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AN ANISOTROPIC CONSTITUTIVE MODEL FOR NUCLEAR GRADE GRAPHITE

CHRISTOPHER JAMES

ABSTRACT

Graphite material is used extensively in nuclear reactors however the material has a

limited strain range for elastic behavior. This provides the motivation to derive a consti-

tutive model that captures the inelastic deformations exhibited by this material. This dis-

sertation first presents details of an isotropic constitutive model derived using continuum

principles of engineering mechanics that accounts for different inelastic behavior in tension

and compression. An inelastic dissipation function was developed using an integrity ba-

sis proposed by Green and Mkrtichian (1977) for the isotropic version of the model. This

isotropic model was then extended to capture anisotropic stress-strain behavior using di-

rectional tensors associated with the material symmetry. In the case of anisotropic graphite

the material typically exhibits transversely isotropic behavior. The model parameters were

characterized using stress-strain data from several grades of nuclear graphite. Once the

model parameter were characterized several benchmark structural components were ana-

lyzed with the intent of showing that the model’s predictive capability relative to simple

component level behavior.
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CHAPTER I

INTRODUCTION

Despite current events associated with the light water reactors in Fukishima, Japan, energy

producers continue to look at nuclear power as a viable alternative for power generation.

There are several new designs that transcend the older light water reactors that failed to

perform safely in Japan. Among the designs for the next generation power plant is the very

high temperature reactors (VHTR), molten salt reactors, and super critical water cooled

reactors. In addition to generating electricity the VHTR will be able to produce hydrogen

without consuming fossil fuels or emitting green house gasses which is a distinct benefit.

Emerging technologies often depend on new materials or the innovative use of existing

material, and graphite is a key material in the design of several of the next generation

nuclear power plants.

Southward et al. (2004) indicates there are two designs for the VHTR. The first design

utilizes a prismatic core reactor. The second design is known as a pebble bed reactor. In the

prismatic core reactor the nuclear fuel is contained in fuel rods. Hexagonal graphite blocks

that hold the fuel rods are used to moderate the nuclear reaction. The cooling gas runs

in channels inside the hexagonal prismatic blocks as diagrammed in Figure 1. A prismatic

block from the reactor core depicted in Figure 1 is shown in Figure 2. In Figure 2 three rods

are shown partially withdrawn from this single hexagonal block. The reactor is comprised

of an array of these blocks that accommodate fuel rods, control rods, and cooling channels.
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Figure 1: VHTR Schematic – DOE Road map (2002)

Figure 2: VHTR Core Block 1

Alternatively, in pebble bed reactors the fissile material, the moderator, and a fission

product barrier are contained in softball sized pebbles shown in Figure 3. The pebbles

are continuously cycled through reactor channels and are removed from the bottom of

the reactor. The pebbles are then tested to determine how much nuclear fuel remains. If

sufficient fuel remains the pebble is returned to the reactor. Process cooling gas flows

around the pebbles as they are cycled through the reactor as shown in Figure 4.

1http://www.toyotanso.co.jp/Products/Special graphite etc en.html#01
2Image from http://www.euronuclear.org/info/encyclopedia/p/pebble.htm
3http://travkin-hspt.com/nuclearen/right.htm
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Figure 3: Pebble Schematic 2

Figure 4: Pebble Bed Reactor Schematic 3

Prismatic core reactors are designed to reach higher service temperatures than the peb-

ble bed reactor. The initial designs for the prismatic core reactors call for an outlet temper-

ature ranging from 850 ◦C to 1000 ◦C. At these temperature, water can be “cracked” into

hydrogen and oxygen in the presence of a catalysis. Thus a virtuous (i.e., clean) process

is established that produces electricity, hydrogen feed stocks for the chemical industry, and

pure oxygen.

The core components of the VHTR cannot be fabricated from of metals due to radiation

levels and operating temperatures. Graphite has long been utilized as a neutron modera-

tor. Several countries including the United States, France, the United Kingdom, Germany,
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South Africa, Japan, and China support evolving technologies for nuclear graphite material

systems that focus on several aspects of the behavior of graphite in reactor cores. These

technologies are key to the VHTR program.

Accurate stress states are a necessity in designing reactor components. The effort here

assumes the stress–strain response for nuclear grade graphite can be characterized using

an inelastic constitutive model that accounts for different behavior in tension and compres-

sion, as well as accounts for material anisotropy. As originally discussed by Seldin (1966)

and later by Greenstreet (1970), graphite has a relatively small elastic range. Moreover,

Weng (1969) points out that the stress-strain relationship for graphite is for the most part

nonlinear. An objective of this thesis is the development of a comprehensive constitutive

model that will predict both elastic and inelastic cyclic phenomenological behavior. An

appropriate elasticity model is integrated with the proposed inelastic constitutive model

when cyclic loading is discussed. In the presence of time dependent phenomenon such as

creep, one needs a viscoplastic constitutive model. The time independent inelastic model

presented here can be extended to include rate dependent effects in a manner similar to

Duffy (1987) and Janosik (1990). This is left for future work.

As was just mentioned one of the fundamental behaviors that must be accounted for in

graphite materials is the different behaviors in tension and compression. Graphite is not the

only material that behaves differently in tension and compression under mechanical loads.

Concrete also exhibits different properties in tension and compression. Inelastic constitu-

tive models exists for concrete, e.g., the phenomenological model developed by William

and Warnke (1975), Ottosen (1977), and Hsieh et al. (1952). An effort was made to extend

the William and Warnke (1975) model for graphite to include material anisotropy. That

effort was unsuccessful. An alternative constitutive model proposed by Green and Mkr-

tichian (1977) was adopted in this effort. Aspects of this model are thoroughly presented

then the model proposed by Green and Mkrtichian (1977) is extended to include anisotropy.

Issues such as neutron radiation damage in graphite, which initially causes an increase

4



in the modulus of elasticity, and then deteriorates with time, are one of the many topics

under current study that will not be addressed in this thesis. Future plans call for modeling

this phenomenon by incorporating damage state variables similar to methods proposed by

Chow and Yang (1991). Current constitutive models, such as Eason (2008), for graphite

that predicts radiation damage are empirically based.

Currently, a fully multi-axial constitutive model does not exist that takes the specific

behavior of graphite into account. The model here will take into account that graphite is

transversely isotropic and graphite also has different properties in tension and compression.

This work begins by assuming the existence of a threshold function, which will also serve

as a inelastic potential function. Since the inelastic potential function is scalar valued, ten-

sorial invariant theory is used to construct the function. We include Green and Mkrtichian’s

(1977) theory that different properties in tension and compression can be modeled by using

a piece wise continuous function where the properties are captured through an eigenvec-

tor of a principle stress. This threshold function is extended to account for transversely

isotropic behavior. Both the isotropic and anisotropic inelastic models are derived based on

an associated flow rule and isotropic hardening of the threshold functions. The anisotropic

inelastic constitutive model is then exercised with a simple analysis of a structural compo-

nent later in this thesis. Finally, the thesis concludes by outlining future research avenues

to build on this work.
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CHAPTER II

ISOTROPIC INELASTIC THRESHOLD FUNCTIONS

It should be pointed out at the beginning of this discussion that the development here

of an inelastic stress–strain relationship for graphite is predicated on a phenomenologi-

cal approach that utilizes the modeling framework of classic metal plasticity. However,

the energy dissipation process taking place within the microstructure of graphite is radi-

cally different in comparison to the energy dissipation mechanisms that underpin the phe-

nomenological behavior of metal plasticity. Having said that, the phenomenological be-

havior is mathematically similar between the two, so concepts familiar to metal plasticity

are adopted here even though the energy dissipation mechanisms are quite different. The

reader is encouraged to keep this in mind throughout this chapter and what follows.

A presumption is made as to the existence of a surface in stress space that encloses

a region where the corresponding states of strain are elastic. The region is described by

a mathematical function referred to here as a threshold function. This threshold function

serves as an inelastic potential function from which an incremental flow law can be derived

given certain assumptions as to how graphite “hardens” under thermo-mechanical loads.

Tabeddor (1979) and Vijayakumar, et al.(1987; 1990) emphasize the anisotropic ef-

fect that the elongated grain structure of graphite has on the stress-strain relationship for

graphite. These authors also discuss how the material behaves differently in tension and

in compression. These two properties, i.e., material anisotropy and different behavior in

6



tension and compression, make formulating a threshold function for graphite challenging.

From a simple mechanical perspective there are two characterizations of differing be-

havior in tension and compression. The first characterization is referred to as bi-modulus

behavior. A bi-modulus material has different elastic stiffness constants in tension and

compression. The other characterization captures different elastic behaviors through ten-

sile and compressive threshold stresses that are distinctly different in magnitude. The works

of Seldin (1966) and Greenstreet, et al. (1970) show that elastic stiffness properties in ten-

sion and compression for virgin graphite do not change. Therefore Young’s modulus for

graphite is the same for tension and compression. Thus graphite is not a bimodulus mate-

rial. This thesis defines different properties in tension and compression as a material having

different elastic ranges in tension and compression.

Later in this thesis applications of the anisotropic inelasticity model will be discussed

and an anisotropic elasticity model is needed. Lekhnitski’s (1963) elasticity model is

adopted. Lekhnitski’s (1963) work can be derived from an elastic potential function, but

those details do not add to the discussion here. The rest of this chapter focuses on the

threshold function of Green and Mkrtichian (1977). Chapter 3 extends the threshold func-

tion developed in this chapter to include transverse isotropy.

2.1 Invariance of the Threshold Function

A phenomenological perspective is adopted to determine the inelastic constitutive model

for graphite. The model is based on continuum principles where stress, strain and other

engineering properties are defined at a mathematical point. This continuum point needs to

be large enough so that the microstructure of the material is homogenous, but small enough

to treat stress and strain as a function of position, position being defined as “the point. The

assumption is made that a threshold function exists and that the function depends on stress.

Since graphite has different properties in tension and compression, the function constructed

is dependent on the principle stresses and their eigenvectors. The Cauchy stress tensor, σij ,
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is used and a unit direction vector, ai, is introduced that is associated with a principle stress

direction. This gives the following dependence for the threshold function

f = f(σij, aiaj) (2.1)

The dependence on the direction vector is taken through the direction tensor aiaj . The

sense, i.e. the actual direction, of the principle stress along this line of action is impor-

tant, but whether a principle stress is tensile or compressive is not accounted for with the

direction vector ai.

The threshold function must be invariant with respect to the coordinate axes. Elements

of the stress tensor and elements of the direction vector change with a change of coordinate

system. Changes in a coordinate observer, i.e., proper orthogonal transformations in the

coordinate axes should leave the scalar value of f(σij, aiaj) unaffected. The issue of form

invariance is addressed by using the invariants of the stress tensor, σij , and invariants of the

direction tensor aiaj . The invariants are defined through the traces of the stress matrix, the

direction matrix and combinations of both. The method of utilizing invariants to construct

form invariant scalar functions is described by Rivlin (1969) and Spencer (1971).

A threshold function dependant on stress can be defined in many ways, but it is con-

venient to construct it as a polynomial of the unique traces of the stress tensors that are

quadratic in stress. There are an infinite number of traces of the stress tensor. For an

isotropic material that is not dependant on a direction vector, it can be shown that the num-

ber of unique traces (the invariants) of the stress tensor reduces to three. The reader is

directed to Rivlin (1969) and Spencer (1971) for the rational. All other traces can be writ-

ten in terms of the first three traces. That means these three traces span the entire stress

space in which a threshold function can be constructed. The minimum set of invariants

that span the space is called an integrity basis. It is similar in concept with the unit vectors

that span Cartesian three space. If one or more of the invariants of the integrity basis is

8



omitted Tsai and Wu (1971) called this a functional basis. In the next section we will use

the functional basis proposed by Green and Mkrtichian (1977) for isotropic materials that

behave differently in tension and compression.

2.2 Isotropic Behavior - Functional Dependence

For a scalar valued function with a dependence stipulated by Equation (2.1), Spencer (1971)

and Rivlin (1969) show that the integrity basis for that function is

I1 = σkk (2.2)

I2 = σijσji (2.3)

I3 = σijσjkσki (2.4)

I4 = aiajσji (2.5)

and

I5 = aiajσjkσki (2.6)

Index notation is utilized here and the repeated subscripts indicates summation over the

range of one to three. Green and Mkrtichian (1977) omitted invariant I3 from their thresh-

old function since this invariant is cubic in stress. From a historical perspective ignoring

invariants cubic in stress has had precedence in the derivation of constitutive models. In

addition, those invariants linear in stress enter the functional dependence as squared terms

or as products with another invariant linear in stress. The Green and Mkrtichian (1977)

9



threshold function has the dependence

f(σij, aiaj) = f(I1, I2, I4, I5) (2.7)

Again, the direction of the eigenvector ai appears through the second order tensor, aiaj .

The underlying concept is that the response of the material depends on the stress state

and whether the principal stresses are tensile or compressive. Principal stresses identified

here as σ1, σ2, and σ3 follow the standard convention that they are ordered numerically

based on their algebraic value, i.e.,

σ1 ≥ σ2 ≥ σ3 (2.8)

The principle stress space is divided into four regions. Following Green and Mkrtichian

(1977) the regions and associated threshold functions are listed below. In the first region

where all of the principle stresses are tensile, i.e.,

Region #1 σ1 ≥ σ2 ≥ σ3 ≥ 0 f = f1(σij) (2.9)

a direction vector is unnecessary. A second region is identified where

Region #2 σ1 ≥ σ2 ≥ 0 ≥ σ3 f = f2(σij, aiaj) (2.10)

In region #2 Green and Mkrtichian (1977) associated the direction vector ai with the com-

pressive principle stress σ3. Thus for this region

ai = (0, 0, 1) (2.11)

This assumes that the principle stress orientations align with the current cartesian coordi-

nate system, i.e., σ1 is in the direction of x1, σ2 is in the direction of x2, and σ3 is in the

10



σ1, x1

σ2, x2

σ3, x3

Figure 5: Orientation direction vectors and for the principle stresses

direction of x3 as shown in Figure 5. A third region is identified where

Region #3 σ1 ≥ 0 ≥ σ2 ≥ σ3 f = f3(σij, aiaj) (2.12)

In region #3 Green and Mkrtichian (1977) associated the direction vector ai with the tensile

principle stress σ1. Thus

ai = (1, 0, 0) (2.13)

Finally, in the fourth region all principle stresses are compressive, i.e.,

Region #4 0 ≥ σ1 ≥ σ2 ≥ σ3 f = f4(σij) (2.14)

and a direction vector is once again unnecessary. Moreover, Green and Mkrtichian (1977)

define the threshold function for region #1 as

f1 =
1

2
A1I

2
1 +B1I2 −K2 (2.15)
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The threshold function for region #2 is defined as

f2 =
1

2
A2I

2
1 +B2I2 + C2I1I4 +D2I5 −K2 (2.16)

The threshold function for region #3 is defined as

f3 =
1

2
A3I

2
1 +B3I2 + C3I1I4 +D3I5 −K2 (2.17)

and the threshold function for region #4 is defined as

f4 =
1

2
A4I

2
1 +B4I2 −K2 (2.18)

Note that all terms in the last four expressions are quadratic in stress even though I1 and

I4 are linear in stress. The material constants A1, A2, A3, A4, B1, B2, B3, B4, C2, C3, D2,

and D3 are characterized with simple mechanical tests. The parameter K is an inelastic

state variable. For a virgin material, the value of this state variable is equal to one. The

constants just mentioned will be characterized by initial threshold stresses obtained from

the mechanical tests on virgin materials. In the section discussing the inelastic constitutive

model the value of K will change according to a specified evolutionary law (see Chapter

4) based on the accumulation of inelastic work under load.

This set of piecewise continuous threshold functions must satisfy two conditions along

the boundaries where they meet. The first condition is that the threshold functions must be

equal along mutual boundaries. The second condition is that the tangents, the directional

derivatives of the threshold functions, must be single valued along a mutual boundary.

The second condition dominates the development of the relationships between the twelve

constants. In Chapter 4 where an associated flow rule is presented the conditions on the

tangents will guarantee that increments in the inelastic strain will be equal at mutual bound-

aries of the piecewise threshold function. It is noted at this point that region #1 and region

12



#4 do not share a boundary except at the origin of principle stress space where all regions

meet.

The tangents for these functions are calculated by taking the derivative with respect to

the Cauchy stress, σij . For all four threshold functions the partial derivatives are calculated

as follows using the chain rule

∂f

∂σij
=
∂f

∂I1

∂I1
∂σij

+
∂f

∂I2

∂I2
∂σij

+
∂f

∂I4

∂I4
∂σij

+
∂f

∂I5

∂I5
∂σij

(2.19)

For Equation (2.15)
∂f1
∂I1

= A1I1 (2.20)

∂f1
∂I2

= B1 (2.21)

∂I1
∂σij

= δij (2.22)

and
∂I2
∂σij

= 2σij (2.23)

Here δij is the Kronecker delta tensor. Thus Equation (2.19) takes the form

∂f1
∂σij

= A1I1δij + 2B1σij (2.24)

in region #1. In a similar fashion for the threshold function f2

∂f2
∂I1

= A2I1 + C2I4 (2.25)

∂f2
∂I2

= B2 (2.26)
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∂f2
∂I4

= C2I2 (2.27)

∂f2
∂I5

= D2 (2.28)

∂I4
∂σij

= aiaj (2.29)

and
∂I5
∂σij

= akaiσjk + ajamσmi (2.30)

Thus in region #2 Equation (2.19) takes the form

∂f2
∂σij

= (A2I1 + C2I4)δij + 2B2σij + C2I1aiaj +D2(akaiσjk + ajamσmi) (2.31)

For the threshold function f3
∂f3
∂I1

= A3I1 + C3I4 (2.32)

∂f3
∂I2

= B3 (2.33)

∂f3
∂I4

= C3I2 (2.34)

and
∂f3
∂I5

= D3 (2.35)

Thus in region #3 Equation (2.19) takes the form

∂f3
∂σij

= (A3I1 + C3I4)δij + 2B3σij + C3I1aiaj +D3(akaiσjk + ajamσmi) (2.36)
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For the threshold function f4
∂f4
∂I1

= A4I1 (2.37)

and
∂f4
∂I4

= B1 (2.38)

Thus Equation (2.19) takes the form

∂f4
∂σij

= A4I1δij + 2B4σij (2.39)

in region #4

Summarizing
∂f1
∂σij

= A1I1δij + 2B1σij (2.40)

∂f2
∂σij

= (A2I1 + C2I4)δij + 2B2σij + C2I1aiaj +D2(akaiσjk + ajamσmi) (2.41)

∂f3
∂σij

= (A3I1 + C3I4)δij + 2B3σij + C3I1aiaj +D3(akaiσjk + ajamσmi) (2.42)

and
∂f4
∂σij

= A4I1δij + 2B4σij (2.43)

Equations (2.40) through (2.43) represent four second order tensor equations in terms of

twelve unknowns. In what follows, a sufficient number of scalar expressions embedded

in these tensor equations will be extracted in order to define the twelve scalar unknowns.

