map and matching is done to determine head like object.

7

2.2 Human Tracking

Tracking is the essential component for surveillance applications. Many

methodologies have been proposed for tracking humans based on variations of the same

Bayesian framework [16], such as Kalman Filters [17], Particle Filters and Mean-Shift

algorithm. Kalman Filters have been utilized widely to track in many domains. A large

number of works [18], [19], [20], [21], [22], [23] have used Kalman filters for Tracking.

In particle filtering, the posterior is at first approximated by the arrangement of discrete

samples with related weights. The particle with smaller weight is disposed of in the

following iteration, while those with the substantial weight is replicated to maintain the

population size. The particle filter will converge on a hypothesis after several iterations.

For tracking people in the cluttered scene, many papers make use of particle filtering. In

[24], Breitenstein et al. proposed a multi-person tracking-by-detection in a particle

filtering framework. Detection and detection confidence are used for propagating the

particles. The method proposed by Comaniciu et al. [25] provides basic tracking

framework based on a mean-shift algorithm. Tracking is done by finding the peak in the

probability density function calculated on each pixel using color similarity.

Occlusion makes tracking difficult. In single camera systems, to cope with the

occlusion, approaches such as the predicted position of the occluded person until the

person re-appears [26] is common to find. In partial occlusion, the visible part of the

person can still be used to track the person. The camera can also be placed higher facing

downwards to reduce the effect of occlusion. With the continuous increase in computing

power, many researchers are inclined towards the use of multiple overlapping cameras to

reduce the effect of occlusion [27].

8

2.3 Depth Cameras and Skeleton Tracking

RGB-D cameras provide an additional stream of depth data along with the color

stream. Human detection and tracking from color frames can be difficult due to a range of

factors. Detection of humans using 2D color image can become difficult with the change

in illumination, color, clutter, and occlusion as it becomes cumbersome to separate

background and foreground. On the other hand, depth image greatly simplifies the

problem of inconsistent color and illumination. Color frames represent the 3D world in a

2D image. This conversion of 3D space into the 2D image can be represented by a

pinhole camera model. The depth image is a simple representation of the 3D space.

Background separation is a lot easier in a depth image as compared to the 2D color

image. Spinello and Arras [28] proposed people detection using a histogram of oriented

depth (HOD), inspired by HOG but using depth information instead. Stereo cameras are

also used for range (depth) imaging. Masuyama et al. [29] detect humans by using

subtraction stereo to the images captured by a stereo camera to obtain foreground region

and corresponding depth information.

During recent years, different types of depth cameras have emerged. However,

earlier depth cameras were expensive. Microsoft Kinect [30] was launch by Microsoft

back in 2010 and was initially developed for the Xbox gaming console. Later, many

computer vision research communities and other less apparent communities such as

Design, Materials Science, Robotics, Biology, and Medicine started using the Kinect

because of its reasonable depth accuracy and affordability. Lun et al. [31] published a

comprehensive survey on Kinect sensor’s application and technological front covering

variety of areas, including healthcare, robotics, education and performing arts, retail

9

services, workplace safety training, sign language recognition and 3D reconstructions. In

[32], Zhao et al. implemented, and field tested a Kinect based tracking system for bedside

care in nursing homes while tackling the problem of invasion of privacy by implementing

a unique novel privacy-aware compliance tracking system (PACTS). The Kinect sensor

provides real-time 3D human skeleton data which used to be only possible with

expensive computer vision systems, thereby extensively popularizing skeleton based

human representation. In skeleton tracking, the human body is rendered by a number of

joints representing different body parts, every joint being represents by its 3D

coordinates.

3D skeleton based human representation also reveal promising performance in

real-world applications such as Kinect based motion controller. 3D skeleton data from

Kinect is also robust to illumination changes. Skeleton detection and processing are done

in the Kinect device itself to offload the computing power required for skeleton

processing from user’s computer and facilitate high frame rate, real-time, online

applications using the skeleton data provided by Kinect. Zhao et al. [33] developed a

Kinect-based rehabilitation exercise monitoring system which shows that the skeleton

data provided by the Kinect can be successfully used in monitoring rehabilitation

exercises. In [34], a rule-based human motion tracking framework is demonstrated by

showing the detailed rules for hip abduction, bowling and sit to stand exercises

commonly used in rehabilitation. In [35], Zhao et al. designed, implemented and

evaluated a Kinect based system to increase the workers compliance to best practices and

alert them discreetly on detection of noncompliant activities empowering healthier and

more productive workplace.

10

2.4 Tracking with Multiple Sensors

Often in applications such as surveillance and activity tracking, large field of view

is required to cover every part of the room or area being monitored. A standard solution

to increase the field of view is to use camera networks along with sensor fusion. In [34],

Caon et al. used a simple method of skeleton data fusion, using Kinect v1 cameras for

their smart environments related application. They proposed a weighted averaging

method for joints coordinate fusion. A weighting factor of the joint coordinates depends

on the tracking state of the joints derived from Kinect SDK and a total number of joints

tracked. In [35], multi-Kinect sensor setup is used for dismounted soldier training.

Similar weighting approach of the joint coordinates based on the Kinect SDK provided

tracking state but extended by depth-to-joint cross-validation. Cross-validation is done by

comparing the joint depth (Z) with the point cloud’s depth measurement at the same X-Y

coordinates. In [36], Two perpendicular Kinect sensors are used. One sensor is defined as

the primary sensor. If the primary sensor does not track a joint, coordinates of the

untracked joint are substituted by the one tracked by the second Kinect sensor.

2.5 Indoor Localization and Motion Monitoring

OpenPTrack [37], is an open source multi RGB-D camera person tracking

software. While this does not detect the skeleton, it is possible to monitor the trajectory of

more than six people as compared to the Kinect which can only track up to six people

over a large area using calibrated networked cameras. Streaming of the tracking data is

done using UDP and NDN in JSON format. The RoomAlive toolkit [38] uses multiple

calibrated Kinect cameras for dynamic projection mapping to enable immersive

11

augmented experience using projectors. RoomAlive uses a distributed network for

tracking touch detection and body movements using optical-flow based particle tracking.

Torres et al. [39] use a combination of computer vision and dead-reckoning for

indoor localization. Their system is composed of wearables and fiducial markers for

tracking. Klingbeil et al. [40] demonstrated a wireless sensor network for positioning and

monitoring human motion in an indoor environment. They used an inertial sensor along

with a mobile sensor node worn by the person moving inside the building. Motion data is

processed on the onboard mobile node and transferred to a static network of seed nodes.

Based on the person’s pedometric mapping, seed node position and indoor map

information, location is calculated using a Monte Carlo based algorithm. Chen et al. [41]

proposed an intelligent video monitoring system to improve the safety of old persons who

have dementia. They used 23 cameras to record daily activity. Elopement activity is

detected using a Hidden Markov Model (HMM).

Even though there are many multiple Kinect activity monitoring approaches,

these systems mostly make use of Kinect v1 sensor because up to four sensors can be

connected to the same PC reducing the complexity of the system. Our system, on the

other hand, uses multiple Kinect v2 sensors using distributed network because of its

reasonably high accuracy, low interference between multiple cameras and better

occlusion handling. We do not use any wearable devices or fiducial markers for

localization and monitoring as it has a significant impact on acceptability, especially for

older people.

12

CHAPTER III

BACKGROUND

Microsoft Kinect is 3D sensing device first launched in November 2010 as a

motion sensing input device for Xbox 360 console. Kinect v1 was the first sensor that

made 3D sensing accessible at low cost. Kinect features an RGB camera, depth sensor

and multi-array microphone which provides capabilities such as facial recognition, 3D

motion capture and voice recognition along with raw color, depth, skeleton and audio

streams. Kinect’s skeleton data does not require users to wear markers, unlike other

skeleton tracking systems. Even though the markerless skeleton tracking systems are not

as accurate as tracking systems with a marker, it provides excellent flexibility and

sufficient accuracy for most of the applications. The newer version of Kinect, Kinect v2

also provides raw infrared data. It became apparent that Kinect will not be limited to

gaming applications.

3.1 Kinect V1 vs Kinect V2

Microsoft released the Kinect v2 in 2014 with significant improvements. Kinect

v2 offers wide field-of-view, higher resolution, low latency with USB 3.0, better skeleton

accuracy and new depth-sensing technology. Kinect v2 sensor also provides face

13

orientation of the tracked user such as pitch, yaw, and roll along with many other face

details. Kinect v2 and Kinect v1 sensors are shown in Figure 1.

Figure 1: Kinect v2 on the left, Kinect v1 on the right

Apart from all the new specification, Kinect v2 can track six people with more

number of joints and with greater precision as compared to Kinect v1 which can

recognize six people but only able to track (full skeleton) two peoples. Table I shows a

comparison of Kinect v1 and Kinect v2 specifications.

Table I : The specification for the Kinect v1 and v2

Feature Kinect V1 Kinect V2

Color Camera

- Horizontal Field of View

- Vertical Field of View

640 x 480 @ 30 fps

57 degrees

43 degrees

1920 x 1080 @ 30 fps

84 degrees

54 degrees

Depth Camera

- Horizontal Field of View

- Vertical Field of View

320 x 240 @ 30 fps

57 degrees

43 degrees

512 x 424 @ 30 fps

70 degrees

60 degrees

Infrared Camera 320 x 240 @ 30 fps 512 x 424 @ 30 fps

Depth Sensing Technology Structured Light

(PrimeSense Light Coding)

Time of flight

(ToF)

Minimum Latency 102 ms 20 - 60 ms

Skeleton Joints Defined 20 joints 25 joints

Full Skeleton Tracked 2 6

Connection Type USB 2.0 USB 3.0

14

Many studies show that Kinect v2 is better than Kinect v1. Wasenmuller and

Stricker [42] evaluated the depth image of both the sensors and concluded that the Kinect

v1 sensor’s depth data accuracy and precision decrease exponentially with the increase in

distance, whereas Kinect v2 accur acy and precision remains constant. Further,

Wasenmuller recommends using Kinect v2 over Kinect v1 for 3D reconstruction

applications. Wang et al. [43] gave the insight of skeleton data accuracy of Kinect v1 and

v2 sensor. The overall results show that the Kinect v2 sensor has better accuracy in joint

3D position estimation and is more robust to body rotation and occlusions. However,

possibly due to Time-of-Flight technology used in Kinect v2, the lower legs joint 3D

positions were tracked with large offsets, which was not the case with the Kinect v1

which employs structured light technology for obtaining depth data.

3.2 Depth Camera Technology

This section will describe the structured light and Time-of-Flight depth sensing

technology.

3.2.1 Structured Light

Kinect v1 uses PrimeSense’s patented Light Coding™ technology which is based

on structured light technology for depth sensing. In this structured light technology,

infrared light generated by infrared projectors is passed through a diffraction grating

which projects the infrared laser beam as a set of semi-random dots. These infrared dots

are projected on to the scene as seen in Figure 2. Relatively standard CMOS sensor with

a bandpass filter centered at the infrared band wavelength is used to detect the infrared

dot patterns. Infrared emitter and CMOS detector are placed at a known fix distance, and

depth data is recovered by simple triangulation.

15

Figure 2: Infrared image of the dot emitted by the Kinect v1 to calculate depth [39]

The disadvantage of Structured light technology is that the fixed number of dots

are projected on to the scene, irrespective of the distance of the objects. Therefore, the

closer objects will be represented by more dots that than the object farther away from the

sensor, resulting in decreased depth sensing precision with the increase in distance.

Another disadvantage of this structured light technology is that if multiple overlapping

Kinect cameras are used, Kinect v1 cannot differentiate between the dot pattern projected

by itself and the dot pattern projected by the other Kinect cameras causing an interference

issue. In this thesis research, multiple Kinect cameras are used to increase the field of

view and requires at least 10% overlapping of the cameras for the camera calibration to

work.

16

3.2.2 Time-of-Flight

Kinect v2 utilize Time-of-Flight technology for depth measurements. Time-of-

Flight technology works by measuring the time it takes for the modulated laser light pulse

to travel from a laser projector to the object in the scene, and then back to an image

sensor. Based on the modulation frequency and the speed of light, a distance of each

pixel is calculated, resulting in a 3D image. Kinect v2 calculates the distance by dividing

a pixel into two halves such that when the first half is on, it will absorb the light and the

second half will reject the light. Similarly, when the second half is on, it will absorb the

light and the first half will reject the light. The light source is being pulsed in phase with

the first pixel half such that when the first pixel is on, the laser diode is also on. If the

object is close to the sensor, a higher amount of laser light will be absorbed by the first

half of the pixel than the second half. If the object is farther away from the sensor, the

travel time of the light will increase, and more light will be absorbed by the second half

of the pixel than the first half. The total amount of photons absorbed by both halves are

compared and the round-trip distance of the light traveled is estimated. Hence

maintaining the precision of depth data even if the object is far away, giving Kinect v2

depth-sensing technology an edge over Kinect v1’s structured light technology where the

number of infrared dots shared among pixels get reduced with the increase in distance.