The four second order tensor equations potentially represents thirty-six scalar expressions.

Due to the symmetry of the stress tensor the number of scalar equations is reduced to
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twenty-four. The pool of available equations is further reduced as directional derivatives

are equated along common boundaries. It is noted prior to the development that several

constants are not independent.

2.2.1 Relationships Between Coefficients – Uniaxial Tension

In this chapter and in the next chapter threshold stresses are used to define the composite

threshold function. These stresses represent the limits of elastic behavior. The elastic range

is defined as the point on the stress–strain curve where the curve stops being linear. The

tests will be uniaxial tension, uniaxial compression, torsion, and biaxial compression.

• σt – uniaxial tensile threshold stress

• σc – uniaxial compressive threshold stress

• τi – torsional threshold stress

• σbc – equal biaxial compressive threshold stress

These stress values are obtained from a virgin material. For a virgin material the state

variable K is equal to one. For a uniaxial tensile test where the stress applied is equal to

the tensile threshold stress, i.e.,

σij =


σt 0 0

0 0 0

0 0 0

 (2.44)

This stress state satisfies the inequalities associated with region #1, region #2, and region

#3 since

σ1 = σt ≥ σ2 = 0 ≥ σ3 = 0 (2.45)
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The threshold functions along the boundaries of region #1, region #2, and region #3 must

satisfy the relationships

f1 = f2 = f3 (2.46)

for this uniaxial tension test. In addition, the derivatives of the functions along the bound-

aries of region #1, region #2, and region #3 must satisfy

∂f1
∂σij

=
∂f2
∂σij

=
∂f3
∂σij

(2.47)

for the uniaxial tensile test.

Focusing on the derivatives along the boundary between region #1 and region #2 then

∂f1
∂σij

=
∂f2
∂σij

(2.48)

This relationship yields the following tensor expression

A1I1δij + 2B1σij = (A2I1 + C2I4)δij + 2B2σij

+ C2I1aiaj +D2(akaiσjk + ajamσmi)

(2.49)

For region #1 the function f1 is not dependent on a principle direction. For region #2 the

function f2 is dependent on the direction vector, ai, which for this region is defined as

ai = (0, 0, 1) (2.50)

The two invariants in Equation (2.49) are

I1 = σt (2.51)

and

I4 = 0 (2.52)
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Equation (2.49) represents nine scalar equations. Using the symmetry of the Cauchy stress

tensor, σij = σji, the nine scalar equations are reduced to six. The equations where i 6= j

yield the scalar identity 0=0 and no information is gained. For i = j we obtain three scalar

relationships.

For Equation (2.49) with i = j = 2 yields

A1 = A2 (2.53)

With i = j = 1 results in

A1 + 2B1 = A2 + 2B2 (2.54)

Substituting (2.53) into Equation (2.54) yields

B1 = B2 (2.55)

With i = j = 3 Equation (2.49) yields the following

A1 = A2 + C2 (2.56)

Substituting Equation (2.53) into Equation (2.56) results in

C2 = 0 (2.57)

Next, the argument above is repeated for the derivatives along the shared boundary of

region #1 and region #3 where
∂f1
∂σij

=
∂f3
∂σij

(2.58)
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for the same uniaxial tension test. This yields the following tensor expression in terms of

index notation

A1I1δij + 2B1σij = (A3I1 + C3I4)δij + 2B3σij

+ C3I1aiaj +D3(akaiσjk + ajamσmi)

(2.59)

In region #3 it was noted earlier that Green and Mkrtichian (1977) took

ai = (1, 0, 0) (2.60)

Based on this direction vector and the state of stress the invariants in Equation (2.59) are

I1 = σt (2.61)

and

I4 = σt (2.62)

Once again, Equation (2.59) represents six scalar equations. The equations where i 6=

j yields the scalar identity 0 = 0 and no information is gained. However, three scalar

equations are obtained for i = j. For i = j = 1 Equation (2.59) yields

A1 + 2B1 = A3 + 2B3 + 2C3 + 2D3 (2.63)

With i = j = 2 Equation (2.59) yields

A1 = A3 + C3 (2.64)

For i = j = 3 Equation (2.59) yields the same relationship given in Equation (2.64), and

no new information is gained.
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2.2.2 Relationships Between Coefficients –

Uniaxial Compression

The second test utilized to characterize the twelve constants is a uniaxial compression test.

Here the stress applied is equal to the compressive threshold stress, i.e.,

σij =


0 0 0

0 0 0

0 0 σc

 (2.65)

For this stress state we are concerned with region #2, region #3 and region #4 since

σ1 = 0 ≥ σ2 = 0 ≥ σ3 = σc (2.66)

The functions along the boundaries of region #4, region #3, and region #2 must satisfy the

relationships

f2 = f3 = f4 (2.67)

for this uniaxial compression test. In addition, the derivative of the functions along the

boundaries of region #4, region #3, and region #2 must satisfy

∂f2
∂σij

=
∂f3
∂σij

=
∂f4
∂σij

(2.68)

for the uniaxial compression test.

Focusing on the derivatives along the boundary of region #4 and region #3 gives

∂f3
∂σij

=
∂f4
∂σij

(2.69)
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This relationship yields the following tensor expression.

A4I1δij + 2B4σij = (A3I1 + C3I4)δij + 2B3σij

+ C3I1aiaj +D3(akaiσjk + ajamσmi)

(2.70)

For region #4 the function, f4, is not dependent on a principle direction. For region #3 the

function, f3, is dependent on the direction vector ai, which for this region is defined as

ai = (1, 0, 0) (2.71)

The invariants in Equation (2.70) are

I1 = σc (2.72)

and

I4 = 0 (2.73)

Due to symmetry Equation (2.70) represents six scalar equations. The equations where

i 6= j yield the scalar identity 0=0 and no information is gained. For i = j we obtain three

scalar relationships. For Equation (2.70) with i = j = 2 yields

A4 = A3 (2.74)

With i = j = 3 Equation (2.70) yields the following

A4 + 2B4 = A3 + 2B3 (2.75)

Substituting Equation (2.74) into Equation (2.75) yields

B4 = B3 (2.76)
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Finally, with i = j = 1 results in

A4 = A3 + C3 (2.77)

Substituting Equation (2.74) into Equation (2.77) results in

C3 = 0 (2.78)

Substituting Equation (2.78) into Equation (2.64) yields the following

A1 = A3 (2.79)

Therefore

A1 = A2 = A3 = A4 (2.80)

and substituting Equations (2.78) and (2.80) into (2.63) results in

B1 = B3 +D3 (2.81)

Next, along the shared boundary of region #4 and region #2

∂f4
∂σij

=
∂f2
∂σij

(2.82)

for uniaxial compression. This yields the following tensor expression

A4I1δij + 2B4σij = (A2I1 + C2I4)δij + 2B2σij

+ C2I1aiaj +D2(akaiσjk + ajamσmi)

(2.83)

In region #2 it was noted earlier that the ai vector points in the direction of the principle
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compression stress. Thus ai is defined as

ai = (0, 0, 1) (2.84)

The invariants of Equation (2.83) are

I1 = σc (2.85)

and

I4 = σc (2.86)

Once again, due to symmetry Equation (2.83) represents six scalar equation. The equations

where i 6= j yield 0 = 0 and no information is gained. Three scalar equations are obtained

for i = j. Substituting Equations (2.57) and (2.80) into Equation (2.83) yields the following

tensor equation

2B4σij = 2B2σij +D2(akaiσjk + ajamσmi) (2.87)

For i = j = 3 Equation (2.87) yields

B4 = B2 +D2 (2.88)

Substituting Equation (2.55) into Equation (2.81) yields

B2 = B3 +D3 (2.89)

Substituting Equation (2.76) into Equation (2.88) yields

B3 = B2 +D2 (2.90)
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Substituting Equation (2.89) into Equation (2.90) yields

B2 = B2 +D2 +D3 (2.91)

Simplifying Equation (2.91) yields

D2 = −D3 (2.92)

Thus the relationship between all of the constants have been defined.

2.3 Independent Functional Constants for Isotropy

The following relationships between the functional constants were derived in the previous

two sections

A1 = A2 = A3 = A4 (2.93)

B1 = B2 (2.94)

B3 = B4 (2.95)

B1 = B4 +D3 (2.96)

B4 = B1 +D2 (2.97)

C2 = C3 = 0 (2.98)
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and

D2 = −D3 (2.99)

These relationships can be found in Green and Mkrtichian (1977). There are three indepen-

dent constants in the expressions above. The independent constants are A1, B1, and D2.

The next step is to characterize these constants in terms of threshold stresses associated

with simple mechanical tests.

The threshold functions are rewritten in terms of these three independent constants as

follows:

f1 =
1

2
A1I

2
1 +B1I2 −K2 (2.100)

f2 =
1

2
A1I

2
1 +B1I2 +D2I5 −K2 (2.101)

f3 =
1

2
A1I

2
1 + (B1 +D2)I2 + (−D2)I5 −K2 (2.102)

and

f4 =
1

2
A1I

2
1 + (B1 +D2)I2 −K2 (2.103)

The mechanical tests needed to define the three independent constants were identified ear-

lier. They are a uniaxial tensile test (σt), a uniaxial compreession test (σc), and a torsion

test (τi).

For a uniaxial tensile test where the stress applied is equal to the tensile threshold stress

σij =


σt 0 0

0 0 0

0 0 0

 (2.104)
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Using Equation (2.100) the invariants are

I1 = σt (2.105)

and

I2 = σ2
t (2.106)

Substituting these quantities into Equation (2.100) with K equal to one yields

1

2
A1σ

2
t +B1σ

2
t − 1 = 0 (2.107)

Rearranging this equation yields

1

2
A1 +B1 =

1

σ2
t

(2.108)

The next test utilized in identifying the unknown constants is a uniaxial compression

test where the applied stress is equal to the compressive threshold stress. Hence,

σij =


σc 0 0

0 0 0

0 0 0

 (2.109)

Using Equation (2.103) the invariants are

I1 = σc (2.110)

and

I2 = σ2
c (2.111)
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Substituting these quantities into Equation (2.103) with K equal to one yields

1

2
A1σ

2
c + (B1 +D2)σ

2
c − 1 = 0 (2.112)

Rearranging this equation yields

1

2
A1 +B1 +D2 =

1

σ2
c

(2.113)

The last test is a torsion test where

σij =


0 τi 0

τi 0 0

0 0 0

 (2.114)

Using Equation (2.101) the invariants are

I1 = 0 (2.115)

I2 = 2τ 2i (2.116)

and

I5 = τ 2i (2.117)

Substituting these quantities into Equation (2.101) with K equal to one yields

2B1τ
2
i +D2τ

2
i − 1 = 0 (2.118)
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Rearranging this equation yields

2B1 +D2 =
1

τ 2i
(2.119)

Equations (2.108), (2.113), and (2.119) are three equations in three unknowns. Solving

these equations for A1, B1, and D2 yields

A1 =
1

σ2
c

+
1

σ2
t

− 1

τ 2i
(2.120)

B1 =
1

2σ2
t

− 1

2σ2
c

+
1

2τ 2i
(2.121)

and

D2 =
1

σ2
c

− 1

σ2
t

(2.122)

With these constant defined in terms of inelastic flow stresses a map of the threshold

surface can be constructed. Graphically it is convenient to plot the function in Haigh-

Westergaard (principal) stress state. In the Haigh-Westergaard stress space the six compo-

nents of the stress tensor are represented by the principle stress vector (σ1, σ2, σ3). In the

Haigh-Westergaard stress space a given state of stress can be decomposed into hydrostatic

and deviatoric components. Figure 6 depicts this decomposition. The line d in figure 6

represents the hydrostatic axis where σ1 = σ2 = σ3. Planes normal to the hydrostatic stress

are called deviatoric planes. Point P (σ1,σ2,σ3) is an arbitrary state of stress. This state of

stress can be described in terms of its hydrostatic component, vectorON , and its deviatoric

componet, vectorNP . This yeids several graphical schemes to present threshold functions.

They are

• a principle stress plane (σ1 − σ2 plane)

• a deviatoric plane presented in the Haigh-Westergaard stress space, or
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• a meridian plane perpendicular to the deviatoric plane (defined by the coordinat axes

in figure 6 as ξ − r)

Figure 6: Haigh-Westergaard (principal) stress space

Figure 7 depicts a threshold surface projected onto the σ1 − σ2 stress plane. For this

figure the three threshold stresses discussed above were arbitrarily set at σt = 1.1 MPa,

σc = 5.0 MPa, and τi = 1.04 MPa and are identified in the figure 7. Stress states

within the surface represent elastic states of stress. These values are better depicted using

a different set of axis as shown in Figure 8. This figure represents the same threshold

function, but the σ2 axis is replaced by a shear stress axis, τi.

Figure 9 depicts a series of nested surfaces associated with different values of the state

variable K. The inside surface has a K value of one. The middle surface has a K value of

two. The outside surface has a K value of three. As the inelastic work is accumulated and

the graphite material hardens the inelastic state variable increases, values for the threshold

stresses σt, σc, and τi increase accordingly. The values of the threshold stress will change
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Figure 7: Green and Mkrtichian threshold surface with σt = 1.1 MPa, σc = 5.0 MPa, and
τi = 1.04MPa with K = 1

according to the evolutionary laws presented in Chapter 4. This nesting of surfaces will be

revisited in that section of this work.
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Figure 8: Green and Mkrtichian threshold surface with σt = 1.1 MPa, σc = 5.0 MPa, and
τi = 1.04MPa with K = 1
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Figure 9: Nested threshold surfaces corresponding to K = 1, 2, 3
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CHAPTER III

ANISOTROPIC INELASTIC THRESHOLD FUNCTION

3.1 Formulation of an Anisotropic

Threshold Function

Burchell (2007) and others have indicated over the years that certain types of graphite ex-

hibit anisotropic behavior. In this chapter the isotropic threshold function from the last

chapter is extended to incorporate anisotropy, specifically transverse isotropy. A trans-

versely isotropic material is characterized by a plane where the material properties are

isotropic, and a preferred material direction perpendicular to this plane of isotropy where

the material has different properties. Jones and Dudley (1976) described in detail the trans-

versely isotropic deformation behavior of ATJ-S graphite. This type of graphite is fabri-

cated from coke splinters that align themselves along the molding direction. As a result a

billet exhibits the transversely isotropic directional dependence alluded to in Figure (1) of

Jones and Dudley (1976)

To include transversely isotropy behavior in the current inelastic deformation model

the threshold function must be constructed to include a dependence on a preferred material

direction. This preferred material direction is designated through a second direction vector

identified here as di. Since one can not distinguish between the preferred material direction

and its reflection then the dependence of di appears through the second order tensor, didj .

Now dependence of the threshold function presented in the previous chapter is extended
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such that

f = f(σij, aiaj, didj) (3.1)

The definition of the unit vector ai is the same as in the previous chapter. Spencer (1971)

and Rivlin (1969) show that for a scalar valued function with the dependence stipulated by

Equation (3.1) the integrity basis for this threshold function is

I1 = σkk (3.2)

I2 = σijσji (3.3)

I3 = σijσjkσki (3.4)

I4 = aiajσji (3.5)

I5 = aiajσjkσki (3.6)

I6 = didjσji (3.7)

I7 = didjσjkσki (3.8)

I8 = aiajdjdkσki (3.9)

and

I9 = aiajdjdkσkmσmi (3.10)
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This effort requires a modification to the invariant I9 as defined in Equation (3.10). This

updated version for the I9 invariant is

I9 =
1

2
(aiajdjdkσkmσmi + akajdjdiσkmσmi) (3.11)

The details for the equivalence between these two versions of I9 are presented in the Ap-

pendix. For use in the inelastic model shown in Chapter 4 a requirement for these invariants

is that these derivatives with respect to the Cauchy stress must result in a symmetric second

order tensor. This derivative with respect to the Cauchy stress for the original I9 invariant

results in a non-symmetric second order tensor, but by using the update version of I9 this

derivative results in a symmetric second order tensor.

The invariant I3 is omitted again since this invariant is cubic in stress. Moreover, I8

will never enter into the threshold function because when the polynomial function for f is

constructed in terms of the above invariants, the coefficients associated with I8 are zero.

The invariant I8 is carried along in the derivation that follows until it is apparent that it

needs to be removed, whereas the invariant I3 is omitted immediately. As will be seen

shortly the invariants linear in stress enter the functional dependence as squared terms or

as products with another invariant linear in stress. Therefore the transversely isotropic

threshold function is quadratic in stress and has the following dependence

f(σij, aiaj, didj) = f(I1, I2, I4, I5, I6, I7, I8, I9) (3.12)

The underlying concept is that the response of the material depends on the stress state,

the preferred material direction, and whether the principal stresses are tensile or compres-

sive. Once again principle stresses follow the standard convention where they are ordered

numerically based on their algebraic value, i.e.,

σ1 ≥ σ2 ≥ σ3 (3.13)
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The principle stress space is divided into four regions and developing the functional form

of the anisotropic threshold function proceeds in a manner similar to the isotropic threshold

function. The regions and associated threshold functions are listed below.

In the first region where all of the principle stresses are tensile, i.e.,

Region #1 σ1 ≥ σ2 ≥ σ3 ≥ 0 f = f1(σij, didj) (3.14)

and a direction vector for the principle stress direction is unnecessary. A second region is

identified where

Region #2 σ1 ≥ σ2 ≥ 0 ≥ σ3 f = f2(σij, aiaj, didj) (3.15)

In region #2 the direction vector ai is associated with the compressive principle stress σ3.

Thus for this region

ai = (0, 0, 1) (3.16)

Again the Cartesian coordinate system is aligned with the principle stress coordinate sys-

tem, which is depicted in Figure 5. A third region is identified where

Region #3 σ1 ≥ 0 ≥ σ2 ≥ σ3 f = f3(σij, aiaj, didj) (3.17)

In region #3 the direction vector ai is associated with the tensile principle stress direction

σ1. Thus for this region

ai = (1, 0, 0) (3.18)

Finally, in the fourth region all principle stresses are compressive, i.e.,

Region #4 0 ≥ σ1 ≥ σ2 ≥ σ3 f = f4(σij, didj) (3.19)

and a direction vector for the principle stress direction is unnecessary.
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Building on the original form of the Green-Mkrtichian (1977) model through the use of

the invariants that include di, the threshold function in region #1 is defined as

f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 −K2 (3.20)

The threshold function in region #2 is defined as

f2 =
1

2
A2I

2
1 +B2I2 + C2I1I4 +D2I5 + E2I1I6

+ F2I7 +G2I1I8 +H2I9 −K2

(3.21)

The threshold function in region #3 is defined as

f3 =
1

2
A3I

2
1 +B3I2 + C3I1I4 +D3I5 + E3I1I6

+ F3I7 +G3I1I8 +H3I9 −K2

(3.22)

and the threshold function in region #4 is defined as

f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 −K2 (3.23)

These four functions represent polynomial forms in terms of invariant quantities quadratic

in stress. Historically this has precedence. Other forms such as rational formulations or

transcendental functions could be studied. This effort leaves those types of functions for

others to explore. The forms presented here for the threshold functions simplify to the

threshold functions developed by Green and Mkrtichian (1977) for isotropic materials pre-

sented in the previous chapter. This is demonstrated later in this chapter after the polyno-

mial coefficients A1, A2, A3, A4, B1, B2, B3, B4, C2, C3, D2, D3, E1, E2, E3, E4, F1, F2,

F3, F4, G2, G3, H2, and H3 are characterized with simple mechanical tests. Thus isotropy

is a special case of the formulation above.

The simple mechanical tests are identified by the states of stress they produce. These
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stress states represent the limits of elastic behavior. As a material hardens with accumu-

lated deformation, the threshold functions defining the elastic region of the stress space

will change. Fundamentally, the elastic range is defined as the point on the stress–strain

curve where permanent deformations are not accumulated after unloading. This is typi-

cally the point where the stress-strain curve becomes non-linear. The eight tests identified

are uniaxial tension in the plane of isotropy, uniaxial compression in the plane of isotropy,

biaxial compression in the plane of isotropy, torsional test in the plane of isotropy, uniaxial

tension in the preferred material direction, uniaxial compression in the preferred material

direction, mixed biaxial compression in the preferred material direction and in the plane of

isotropy, and a torsional test across the plane of isotropy. The following notation is adopted

to identify the threshold stresses:

• σt – uniaxial tensile threshold stress in the plane of isotropy

• σc – uniaxial compressive threshold stress in the plane of isotropy

• σbc – equal biaxial compressive threshold stress in the plane of isotropy

• τi – torsional stress in the plane of isotropy

• σst – uniaxial tensile threshold stress along the strong direction

• σsc – uniaxial compressive threshold stress along the strong direction

• σmbc – equal biaxial compressive threshold stress along the strong direction and in

the plane of isotropy

• τs – torsional stress across the plane of isotropy

The parameter K in the equations above is an inelastic state variable associated with

isotropic hardening. For a virgin material, the value of this state variable is equal to one.

Similarly, the polynomial coefficients just mentioned will be characterized by mechanical
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tests on virgin materials. In the section discussing the inelastic constitutive model the value

of K will change according to a specified evolutionary law (see Chapter 4).

3.2 Relationships Between Functional Coefficients

The set of piecewise continuous threshold functions identified in the previous section must

satisfy two conditions along the boundaries where they meet. The first condition is that

the threshold functions must be equal along mutual boundaries. The second condition is

that the tangents, the directional derivatives of the threshold functions, must be single val-

ued everywhere but especially along a mutual boundary. The second condition dominates

the development of relationships between the twenty-four polynomial coefficients. In the

next chapter where an associated flow rule is presented the conditions on the tangents will

guarantee that increments in the inelastic strain will be equal at mutual boundaries of the

piecewise threshold function. It is noted at this point that region #1 and region #4 do not

share a boundary except at the origin of principle stress space where all regions meet. The

first condition, i.e., the threshold functions must be equal along the boundaries help in es-

tablishing the value of the coefficients in terms of the simple mechanical tests mentioned

above. This is discussed in Section 3.3

The tangents for these four functions are calculated by taking the derivatives with re-

spect to the Cauchy stress, σij . For all four threshold functions the partial derivatives are

calculated using the chain rule

∂f

∂σij
=
∂f

∂I1

∂I1
∂σij

+
∂f

∂I2

∂I2
∂σij

+
∂f

∂I4

∂I4
∂σij

+
∂f

∂I5

∂I5
∂σij

+
∂f

∂I6

∂I6
∂σij

+
∂f

∂I7

∂I7
∂σij

+
∂f

∂I8

∂I8
∂σij

+
∂f

∂I9

∂I9
∂σij

(3.24)

For the threshold function f1 the partial derivatives on the right hand side of Equation (3.24)

are
∂f1
∂I1

= A1I1 + E1I6 (3.25)
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∂f1
∂I2

= B1 (3.26)

∂f1
∂I6

= E1I1 (3.27)

∂f1
∂I7

= F1 (3.28)

∂I1
∂σij

= δij (3.29)

∂I2
∂σij

= 2σij (3.30)

∂I6
∂σij

= didj (3.31)

and
∂I7
∂σij

= dkdiσjk + djdmσmi (3.32)

Thus Equation (3.24) for f1 takes the form

∂f1
∂σij

=(A1I1 + E1I6)δij + 2B1σij+

E1I1didj + F1(dkdiσjk + djdmσmi)

(3.33)

in the first region of the principle stress space.

In a similar fashion for the threshold function f2

∂f2
∂I1

= A2I1 + C2I4 + E2I6 +G2I8 (3.34)
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∂f2
∂I2

= B2 (3.35)

∂f2
∂I4

= C2I1 (3.36)

∂f2
∂I5

= D2 (3.37)

∂f2
∂I6

= E2I1 (3.38)

∂f2
∂I7

= F2 (3.39)

∂f2
∂I8

= G2I1 (3.40)

∂f2
∂I9

= H2 (3.41)

∂I4
∂σij

= aiaj (3.42)

∂I5
∂σij

= akaiσjk + ajamσmi (3.43)

∂I8
∂σij

= ajaqdqdi (3.44)

and

∂I9
∂σij

=
1

2
(amandndiσjm + ajandndkσki + aiandndmσjm + akandndjσki) (3.45)

40



Thus Equation (3.24) for f2 takes the form

∂f2
∂σij

=(A2I1 + C2I4 + E2I6 +G2I8)δij + 2B2σij + C2I1aiaj+

D2(akaiσjk + ajamσmi) + E2I1didj + F2(dkdiσjk + djdmσmi)+

G2I1ajaqdqdi +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.46)

in the second region of the principle stress space.

For the threshold function f3

∂f3
∂I1

= A3I1 + C3I4 + E3I6 +G3I8 (3.47)

∂f3
∂I2

= B3 (3.48)

∂f3
∂I4

= C3I1 (3.49)

∂f3
∂I5

= D3 (3.50)

∂f3
∂I6

= E3I1 (3.51)

∂f3
∂I7

= F3 (3.52)

∂f3
∂I8

= G3I1 (3.53)
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and
∂f3
∂I9

= H3 (3.54)

Equation (3.24) takes the form

∂f3
∂σij

=(A3I1 + C3I4 + E3I6 +G3I8)δij + 2B3σij + C3I1aiaj+

D3(akaiσjk + ajamσmi) + E3I1didj + F3(dkdiσjk + djdmσmi)+

G3I1ajaqdqdi +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.55)

in the third region of the principle stress space.

For the threshold function f4

∂f4
∂I1

= A4I1 + E4I6 (3.56)

∂f4
∂I2

= B4 (3.57)

∂f4
∂I6

= E4I1 (3.58)

and
∂f4
∂I7

= F4 (3.59)

Thus Equation (3.24) takes the form

∂f4
σij

=(A4I1 + E4I6)δij + 2B4σij+

E4I1didj + F4(dkdiσjk + djdmσmi)

(3.60)

in the fourth region of the principle stress space.
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Summarizing

∂f1
∂σij

= (A1I1 + E1I6)δij + 2B1σij+

E1I1didj + F1(dkdiσjk + djdmσmi)

(3.61)

∂f2
∂σij

= (A2I1 + C2I4 + E2I6 +G2I8)δij + 2B2σij + C2I1aiaj+

D2(akaiσjk + ajamσmi) + E2I1didj + F2(dkdiσjk + djdmσmi)+

G2I1ajaqdqdi +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.62)

∂f3
∂σij

= (A3I1 + C3I4 + E3I6 +G3I8)δij + 2B3σij + C3I1aiaj+

D3(akaiσjk + ajamσmi) + E3I1didj + F3(dkdiσjk + djdmσmi)+

G3I1ajaqdqdi +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.63)

and

∂f4
∂σij

= (A1I1 + E1I6)δij + 2B1σij+

E1I1didj + F1(dkdiσjk + djdmσmi)

(3.64)

Equations (3.61) through (3.64) represent four symmetric second order tensor equations in

terms of twenty–four unknowns. In what follows, a sufficient number of scalar expression

embedded in these tensor equation will be extracted in order to define relationships between

the twenty–four polynomial coefficients. It is noted prior to the development that several

coefficients are not independent.
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3.2.1 Relationships Between Coefficients –

Uniaxial Tension in the Plane of Isotropy

For a uniaxial tensile test in the plane of isotropy where the stress applied is equal to the

tensile threshold stress of the material, the Cauchy stress tensor has the form

σij =


σt 0 0

0 0 0

0 0 0

 (3.65)

This stress state satisfies the inequalities associated with region #1, region #2, and region

#3 since

σ1 = σt ≥ σ2 = 0 ≥ σ3 = 0 (3.66)

The threshold functions along the shared boundaries of region #1,region #2, and region #3

must satisfy the relationships

f1 = f2 = f3 (3.67)

for this state of stress. In addition, the derivatives of the functions along the shared bound-

aries of region #1, region #2, and region #3 must satisfy

∂f1
∂σij

=
∂f2
∂σij

=
∂f3
∂σij

(3.68)

for this state of stress.

Focusing on the derivatives along the boundary of region #1 and region #2 then

∂f1
∂σij

=
∂f2
∂σij

(3.69)
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This relationship yields the following tensor expression

(A1I1 + E1I6)δij + 2B1σij + E1I1didj + F1(dkdiσjk + djdmσmi) =

(A2I1 + C2I4 + E2I6 +G2I8)δij + 2B2σij + C2I1aiaj+

D2(akaiσjk + ajamσmi) + E2I1didj + F2(dkdiσjk + djdmσmi)+

G2I1ajaqdqdi +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.70)

For region #1 the function f1 does not depend on a principle direction. In region #2 the

function f2 does depend on the direction vector ai. Just as in the isotropic case the com-

pressive stress which is assumed to be σ3 is tracked in Region #2 (even though it is zero)

and the vector ai is defined as

ai = (0, 0, 1) (3.71)

For a tensile test in the plane of isotropy the tensile stress direction must be orthogonal to

the preferred material direction vector di. Here the preferred material direction vector di is

assumed coincident with the principle compressive stress direction ai. Thus

di = (0, 0, 1) (3.72)

The state of stress and material orientation are depicted in Figure 10. With this information

the invariants from the transversely isotropic integrity basis are

I1 = σt (3.73)

I6 = 0 (3.74)
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Plane of Isotropy

di

ai

σ3, x3

σt σt
σ1, x1

σ2, x2

Figure 10: First Tensile Test in the Plane of Isotropy

I4 = 0 (3.75)

and

I8 = 0 (3.76)

Since Equation (3.70) is a partial derivative of two of the threshold functions this equa-

tion is a composite function of clearly defined invariants (scalar constants) and second

order tensors. Equation (3.70) represents nine scalar equations. Using the symmetry of

the Cauchy stress tensor, i.e. σij = σji, the nine scalar equations are reduced to six. The

equations where i 6= j yield the scalar identity 0 = 0 and no information is gained. With

i = j we obtain three scalar relationships that are presented momentarily.

With i = j = 2 the tangent relationships for f1 and f2 expressed in Equation (3.70)

simplifies to

A1 = A2 (3.77)
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With i = j = 1 Equation (3.70) yields

A1 + 2B1 = A2 + 2B2 (3.78)

Substituting Equation (3.77) into Equation (3.78) yields

B1 = B2 (3.79)

With i = j = 3 Equation (3.70) yields the following

A1 + E1 = A2 + E2 + C2 +G2 (3.80)

Substituting Equation (3.77) into Equation (3.80) yields

E1 = E2 + C2 +G2 (3.81)

More relationships between the coefficients can be obtained from the tangent relation-

ship between threshold functions f1 and f2. Equation (3.70) must also be satisfied when

the preferred material direction is along the same direction as principle stress direction for

σ2. For this case the material direction vector di is defined as

di = (0, 1, 0) (3.82)

The applied uniaxial stress defined by the stress tensor in Equation (3.65) is still in the plane

of isotropy, which can be seen in Figure 11. Note that the vector ai remains unchanged for

an applied stress of σt in the σ1 principle stress direction. For this stress state and material

direction the four invariants (I1, I4, I6, and I8) in Equation (3.70) remain the same values

identified in Equations (3.73) through (3.76). With i = j = 1 Equation (3.70) gives the

same result that was identified in Equation (3.78) is obtained and no new information is
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Plane of Isotropy

di

ai

σt σt

σ1, x1

σ2, x2

σ3, x3

Figure 11: Second Tensile Test in the Plane of Isotropy

gained. However with i = j = 2 Equation (3.70) yields

A1 + E1 = A2 + E2 (3.83)

Substituting Equation (3.77) into Equation (3.83) yields

E1 = E2 (3.84)

For i = j = 3 Equation (3.70) yields

A1 = A2 + C2 (3.85)

Substituting Equation (3.77) into Equation (3.85) yields

C2 = 0 (3.86)
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Finally, substituting Equations (3.86) and (3.84) into (3.81) yields

G2 = 0 (3.87)

Note that G2 is associated with I8. If G3 is found to be equal to zero then the threshold

functions loose all dependence on I8.

Next the argument above is repeated for the derivatives along the shared boundary be-

tween region #1 and region #3 where

∂f1
∂σij

=
∂f3
∂σij

(3.88)

This yields the following tensor expression in terms of index notation

(A1I1 + E1I6)δij + 2B1σij + E1I1didj + F1(dkdiσjk + djdmσmi) =

(A3I1 + C3I4 + E3I6 +G3I8)δij + 2B3σij + C3I1aiaj+

D3(akaiσjk + ajamσmi) + E3I1didj + F3(dkdiσjk + djdmσmi)+

G3I1ajaqdqdi +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.89)

In region #3 the ai vector is defined as

ai = (1, 0, 0) (3.90)

With the plane of isotropy coinciding with the σ1 − σ2 plane (see Figure 12) the di vector

is defined as

di = (0, 0, 1) (3.91)

Once again uniaxial tensile stress σt is applied in the σ1 principle stress direction. Based

on the direction vectors and the state of stress the invariants in Equation (3.89) are
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Plane of Isotropy

di

ai
σtσt

σ1, x1

σ2, x2

σ3, x3

Figure 12: Third Tensile Test in the Plane of Isotropy

I1 = σt (3.92)

I4 = σt (3.93)

I6 = 0 (3.94)

and

I8 = 0 (3.95)

Again this is a second order tensor function that is explicitly dependent on certain in-

variants. Due to the symmetry of the Cauchy stress tensor Equation (3.89) represents six

scalar equations. The equations where i 6= j yields the scalar identity 0 = 0 and no infor-

mation is gained. Three non-zero scalar equations are obtained for i = j.

For i = j = 1 Equation (3.89) yields

A1 + 2B1 = A3 + 2B3 + 2C3 + 2D3 (3.96)
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With i = j = 2 Equation (3.89) yields

A1 = A3 + C3 (3.97)

and finally with i = j = 3 Equation (3.89) yields

A1 + E1 = A3 + C3 + E3 (3.98)

3.2.2 Relationships Between Coefficients –

Uniaxial Compression in the Plane of Isotropy

The second test utilized to characterize the twenty-four polynomial coefficients is a uniaxial

compression test in the plane of isotropy. Here the stress applied is equal to the compressive

threshold stress, i.e.,

σij =


0 0 0

0 0 0

0 0 σc

 (3.99)

This stress state is valid in region #2, region #3, and region #4 since

σ1 = 0 ≥ σ2 = 0 ≥ σ3 = σc (3.100)

The functions along the shared boundaries of these regions satisfy the relationships

f2 = f3 = f4 (3.101)

for this uniaxial compression test. In addition, the derivative of the functions along the

boundaries of region #2, region #3, and region #4 must satisfy

∂f2
∂σij

=
∂f3
∂σij

=
∂f4
∂σij

(3.102)

51



for the uniaxial compression test.

Focusing on the derivatives along the boundary between region #3 and region #4 then

∂f3
∂σij

=
∂f4
∂σij

(3.103)

This relationship yields the following tensor expression

(A4I1 + E4I6)δij + 2B4σij + E4I1didj + F4(dkdiσjk + djdmσmi) =

(A3I1 + C3I4 + E3I6 +G3I8)δij + 2B3σij + C3I1aiaj+

D3(akaiσjk + ajamσmi) + E3I1didj + F3(dkdiσjk + djdmσmi)+

G3I1ajaqdqdi +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.104)

For region #4 the function f4 does not depend on a principle direction. However, the

function f3 does depend on the direction vector ai, which in region #3 is defined as

ai = (1, 0, 0) (3.105)

The plane of isotropy is identified as the σ2 − σ3 plane, thus the di vector is defined as

di = (1, 0, 0) (3.106)

The state of stress and material orientation are depicted in Figure 13. With this information

the invariants from the transversely isotropic integrity basis are
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Plane of Isotropy

di ai

σc

σc

σ3, x3

σ1, x1

σ2, x2

Figure 13: First Compression Test in the Plane of Isotropy

I1 = σc (3.107)

I4 = 0 (3.108)

I6 = 0 (3.109)

and

I8 = 0 (3.110)

Again this is a second order tensor function that is explicitly dependent on certain in-

variants. Due to symmetry of the stress tensor Equation (3.104) represents six scalar equa-

tions. Again when i 6= j three scalar identities of 0 = 0 are obtained and no information

is gained. For i = j we obtain three non-zero scalar relationships. These relationships are

explored next.
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For i = j = 2 Equation (3.104) yields

A4 = A3 (3.111)

With i = j = 3 Equation (3.104) yields

A4 + 2B4 = A3 + 2B3 (3.112)

Substituting Equation (3.111) into Equation (3.112) yields

B4 = B3 (3.113)

and for i = j = 1 Equation (3.104) yields

A4 + E4 = A3 + E3 + C3 +G3 (3.114)

Substituting Equation (3.111) into Equation (3.114) yields

E4 = E3 + C3 +G3 (3.115)

For this state of stress Equation (3.104) must still be satisfied if the plane of isotropy is

σ1 − σ3 plane, and for this orientation of the plane of isotropy the di vector is defined as

di = (0, 1, 0) (3.116)

Since the state of stress remains the same, the vector ai is unchanged. The applied compres-

sive stress, the ai vector, and the di vector are shown in Figure 14. With this information

the invariants from the transversely isotropic integrity basis are
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Plane of Isotropy

di

ai

σc

σc

σ1, x1

σ2, x2

σ3, x3

Figure 14: Second Compression Test in the Plane of Isotropy

I1 = σc (3.117)

I4 = 0 (3.118)

I6 = 0 (3.119)

and

I8 = 0 (3.120)

With i = j = 3 Equation (3.104) yields the same Equation as (3.112) and no new

information is gained. With i = j = 2 Equation (3.104) yields

A4 + E4 = A3 + E3 (3.121)
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Substituting Equation (3.111) into Equation (3.121) yields

E4 = E3 (3.122)

For Equation (3.104) i = j = 1 results in

A4 = A3 + C3 (3.123)

Substituting Equation (3.111) into Equation (3.123) yields

C3 = 0 (3.124)

Substituting Equation (3.124) and (3.122) into Equation (3.115) yields

G3 = 0 (3.125)

At this point I8 can be removed from the integrity basis since G2 and G3 have been shown

to be zero.