Kinect v2 also works well for outdoor applications and rejects ambient lighting by

resetting the pixel in the middle of exposure if the pixel is over saturated by the ambient

light.

17

3.3 Disadvantage of Kinect V2

With the increase in the amount of data because of the higher resolution, Kinect

v2 uses higher bandwidth USB 3.0 for data transmission and a maximum of one Kinect

v2 can be connected to the same PC as compared to Kinect v1 which uses USB 2.0 and

can connect up to four sensors to the same PC. In this thesis research, multiple Kinect v2

sensors are used because of all the advantage, new technology and to increase the field of

view, but due to this limitation, a distributed network is used to transmit skeleton data to

the server.

18

CHAPTER IV

CALIBRATION OF CAMERAS USING ROOMALIVE TOOLKIT

 RoomAlive Toolkit [36] is an open source SDK developed by Microsoft for

dynamic projection mapping research and has been in use at Microsoft Research for

many years. RoomAlive Toolkit has been used by Microsoft for many interactive

projection mapping and augmented reality projects. The basic building blocks of

RoomAlive toolkit consist of an ensemble of projectors and cameras, or ‘ProCam’ unit

and enables developers to calibrate multiple Kinect v2 sensors and video projectors

connected over the network. RoomAlive captures and creates a unified 3D model of the

geometry and appearance of the room. RoomAlive Toolkit consists of two separate

projects developed in C# language.

• ProCamCalibration - This project consists of KinectServer, ProjectorServer and

CalibrateEnsemble applications which are used to calibrate multiple projectors

and Kinect v2 cameras.

• RoomAliveToolkitForUnity – RoomAlive Toolkit for Unity contains a set of

scripts to enable dynamic projection mapping based on the Calibration data from

ProCamCalibration. It also streams Kinect data to Unity. This thesis research only

makes use of the streaming script from this project.

19

4.1 The ProCam Unit

RoomAlive Consists of multiple projector-camera units called ProCam. Projector

projects out on to the room and Kinect camera also looks out on to that room. Projector

and all the depth camera that can see some part of the gray code that projector displays

form a projector group. Multiple projector groups will be needed to create a full 3D

model of a room. Another projector out someplace else in the room might have two more

Kinect sensors next to it, and that would form another projector group, these two groups

are a distinct group as seen in Figure 3 and there is no way to relate the geometry of both

the groups.

Figure 3: Two discrete projector camera groups setup

To relate the geometry of one group to the other, a third camera which will

overlap both the groups is needed as seen in figure 4. This third camera belongs to both

20

the group will help establish the geometry of the two groups together. Overlap of

multiple camera groups is referred as an ensemble.

Figure 4: Two projector camera groups connected by an overlapping camera

4.2 Camera Calibration

Geometric camera calibration estimates the intrinsic and extrinsic of all the

cameras in the ensemble. Intrinsic camera parameters provide information about the

camera focal length, optical center, and image sensor format. Extrinsic camera

parameters describe the coordinate system transformations from 3D world coordinates to

3D camera coordinates such as position and orientation of the camera center in world

coordinates. Using intrinsic and extrinsic parameters, complete camera matrix can be

derived. Complete camera matrix can be used to associate 2D points on the image plane

with 3D points in the world coordinate system. Complete camera matrix is used in

application such as background blur (limited depth of field effect) seen in recent mobile

phones equipped with two cameras which uses stereo vision to calculate the 3D world

21

coordinates of the point viewed by both cameras. Calibration is essential in computer

vision systems where more than one cameras are used and where exact geometrical

measurements are performed. In this thesis research, the first Kinect camera establishes

the coordinate system for the entire ensemble. The pose of the first Kinect camera in the

ensemble will become the origin of world coordinate system and every other camera will

be calibrated to the first Kinect camera. A simple pinhole camera model can be used to

describe the intrinsic, extrinsic and complete camera matrix.

4.2.1 The Pinhole Camera model

The mathematical relationship between the coordinates of the points in 3D space

and its projection on to the image plane of a camera can be described by the pinhole

camera model. In pinhole camera model, camera aperture is described as a point instead

of lens used in cameras to focus light and hence, does not consider the geometric

distortions such as radial distortion and tangential distortion caused by the lens. These

distortions can be modeled using Brown’s distortion model for more accurate

representation in complex camera systems. Images produced by ultra wide-angle lens

tends to have a strong visual barrel distortion effect also known as a fisheye effect which

can be corrected in software by modeling the distortion.

Figure 5 shows a camera with the center of projection O also called as camera

center. The image plane is at focal length f from the center of projection O. In actual

pinhole camera model; the image plane is behind the center of projection resulting in a

mirrored image, it is much easier for calculations to assume the image plane at the focus

in front of the center of projection. Principle axis is the line passing through the center is

22

projection perpendicular to the image plane. A 3D point P = (X, Y, Z) in the world space

is imaged on the camera’s image plane at the point 𝑃𝐶 = (u, v).

Figure 5: The pinhole camera model

Point 𝑃𝐶 can be found by similar triangles as

𝑓

𝑍
=

𝑢

𝑋
=

𝑣

𝑌

Which we can rewrite as

𝑢 =
𝑓𝑋

𝑍

𝑣 =
𝑓𝑌

𝑍

We can write 𝑃𝐶 in homogeneous coordinates as

 [
𝑢
𝑣
𝑤

] = [
𝑓 0 0
0 𝑓 0
0 0 1

] [
𝑋
𝑌
𝑍

] (4.1)

23

If the 2D image coordinate system’s origin does not coincide with where the principal

axis intersects the image plane (principal point), point 𝑃𝐶 needs to be translated to the

desired origin. Now (u, v) can be rewritten as

𝑢 =
𝑓𝑋

𝑍
+ 𝑗𝑢

𝑣 =
𝑓𝑌

𝑍
+ 𝑘𝑣

Where translation is defined by (𝑗𝑢, 𝑘𝑣).

Similarly, this can be expressed as Equation 1 as follows:

 [
𝑢
𝑣
𝑤

] = [
𝑓 0 𝑗𝑢

0 𝑓 𝑘𝑣

0 0 1

] [
𝑋
𝑌
𝑍

] (4.2)

𝑃𝐶 is expressed in inches in Equation 2. To express it in pixels, camera resolution in pixel

per inches needed to be known. If the pixels are square, the resolution will be equal in

each u and v directions. For rectangular pixel, we can denote the resolution in u direction

by 𝑔𝑢 and in v direction by 𝑔𝑣 pixels/inch. To express 𝑃𝐶 in pixels, u and v coordinates

should be multiplied by 𝑔𝑢 and 𝑔𝑣 respectively.