Continuing on, substituting Equation (3.124) into Equation (3.97) yields

A1 = A3 (3.126)

Thus

A1 = A2 = A3 = A4 (3.127)

Substituting Equation (3.124) and (3.126) into Equation (3.98) yields

E1 = E3 (3.128)
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Thus

E1 = E2 = E3 = E4 (3.129)

Substituting Equation (3.124) and (3.127) into Equation (3.96) yields

B1 = B3 +D3 (3.130)

Finally for this state of stress, the derivatives along the shared boundary of region #4

and region #2 must satisfy
∂f4
∂σij

=
∂f2
∂σij

(3.131)

for the uniaxial compression test in the plane of isotropy identified in Figure 14. This yields

the following tensor expression

(A4I1 + E3I6)δij + 2B4σij + E4I1didj + F4(dkdiσjk + djdmσmi) =

(A2I1 + C2I4 + E2I6 +G2I8)δij + 2B2σij + C2I1aiaj+

D2(akaiσjk + ajamσmi) + E2I1didj + F2(dkdiσjk + djdmσmi)+

G2I1ajaqdqdi +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.132)

Equation (3.132) can be simplified using Equations (3.127), (3.129), (3.86), and (3.87)

yielding

2B4σij + F4(dkdiσjk + djdmσmi) = 2B2σij +D2(akaiσjk + ajamσmi)

+ F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
) (3.133)

In region #2 it was noted earlier that the ai vector points in the direction of the principle
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Plane of Isotropy

di

ai

σc

σc

σ1, x1

σ2, x2

σ3, x3

Figure 15: Third Compression Test in the Plane of Isotropy

compressive stress. Thus ai is defined as

ai = (0, 0, 1) (3.134)

The preferred material direction vector is defined by taking the plane of isotropy to coincide

with the σ2 − σ3 plane. Thus

di = (1, 0, 0) (3.135)

Once again Equation (3.133) is a second order tensor function that is explicitly depen-

dent on cerain invariants and represents six scalar equations. The equations where i 6= j

yield 0=0 and no information is gained. Three scalar equations are obtained for i = j.

Solving Equation (3.133) with i = j = 1 and i = j = 2 yield the scalar identity 0=0 in

both cases and no information is gained. However, for i = j = 3 Equation (3.133) yields

B4 = B2 +D2 (3.136)
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Substituting Equation (3.79) into Equation (3.130) yields

B2 = B3 +D3 (3.137)

Substituting Equation (3.113) into Equation (3.136) yields

B3 = B2 +D2 (3.138)

Substituting Equation (3.137) into Equation (3.138) yields

D2 = −D3 (3.139)

3.2.3 Relationships Between Coefficients –

Uniaxial Tension in the Preferred Material Direction

Before the deriving the relationships between the polynomial coefficients using material

tests conducted in the preferred material direction, the threshold functions and their deriva-

tives are simplified. These threshold equations and their derivatives are simplified through

the use of Equations (3.86), (3.87), (3.124), and (3.125). Using these four relationships

yields

f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 −K2 (3.140)

f2 =
1

2
A2I

2
1 +B2I2 +D2I5 + E2I1I6 + F2I7 +H2I9 −K2 (3.141)

f3 =
1

2
A3I

2
1 +B3I2 +D3I5 + E3I1I6 + F3I7 +H3I9 −K2 (3.142)

and

f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 −K2 (3.143)
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The coresponding tangents to these threshold surfaces are as follows

∂f1
∂σij

= (A1I1 + E1I6)δij + 2B1σij

+ E1I1didj + F1(dkdiσjk + djdmσmi)

(3.144)

∂f2
∂σij

= (A2I1 + E2I6)δij + 2B2σij +D2(akaiσjk + ajamσmi)+

E2I1didj + F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm+

ajandndkσki + aiandndmσjm + akandndjσki)
) (3.145)

∂f3
∂σij

= (A3I1 + E3I6)δij + 2B3σij +D3(akaiσjk + ajamσmi)+

E3I1didj + F3(dkdiσjk + djdmσmi) +H3

(1

2
(amandndiσjm+

ajandndkσki + aiandndmσjm + akandndjσki)
) (3.146)

and

∂f4
∂σij

= (A4I1 + E4I6)δij + 2B4σij

+ E4I1didj + F4(dkdiσjk + djdmσmi)

(3.147)

The next test considered is a uniaxial tension test in the preferred material direction. For

a uniaxial tensile test in the preferred material direction where the applied stress is equal to

the threshold stress, i.e.,

σij =


σst 0 0

0 0 0

0 0 0

 (3.148)

This stress state satisfies inequalities associated with region #1, region #2, and region #3
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since

σ1 = σst ≥ σ2 = 0 ≥ σ3 = 0 (3.149)

The threshold function along the boundaries of region #1, region #2, and region #3 must

satisfy the relationships

f1 = f2 = f3 (3.150)

for this uniaxial tension test. In addition the derivatives of the function along the boundaries

of region #1, region #2, and region #3 must satisfy

∂f1
∂σij

=
∂f2
∂σij

=
∂f3
∂σij

(3.151)

for the uniaxial tensile test in the preferred material direction.

Focusing on the derivatives along the boundary between region #1 and region #2 then

∂f1
∂σij

=
∂f2
∂σij

(3.152)

This relationship yields the following tensor expression

(A1I1 + E1I6)δij + 2B1σij + E1I1didj + F1(dkdiσjk + djdmσmi) =

A2I1 + E2I6)δij + 2B2σij +D2(akaiσjk + ajajσmi) + E2I1didj

+ F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.153)

For region #1 the function, f1, does not depend on a principle direction. For region #2 the

function, f2 does depend on the direction vector ai which is defined as

ai = (0, 0, 1) (3.154)

The vector, di which points in the preferred material direction is will be taken in the direc-
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tion of the applied stress in this section, i.e.,

di = (1, 0, 0) (3.155)

Equation (3.153) is a second order tensor function that is explicitly on certain invariants

and represents six scalar equation. The equations where i 6= j yield the scalar identity 0=0

and no information is gained. For i = j we obtain three scalar relationships.

The state of stress and the material direction are depicted in Figure 16. Simplifying

Equation (3.153) using Equations (3.79), (3.77), and (3.84) yields

F1(dkdiσjk + djdmσmi) = D2(akaiσjk + ajamσmi)+

F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
) (3.156)

For Equation (3.156) i = j = 1 results in

F1 = F2 (3.157)

With i = j = 2 and i = j = 3 Equation (3.156) yields the scalar identity 0 = 0 and no

information is gained.
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Plane of Isotropy

di

ai

σstσst
σ1, x1

σ2, x2
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Figure 16: Tensile Test in the Preferred Material Direction

Next, the argument above is repeated for the derivatives along the shared boundary of

region #1 and region #3 where
∂f1
∂σij

=
∂f3
∂σij

(3.158)

for the same uniaxial tension test in the preferred material direction. This yields the fol-

lowing tensor expression

(A1I1+E1I6)δij + 2B1σij + E1I1didj + F1(dkdiσjk + djdmσmi) =

(A3I1 + E3I6)δij + 2B3σij +D3(akaiσjk + ajajσmi) + E3I1didj

+ F3(dkdiσjk + djdmσmi) +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.159)

Equation (3.159) is simplified by using Equations (3.126) and (3.128) yielding the follow-
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ing tensor expression

2B1σij+F1(dkdiσjk + djdmσmi) = 2B3σij +D3(akaiσjk + ajamσmi)+

F3(dkdiσjk + djdmσmi) +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
) (3.160)

In region #3 it was noted earlier that the vector ai is defined as

ai = (1, 0, 0) (3.161)

Due to the symmetry of the second order tensors that appear in this expression Equation

(3.160) represents six scalar equations. The equations where i 6= j yield the scalar identity

0=0 and no information is gained. Three scalar equations are obtained when i = j.

For i = j = 1 Equation (3.160) yields

B1 + F1 = B3 +D3 + F3 +H3 (3.162)

Substituting Equation (3.130) into Equation (3.162) yields

F1 = F3 +H3 (3.163)

With i = j = 2 and i = j = 3 Equation (3.160) simplifies to the scalar identity 0 = 0 and

no information is gained.

3.2.4 Relationships Between Coefficients –

Uniaxial Compression in the Preferred Material Direction

The next test considered is a uniaxial compression test in the preferred material direction.

When the applied stress is equal to the threshold stress the Cauchy stress tensor take the
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form

σij =


0 0 0

0 0 0

0 0 σsc

 (3.164)

This stress state satisfies the inequalities associated with region #2, region #3, and re-

gion #4 since

σ1 = 0 ≥ σ2 = 0 ≥ σ3 = σsc (3.165)

The threshold function along the boundaries of region #2, region #3, and region #4 must

satisfy the relationships

f2 = f3 = f4 (3.166)

for a uniaxial compression test in the preferred material direction. In addition the deriva-

tives of the functions along the boundaries between region #2, region #3, and region #4

must satisfy
∂f2
∂σij

=
∂f3
∂σij

=
∂f4
∂σij

(3.167)

for a uniaxial tensile test in the preferred material direction.

Focusing on the derivatives along the boundary between region #4 and region #3 then

∂f3
∂σij

=
∂f4
∂σij

(3.168)

This relationship yields the following tensor expression

(A4I1+E4I6)δij + 2B4σij + E4I1didj + F4(dkdiσjk + djdmσmi) =

(A3I1 + E3I6)δij + 2B3σij +D3(akaiσjk + ajajσmi) + E3I1didj+

F3(dkdiσjk + djdmσmi) +H3

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.169)
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Which simplifies to

F4(dkdiσjk + djdmσmi) = D3(akaiσjk + ajamσmi)+

F3(dkdiσjk + djdmσmi) +H3

(1

2
(amandndiσjm+

ajandndkσki + aiandndmσjm + akandndjσki)
) (3.170)

by substituting Equations (3.111), (3.113), and (3.122) into Equation (3.169). For region

#4 the function, f4, does not depend on a principle direction. In region #3 the function, f3

does depend on the direction vector ai which is defined as

ai = (1, 0, 0) (3.171)

In this section the vector di is taken in the direction of the applied stress, i.e.,

di = (0, 0, 1) (3.172)

Due to symmetry of the second order stress tensors that appear in this expression Equa-

tion (3.169) represents six scalar equations. The equations where i 6= j yield the scalar

identity 0=0 and no information is gained. For i = j we obtain three scalar relationships.

The state of stress and material direction are depicted in Figure 17 With i = j = 1

and i = j = 2 Equation (3.170) reduces to the scalar identity 0 = 0 and no information is

gained. For i = j = 3 Equation (3.170) yields

F4 = F3 (3.173)
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Plane of Isotropy

di

ai

σsc

σsc

σ1, x1

σ2, x2

σ3, x3

Figure 17: Compression Test in the Preferred Material Direction

Next, the argument above is repeated for the derivatives along the shared boundary

between region #4 and region #2 where

∂f2
∂σij

=
∂f4
∂σij

(3.174)

for the same uniaxial compression test in the preferred material direction. This yields the

following tensor expression

(A4I1+E4I6)δij + 2B4σij + E4I1didj + F4(dkdiσjk + djdmσmi) =

(A2I1 + E2I6)δij + 2B2σij +D2(akaiσjk + ajajσmi) + E2I1didj+

F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
)

(3.175)
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This tensor equation can be simplified using Equations (3.126) and (3.128) yielding

2B4σij + F4(dkdiσjk + djdmσmi) = 2B2σij +D2(akaiσjk + ajamσmi)+

F2(dkdiσjk + djdmσmi) +H2

(1

2
(amandndiσjm + ajandndkσki+

aiandndmσjm + akandndjσki)
) (3.176)

Due to the symmetry of the second order tensors appearing in this expression Equation

(3.176) represents six scalar equations. The equations where i 6= j yield the scalar identity

0=0 and no information is gained. However, three scalar equations are obtained for i = j.

For i = j = 1 and i = j = 2 Equation (3.176) yields the scalar identity 0 = 0 and no

information is gained. For i = j = 3 Equation (3.176) yields

B4 + F4 = B2 +D2 + F2 +H2 (3.177)

Substituting Equation (3.136) into Equation (3.177) yields

F4 = F2 +H2 (3.178)

Substituting Equations (3.157), (3.163), and (3.173) into Equation (3.178) yields

H2 = −H3 (3.179)

This expression represents the last relationship involving the unknown polynomial coef-

ficients of the threshold function. In this section the number of coefficients have been

reduced and it was shown that the coefficients were not independent of one another. The

six polynomial coefficients that are independant are identified in the next section and they

are expressed in terms of the simple mechanical tests identified earlier.
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3.3 Functional Coefficients in Terms of Mechanical Tests

The following relationships between the functional constants were developed in the previ-

ous sections

A1 = A2 = A3 = A4 (3.180)

B1 = B2 (3.181)

B1 = B3 +D3 (3.182)

B3 = B4 (3.183)

B4 = B2 +D2 (3.184)

C2 = C3 = G2 = G3 = 0 (3.185)

D2 = −D3 (3.186)

E1 = E2 = E3 = E4 (3.187)

F1 = F2 (3.188)

F1 = F3 +H3 (3.189)
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F3 = F4 (3.190)

F4 = F2 +H2 (3.191)

and

H2 = −H3 (3.192)

Note that G2 and G3, the leading coefficients for the I8 invariant in the threshold function

are both zero. Hence I8 never enters into the functional dependence.

With the relationships among the functional constants determined in the previous sec-

tion and summarized in Equations (3.180) through (3.192), the threshold function are be

expressed as

f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 − 1 (3.193)

f2 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 +D2I5 +H2I9 − 1 (3.194)

f3 =
1

2
A1I

2
1 + (B1 +D2)I2 + E1I1I6 + (F1 +H2)I7

+ (−D2)I5 + (−H2)I9 − 1

(3.195)

and

f4 =
1

2
A1I

2
1 + (B1 +D2)I2 + E1I1I6 + (F1 +H2)I7 − 1 (3.196)

From these last four equations we see that only six polynomial coefficients, i.e., A1, B1,

D2, E1, F1, and H2 require characterization in terms of mechanical tests.

As can be discerned from Equations (3.180) through (3.192) these polynomial coef-

ficients are not related to one another. The six mechanical tests needed to define the six
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independent coefficients were identified earlier. The mechanical tests are uniaxial tension

in the plane of isotropy (σt), uniaxial tension in the preferred material direction (σst), uniax-

ial compression in the plane of isotropy (σc), uniaxial compression in the preferred material

direction (σsc), torsion in the plane on isotropy (τi), and torsion across the plane of isotropy

(τs). These tests are assumed to be performed on a virgin material. For a virgin material

the state variable K is equal to one.

For a uniaxial tensile in the plane of isotropy where the stress applied is equal to the

tensile threshold stress

σij =


σt 0 0

0 0 0

0 0 0

 (3.197)

For this test the plane of isotropy will be the σ1− σ2 plane. Thus the di vector is defined as

di = (0, 0, 1) (3.198)

For a uniaxial tensile test the ai is defined as

ai = (0, 0, 1) (3.199)

The state of stress and material orientation were depicted earlier in Figure 10. With this

information the invariant from the transversely isotropic integrity basis are

I1 = σt (3.200)

I2 = σ2
t (3.201)

I6 = 0 (3.202)
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and

I7 = 0 (3.203)

Setting Equation (3.193) equal to zero with K equal to one yields

f1 =
1

2
A1σ

2
t +B1σ

2
t − 1

= 0

(3.204)

Rearranging this equation yields

1

2
A1 +B1 =

1

σ2
t

(3.205)

The next test utilized in identifying the unknown constants is a uniaxial compression

test in the plane of isotropy where the applied stress is equal to the compressive threshold

stress. Hence,

σij =


σc 0 0

0 0 0

0 0 0

 (3.206)

For this test the plane of isotropy will be the σ1− σ2 plane. Thus the di vector is defined as

di = (0, 0, 1) (3.207)

For a uniaxial compression test in the σ1 direction the ai vector is defined as

ai = (0, 0, 1) (3.208)
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Plane of Isotropy

di

ai

σ3, x3

σc σc
σ1, x1

σ2, x2

Figure 18: Compression Test in the Plane of Isotropy

The state of stress and material orientation are depicted in Figure 18. With this infor-

mation the invariants from the transversely isotropic integrity bases are

I1 = σc (3.209)

I2 = σ2
c (3.210)

I6 = 0 (3.211)

and

I7 = 0 (3.212)

Setting Equation (3.196) equal to zero with K equal to one yields

f4 =
1

2
A1σ

2
c + (B1 +D2)σ

2
c − 1

= 0

(3.213)
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Rewriting this equation yields

1

2
A1 +B1 +D2 =

1

σ2
c

(3.214)

The next test is a torsion test in the plane of isotropy where the applied stress is equal

to the threshold stress. Where,

σij =


0 τi 0

τi 0 0

0 0 0

 (3.215)

For this test the plane of isotropy will be the σ1− σ2 plane. Thus the di vector is defined as

di = (0, 0, 1) (3.216)

For biaxial compression the ai vector is defined as

ai = (−
√

2

2
,

√
2

2
, 0) (3.217)

The state of stress and material orientation are depicted in Figure ??. With this information

the invariants from the transversely isotropic integrity basis are

I1 = 0 (3.218)

I2 = 2τ 2i (3.219)

I5 = τ 2i (3.220)
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Plane of Isotropy

di

ai

σ3, x3
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Figure 19: Torsion Test in the Plane of Isotropy

I6 = 0 (3.221)

and

I7 = 0 (3.222)

I9 = 0 (3.223)

Setting Equation (3.196) equal to zero with K equal to one yields

f2 = 2B1τ
2
i +D2τ

2
i − 1

= 0

(3.224)

Rewriting this equation yield

2B1 +D2 =
1

τ 2i
(3.225)
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Equations (3.205), (3.214), and (3.225) are the same equations obtained in the previous

chapter. This is reasonable since all applied stresses are contained in the plane of isotropy.

As before solving these three equation simultaneously yields.

A1 =
1

σ2
c

+
1

σ2
t

− 1

τ 2i
(3.226)

B1 =
1

2σ2
t

− 1

2σ2
c

+
1

2τ 2i
(3.227)

and

D2 =
1

σ2
c

− 1

σ2
t

(3.228)

The polynomial coefficients, A1, B1, and D2, are equal to their respective polynomial

coefficients developed in the isotropic derivation found in the previous chapter.