𝑢 = 𝑔𝑢

𝑓𝑋

𝑍
+ 𝑔𝑢𝑗𝑢

𝑣 = 𝑔𝑣

𝑓𝑌

𝑍
+ 𝑔𝑣𝑘𝑣

𝑃𝐶 in pixels can be expressed in matrix form as follows

 [
𝑢
𝑣
𝑤

] = [
𝑔𝑢𝑓 0 𝑔𝑢𝑗𝑢

0 𝑔𝑣𝑓 𝑔𝑣𝑘𝑣

0 0 1

] [
𝑋
𝑌
𝑍

] = [
𝛼𝑥 0 𝑢𝑜

0 𝛼𝑦 𝑣𝑜

0 0 1

] P = KP (4.3)

K can sometimes have an additional parameter s for skewness of the pixel, given by

24

𝐾 = [

𝛼𝑥 𝑠 𝑢𝑜

0 𝛼𝑦 𝑣𝑜

0 0 1
]

K only depends on the intrinsic parameters of the camera such as focal length denoted by

𝛼𝑥 and 𝛼𝑦 which are different for x and y for the non-square pixels, offset of the origin of

the image plane and the principal point in pixels denoted by 𝑢𝑜 and 𝑣𝑜 and thus defines

the intrinsic parameters of the camera and usually called as ‘intrinsic matrix’.

If the camera is oriented arbitrarily and does not have its center of projection at (0, 0, 0),

we need a translation and rotation to make the camera coordinates system coincide with

the world coordinate system. Let the rotation be given by a 3 × 3 rotation matrix R and

translation by T(𝑇𝑋, 𝑇𝑌, 𝑇𝑍). The matrix formed by first applying translation and then

rotation is given by the 3 × 4 matrix as follows

E = (R | RT)

E is the ‘extrinsic matrix’. The complete camera transformation is given by

K (R | RT) = (KR | KRT) = KR (I | T)

Therefore 𝑃𝐶 is given by

𝑃𝐶 = KR (I | T) P = CP

Where C is a 3 × 4 matrix usually called the ‘camera matrix’. Because C is a 3 × 4

matrix, P needs to be in 4D homogeneous coordinates and resulting 𝑃𝐶 will be in 3D

homogeneous coordinates. Exact 2D coordinates of the projection on the image plane can

be obtained by dividing the first two coordinates of 𝑃𝐶 by the third coordinate.

4.3 Calibration Process

Calibration finds the pose and position of every Kinect camera in the ensemble

along with lens distortion and focal length. Calibration process consists of two phases,

25

‘acquisition phase’ and ‘solve phase’. The calibration process is completely automatic

and does not require user interventions. Cameras are placed in the room such that it will

extend the field of view while still having ~10% overlap between the cameras.

4.3.1 Acquisition

In acquisition phase, the projector displays a series of gray codes which are

observed by the all the color cameras and takes a snapshot as seen in Figure 6, 7, 8 and 9.

These gray codes are used to establish the mapping from a pixel in the color camera to a

pixel coordinate in the projected display. Camera intrinsic such as focal length and lens

distortion is obtained and stored in the XML file. It also stores the depth image and mean

depth image for the calibration process.

Figure 6: Vertical gray code as seen by the first Kinect camera

26

Figure 7: Horizontal gray code as seen by the first Kinect camera

Figure 8: Vertical gray code as seen by the second Kinect camera

27

Figure 9: Horizontal gray code as seen by the second Kinect camera

4.3.2 Solving

Figure 10: Establishing global extrinsic by chaining together correspondences [36]

28

The calibration begins with transforming each correspondence into depth image

using API provided by Kinect SDK. This results in 2D to 3D point correspondences.

These correspondences between 3D points and their projections on the camera images are

then passed to OpenCV’s calibrateCamera function to find intrinsic and extrinsic

parameters of each unit. To increase the robustness RANSAC procedure is used. To find

the global extrinsic between the two Kinect cameras, correspondence between two units

is computed as shown in Figure 10. First the depth pixel in Unit 0 (𝑑0) is mapped to an

RGB pixel in Unit 0 (𝑟0), then the corresponding projector pixel (𝑝1) is mapped in Unit 1

by decoding the gray codes. Gray code correspondence is then inverted to look up the

RGB pixel (𝑟1) in Unit 1. Finally, the correspondence between two units is found by

inverting the transfer map resulting in depth pixel (𝑑1).

Figure 11: A unified 3D model of the room generated during calibration

29

Solve phase also merge the color and the depth data collected from all the Kinect

sensors and creates a unified 3D model of the room as seen in Figure 11. which helps the

user to check the quality of registration. The model is also exported to an obj file which

can be directly imported into Unity.

4.4 Code Components

The RoomAlive Toolkit code is completely written in C#. This section discusses

four components used for the calibration process.

Figure 12: ProCamEnsembleCalibration.dll UML class diagram

4.4.1 ProCamEnsembleCalibration.dll

ProCamEnsembleCalibration.dll is the core of the project and has all the

calibration code in it. It is used in the calibration step to:

• Acquire calibration patterns and calculate the camera parameters of Kinect and

projector such as focal length, optical center and the dimensions of the camera.

30

• It calculates the pose, i.e. position and orientation of all the Kinect and the

projectors.

• It provides ways to interact and pull out the calibration results at runtime.

Figure 12 shows the UML class diagram. ProjectorCameraEnsemble is the main

class that uses other helper classes to checks for the connected cameras and projector,

makes the projector display the gray code and captures them with Kinect’s color camera.

Then it decodes the gray code and finds the pose of Kinects and projector. It also creates

the unified 3D model of the room and saves it to .obj file.

The KinectServer2Client and ProjectorServerClient classes are used to

communicate with their relative servers. The Kinect2Calibration class does all the

calibration of the Kinect sensor. GrayCode class is used to create gray code images using

ARGBImage. The Matrix class handles the matrix calculation.

4.4.2 KinectServer

Single Kinect v2 sensor can be connected to a computer simultaneously, therefore

KinectServer runs on every PC that has a Kinect sensor. KinectServer is a tool to

distribute color data, depth data and camera intrinsic from each Kinect cameras around

the network. It’s a standalone application with no user interface. It uses Windows

Communication Foundation (WCF) and requires Kinect for Windows V2 SDK.

4.4.3 ProjectorServer

The ProjectorServer is analogous to KinectServer. It runs on every PC that has a

projector connected to it. During the acquisition phase, each projector is assigned to an

index specified in the XML file and displays the gray code from the projector. Projector

server is only required during the acquisition phase of the calibration setup.

31

4.4.4 CalibrateEnsemble

The CalibrateEnsemble provides the GUI for the calibration process. It also

assists in setup and configuring all the Kinect sensors and projectors for calibration.

Creates an XML file to store the calibration information and allows the user to view the

results.

32

CHAPTER V

HARDWARE SETUP

This chapter discusses the overall hardware setup and necessary initialization of

all the Kinect sensors and projectors used in the system.

5.1 Hardware Specification

In this thesis research, only one ProCam unit is used. ProCam unit was created

using two Kinect sensors and one projector. Optoma TX536 projector was used to

calibrate the two Kinects. Optoma TX536 projector does not have a wide field of view

and only covers a small portion of the room, but it is sufficient for calculating the

position and orientation of the Kinect. Wider field of view of the projector will result in

more accurate intrinsic calculations of the Kinect cameras. The two Kinect v2 cameras

were placed horizontally with a slight tilt of around 5°. The ProCam unit’s connection

diagram can be seen in Figure 13.

The host computer was an Intel Core i7-6820HQ 2.7GHZ CPU with 8GB DDR3

RAM running Windows Server 2016. First Kinect v2 sensor is connected to the host PC

via USB 3.0. Projection is also connected to the host PC because ProjectorServer.exe

does not support distributed rendering framework. The second Kinect sensor is connected

33

to another PC with Intel Core i7 6600U 2.5GHZ CPU and 8GB DD3 RAM running

Windows

10. At first, both the PCs were connected using Wi-Fi to the network switch which

significantly slows down the data transfer rate between the PCs. Later we switched to a

more stable and fast wired ethernet connection.

Figure 13: Hardware connection of ProCam unit

5.2 ProCam Unit Placement

The primary goal of Kinect placement is to increase the field of view. A different

arrangement of Kinect sensors in the room has been tried for successful calibration.

Requirements for proper room setup are as follows

• Kinect sensors should be placed such that both the sensors should view the gray

codes projected by the projector. At least 10 % overlap should be there.

• Precise alignment of the Kinect sensors is not required.

34

• Both the color camera and the depth camera of both the Kinect sensors must

observe the projected gray code.

• The projector should be configured in ‘desktop front’ projection mode.

• Windows should be set to ‘Extend’ its desktop to the projector.

Figure 14: Kinect sensors and projector placement in the room

Figure 14 displays the position of the two Kinect sensors and projector in the

room. Kinect SDK’s Color Basic and Depth Basic samples were used to make sure both

the Kinect camera’s color and depth image observe the projected image.

5.3 Configuring Calibration.xml

CalibrateEnsemble.exe has a user interface which allows the user to select the

number of cameras and projectors in the ensemble and automatically creates a new

35

calibration XML file with some of the information filled in. XML file has a number of

cameras and projectors.

Figure 15: Calibration XML file showing the default pose matrix of the first Kinect

camera

The user can rename the cameras and projectors listed in the XML file. We have

to manually enter the hostname or IP address for each Kinect cameras and projectors in

the XML file. The pose information is a 4 × 4 matrix which is by default set to identity

matrix for the first Kinect in the XML file listed as seen in Figure 15. That means the first

camera is in that pose within the global coordinate frame. This default pose matrix of the

first camera will not change post calibration. Alternatively, the user can establish a

36

different position for that camera manually. We also have to change the ‘displayindex’

value under the projector. For an external display such as a projector, the displayindex

value should be set to ‘1’, ‘0’ being the main display.

5.4 Practical Issues

• When placing the objects in the scene for the projector to project on, we had to

make sure there were no black objects in the scene. Kinect v2 sensor uses infrared

Time of Flight technology to detect depth in the scene. Black objects absorb most

of the infrared light and hence most of the infrared laser light transmitted by the

Kinect sensor was getting absorbed by the black objects resulting in corrupted

depth data and unsuccessful calibration.

• The best Kinect sensor placement to avoid occlusion is to place the sensor higher

than the average human height or mount the sensors on the ceiling. In both of the

cases, the sensor needs to be tilted downwards. If the first Kinect sensor is placed

tilted, the global coordinate system will also have a tilt as it is aligned with the

first sensor. The global coordinate system can be corrected, so the gravity points

downwards by using Kinect’s accelerometer data. In our hardware setup, the tilt

of the first sensor is kept close to 0°.

37

CHAPTER VI

SOFTWARE IMPLEMENTATION

In this chapter, we describe the implementation of human trajectory and activity

tracking based on the Kinect skeleton data received by the host PC from two calibrated

Kinect cameras. The system stores the skeleton data in a CSV file for further processing

and categorizes the data based on the different area of the room and whether the person is

sitting or standing. It calculates the total time spent by the person in each category.

Finally, it displays the total time spent data in the form of a pie chart.

6.1 Environment Setup

 The language used for programming is C# throughout the implementation. The

application is developed in Unity 2017 game development engine using Microsoft Visual

Studio Community version as an editor. Kinect for Windows SDK V2.0 color and depth

samples were used for proper placement of Kinect sensors. Revision control is done using

Git Revision Control

 Revision control is used to manage all the iterative changes of program. GitHub is

used for revision control of the software code. It allows the user to revert to any previous

version of the code easily and to keep track of all the changes committed to the code.

Figure 16 shows the preview of the repository on GitHub.

38

Figure 16: Kinect Trajectory Tracking GitHub repository

6.2 User Interface

 The user interface includes a 3D model of the room with the two Kinect sensor

3D model placed at the exact locations in the room as determined by the calibration.

‘Start Recording’ button records full skeleton data into a CSV file. The user can stop the

recording of skeleton data by clicking on ‘Stop Recording’ button. ‘Process data’ button

in the UI once clicked reads back the stored skeleton data, classify the data and calculates

the total time spent in each category and draws a pie graph using ‘Graph and Chart’

plugin [44]. It also displays the total time spent in each category. The user interface of the

application can be seen in Figure 17.

39

Figure 17: The user interface of Kinect Tracker

6.3 Creating 3D Model

 The calibration process generates .xml and .obj files which is used in Unity to

create the 3D model of the room. Object file describes the geometric properties of the

room and can be directed imported in Unity Engine. Photos captured by both the Kinect

cameras are used to colorize the 3D model. Each Kinect sensor is linked to their

respective empty game object. XML calibration file contains the pose matrix of the

Kinect sensors which used to position the Kinect sensors game object in the 3D model.