The next material test is a uniaxial tensile test in the preferred direction where the

applied stress is equal to the threshold stress. Here the Cauchy stress tensor takes the form

σij =


σst 0 0

0 0 0

0 0 0

 (3.229)

Since this material test is in the preferred material direction, the di vector is defined as

di = (1, 0, 0) (3.230)

For a uniaxial tensile test in the σ1 direction the ai vector is defined as

ai = (0, 0, 1) (3.231)

The state of stress and material orientation are depicted in Figure 20. With this information
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Plane of Isotropy

di
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σstσst
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σ2, x2
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Figure 20: Tensile Test in the Preferred Material Direction

the invariants from the transversely isotropic integrity basis are

I1 = σst (3.232)

I2 = σ2
st (3.233)

I6 = σst (3.234)

and

I7 = σ2
st (3.235)

Setting Equation (3.193) equal to zero with K equal to one yields

f1 =
1

2
A1σ

2
st +B1σ

2
st + E1σ

2
st + F1σ

2
st − 1

= 0

(3.236)
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Rewriting this equation yields

1

2
A1 +B1 + E1 + F1 =

1

σ2
st

(3.237)

Next consider a material test where uniaxial compression is applied in the preferred

direction. Here the Cauchy stress tensor is

σij =


σsc 0 0

0 0 0

0 0 0

 (3.238)

Since this material test is in the preferred material direction the di vector is defined as

di = (1, 0, 0) (3.239)

For a compression test in the σ1 direction the ai vector is defined as

ai = (0, 0, 1) (3.240)

The state of stress and material orientation are depicted in Figure 21. With this information

the invariants for the transversely isotropic integrity basis are

I1 = σsc (3.241)

I2 = σ2
sc (3.242)

I6 = σsc (3.243)
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Plane of Isotropy

di
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Figure 21: Compression Test in the Preferred Material Direction

and

I7 = σ2
sc (3.244)

Setting Equation (3.196) equal to zero with K equal to one yields

f4 =
1

2
A1σ

2
sc + (B1 +D2)σ

2
sc + E1σ

2
sc + (F1 +H2)σ

2
sc − 1

= 0

(3.245)

Rearranging this equation yields

1

2
A1 +B1 +D2 + E1 + F1 +H2 =

1

σ2
sc

(3.246)

Finally, consider a torsion test where the torque is applied across the plane of isotropy.

Here the Cauchy stress tensor is

σij =


0 τs 0

τs 0 0

0 0 0

 (3.247)
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Plane of Isotropy

di
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Figure 22: Torsion Test across the Plane of Isotropy

With

di = (1, 0, 0) (3.248)

and for this last test the ai vector is defined as

ai = (−
√

2

2
,

√
2

2
, 0) (3.249)

The state of stress and material orientation are depicted in Figure 22. With this information

the invariants for the transversely isotropic integrity basis are

I1 = 0 (3.250)

I2 = 2τ 2s (3.251)

I5 = τ 2s (3.252)
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I6 = 0 (3.253)

I7 = τ 2s (3.254)

and

I9 =
1

2
τ 2s (3.255)

Setting Equation (3.196) equal to zero with K equal to one yields

f2 = 2B1τ
2
s +D2τ

2
s + F1τ

2
s +

1

2
H2τ

2
s − 1

= 0

(3.256)

Rearranging this equation yields

2B1 +D2 + F1 +
1

2
H2 =

1

τ 2s
(3.257)

Solving Equations (3.237), (3.246), and (3.257) simultaneously results in

E1 =
1

2σ2
sc

− 1

2σ2
c

+
1

2σ2
st

− 1

2σ2
t

+
1

τ 2i
− 1

τ 2s
(3.258)

F1 =
1

2σ2
c

− 1

2σ2
sc

+
1

2σ2
st

− 1

2σ2
t

− 1

τ 2i
+

1

τ 2s
(3.259)

and

H2 =
1

σ2
sc

− 1

σ2
c

− 1

σ2
st

+
1

σ2
t

(3.260)

Summarizing

A1 =
1

σ2
c

+
1

σ2
t

− 1

τ 2i
(3.261)

81



B1 =
1

2

(
1

σ2
t

− 1

σ2
c

+
1

τ 2i

)
(3.262)

D2 =
1

σ2
c

− 1

σ2
t

(3.263)

E1 =
1

2σ2
sc

− 1

2σ2
c

+
1

2σ2
st

− 1

2σ2
t

+
1

τ 2i
− 1

τ 2s
(3.264)

F1 =
1

2σ2
c

− 1

2σ2
sc

+
1

2σ2
st

− 1

2σ2
t

− 1

τ 2i
+

1

τ 2s
(3.265)

and

H2 =
1

σ2
sc

− 1

σ2
c

− 1

σ2
st

+
1

σ2
t

(3.266)

The next set of figures use the following material parameters. The material parameters

are σt = 1.048, σc = 3.5, τi = 1.0, σst = 1.593, σsc = 5.293, and τs = 1.15. These values

for the different material tests are for H451 graphite as estimated from Burchell (2007).

Figure 23 shows the threshold surface with the material direction set to di = (1, 0, 0). In

Figure 23, it is shown that the tensile and compressive threshold stresses intersect at the

principle stress axis. Figure 24 shows the threshold surface in the σ11, σ12 plane with the

material direction set to di = (1, 0, 0). In this figure the values cross the axis at the threshold

stresses. Figure 25 shows the threshold surface in the σ22, σ23 plane with the material

directcion set to di = (1, 0, 0). In this figure the values cross the axis at the threshold

stresses. Figure 26 shows the effect on the threshold surface of varying the direction of the

di vector. The directions for the material direction vectors in the σ1 − σ2 plane are di, are

0o, 45o, and 90o as measured from the σ1 direction. Also shown in Figure 26 is a threshold

surface in the plane of isotropy.
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Figure 23: Anisotropic threshold surfaces in the σ1, σ2 stress space with di = (1, 0, 0)
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Figure 26: Anisotropic threshold surfaces with different preferred material directions
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3.4 Isotropy as a Special Case

The isotropic threshold function is a special case of this anisotropic threshold function. To

see that equate the tensile threshold stess in the plane of isotropy with the tensile threshold

stess in the preferred material direction.

σst = σt (3.267)

Also equate the compression threshold stress in the plane of isotropy with the compression

threshold stress in the preferred material direction.

σsc = σc (3.268)

Finally equate the biaxial compressive threshold stress in the plane of isotropy with the

mixed biaxial threshold stress across the plane of isotropy.

τs = τi (3.269)

Substituting these equations into the equation for the constant E1 yields

E1 =
1

2σ2
sc

− 1

2σ2
c

+
1

2σ2
st

− 1

2σ2
t

+
1

τ 2i
− 1

τ 2s
(3.270)

Therefore

E1 = 0 (3.271)

Repeating this process for the constant F1

F1 =
1

2σ2
c

− 1

2σ2
sc

+
1

2σ2
st

− 1

2σ2
t

− 1

τ 2i
+

1

τ 2s
(3.272)
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Thus

F1 = 0 (3.273)

Finally, repeating this process for the constant H2

H2 =
1

σ2
c

− 1

σ2
c

− 1

σ2
t

+
1

σ2
t

(3.274)

Thus

H2 = 0 (3.275)

Since the terms relating to anisotropy become zero the anisotropic threshold functions re-

duce to the isotropic threshold functions derived in the previous chapter.
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CHAPTER IV

Inelastic Constitutive Law

4.1 Preliminary Concepts - Basic Ingredients

An incremental modeling approach is presented here as a first step in capturing multi-

axial non-linear constitutive behavior for graphite. This approach ignores the effects from

exposure to radiation, which can be modeled through the use of continuum damage me-

chanics. The incremental non-linear inelastic constitutive model also ignores rate effects

and assumes that any time dependent phenomenon exhibited by nuclear graphite used in

high temperature service conditions can be captured using other modeling techniques. The

reader is directed to the viscoplastic models of Robinson (1978), Chaboche (1977), and

Bodner (1975) for rate dependent modeling techniques.

There are three fundamental components necessary for an incremental inelastic consti-

tutive law based on the work hardening concepts. First is a threshold function. An isotropic

threshold function was presented in Chapter II and an anisotropic extension of the isotropic

function was presented in Chapter III. The second component is a hardening rule - also

known as an evolutionary law. A hardening rule provides a mathematical description of

how a threshold function evolves (i.e., how a material “hardens”) as inelastic deformations

accumulate. The third component is a flow rule. Chen and Han (1995) as well as Mendel-

sohn (1968) outlined how a flow rule relates incremental strain and the state of stress with

predefined inelastic state variables. Their approach with modifications is followed here.
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Two types of flow rules dominate inelastic modeling. The first is referred to as an asso-

ciated flow rule. With an associated flow rule the threshold function serves as a potential

function. Inelastic constitutive models for ductile metals historically have been modeled

using associated flow rules. The second type is known as a non-associated flow rule. Con-

stitutive relationships for soils that follow a Drucker-Prager threshold function typically

utilize a non-associated flow rule. With nuclear graphite an associated flow rule is adopted.

Consider a graphite test specimen that is uniaxially loaded and then unloaded under

tension. Tensile stress-strain data obtained from Bratton (2009) for H-451 graphite is de-

picted in Figure (27). In this figure εI represents the permanent strain that remains after

unloading, εE represents elastic, or recoverable strain, and σ∗ is the maximum total stress

applied over the load cycle. From the figure the total strain is

εt = εI + εE (4.1)

Casting this expression into an incremental form leads to

dεt = dεI + dεE (4.2)

The key is quantifying the incremental inelastic strain, dεI . The model that quantifies this

mathematically is known as the flow rule which is the primary topic of this chapter.
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ǫI ǫE

σ∗

Figure 27: Uniaxial tension test Data from Bratton (2009)

A loading rule must be established before inelastic strains can be quantified. The load-

ing rule determines whether or not inelastic strains occur along a load path. As noted

throughout the first several chapters the boundary of the threshold function defines elastic

states of stress. Stress states outside of the surface of the threshold function are mathe-

matically inaccessible. States of stress within the threshold surface are elastic states of

stress. The inaccessible states of stress can be subsequently embedded within the surface

by evolving the threshold function. This evolution process incorporates stress states along

the functional boundary first and then eventually migrates the functional boundary suffi-

ciently so that stress states beyond the boundary are assimilated. The threshold-potential

function therefore must be dependent on stress as well as on a number of inelastic state
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variables that are grouped and defined by the vector Hα, i.e.,

f = f(σij, Hα) α = 1, 2, 3, · · · , n (4.3)

How a material hardens influences the number of state variables that comprise the vector

Hα. Isotropic hardening and kinematic hardening are the two classic evolutionary schemes.

Isotropic hardening requires one state variable, kinematic hardening requires a second order

tensor of state variables with six distinct components. Both types of hardening schemes are

captured in the stress-strain curves presented in Figure (28) and Figure (29). Uniaxial

stress is increased beyond the initial threshold stress and the stress-strain curve becomes

progressively nonlinear. Unloading and subsequent reloading of the material produces a

larger threshold stress than found in the virgin material. The difference between the initial

threshold stress and subsequent threshold stress values stresses indicates the material is

hardening. This behavior can be modeled by the surface of the threshold potential function

expanding equally in all direction. An equally expansive threshold potential function in all

directions is indicative of isotropic hardening.

One can unload uniaxially from tension and reload into the compressive region of the

stress space as shown in Figure (29). A material may respond with a lower magnitude of

the threshold stress in compression than in tension. This is the so-called Bauschinger effect

that is associated with kinematic hardening. Kinematic hardening will not be addressed

here although the model framework could accommodate this type of hardening. The reader

should be mindful that for graphite the virgin threshold stress in compression is larger

than the virgin threshold stress in tension. For this reason this effort fucuses on isotropic

modeling in order to track the different behavior of graphite in tension and compression.

Details on specific aspects of the evolutionary law for isotropic hardening appear in a later

section.
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Figure 28: Notion of Hardening Chaboche (1977)
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Figure 29: Kinematic Hardening and Bauschinger Effects Chaboche (1977)
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f(σij , H
1
α) = 0

1dσij

3dσij

2dσij

σ∗
ij

Figure 30: Possible directions for the stress increment dσij

4.2 Loading Rule

In Figure (30) an initial stress state (σ∗ij) is depicted that lies on the threshold surface and

several possible increments in stress, denoted as dσij , are shown. In general a stress incre-

ment can be directed to the inside of the threshold-potential function (1dσij), tangent to the

threshold-potential function (2dσij), or in an outward direction to the threshold-potential

function (3dσij). A load path that lies completely inside or traverses along the surface of

the threshold function will accrue elastic strains. Inelastic strains occur when the stress

increment is an outward normal vector (3dσij) to the threshold surface. The stress state σ∗ij

on the surface of a threshold function such that

f(σ∗ij, H
1
α) = 0 (4.4)

A change in the stress state that does not change the inelastic state variable H1
α corresponds

to unloading into the elastic stress region. As unloading takes place the value of the scalar
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threshold function is less than zero for elastic states of stress i.e.,

f(σ∗ij + 1dσij, H
1
α) < 0 (4.5)

Correspondingly the differential change in the threshold function is negative, i.e.,

df < 0 (4.6)

With

df =
∂f

∂σij
1dσij +

∂f

∂Hα

dHα (4.7)

and the fact that the inelastic state does not change, i.e.,

dHα ≡ 0 (4.8)

then

df =

{
∂f

∂σij

∣∣∣∣
σ∗
ij

}
1dσij

< 0

(4.9)

The inner product on the right hand side of Equation (4.9) can be interpreted graphically

from the general schematic in Figure 30. If the incremental load vector is directed inwards

the angle between the incremental load vector and the gradient to the threshold surface is

greater than 90◦, and this corresponds to unloading.

However, if

dHα 6= 0 (4.10)

and the inelastic state changes fromH1
α toH2

α, which is indicated in figure 31, then the new
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σ∗
ij
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σ∗∗
ij = σ∗

ij + dσij

∂f
∂σij

f(σij , H
(2)
α ) = 0

f(σij , H
(1)
α ) = 0

σij

(gradient)

Figure 31: Inelastic Loading

threshold surface can be characterized as

f(σ∗ij + 3dσij , H
1
α + dHα) = f(σ∗ij + 3dσij , H

2
α) (4.11)

and inelastic strains accrue, i.e.,

dεI 6= 0 (4.12)

The interpretation of the inner product of the gradient to the threshold function and the

increment in the stress vector mathematically leads to

{
∂f

∂σij

∣∣∣∣
σ∗
ij

}
3dσij ≥ 0 (4.13)

for a change in inelastic state. Here the angle between the incremental load vector and the

gradient to the threshold function is less than 90◦.

If an increment in stress is imposed such that inelastic strains accrue, and the inelastic

state of the material changes, then subsequent stress states must still lie on the surface of an

evolved threshold-potential function as shown in Figure 31. This requirement is known as

the consistency condition, i.e., the current state of stress must consistently lie on the surface
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of the function for inelastic strains to occur. The consistency condition can be described

mathematically in a simple manner by realizing that taking the differential of

f = 0 (4.14)

leads to

d(f = 0)

df = d(0)

= 0

(4.15)

Thus Equation (4.7) can be set equal to zero, i.e.,

df =
∂f

∂σij
dσij +

∂f

∂Hα

dHα

= 0

(4.16)

and this last expression is the mathematical description of the consistency condition. The

consistency condition is introduced here as a part of the discussion of a loading rule for

convenience. It is used later to quantify the amount of inelastic strain given an increment

in the stress state.
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Figure 32: Inelastic Loading

Figure (32) shows a loading path that starts at an elastic state of stress identified as σaij .

The material is then loaded to a level of stress identified as σbij which lies on the threshold

surface, and then an incremental load dσij is applied. The increment in stress gives rise to

an increment in inelastic strain and changes the inelastic state of the material. This change

of inelastic state impacts the stress-strain curve since the material hardens. The presence

of inelastic strains can be detected through the nonlinear behavior of the stress-strain curve

or by unloading the material and noting the permanent strains. The incremental stress dσij

shown in this figure evolves the threshold function. After dσij is applied the material is

then unloaded to the original stress state σaij . Since the stress states along the path from

σaij to σbij are all located within the threshold surface, the material responds in an elastic

manner along this segment of the load path. The inelastic behavior of the material along

this multiaxial stress cycle, i.e., from σaij to σbij , to σbij + dσij and finally back to σaij is best
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described mathematically by

dεIij 6= 0

dHα 6= 0


f(σij, Hα) = 0

and

∂f

∂σij
dσij > 0

(4.17)

or

dεIij = 0

dHα = 0



f(σij + dσij,Hα) < 0

or

f(σij, Hα) = 0 and

∂f

∂σij
dσij < 0

(4.18)

Equations (4.17) and (4.18) define the loading rule in general terms. The inelastic history

of the material is tracked by the changes in the state variables Hα that subsequently impose

changes to the threshold function. The increment of elastic strain due to an increment

in stress and the evolutions in the inelastic state variable for an isotropic material with

different behavior in tension and compression are mathematically described and quantified

in the next section.

4.3 Incremental Evolutionary Law

It has been implied throughout that incremental changes in inelastic strain are accompanied

by changes in the inelastic state variable. Mathematically the link between inelastic strain

and the change in the state variable can be simply expressed as

dεIij = QijαdHα (4.19)

or after inverting Equation (4.19)

dHα = Fijαdε
I
ij (4.20)
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where

Fijα = Q−1ijα (4.21)

The tensor functions Qijα, or Fijα, are dependant on the current stress state and the current

inelastic state of the material, i.e.,

Fijα = Fijα(σij, Hα) (4.22)

If isotropic hardening is assumed then the state variable vector Hα is represented by a

scalar variable K.

H(α=1) = K (4.23)

Taking the differential of both sides leads to

dH(α=1) = dK (4.24)

and

dK = Fij(σmn, K)dεIij (4.25)

The right hand side of this last equation is a scalar quantity where the tensor function Fij

depends on the state of stress and the current inelastic state. Equation (4.25) states that if

there are no inelastic strains then there is no change in the state variable, i.e., if

dεIij = 0 (4.26)

then

dK = 0 (4.27)

A simple assumption is made at this point for the form of Fij in Equation (4.25). Let

Fij(σmn, K) = F (K)σij (4.28)
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so that the tensor function Fij is a scalar multiple of the applied stress state. Here an as-

sumption is made that the dependence on K emerges through the scalar function F . A

simple interpretation of the scalar multiplier F is presented in section 4.5, i.e., the de-

pendence of the scalar multiplier function F will be based on the current tangent of the

stress-strain curve. Inserting Equation (4.28) into Equation (4.20) leads to

dK = [F (K)]σijdε
I
ij (4.29)

4.4 Isotropic Flow Rule

The flow law, the inelastic stress-strain relationship, is derived using the partial derivatives

of the threshold-potential functions, i.e.,

dεIij = dλ
∂f

∂σij

= dλ
∂f(σij, ai, K)

∂σij

(4.30)

Recall that ai is a vector associated with the direction of the principle stresses. Equation

(4.30) represents a flow rule that embodies the potential-morality concept, and by using

the threshold function in this equation an associated flow rule is explicitly adopted. The

gradient defines the direction of the increment of the inelastic strain vector and dλ defines

the length.