‘RATCalibrationData’ script reads the XML file to extract pose information.

‘RATSceneSetup’ contains the helper functions that automate the connection and

dependencies among many game objects. All the calibration files, ‘RATCalibrationData’

and ‘RATSceneSetup’ is linked to an empty game object and Build RoomAlive Scene

button in ‘RATSceneSetup’ script will create a complete scene in that object.

40

6.4 World Coordinate System

As described earlier, the coordinate system of the 3D model is centered at the first

Kinect sensor in the ensemble. The first sensor is positioned at (0, 0, 0) and every other

object in the scene is translated from the first Kinect sensor. The calibration data

provided by the RoomAlive toolkit uses a right-handed coordinate system similar to

Kinect sensor, while Unity uses a left-handed coordinate system. Real world positions

and the RoomAlive toolkit’s coordinate system are one to one.

6.5 User Tracking

 Skeleton data from all the Kinect sensors is transferred to the host computer using

Windows Communication Foundation where the main application runs. All the skeletons

along with their tracking states are stored in RATKinectSkeleton data container. Each

Kinect sensor can track up to six skeletons, for two Kinect sensors that are total of twelve

tracked skeleton. RATKinectSkeleton merges the skeletons data from all the sensors

making total tracked skeletons up to six. The skeleton data is in the coordinate system of

the tracking Kinect sensor. All the skeleton data received by the host computer are

assumed to be tracked by the main Kinect sensor. If the skeleton data is detected by the

second Kinect sensor, to display the skeleton data in the 3D model, the 3D point needs to

be converted into world coordinate system using the localToWorldMatrix. Where the

localToWorldMatrix is derived from the pose of the second camera. Each tracked 3D

point is multiplied with transform.localToWorldMatrix where the transform is attached to

the game object of the respected Kinect camera. Kinect sensor v2 detects 25 joints and all

the joint data is transferred to the host computer. In this thesis research even though all

the tracked joints are used to display on the user interface, only 21 joints of the tracked

41

person are saved in the CSV file and to do all the data processing. We can also extract the

height information of the tracked person to determine whether the person is sitting or

standing. The Figure 18 shows the skeleton data overlaid on the 3D model using Gizmos.

Figure 18: Skeleton data overlaid on the 3D model

Gizmos are used to overlay the skeleton data on the 3Dmodel. Gizmos in Unity are

used for visual debugging and can only be seen in scene view or by enabling Gizmos in

game view. Gizmos contain many static methods to draw different shapes such as a cube,

line, mesh, and sphere.

6.6 Recording Data

 The application starts recording the skeleton data once ‘Start Recording’ button is

clicked. The Figure 19 shows the code iterates through all the joints for every detected

skeleton and checks the tracking state of the joint. If the joint is tracking state is tracked,

42

the world coordinates of the joint along with the current timestamp is passed to ‘Save’

method of CSV class which saves the data in CSV file. First 21 joints are saved in the

CSV file. Figure 20 shows the CSV log file. The timestamp unit is in millisecond since

midnight.

Figure 19: Code for tracking and recording head joint

Figure 20: CSV log file with timestamp and X, Y, Z world coordinate location of the

tracked joints

43

6.7 Activity Classification Model

 The raw skeleton data along with timestamp is stored in a CSV file. This data is

read back and classified into two different categories as follows

• Zones

• Standing/Sitting

The first category classifies the data into two different zones defined in the 3D

model. 3D model is created using two cameras, and each zone indicates area viewed by

their respected camera. Zone0 is the area monitored by the first Kinect camera, and

Zone1 is the area monitored by second Kinect camera in the ensemble. The total area

being monitored is segmented into two zones by setting a threshold of X coordinate

precisely at the center of both the cameras. The first camera’s X coordinate is 0 and the X

coordinate of the second camera represent the horizontal distance between both the

cameras. The threshold is set by dividing the X coordinate of the second camera by two

as seen in Figure 21.

Figure 21: Code for setting the threshold for Zones

The application also classifies the data depending on whether the tracked human

is standing or sitting based on the height of the head joint. The threshold which decides

whether the person is sitting or standing is hardcoded in the code based on the room

geometry and Kinect sensor placement. The raw data is read back from the CSV file after

clicking ‘process data’ button on the UI and stored into ‘CompleteDataList’ List for

classification. The code then iterates through all the elements in ‘CompleteDataList’ list,

44

segments the data according to two categories as described earlier and stores the data into

respected CSV file and list of each activity. Figure 22 shows five lists, one for storing

complete data and other four for activities based on two classifications.

Figure 22: List for each classified activity

The total time spent in each category is calculated and displayed on the user

interface. Figure 23 shows the code snippet for total time calculation in the standing

category. Total time is calculated by subtracting the current frame time from next frame

time and adding it to ‘TotalTimeStanding’ variable. If the time difference between two

consecutive frames is greater than 2 seconds, it is discarded.

Figure 23: Code for total time calculation for standing category

45

6.8 Graphs

 Graphs are used to compare the total time spent in two categories efficiently. Two

pie charts are used to compare two categories, one for Zone 0 and Zone 1, and another

pie chart for Standing and Sitting. ‘Graphs and Charts’ plugin is used to draw pie charts.

Once ‘Graphs and Charts’ plugin is imported as an asset in the project, a pie chart can be

easily added to the scene as a game object. Figure 24 shows the code for setting the value

of the pie chart. Before setting values, the total time is converted into a percentage and

rounded to the nearest value. The Categories for the pie chart is defined in the inspector

window.

Figure 24: Code for setting the value of pie chart

46

CHAPTER VII

EXPERIMENTAL RESULT

 This chapter describes the qualitative results that demonstrate the performance of

the system in a highly complex environment with occlusion. In addition, some of the

practical scenarios where the dataset created by the system can be used are discussed.

 The Figure 25 present the scatter plot of the projected path traveled in world

coordinates over a period in the test room as recorded by our application. The origin of

the world coordinate system is located at the first Kinect camera in the ensemble. The

first Kinect sensor is positioned at 0 on the X-axis in the world coordinate system and the

sensor Kinect sensor is positioned at -2.26 on the X-axis in the world coordinate system.