Making use of the isotropic threshold function from Section 2.2, recall that there are

four functional forms of f and there are four partial derivatives of the function. Explicit

formulations of these partial derivatives are given in Equations (2.40), (2.41), (2.42), and

(2.43). So the derivatives in Equation (4.30) have been defined earlier. However, the scalar

multiplier dλ needs defined and this is accomplished by developing an evolutionary law

for the inelastic state variable. The evolutionary law is combined with the consistency
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condition to produce a mathematical expression for dλ. Recall that

df =
∂f

∂σij
dσij +

∂f

∂K
dK

= 0

(4.31)

Substituting Equation (4.29) into Equation (4.31) and solving for dλ yields

dλ = −
[
∂f

∂K

∂f

∂σij
Fij

]−1
∂f

∂σkm
dσkm (4.32)

Substitution of Equation (4.32) into Equation (4.30) yields

dεIij = −
[
∂f

∂K

∂f

∂σpq
Fpq

]−1
∂f

∂σkm

∂f

∂σij
dσkm (4.33)

Now define the bracketed scalar quantity above as

G = −
[
∂f

∂K

∂f

∂σpq
Fpq

]−1
(4.34)

then

dεIij = G
∂f

∂σkm

∂f

∂σij
dσkm (4.35)

where

dλ = G
∂f

∂σkm
dσkm (4.36)

What remains are the details associated with the substitution of the partial derivatives of

the threshold potential function and the particular form for G.

We now derive the specifics for the inelasticity model using the isotropic Green and

Mkrtichian (1977) threshold function. This form for the threshold functions account for

material behavior where tensile stress states produced a different response than compressive

stress states. Green and Mkrtichian (1977) divided the threshold surface into four piecewise
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continuous functions based on principle stresses as follows

Region #1 σ1 ≥ σ2 ≥ σ3 ≥ 0 (4.37)

Region #2 σ1 ≥ σ2 ≥ 0 ≥ σ3 (4.38)

Region #3 σ1 ≥ 0 ≥ σ2 ≥ σ3 (4.39)

Region #4 0 ≥ σ1 ≥ σ2 ≥ σ3 (4.40)

The subscripts on the functions below denote in which region of the stress space the func-

tion is valid. Recall for region #1

f1 =
1

2
A1I

2
1 +B1I2 −K2 (4.41)

The threshold function for region #2 was defined earlier as

f2 =
1

2
A2I

2
1 +B2I2 +D2I5 −K2 (4.42)

The threshold function for region #3 was defined earlier as

f3 =
1

2
A3I

2
1 +B3I2 +D3I5 −K2 (4.43)

and the threshold function for region #4 was defined earlier as

f4 =
1

2
A4I

2
1 +B4I2 −K2 (4.44)
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Previously only virgin threshold potential function were considered whereK was taken

equal to one. Now K is allowed to vary since it is an inelastic state variable. The derivative

of the threshold function in region #1 with respect to the inelastic state variable is

∂f1
∂K

= −2K (4.45)

Since isotropic hardening was assumed then similar derivatives with respect toK for region

#2, region #3, and region #4 are obtained, i.e.,

∂f2
∂K

= −2K (4.46)

∂f3
∂K

= −2K (4.47)

and
∂f4
∂K

= −2K (4.48)

respectively.

Keeping in mind that F = F (K) and this function is scalar valued, then substituting

Equations (2.40), (4.28), and (4.45) into Equation (4.34) yields the following for region #1

G1 =
[
F2K(A1I

2
1 + 2B1I2)

]−1 (4.49)

Substituting Equations (2.41),(4.28), and (4.46) into Equation (4.34) yields the following

for region #2

G2 =
[
F2K(A2I

2
1 + 2B2I2 + 2D2I5)

]−1 (4.50)

Substituting Equations (2.42), (4.28), and (4.47) into Equation (4.34) yields the following

for region #3

G3 =
[
F2K(A3I

2
1 + 2B3I2 + 2D3I5)

]−1 (4.51)
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Substituting Equations (2.43), (4.28), and (4.48) into Equation (4.34) yields the following

for region #4

G4 =
[
F2K(A4I

2
1 + 2B4I2)

]−1 (4.52)

Equations (2.40) and (4.49) are now substituted into (4.35) which yields

1 dεIij =
A1I1δij + 2B1σij

F2K(A1I21 + 2B1I2)
[A1I1 dI1 +B1 dI2] (4.53)

Substituting Equations (2.41) and (4.50) into Equation (4.35) yields

2 dεIij =
A2I1δij + 2B2σij +D2(amaiσjm + ajanσni)

F2K(A2I21 + 2B2I2 + 2D2I5)
[A2I1 dI1 +B2 dI2 +D2 dI5]

(4.54)

Substituting Equations (2.42) and (4.51) into Equation (4.35) yields

3 dεIij =
A3I1δij + 2B3σij +D3(amaiσjm + ajanσni)

F2K(A3I21 + 2B3I2 + 2D3I5)
[A3I1 dI1 +B3 dI2 +D3 dI5]

(4.55)

Substituting Equations (2.43) and (4.52) into Equation (4.35) yields

4 dεIij =
A4I1δij + 2B4σij

F2K(A4I21 + 2B4I2)
[A4I1 dI1 +B4 dI2] (4.56)

Equations (4.53) through (4.56) comprise the isotropic inelastic flow law for each region

of the stress space. The form of F must be specified and this is done in the next section.

4.5 Uniaxial Formulation of F (K)

For region #1 of the Haigh-Westergaard stress space substituting the incremental strain

tensor defined in Equation (4.53) into the evolutionary law given by Equation (4.29) leads

to

2K dK = A1I1 dI1 +B1 dI2 (4.57)
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Substituting Equation (4.54) into Equation (4.29) for region #2 of the Haigh-Westergaard

stress space yields

2K dK = A2I1 dI1 +B2 dI2 +D2 dI5 (4.58)

Substituting Equation (4.55) into Equation (4.29) for region #3 of the Haigh-Westergaard

stress space yields

2K dK = A3I1 dI1 +B3 dI2 +D3 dI5 (4.59)

Substituting Equation (4.56) into Equation (4.29) for region #4 of the Haigh-Westergaard

stress space yields

2K dK = A4I1 dI1 +B4 dI2 (4.60)

Even though the assumption is made that the material hardens isotropically and only one

state variable is required, there are four incremental evolutionary equations governing the

behavior of the inelastic state variable K.

Now consider a uniaxial tensile stress state where

σij =


σt 0 0

0 0 0

0 0 0

 (4.61)

The assumption is made that the stress state resides on the yield surface and the invariants

for this stress state are

I1 = σt (4.62)

I2 = σ2
t (4.63)

The strain increment for a corresponding increment in the inelastic stress is

1dεI11 =
1

tF 2K(A1I21 + 2B1I2)

∂f1
∂σ11

∂f1
∂σkl

dσkl (4.64)

105



where the scalar function F is denoted as tF for this uniaxial tensile load application.

Solving this expression for tF yields

tF =
1

2K(A1I21 + 2B1I2)

∂f1
∂σ11

∂f1
∂σkl

dσkl
dεI11

(4.65)

Since σ11 is the only non-zero component of the stress tensor, for a uniaxial tension test,

then

tF =
1

2K(A1I21 + 2B1I2)

∂f1
∂σ11

∂f1
∂σ11

dσ11
dεI11

(4.66)

Substitution of the invariants I1 and I2 from above into this last expression leads to

tF =
A1 + 2B1

2K

dσ11
dεI11

(4.67)

Here a total derivative of σ11 is taken with respect to εI11. In essence the function tF is

dependent on two variables, i.e.,

tF =tF (K, slope) (4.68)

We wish to maintain this format for the functional dependence, but stipulate the dependence

on a slope in terms of the total strain - a quantity that can be measured experimentally. The

total strain can be decomposed into elastic and inelastic components, thus in a uniaxial

tensile test

(ε11)
tot = (ε11)

E + (ε11)
I (4.69)

On a differential basis the decomposition becomes

(dε11)
tot = (dε11)

E + (dε11)
I (4.70)

such that

(dε11)
tot > (dε11)

I (4.71)
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Thus, if tF is a function of a slope and that slope is determined using total strains then this

quantity would slightly underestimate the theoretical slope found in the derivation of tF

above, i.e.,
dσ11
dεtot11

<
dσ11
dεI11

(4.72)

Using a slope in terms of a total strain will underestimate the functional value of tF . As

will be seen momentarily this discrepancy will be minimized by regressing the data to find

constants once a functional form is established for tF .

If the slope of the current stress and total strain curve is used to characterize F then

this slope can be approximated through the use of the Ramberg–Osgood constitutive model

where

εtot =
σ

E
+ α

(σ0
E

)( σ

σ0

)n
=
σ

E
+ C1

(
σ

σ0

)n
=
σ

E
+ C2σ

n

(4.73)

There are other non-linear uniaxial stress-strain models that can be utilized leading to other

formulations for the scalar function tF . As an example Prager’s [2007] model is used in

the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code.

Prager’s [2007] model is too detailed leading to a complex formulation for the slope of that

constitutive model, thus the slope of the Ramberg-Osgood stress-strain curve is adopted for

use here. This slope can be obtained by taking the differential of both sided of Equation

(4.73), i.e.,

dεtot =
1

E
dσ + C2d(σn)

=
1

E
dσ + nC2σ

n−1dσ

=

(
1

E
+ nC2σ

n−1
)
dσ

(4.74)
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Thus
dσ

dεtot
=

1
1
E

+ nC2σn−1
(4.75)

How the constants n and C2 are estimated from stress-total strain data is demonstrated

momentarily. Moreover, the slope identified in Equation (4.75) can be readily computed

given these constants and the current values of stress. At stresses that are beyond the initial

threshold values where the stress-strain curve is nonlinear, the increment in total strain is

predominantly inelastic, and the assumption is made that

dσ11
dεI11

≈ dσ11
dεtot11

(4.76)

Such that

tF =
A1 + 2B1

2K

(
1

1
E

+ nC2σn−1

)
(4.77)

With Equation (4.77) a functional form for tF has been established. As noted above other

forms could be considered. Here the simplest formulation was adopted for convenience.

Now consider the case where a uniaxial compression stress is applied to a graphite

material

σij =


σc 0 0

0 0 0

0 0 0

 (4.78)

The invariants for this stress state are

I1 = σc (4.79)

I2 = σ2
c (4.80)
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Denoting the scalar function F as cF then

4dεI11 =
1

cF 2K(A4I21 + 2B4I2)

∂f4
∂σ11

∂f4
∂σkl

dσkl (4.81)

Solving for cF

cF =
1

2K(A4I21 + 2B4I2)

∂f4
∂σ11

∂f4
∂σkl

dσkl
dε11

(4.82)

Since σ11 is the only non-zero component of the stress tensor, then

cF =
1

2K(A4I21 + 2B4I2)

∂f4
∂σ11

∂f4
∂σ11

dσ11
dεI11

(4.83)

which simplifies to

cF =
A4 + 2B4

2K

dσ11
dε11

(4.84)

This equation for cF is different than the corresponding equation for tension and this is

consistent with the fact that for graphite, behavior in tension is different than behavior in

compression. So at this point there are two sets of parameters for the selected functional

dependence of F , i.e.,

n→ tn cn

C2 → tC2 cC2

(4.85)

To compute the constants for F attention is focused on the slope of a stress-strain

curve. The discussion that follows applies to etiher tension of compression. Using total

strain data the slope is numerically approximated using a central difference method, i.e.,

dσ

dεtot
=
σi+1 − σi−1
εtoti+1 − εtoti−1

(4.86)

and from Equation (4.75)

σi+1 − σi−1
εtoti+1 − εtoti−1

=
1

1
E

+ nC2σn−1
(4.87)
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This last expression be linearized as follows:

ln

(
εtoti+1 − εtoti−1
σi+1 − σi−1

− 1

E

)
= (n− 1)ln(σi) + ln(nC2) (4.88)

In Equation (4.88) σ is the current uniaxial stress value. This equation has the form

y = mx+ b (4.89)

where

y = ln

(
εtoti+1 − εtoti−1
σi+1 − σi−1

− 1

E

)
m = n− 1

x = ln(σ)

(4.90)

and

b = ln(nC2) (4.91)

The values for the two constants are then determined as

n = m+ 1

C2 =
exp(b)

n

(4.92)

where m and b are obtained from regressing the tensile or compression data. Using the

uniaxial tension and compression data provided by Bratton (2009) the constants tn, tC2, cn

and cC2 can be calculated by using linear regression. This is presented in the next chapter.

4.6 Equivalent Stress and Strain – Multiaxial F

In the previous section a functional form for F was derived for uniaxial tension and another

for uniaxial compression. Here equivalent stress and strain measures are developed in order

to construct a complete multiaxial fomulation for F . This effort incorporates the concept
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of plastic work. In the multi-axial case plastic work is defined as

dW p = σijdε
I
ij (4.93)

using tensor notation. Since work is a scalar, plastic work can also be defined using equiv-

alent scalar expressions for stress and strain as follows

dW p = ΣdEI (4.94)

Here Σ is a scalar measure of the multi-axial stress state and dEI is a scalar measure of

the multiaxial inelastic increment in strain. Defining these two scalar quantities is accom-

plished by first substituting Equation (4.30) into equatin (4.93). This yields the following

relationship for plastic work

dW p = dλ σpq
∂f

∂σpq
(4.95)

Note that by taking the first derivative of the threshold function with respect to the Cauchy

stress yields
∂f

∂σpq
σpq = 2f̃ (4.96)

The form for f̃ is of the same form as f , but without the state variable. Mathematically this

reuslts in

f̃ = f +K2 (4.97)

and
∂f̃

σij
=
∂f

σij
(4.98)

Where in Region #1

f̃1 =
1

2
A1I

2
1 +B1I2 (4.99)
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in Region #2

f̃2 =
1

2
A2I

2
1 +B2I2 +D2I5 (4.100)

in Region #3

f̃3 =
1

2
A3I

2
1 +B3I2 +D3I5 (4.101)

and in Region #4

f̃4 =
1

2
A4I

2
1 +B4I2 (4.102)

Inserting Equation (4.96) into Equation (4.95) leads to

ΣdEI = 2f̃ dλ (4.103)

Moreover, squaring both sides of Equation (4.30) and solving for dλ leads to

dλ =
[
dεIijdε

I
ij

] 1
2

[
∂f

σmn

∂f

σmn

]− 1
2

(4.104)

Substituting Equation (4.104) into Equation (4.103) yields

ΣdEI =
[
2f̃(dεIijdε

I
ij)

1
2

][ ∂f
σmn

∂f

σmn

]− 1
2

(4.105)

By collecting the strain-like terms an equivalent strain can be obtained from this last ex-

pression and is defined as

dEI =
[
dεIijdε

I
ij

] 1
2 (4.106)

In addition, by collecting the remaining stress-like terms an equivalent stress can be defined

as

Σ = 2f̃

[
∂f

σij

∂f

σij

]− 1
2

(4.107)

Using the definition of the threshold function f then four expressions are obtained for
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the equivalent stress. Using Equation (4.99) then for Region #1

2f̃1 = A1I
2
1 + 2B1I2 (4.108)

which leads to
∂f1
σij

∂f1
σij

= A2
1I

2
1 + 4A1B1I

2
1 + 4B2

1I2 (4.109)

and the equivalent stress for region #1 is

1Σ =
A1I

2
1 + 2B1I2√

A2
1I

2
1 + 4A1B1I21 + 4B2

1I2
(4.110)

For Region #2 with

2f̃2 = A2I
2
1 + 2B2I2 + 2D2I5 (4.111)

then

∂f2
σij

∂f2
σij

= A2
2I

2
1 + 4A2B2I

2
1 + 4A2D2I1I4 + 4B2

2I2 + 8B2D2I5 + 4D2
2I5 (4.112)

and the equivalent stress for Region #2 is

2Σ =
A2I

2
1 + 2B2I2 + 2D2I5√

A2
2I

2
1 + 4A2B2I21 + 4A2D2I1I4 + 4B2

2I2 + 8B2D2I5 + 4D2
2I5

(4.113)

For Region #3 with

2f̃3 = A3I
2
1 + 2B3I2 + 2D3I5 (4.114)

then

∂f3
σij

∂f3
σij

= A2
3I

2
1 + 4A3B3I

2
1 + 4A3D3I1I4 + 4B2

3I2 + 8B3D3I5 + 4D2
3I5 (4.115)
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and the equivalent stress for Region #3 is

3Σ =
A3I

2
1 + 2B3I2 + 2D3I5√

A2
3I

2
1 + 4A3B3I21 + 4A3D3I1I4 + 4B2

3I2 + 8B3D3I5 + 4D2
3I5

(4.116)

Finally for Region #4 with

2f̃4 = A4I
2
1 + 2B4I2 (4.117)

then
∂f4
σij

∂f4
σij

= A2
4I

2
1 + 4A4B4I

2
1 + 4B2

4I2 (4.118)

and the equivalent stress for Region #4 is

4Σ =
A4I

2
1 + 2B4I2√

A2
4I

2
1 + 4A4B4I21 + 4B2

4I2
(4.119)

With a complete formulation for an equivalent stress and equivalent strain in hand the

next step is the derivation of a mulitaxial formulation for the F function. Equation (4.34)

is used as the starting point for the derivation. Partial derivatives of the threshold function f

with respect to the state variable K and a similar derivative of f with respect to the Cauchy

stress σpq along with Equation (4.28) transforms Equation (4.34) into the following format

G =
[
2K 2f̃ F

]−1 (4.120)

Where f̃ is defined by Equations (4.99) through (4.102) base on the region of the stress

space. Substituting this expression for G into Equation (4.35) yields the following general

expression for the increment in inelastic strain

dεIij =

(
1

2K

)(
1

2f̃

)(
1

F

)
∂f

∂σkm

∂f

∂σij
dσkm (4.121)
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Multiplying this expression by dεij yields

dεIijdε
I
ij =

1

4K2 4f̃ 2 F 2

∂f

∂σij

∂f

∂σij

∂f

∂σkm

∂f

∂σkm
dσpqdσpq (4.122)

Solving for F leads to

F =

(
1

2K

)(
1

2f̃

)[
∂f

∂σij

∂f

∂σij

][
dσpqdσpq
dεIkldε

I
kl

] 1
2

(4.123)

This last equation is expressed in terms of tensor quantities. Using the definition of an

equivalent stress and equivalent inelastic strain derived earlier this last equation can be

expressed as

F =
2f̃

2KΣ2

dS

dEI
(4.124)

Where

dS = (dσijdσij)
1
2 (4.125)

Adopting this perspective for anisotropy will greatly simlify the equation for F later.

Now, Equation (4.123) is specilaized to uniaxial tensile conditions and compared to the

uniaxial formulation given in the previous section, i.e. the functional for of F given in

Equation (4.67). Here we start with the stress state for a uniaxial tensile test.

σij =


σt 0 0

0 0 0

0 0 0

 (4.126)

This stress state lies in Region #1 and the associated invariants are

I1 = σt

I2 = σ2
t

(4.127)
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Substituting these invariants along with the definition of the threshold function from Equa-

tion (4.41) into Equation (4.107) for the equivalent stress in Region #1 yields

Σ = σt (4.128)

For the uniaxial tensile test case f is

f̃1 =
1

2
A1σ

2
t +B1σ

2
t (4.129)

the partial of f with respect to the stress tensor is

∂f1
∂σij

= A1σtδij + 2B1σij (4.130)

the strain tensor simplifies to
1

dεij
=

1

dε11
(4.131)

and with
dS = (dσijdσij)

1
2

= (dσ11dσ11)
1
2

= d(σt)

(4.132)

Then

F =
A1 + 2B1

2K

dσt
dε11

(4.133)

This is the same formulation found in Equation (4.67) for the uniaxial load case.
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4.7 Summary of Isotropic Constitutive Equations

In this section the isotropic constitutive model is summarized by stress region. Keep in mind that for region #1

σ1 ≥ σ2 ≥ σ3 ≥ 0 (4.134)

which results in

1 dεIij =
(A1I1δij + 2B1σij)(A1I1δkm + 2B1σkm)

F2K(A1I21 + 2B1I2)
dσkm

2K dK = A1I1 dI1 +B1 dI2



f1 =
1

2
A1I

2
1 +B1I2 −K2 = 0

and

∂f1
∂σij

dσij = [A1I1δij + 2B1σij]dσij > 0

or

1dεIij = 0

dK = 0



f1 =
1

2
A1I

2
1 +B1I2 −K2 < 0

or

f1 =
1

2
A1I

2
1 +B1I2 −K2 = 0 and

∂f1
∂σij

dσij = [A1I1δij + 2B1σij]dσij < 0

(4.135)
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For region #2

σ1 ≥ σ2 ≥ 0 ≥ σ3 (4.136)

which results in

2 dεIij =
(A2I1δij + 2B2σij +D2(amaiσjm + ajanσni))

F2K(A2I21 + 2B2I2 + 2D2I5)

[
A2I1δkm

+ 2B2σkm +D2(anakσmn + amanσnk)
]

dσkm

2K dK = A2I1 dI1 +B2 dI2 +D2 dI5



f2 =
1

2
A2I

2
1 +B2I2 +D2I5 −K2 = 0

and

∂f2
∂σij

dσij =
[
A2I1δij + 2B2σij +D2(akaiσjk

+ ajamσmi)
]
σij > 0

or

2dεIij = 0

dK = 0



f2 =
1

2
A2I

2
1 +B2I2 +D2I5 −K2 < 0

or

f2 =
1

2
A2I

2
1 +B2I2 +D2I5 −K2 = 0 and

∂f2
∂σij

dσij =
[
A2I1δij + 2B2σij +D2(akaiσjk + ajamσmi)

]
dσij < 0

(4.137)
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For region #3

σ1 ≥ 0 ≥ σ2 ≥ σ3 (4.138)

which results in

3 dεIij =
A3I1δij + 2B3σij +D3(amaiσjm + ajanσni)

F2K(A3I21 + 2B3I2 + 2D3I5)

[
A3I1δkm

+ 2B3σkm +D3(anakσmn + amanσnk)
]

dσkm

2K dK = A3I1 dI1 +B3 dI2 +D3 dI5



f3 =
1

2
A3I

2
1 +B3I2 +D3I5 −K2 = 0

and

∂f3
∂σij

dσij =
[
A3I1δij + 2B3σij +D3(akaiσjk

+ ajamσmi)
]
dσij > 0

or

3dεIij = 0

dK = 0



f3 =
1

2
A3I

2
1 +B3I2 +D3I5 −K2 < 0

or

f3 =
1

2
A3I

2
1 +B3I2 +D3I5 −K2 = 0 and

∂f3
∂σij

dσij =
[
A3I1δij + 2B3σij +D3(akaiσjk

+ ajamσmi)
]
dσij < 0

(4.139)
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Finally for region #4

0 ≥ σ! ≥ σ2 ≥ σ3 (4.140)

and here the constitutive model takes on the following formulation

4 dεIij =
(A4I1δij + 2B4σij)(A4I1δkm + 2B4σkm)

F2K(A4I21 + 2B4I2)
dσkm

2K dK = A4I1 dI1 +B4 dI2



f4 =
1

2
A4I

2
1 +B4I2 −K2 = 0

and

∂f4
∂σij

dσij = [A4I1δij + 2B4]dσij > 0

or

4dεIij = 0

dK = 0



f4 =
1

2
A4I

2
1 +B4I2 −K2 < 0

or

f4 =
1

2
A4I

2
1 +B4I2 −K2 = 0 and

∂f4
∂σij

dσij = [A4I1δij + 2B4σij]dσij < 0

(4.141)
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4.8 Anisotropic Flow Rule

Once again the flow law is derived from the threshold potential function by way of the

derivative following of the threshold function

dεIij = dλ
∂f

∂σij
(4.142)

where dλ is the scalar quantity that defines the length of the gradient vector. For anisotropy

Equation (4.142) represents a flow rule that embodies the concept of normality, and by us-

ing the threshold function in this equation an associated flow rule is explicitly adopted. The

gradient defines the normal to the threshold surface and this normal defines the direction of

the increment of the inelastic strain vector.

f = f(σij, aiaj, didj, K) (4.143)

Recall the ai is a vector associated with the direction of the principle stresses and the di

vector is associated with the preferred material direction for transverse isotropy.

The gradients to the threshold surface are given in Equations (3.33), (3.46), (3.55),and

(3.60). These functions account for the different material behavior in tension and compres-

sion as well as the directional properties of certain types of graphite. The threshold surface

is once again divided into four piecewise continuous functions based on principle stresses

as follows.

Region#1 σ1 ≥ σ2 ≥ σ3 ≥ 0 (4.144)

Region#2 σ1 ≥ σ2 ≥ 0 ≥ σ3 (4.145)

Region#3 σ1 ≥ 0 ≥ σ2 ≥ σ3 (4.146)
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Region#4 0 ≥ σ1 ≥ σ2 ≥ σ3 (4.147)

The subscript on the function denotes which region of the stress space the function in valid.

Thus for region #1

f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 −K2 (4.148)

The threshold function defined for region #2 is

f2 =
1

2
A2I

2
1 +B2I2 +D2I5 + E2I1I6 + F2I7 +H2I9 −K2 (4.149)

The threshold function defined for region #3 is

f3 =
1

2
A3I

2
1 +B3I2 +D3I5 + E3I1I6 + F3I7 +H3I9 −K2 (4.150)

and the threshold function defined for region #4 is

f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 −K2 (4.151)

The derivative of the threshold function in region #1 with respect to the inelastic state

variable is
∂f1
∂K

= −2K (4.152)

Since isotropic hardening was assumed then similar derivatives with respect toK for region

#2, region #3 and region #4 can be formulated, i.e.,

∂f2
∂K

= −2K (4.153)
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∂f3
∂K

= −2K (4.154)

and
∂f4
∂K

= −2K (4.155)

respectively

Substituting Equations (3.61), (4.28), and (4.152) into Equation (4.34) yields the fol-

lowing for region #1

G1 =
[
F2K(A1I

2
1 + 2B1I2 + 2E1I1I6 + 2F1I7)

]−1 (4.156)

Substituting Equations (3.62), (4.28), and (4.153), and into Equation (4.34) yields the fol-

lowing for region #2

G2 =
[
F2K(A2I

2
1 + 2B2I2 + 2D2I5 + 2E2I1I6 + 2F2I7 + 2H2I9)

]−1 (4.157)

Substituting Equations (3.63), (4.28), and (4.154) into Equation (4.34) yields the following

for region #3

G3 =
[
F2K(A3I

2
1 + 2B3I2 + 2D3I5 + 2E3I1I6 + 2F3I7 + 2H32I9)

]−1 (4.158)

Substituting Equations (3.64), (4.28), and (4.155) into Equation (4.34) yields the following

for region #4

G4 =
[
F2K(A4I

2
1 + 2B4I2 + 2E4I1I6 + 2F4I7)

]−1 (4.159)

The formulations for the scalar function F has yet to be determined.

Now we concentrate on the incremental strain relationship from Equation (4.35). Equa-

tions (3.61) and (4.156) are substituted into (4.35) such that
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1 dεIij =
(A1I1 + E1I6)δij + 2B1σij + E1I1didj + F1(dpdjσip + djdqσqi)

F2K(A1I21 + 2B1I2 + 2E1I1I6 + 2F1I7)

[
(A1I1 + E1I6) dI1 +B1 dI2 + E1I1 dI6 + F1 dI7

] (4.160)

Substituting Equations (3.62) and (4.157) into Equation (4.35) yields

2 dεIij =
1

F2K(A2I21 + 2B2I2 + 2D2I5 + 2E2I1I6 + 2F2I7 + 2H2I9)

[
(A2I1 + E1I6) dI1 +B2 dI2 +D2 dI5 + E2I1 dI6 + F2 dI7 +H2 dI9

][
(A2I1 + E2I6)δij + 2B2σij +D2(amaiσjm + ajanσni) + E2I1didj+

F2(dkdjσik + djdmσmi) +
1

2
H2(amandndiσjm + ajandndkσkj+

aiandndmσjm + akandndjσki)
]

(4.161)

Substituting Equations (3.63) and (4.158) into Equation (4.35) yields

3 dεIij =
1

F2K(A3I21 + 2B3I2 + 2D3I5 + 2E3I1I6 + 2F3I7 + 2H3I9)

[
(A3I1 + E3I6) dI1 +B3 dI2 +D3 dI5 + E3I1 dI6 + F3 dI7 +H3 dI9

][
(A3I1 + E3I6)δij + 2B3σij +D3(amaiσjm + ajanσni) + E3I1didj+

F3(dkdjσikdjdmσmi) +
1

2
H3(amandndiσjm + ajandndkσkj+

aiandndmσjm + akandndjσki)
]

(4.162)

Substituting Equations (3.64) and (4.159) into Equation (4.35) yields

4 dεIij =
(A4I1 + E4I6)δij + 2B4σij + E4I1didj + F4(dpdjσip + djdqσqi)

F2K(A4I21 + 2B4I2 + 2E4I1I6 + 2F4I7)

[
(A4I1 + E4I6) dI1 +B4 dI2 + E4I1 dI6 + F4 dI7

] (4.163)
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Equations (4.160) through (4.163) comprise the inelastic flow law for each region of the

stress space.

4.9 The Scalar Function F (K) for Anisotropy

Modeling inelastic stress-strain behavior by substituting the incremental strain Equation

(4.160) into the evolutionary law Equation (4.29) for region #1 leads to the following ex-

pression

2K dK = (A1I1 + E1I6) dI1 +B1 dI2 + E1I1 dI6 + F1 dI7 (4.164)

Substituting Equation (4.161) into the evolutionary law Equation (4.29) for region #2 yields

2K dK = (A2I1 + E2I6) dI1 +B2 dI2 +D2 dI5 + E2I1 dI6 + F2 dI7 +H2 dI9 (4.165)

Substituting Equation (4.162) into the evolutionary law Equation (4.29) for region #3 yields

2K dK = (A3I1 + E3I6) dI1 +B3 dI2 +D3 dI5 + E3I1 dI6 + F2 dI7 +H2 dI9 (4.166)

Substituting Equation (4.163) into the evolutionary law Equation (4.29) for region #4 yields

2K dK = A4I1 dI1 +B4 dI2 + E4I1 dI6 + F4 dI7 (4.167)

As was the case for isotropic graphite, for anisotropic graphite there are four separate in-

cremental formulations for the isotropic state variable K. However, there is only one state

variable, i.e., K and this is a scalar state variable. This state variable controls the size of

the current threshold surface and this is consistent with the initial assumption that the only

hardening mechanism is isotropic hardening.
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Consider a uniaxial tensile stress is applied to an anisotropic graphite,

σij =


σt 0 0

0 0 0

0 0 0

 (4.168)

The invariants for this stress state are

I1 = σt (4.169)

I2 = σ2
t (4.170)

I6 = d1d1σt (4.171)

I7 = d1d1σ
2
t (4.172)

The inelastic strain increment for this state of stress is

1dεI11 =
1

tF2K(A1I21 + 2B1I2 + 2E1I1I6 + 2F1I7)

∂f1
∂σ11

∂f1
∂σkl

dσkl (4.173)

Solving for tF yields

tF =
1

2K(A1I21 + 2B1I2 + 2E1I1I6 + 2F1I7)

∂f1
∂σ11

∂f1
∂σkl

dσkl
dεI11

(4.174)

Since σ11 is the only non-zero component of the stress tensor, then

tF =
1

2K(A1I21 + 2B1I2 + 2E1I1I6 + 2F1I7)

∂f1
∂σ11

∂f1
∂σ11

dσ11
dεI11

(4.175)
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Simplifying

tF =
1

2K
(A1 + 2B1 + 2E1d1d1 + 2F1d1d1)

dσ11
dεI11

(4.176)

Once again the derivative of stress with respect to inelastic strain is approximated through

the use of a Ramberg–Osgood uniaxial stress-strain law.

In a similar manner to a previous section, an effective stress and an effective strain

measures are developed here. The effective stress in all regions is

Σ =
2f̃α√
∂fα
∂σij

∂fα
∂σij

(4.177)

where for Region #1

2f̃1 = A1I
2
1 + 2B1I2 + 2E1I1I6 + 2F1I7

∂f1
∂σij

∂f1
∂σij

= (3A2
1 + E2

1 + 2A1E1 + 4A1B1)I
2
1 + (6A1E1 + 2E2

1+

8B1E1 + 3A1F1 + 4E1F1)I1I6 + (3E2
1 + 4E1F1 + 2F 2

1 )I26+

4B2
1I2 + (8B1F1 + 2F 2

1 )I7

for Region #2

2f̃2 = A2I
2
1 + 2B2I2 + 2D2I5 + 2E2I1I6 + 2F2I7 + 2H2I9

∂f2
∂σij

∂f2
∂σij

= (3A2
2 + 4A2B2 + 2A2E2 + E2

2)I21 + 4A2D2I1I4 + 4B2
2I2 + (6A2E2+

4A2F2 +B2E2 + 2E2
2 + 4E2F2 + 2E2H2I

2
11)I1I6 + (4A2H2 + 4D2E2+

2E2H2)I1I8 + (8B2D2 + 2D2
2 + 2D2H2I

2
11 +

1

2
H2

2I
2
11)I5 + (8B2F2 + 2F 2

2 +

2F2H2I
2
11 +

1

2
H2

2I
2
11)I7 + (8B2H2 + 4D2F2 + 2D2H2 + 2F2H2 +H2

2I
2
11)I9+

2D2
2I

2
4 + (4D2E2 + 2E2H2)I1I8 + (4D2E2 +H2

2I
2
11)I4I6 + 4D2H2I4I8+

(3E2
2 + 4E2F2 + 2F 2

2 )I26 + (4E2H2 + 4F2H2)I6I8 +H2
2I

2
8 + 4D2F2I

2
10
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for Region #3

2f̃3 = A3I
2
1 + 2B3I2 + 2D3I5 + 2E3I1I6 + 2F3I7 + 2H3I9

∂f3
∂σij

∂f3
∂σij

= (3A2
3 + 4A3B3 + 2A3E3 + E2

3)I21 + 4A3D3I1I4 + 4B2
3I2 + (6A3E3+

4A3F3 +B3E3 + 2E2
3 + 4E3F3 + 2E3H3I

2
11)I1I6 + (4A3H3 + 4D3E3+

2E3H3)I1I8 + (8B3D3 + 2D2
3 + 2D3H3I

2
11 +

1

2
H2

3I
2
11)I5 + (8B3F3 + 2F 2

3 +

2F3H3I
2
11 +

1

2
H2

3I
2
11)I7 + (8B3H3 + 4D3F3 + 2D3H3 + 2F3H3 +H2

3I
2
11)I9+

2D2
3I

2
4 + (4D3E3 + 2E3H3)I1I8 + (4D3E3 +H2

3I
2
11)I4I6 + 4D3H3I4I8+

(3E2
3 + 4E3F3 + 2F 2

3 )I26 + (4E3H3 + 4F3H3)I6I8 +H2
3I

2
8 + 4D3F3I

2
10

and for Region #4

2f̃4 = A4I
2
1 + 2B4I2 + 2E4I1I6 + 2F4I7

∂f4
∂σij

∂f4
∂σij

= (3A2
4 + E2

4 + 2A4E4 + 4A4B4)I
2
1 + (6A4E4 + 2E2

4+

8B4E4 + 3A4F4 + 4E4F4)I1I6 + (3E2
4 + 4E4F4 + 2F 2

4 )I26+

4B2
4I2 + (8B4F4 + 2F 2

4 )I7

In the effective stress equations for Region #2 and Region #3 there are two new invariant

terms I10 and I11. These terms are defined as

I10 = aidjσji (4.178)

and

I11 = aidi (4.179)
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4.10 Summary of Anisotropic Constitutive Equations

In summary Region #1

1 dεIij =
(A1I1 + E1I6)δij + 2B1σij + E1I1didj + F1(dpdjσip + didqσqj)

F2K(A1I21 + 2B1I2 + 2E1I1I6 + 2F1I7)

[
(A1I1

+ E1I6) dI1 +B1 dI2 + E1I1 dI6 + F1 dI7

]
2K dK = (A1I1 + E1I6) dI1 +B1 dI2 + E1I1 dI6 + F1 dI7



f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6

+ F1I7 −K2 = 0

and

∂f1
∂σij

dσij = [(A1I1 + E1I6)δij + 2B1σij

+ E1I1didj + F1(dkdiσjk

+ djdmσmi)]dσij > 0

or

1dεIij = 0

dK = 0



f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 −K2 < 0

or

f1 =
1

2
A1I

2
1 +B1I2 + E1I1I6 + F1I7 −K2 = 0 and

∂f1
∂σij

dσij = [(A1I1 + E1I6)δij + 2B1σij

+ E1I1didj + F1(dkdiσjk + djdmσmi)]dσij < 0

(4.180)
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Region #2

2 dεIij =
1

F2K(A2I21 + 2B2I2 + 2D2I5 + 2E2I1I6 + 2F2I7 + 2H2I9)

[
(A2I1

+ E2I6) dI1 +B2 dI2 +D2 dI5 + E2I1 dI6 + F2 dI7 +H2 dI9

][
(A2I1

+ E2I6)δij + 2B2σij +D2(amaiσjm + ajanσni) + E2I1didj

+ F2(dkdjσik + didmσmj) +
1

2
H2(apaqdqdiσjp + ajaqdqdrσri

+ aiandndmσjm + akandndjσki)
]

2K dK = (A2I1 + E2I6) dI1 +B2 dI2 +D2 dI5

+ E2I1 dI6 + F2 dI7 +H2 dI9



f2 =
1

2
A2I

2
1 +B2I2 +D2I5 + E2I1I6

+ F2I7 +H2I9 −K2 = 0

and

∂f2
∂σij

dσij =
[
(A2I1 + E2I6)δij + 2B2σij

+D2(akaiσjk + ajamσmi) + E2I1didj

+ F2(dkdiσjk + djdmσmi)

+
1

2
H2(apaqdqdiσjp + ajaqdqdrσri

+ aiandndmσjm + akandndjσki)
]
dσij > 0
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or