The world coordinate system in the tracking application is the same as the coordinate

system of Kinect SDK. The scatter plot represents the motion capture over the period of

approximately 25 seconds. The second Kinect sensor is directly connected to the host

computer where our application runs, and the first Kinect sensor is connected to another

computer and sends the skeleton data over the network to the host computer. Due to this

networked configuration, the frame rate of the skeleton data of first Kinect sensor is

significantly lower than the frame rate of the skeleton data from the second Kinect

47

sensor. The difference in the frame rate between both the sensor can be noticed in the

scatter plot as the area covered by the first Kinect sensor consists of less number of

markers as compare to the area covered by the second Kinect sensor.

Figure 25: Trajectory of the tracked person in the world coordinate system

The current implementation consisting of tracking, logging and processing the

skeleton data, operates at around 12 frames/second. Since the small motion of 60 seconds

capture database of 720 examples, a linear search for the corresponding joint position is

48

conducted. For the considerably larger database, clustering would allow for faster

processing.

Figure 26: Walking dataset as recorded by the application

 Figure 26 shows the dataset of the person walking with respect to time across the

room twice as represented by two peaks in the X coordinate position of the joint. The

gaps in the dataset denote the time required by the second Kinect sensor to detect the

skeleton. By the time the person walking across the room was in the field of view of the

second Kinect, he was almost facing his back towards the second camera and got self-

occluded. This occlusion problem can be eliminated by using multiple cameras to cover

the same area.

 The skeleton data recorded by this system can also be used for other applications

such as gesture recognition, posture analysis, and gait analysis. Gait analysis can be done

using angular kinematics on the skeleton data recorded by the application. This system

provides continuous skeleton tracking data over a large area which is required to do a gait

analysis on the dataset. Furthermore, machine learning can be applied to gait analysis

data for disease identification.

49

CHAPTER VIII

CONCLUSION

8.1 Conclusion

 Assisted living technology is shifting from care facilities to patient’s home due to

low-cost tracking solutions. Multiple inexpensive depth cameras such as Kinect

connected over the network can cover every part of the house and provide the patient’s

location and behavioral data, enabling better care for the patients.

 I have presented a system to track and record the skeleton data of patients in the

smart indoor environment. The system consists of multiple calibrated Kinect depth sensor

for tracking and localization. The system was able to achieve real-time positioning, path

recording and monitoring behavioral information using markerless computer vision

tracking. It can detect humans in the dark, invariant to background lighting condition,

clothing, and skin color. Finally, the behavioral data is stored in a CSV file and total time

spent in each category is calculated and displayed on the user interface in text and

graphical form.

50

8.2 Future Work

The classification model is designed to classify the activity of only one person.

Future work involves creating a separate data container for every tracked person and

storing the classification data of every tracked skeleton separately. Recording frame rate

can be improved further by storing multiple frames data at once in CSV file. The

behavior of the Kinect skeleton tracker is not always perfect, and hence the abrupt

changes in skeleton data need to be filtered. Future work also includes tracking and

reidentification of multiple users using weighted bone length and particle filtering.

Furthermore, this system is designed to work in a single large area with numerous

Kinects and a projector with an overlapping field of view creating an ensemble. For

multiple rooms, multiple ensemble should be incorporated in a single application running

on the host computer.

51

REFERENCES

[1] S. Wright, Digital Compositing for Film and Video, Focal Press, 2001.

[2] J. Micheletti and M. Wurpts, "Applying chroma-keying techniques in a virtual

environment," in Proceedings of AeroSense Helmet and Head-Mounted Display,

2000.

[3] F. v. d. Bergh and V. Lalioti, "Software chroma keying in an immersive virtual

environment," South African Computer Journal, no. 24, pp. 155-162, November

1999.

[4] P. L. Rosin and T. Ellis, "Image difference threshold strategies and shadow

detection," in Proceedings of British Machine Vision Conference (BMVC), 1995.

[5] D. G. Lowe, "Object Recognition from Local Scale-Invariant Features," in

Proceedings of the International Conference on Computer Vision, 1999.

[6] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection,"

CVPR, no. 1, pp. 886-893, 2005.

[7] R. E. Schapire, Y. Freund, P. Bartlet and W. S. Lee, "Boosting the margin: A new

explanation for the effectiveness of voting methods," The Annals of Statistics, vol.

26, no. 5, pp. 1651-1686, 1998.

[8] S. Avidan, "Ensemble Tracking," in Pattern Analysis and Machine Intelligence,

2010.

[9] P. Viola and . M. J. Jones, "Robust Real-time Object Detection," in Proceedings of

Statistical and Computational Theories of Vision Workshop, 2001.

52

[10] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple

features," in Proceedings of Computer Vision and Pattern Recognition (CVPR),

2001.

[11] S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet,"

IEEE Transactions on Pattern Recognition and Machine, vol. 11, no. 7, pp. 674-

693, 1989.

[12] R. Lienhart and J. Maydt, "An Extended Set of Haar-like Features for Rapid Object

Detection," in Proceedings of International Conference on Image Processing

(ICIP), 2002.

[13] "Open Source Computer Vision Library," [Online]. Available: https://opencv.org/.

[Accessed 2018].

[14] I. Haritaoglu, D. Harwood and L. S. Davis, "W4: real-time surveillance of people

and their activities," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 809-830, 2000.

[15] L. Xia, C.-C. Chen and J. K. Aggarwal, "Human detection using depth information

by kinect," in Computer Vision and Pattern Recognition Workshops (CVPRW),

Colorado Springs, CO, USA, 2011.

[16] A. Papoulis, Probability, Random Variables, and Stochastic Processes, second

edition, New York: McGraw-Hill, 1984.

[17] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems,"

Transactions of the ASME – Journal of Basic Engineering, no. 82 (Series D), pp.

35-45, 1960.

53

[18] C. R. Wren and A. P. Pentland, "Dynamic Models of Human Motion," in

Proceedings of Third IEEE International Conference on Automatic Face and

Gesture Recognition, Nara, Japan, 1998.

[19] D. Beymer and K. Konolige, Real-Time Tracking of Multiple People Using

Continuous Detection, Artificial Intellience center, SRI International, 1998.

[20] L. Zhu and K.-H. Wong, "Human Tracking and Counting Using the KINECT

Range Sensor Based on Adaboost and Kalman Filter," in Advances in Visual

Computing, Rethymnon, Crete, Greece.

[21] G. Ponraj and H. Ren, "Sensor Fusion of Leap Motion Controller and Flex Sensors

Using Kalman Filter for Human Finger Tracking," IEEE Sensors Journal, vol. 18,

no. 5, pp. 2042-2049, 2018.

[22] X. Yun and E. R. Bachmann, "Design, Implementation, and Experimental Results

of a Quaternion-Based Kalman Filter for Human Body Motion Tracking," IEEE

Transactions on Robotics, vol. 22, no. 6, pp. 1216-1227, 2006.

[23] A. Atrsaei, H. Salarieh, A. Alasty and M. Abediny, "Human Arm Motion Tracking

by Inertial/Magnetic Sensors Using Unscented Kalman Filter and Relative Motion

Constraint," Journal of Intelligent & Robotic Systems, vol. 90, no. 1/2, pp. 161-170,

2018.

[24] M. . D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier and L. V. Gool, "Robust

Tracking-by-Detection using a Detector Confidence Particle Filter," in Proceedings

of International Conference on Computer Vision (ICCV), 2009.

54

[25] D. Comaniciu, V. Ramesh and P. Meer, "Kernel-Based Object Tracking," IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2003.

[26] L. M. Fuentes and S. A. Velastin, "People tracking in surveillance applications," in

Proceedings of 2nd IEEE International Workshop on PETS, Hawaii, USA, 2001.

[27] A. O. Ercan, A. E. Gamal and L. J. Guibas, "Object Tracking in the Presence of

Occlusions Using Multiple Cameras: A Sensor Network Approach," ACM

Transactions on Sensor Networks, vol. 9, no. 2, 2013.

[28] L. Spinello and K. O. Arras, "People Detection in RGB-D Data," in Proceedings of

International Conference on Intelligent Robots and Systems, 2011.

[29] G. Masuyama, T. Kawashita and K. Umeda, "Complementary human detection

and multiple feature based tracking using a stereo camera," ROBOMECH Journal,

vol. 4, no. 1, pp. 1-12, 2017.

[30] "Kinect for Windows," Microsoft, [Online]. Available:

https://developer.microsoft.com/en-us/windows/kinect. [Accessed 2018].

[31] R. Lun and W. Zhao, "A Survey of Applications and Human Motion Recognition

with Microsoft Kinect," International Journal of Pattern Recognition and Artificial

Intelligence, vol. 29, no. 5, p. 1555008, 2015.

[32] W. Zhao, Q. Wu, A. Reinthal and N. Zhang, "Design, Implementation, and Field

Testing of a Privacy-Aware Compliance Tracking System for Bedside Care in

Nursing Homes," Applied System Innovation, vol. 1, no. 1, p. 3, 2017.

55

[33] W. Zhao, H. Feng, R. Lun, D. D. Espy and M. Reinthal, "A Kinect-based

rehabilitation exercise monitoring and guidance system," in proceedings of IEEE

International Conference on Software Engineering and Service Science (ICSESS),

2014.

[34] W. Zhao, A. M. Reinthal, D. D. Espy and X. Luo, "Rule-Based Human Motion

Tracking for Rehabilitation Exercises: Realtime Assessment, Feedback, and

Guidance," IEEE Access, vol. 5, no. 1, pp. 21382-21394, 2017.

[35] W. Zhao, R. Lun, C. Gordon, A.-B. M. Fofana, D. D. Espy, A. M. Reinthal, B.

Ekelman, G. D. Goodman, J. E. Niederriter and X. Luo, "A Human-Centered

Activity Tracking System: Toward a Healthier Workplace," IEEE Transactions on

Human-Machine Systems, vol. 47, no. 3, pp. 343-355, 2017.

[36] M. Caon, Y. Yue, J. Tscherrig, E. Mugellini and O. A. Khaled, "Context-Aware 3D

Gesture Interaction Based on Multiple Kinects," in proceedings of The First

International Conference on Ambient Computing, Applications, Services and

Technologies, 2011.

[37] B. M. Williamson, J. J. LaViola, T. Roberts and P. Garrity, "Multi-Kinect Tracking

for Dismounted Soldier Training," in Proceedings of the Interservice/Industry

Training, Simulation, and Education Conference (I/ITSEC), 2012.

[38] N. A. Azis, C. Ho-Jin and Y. Iraqi, "Substitutive skeleton fusion for human action

recognition," in proceedings of International Conference on Big Data and Smart,

2015.

56

[39] M. Munaro, F. Basso and E. Menegatti, "OpenPTrack: Open Source Multi-Camera

Calibration and People Tracking for RGB-D Camera Networks," Journal on

Robotics and Autonomous Systems, vol. 75, no. part B, pp. 525-538, January 2016.

[40] Jones, Brett, Sodhi, Rajinder, Murdock, Michael, Mehra, Ravish, Benko, Hrvoje,

Wilson, Andrew, Ofek, Eyal, MacIntyre, Blair, Raghuvanshi, Nikunj, Shapira and

Lior, "RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-

camera Units," in Proceedings of the 27th Annual ACM Symposium on User

Interface Software and Technology, Honolulu, Hawaii, USA, 2014.

[41] J. Torres-Solis and T. Chau, "Wearable indoor pedestrian dead reckoning system,"

Pervasive and Mobile Computing, vol. 6, no. 3, pp. 351-361, 2010.

[42] L. Klingbeil and T. Wark, "Demonstration of a Wireless Sensor Network for Real-

time Indoor Localisation and Motion Monitoring," in Proceedings of the 7th

international conference on Information processing in sensor networks, 2008.

[43] D. Chen, A. J. Bharucha and H. D. Wactlar, "Intelligent video monitoring to

improve safety of older persons," in Proceedings of 29th Annual International

Conference of the IEEE, Engineering in Medicine and Biology Society, 2007.

[44] O. Wasenmuller and D. Stricker, "Comparison of Kinect v1 and v2 Depth Images in

Terms of Accuracy and Precision," in Proceedings of Asian Conference on

Computer Vision, 2016.

[45] Q. Wang, . G. Kurillo, F. Ofli and R. Bajcsy, "Evaluation of Pose Tracking

Accuracy in the First and Second Generations of Microsoft Kinect," in Proceedings

of International Conference on Healthcare Informatics (ICHI), 2015.

57

[46] "Unity Assetstore," Prosource Labs, [Online]. Available:

https://assetstore.unity.com/packages/tools/gui/graph-and-chart-78488. [Accessed

May 2018].

[47] S. Ikemura and H. Fujiyoshi, "Real-time human detection using relational depth

similarity features," in Computer VisionACCV, 2011.

[48] Wikipedia, "Kinect," [Online]. Available: https://en.wikipedia.org/wiki/Kinect.

[Accessed May 2018].

	Continuous Human Activity Tracking over a Large Area with Multiple Kinect Sensors
	Recommended Citation

	tmp.1537895020.pdf.X59KM