2dεIij = 0

dK = 0



f2 =
1

2
A2I

2
1 +B2I2 +D2I5 + E2I1I6 + F2I7 +H2I9 −K2 < 0

or

f2 =
1

2
A2I

2
1 +B2I2 +D2I5 + E2I1I6 + F2I7 +H2I9 −K2 = 0 and

∂f2
∂σij

dσij =
[
(A2I1 + E2I6)δij + 2B2σij +D2(akaiσjk + ajamσmi) + E2I1didj

+ F2(dkdiσjk + djdmσmi) +
1

2
H2(apaqdqdiσjp + ajaqdqdrσri + aiandndmσjm + akandndjσki)

]
dσij < 0

(4.181)
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Region #3

3 dεIij =
1

F2K(A3I21 + 2B3I2 + 2D3I5 + 2E3I1I6 + 2F3I7 + 2H3I9)

[
(A3I1

+ E3I6) dI1 +B3 dI2 +D3 dI5 + E3I1 dI6 + F3 dI7 +H3 dI9

][
(A3I1

+ E3I6)δij + 2B3σij +D3(amaiσjm + ajanσni) + E3I1didj

+ F3(dkdjσik + didmσmj) +
1

2
H3(apaqdqdiσjp + ajaqdqdrσri

+ aiandndmσjm + akandndjσki)
]

2K dK = (A3I1 + E3I6) dI1 +B3 dI2 +D3 dI5

+ E3I1 dI6 + F2 dI7 +H2 dI9



f3 =
1

2
A3I

2
1 +B3I2 +D3I5 + E3I1I6

+ F3I7 +H3I9 −K2 = 0

and

∂f3
∂σij

dσij =
[
(A3I1 + E3I6)δij + 2B3σij

+D3(akaiσjk + ajamσmi) + E3I1didj

+ F3(dkdiσjk + djdmσmi)

+
1

2
H3(apaqdqdiσjp + ajaqdqdrσri

+ aiandndmσjm + akandndjσki)
]
dσij > 0
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or

3dεIij = 0

dK = 0



f3 =
1

2
A3I

2
1 +B3I2 +D3I5 + E3I1I6 + F3I7 +H3I9 −K2 < 0

or

f3 =
1

2
A3I

2
1 +B3I2 +D3I5 + E3I1I6 + F3I7 +H3I9 −K2 = 0 and

∂f3
∂σij

dσij =
[
(A3I1 + E3I6)δij + 2B3σij +D3(akaiσjk + ajamσmi) + E3I1didj

+ F3(dkdiσjk + djdmσmi) +
1

2
H3(apaqdqdiσjp + ajaqdqdrσri + aiandndmσjm + akandndjσki)

]
dσij < 0

(4.182)

Region #4

4 dεIij =
(A4I1 + E4I6)δij + 2B4σij + E4I1didj + F4(dpdjσip + didqσqj)

F2K(A4I21 + 2B4I2 + 2E4I1I6 + 2F4I7)

[
(A4I1

+ E4I6) dI1 +B4 dI2 + E4I1 dI6 + F4 dI7

]
2K dK = A4I1 dI1 +B4 dI2 + E4I1 dI6 + F4 dI7



f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 = 0

and

∂f4
∂σij

dσij = [(A4I1 + E4I6)δij + 2B4σij

+ E4I1didj + F4(dkdiσjk

+ djdmσmi) > 0
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or

4dεIij = 0

dK = 0



f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 < 0

or

f4 =
1

2
A4I

2
1 +B4I2 + E4I1I6 + F4I7 = 0 and

∂f4
∂σij

dσij = [(A4I1 + E4I6)δij + 2B4σij + E4I1didj

+ F4(dkdiσjk + djdmσmi) < 0

(4.183)
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With the anisotropic formulation of the incremental inelastic stress-strain relationship

in hand the next step is exercising the relationships with simple structural applications. This

is done in the following chapter.
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CHAPTER V

Characterization and Applications

5.1 Introduction - Elasticity

The inelastic constitutive model outlined in the previous chapters is exercised here under

isothermal conditions for both isotropic and transversly isotropic nuclear-grade graphites.

In order to make use of the inelastic constitutive model an elastic constitutive must also

be defined. For isotropic elasticity two material constants have to be stipulated. These

constants are Young’s Modulus and Poison’s ratio. For transversely isotropic elastic mate-

rials four material constants are required. These four parameters are Young’s Modulus in

the preferred material direction, Young’s Modulus in the plane of isotropy, Poison’s ratio

across the preferred material direction and Poison’s ratio in the plane of isotropy. Using

index notation the elastic constitutive model for either isotropic or transversely isotropic

materials is represented by the following expression

εEkl = γijklσij (5.1)
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This index expression represents the following matrix formulation for isotropic materials



ε11

ε22

ε33

ε12

ε13

ε23


=



1/E −ν/E −ν/E 0 0 0

−ν/E 1/E −ν/E 0 0 0

−ν/E −ν/E 1/E 0 0 0

0 0 0 1/G 0 0

0 0 0 0 1/G 0

0 0 0 0 0 1/G





σ11

σ22

σ33

σ12

σ13

σ23


(5.2)

Here E, G, and ν are Young’s modulus, the shear modulus and Poisson’s ratio respectively.

For transverse isotropy the matrix formulation is



ε11

ε22

ε33

ε12

ε13

ε23


=



1/E ′ −ν ′/E ′ −ν/E 0 0 0

−ν ′/E ′ 1/E ′ −ν/E 0 0 0

−ν/E ′ −ν/E ′ 1/E 0 0 0

0 0 0 1/G′ 0 0

0 0 0 0 1/G′ 0

0 0 0 0 0 1/G





σ11

σ22

σ33

σ12

σ13

σ23


(5.3)

The matrix formulation in Equation 5.3 is associated with the following preferred material

direction

di = [0, 0, 1] (5.4)

where E ′, G′, and ν ′ are Young’s modulus in the preferred direction, the shear modulus

across the preferred direction, and Poisson’s ratio across the preferred direction.

Four nuclear grade graphites with manufacturer’s designations of 2114, G110, H451,

and AGOT are used in the applications presented in this chapter. The elastic material

constants for these four graphites are listed in Table I.. The graphite designated as G110 is

isotropic so E ′ = E, G′ = G and ν ′ = ν for this grade of graphite.
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Table I.: Elastic Constants

Graphite Designation E(GPa) E ′(GPa) G(GPa) G′(GPa) ν ν ′

2114 16 7 9 3 0.4 0.25
G110 10 NA 6 NA 0.4 NA
H451 9 8 5 1 0.4 0.25
AGOT 11 5 6 2 0.4 0.25

Tensile and compression data from Bratton (2009) for the different graphite grades just

mentioned are presented graphically in Figure 33. Bratton’s (2009) stress-strain data for

each graphite type can be found in Appendix 1, and the elastic constants above were ob-

tained from that stress-strain data. The elastic constants in the table above were extracted

from the data using ASTM C749-13. Note that ASTM C1259-15 can be used as an alter-

native method when dynamic test data is available. It is important to realize that the elastic

behavior for graphite is the same in tension and compression. The inelastic behaviors are

quite different in tension and compression. None of the stress-strain data emanating from

the origin for the graphites identified above exhibit bilinear behavior (see Figure 33) which

would indicate a different elastic response in tension when compared with compression.

The discussion here will keep the issue of the preferred direction of the material basic

in order to highlight fundamental aspects of the inelastic constitutive model. If the coor-

dinate axes for a given stress analysis do not align with the preferred material direction of

a transversely isotropic material then the fourth order tensor of elastic material constants

identified in Equation 5.1 would be transformed as follows

γpqrw = αpiαqjαrlαwkγijkl (5.5)

Here αij is the transformation matrix of direction cosines for the angles between the pre-

ferred material direction (which is perpendicular to the plane of isotropy) and the given

coordinate axes used in the stress analysis. Furthermore, the preferred direction of the ma-

terial can change from point to point in a component, i.e., a field of preferred directions can

138



Figure 33: Stress-strain curves for various grades of nuclear graphite. (Bratton (2009))

exist in a material whereby

di = di(xj) (5.6)

This is a complication that is recognized and can be accommodated by the transversely

isotropic constitutive model presented herein. This issue will not be pursued further for the

sake of simplicity. This topic is left as future work if and when the anisotropic version of

the inelastic constitutive model is incorporated into a finite element algorithm.

5.2 Inelastic Material Constants

With the elastic constitutive model characterized the next step is to establish values for the

isotropic and anisotropic threshold stresses. The threshold stresses σt, σc, and τi (threshold

shear stress) are necessary for an isotropic material. For a transversely isotropic material

the isotropic threshold stress values are needed and the threshold stresses σst, σsc, and τs
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Figure 34: H451 failure data from Burchell (2007) fitted with an anisotropic threshold surface.
Strees in MPa.sz

must be established. In addition to the threshold stresses a second set of material parameters

are needed for inelasticity. These parameters quantify the degree of nonlinearity associated

with the inelastic segment of the stress-strain curve. These are the parameters associated

with the scalar function F . In the isotropic case there are four material parameters as-

sociated with the scalar function F , i.e., cn and cC2 for compression and tn and tC2 for

tension.

In the next section uniaxial test predictions (tension and compression) are made using

the constitutive model (elastic and inelastic) and compared with uniaxial test data (tension

and compression). In order to make the comparison threshold stresses have been char-

acterized for H451 graphite using Bratton’s (2009) stress-strain data in conjunction with

Burchell’s (2007) failure data. Bratton’s (2009) stress-strain data in Figure ?? for H451

corresponds to a uniaxial tension test and a separate compression test conducted in the

preferred material direction of each material. The tensile test data and compression test
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Table II.: Threshold Stresses (MPa) in the Preferred Direction by Graphite Type

Graphite Type σst σsc τi
2114 2.248 3.712 1.67
G110 1.309 4.169 1.18
H451 2.2 11 1.31
AGOT 1.108 2.089 0.86

data are superimposed and the threshold stresses σst and σsc are obtained directly from this

data. Data for tension in the plane of isotropy, compression in the plane of isotropy, and

both torsional load paths relative to the preferred material direction are not available for

H451 and must be inferred using failure data. The average failure stresses corresponding

to the threshold stresses σt, σst, σsc, and τs for H451 were obtained by Burchell (2007) and

the failure data appears in Figure 34. The assumption is made here that the failure surface

defined by Burchell’s (2007) data is concentric with the threshold surface of the material.

Ratios between failure stresses are calculated and applied to the requisite threshold stresses,

given that threshold stresses σst and σsc are known. This yields the threshold stresses σt

and τi. The threshold stresses for the 2114 and AGOT can be obtained in a similar manner.

Again G110 is isotropic, therefore σt = σst , σc = σsc and τi = τs. Threshold stress values

for the four nuclear graphites are summarized in Table II..

The data provided by Bratton (2009) contains numerical stress-strain data pairs for the

four graphites under consideration. Using the parameter estimation scheme outlined in the

previous chapter the tensile and compressive values for n and C2 associated with the scalar

function F for these four graphites are listed in Table III..

Table III.: Constants for the Scalar Function F

Graphite Designation tn tC2 cn cC2

2114 1.4342 1.744E-05 4.7835 1.532E-12
AGOT 2.824 4.323E-07 4.6151 9.286E-10
G110 1.6359 6.919E-06 2.7697 7.352E-08
H451 2.3975 8.729E-07 2.7442 2.157E-07
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5.3 Comparison: Stress-Strain Predictions with Data

Characterizing the elastic and inelastic models is a large effort requiring an extensive data

base. Once the models are assembled and characterized the next step is examining how they

function under various applied boundary conditions. Following this scenario the constitu-

tive models (elastic and inelastic) are initially used to predict very simple uniaxial tension

and compression behavior after characterization. Model predictions for these simple load

paths are displayed in this section for all four graphites previously mentioned. In a per-

fect world one would use an extended data base to characterize all model parameters and

then, for example, make a comparison to stress-strain data from torsional tests or thin wall

pressure vessel tests - test data that was not used in the characterization process. While fail-

ure data exists for nuclear grade graphite subject to torsion and pressure vessel test loads,

stress-strain data for these two types of tests is not available. So initially, information avail-

able from uniaxial data and failure data obtained under mutliaxial states of stress are used

to characterize model parameters. Predictions are then presented for the entire uniaxial

stress-strain curves, tension and compression, and test data is overlain on the curves for

comparison purposes.

Three threshold stress values are required in order to make model predictions under

uniaxial loads for isotropic graphites, i.e., σt, σc, and τi. In order to make uniaxial pre-

dictions for transversely isotropic graphites loaded in tension or compression the threshold

stress σst, σsc, and τs are required. The threshold stress values in and across the preferred

direction for all four graphites are listed in Table II., keeping in mind that G110 is isotropic.
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Figure 35: Predicted Stress-strain behavior for G110 Graphite with data for simple tension and
compression. All stresses are in MPa. Data is courtesy of Braton (2009)

With the threshold stresses for G110 in Table II., the inelastic model parameter values in

Table III., and the elastic constants in Table I., the elastic and inelastic constitutive models

were utilized to create the stress-strain curve (tension and compression) depicted in Figure

35. The solid line represents load paths in both tension and compression. These load paths

were modeled assuming that the material was in the virgin state at the beginning of either

load path, i.e., the material has not hardened. Selected stress-strain data pairs that are fairly

well spaced out from Bratton (2009) are included in this Figure 35 for comparison purposes.

The model apparently tracks the tensile data well, but as inelastic strains accumulate in the

compressive regime there is a loss in fidelity in the comparison to the data.

143



−0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005
−60

−50

−40

−30

−20

−10

0

10

20

ǫ

σ

Computed Stress Strain

Data

H451 Graphite

Figure 36: Predicted Stress-strain behavior for H451 Graphite with date for simple tension and
compression. All stresses are in MPa. Data is courtesy of Braton (2009)

With the threshold stresses for H451 in Table II., the inelastic model parameter values in

Table III., and the elastic constants in Table I., the elastic and inelastic constitutive models

were utilized to create the stress-strain curve (tension and compression) depicted in Figure

36. Once again, the solid line represents load paths in both tension and compression, and

these load paths were modeled assuming that the material was in the virgin state at the

beginning of either load path, i.e., the material has not hardened. Selected stress-strain data

pairs that are fairly well spaced out from Bratton (2009) are included in this Figure 36 for

comparison purposes. Based on visual inspection there is good correlation with Bratton’s

(2009) tensile data and fairly good correlation with the compression data.

144



−14 −12 −10 −8 −6 −4 −2 0 2

x 10
−3

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

ǫ11

σ
1
1

 

 
Computed Stress Strain
Data

AGOT Graphite

Figure 37: Predicted Stress-strain behavior for AGOT Graphite with data for simple tension and
compression. All stresses are in MPa. Data is courtesy of Braton (2009)

With the threshold stresses for AGOT in Table II., the inelastic model parameter val-

ues in Table III., and the elastic constants in Table I., the elastic and inelastic constitutive

models were utilized to create the stress-strain curve (tension and compression) depicted in

Figure 37. Once again, the solid line represents load paths in both tension and compression,

and these load paths were modeled assuming that the material was in the virgin state at the

beginning of either load path, i.e., the material has not hardened. Selected stress-strain data

pairs from Bratton (2009) are included in this Figure 37 for comparison purposes. Again,

there seems to be good correlation in the tensile regime and relatively good correlation in

the compressive region of the curve.
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Figure 38: Predicted Stress-strain behavior for 2114 Graphite with data for simple tension and
compression. All stresses in MPa. Data is courtesy of Braton (2009)

Finally, with the threshold stresses for 2114 in Table II., the inelastic model parameter

values in Table III., and the elastic constants in Table I., the elastic and inelastic constitutive

models were utilized to create the stress-strain curve (tension and compression) depicted

in Figure 38. Again, the solid line represents load paths in both tension and compression,

and these load paths were modeled assuming that the material was in the virgin state at

the beginning of either load path, i.e., the material has not hardened. Selected stress-strain

pairs from the Bratton (2009) data are included in Figure 38 for comparison purposes.

There appears to be good correlation on the tensile portion of the curve. However, on the

compression segment of the curve there is a tendency to overestimate the strain at a given

level of stress.

Overall the model tends to drift a bit relative to the compression data for each graphite.

Several issues could explain this drift. First, in this work it was assumed that graphite hard-

ens isotropically both in tension and compression. These materials may harden differently
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in compression than they do in tension. In addition, the assumed functional form for cF

may be optimized in the sense that some weighted function can be used to better correlate

with compressive data. This issue is reserved for future efforts.

5.4 Strain Controlled Behavior Over One Cycle

In this section predictions for cyclic stress-strain behavior is examined for both isotropic

and transversely isotropic material. One can fatigue a material under load control or dis-

placement control. Results here represent analyses performed under total strain control

where

εtotal = εelastic + εinelastic (5.7)

The material is subjected to a total uniaxial tensile strain of 0.004. Subsequent to achieving

this total tensile strain limit the load is reversed until a 0.01 total strain limit is achieved in

compression. Figure 39 depicts the stress-strain curve for H451 graphite subjected to this

total strain cycle. Initially all materials are assumed to be in a virgin state before loads are

applied. Within several strain cycles the stress-strain curve flattens out becoming a straight

line with little hysteresis and a slope equal to the elastic Young’s modulus. In essence, after

a limited number of cycles the response becomes elastic as the material hardens isotropi-

cally as the fixed strain cycle is completely encompassed within the expanding threshold

surface.
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Figure 39: Hysteresis loop for isotropic H451 Graphite using isotropic hardening. All stresses in
MPa

Next the model’s predictive capabilities are examined under the assumption of anisotropy

with varying orientations of the preferred material direction. Figure 40 depict single hys-

teresis loops for H451 associated with preferred material direction vectors di = (1, 0, 0), di

= (1/2, 1/2, 0) and di = (0, 1, 0). As expected the model is stiffer when the preferred direc-

tion of the material is oriented to the load direction, i.e., when di = (1, 0, 0). As a result,

the stress response with this orientation is higher in tension and compression relative to the

other preferred directions due to the increased stiffness. Again, if this hysteresis loop is

continued for several more cycles the result would be a linear stress-strain relationship as

the threshold surface grows to include the stresses generated at these strain limits.

148



Figure 40: Hysteresis loop for anisotropic H451 Graphite depicting varying preferred material di-
rections with isotropic hardening. All stresses in MPa

5.5 The Inelastic Response of Isotropic H451

In this section the model’s ability to predict inelastic deformation is exercised under vari-

ous combinations of uniaxial, torsional and pressure vessel load paths applied to isotropic

H451. Conceptually it has been presumed that the material hardens isotropically for all load

paths. Thus the geometry associated with the virgin threshold surface and the increment in

inelastic strain vector obtained from the normality assumption holds along the entire length

of the load path traversed. The material used in these analyses is H451 graphite. Specific

material parameters (elastic and inelastic) for both isotropic and anisotropic versions of

H451 graphite are shown in Table IV.. Here stress values are specified in units of MPa.
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Table IV.: H451 Material Parameters (stress in units of MPa)

H451 E11 E22 ν12 ν23 G12 σst σsc τs σt σc τi
Isotropic 8070 – 0.4 – 4600 2.2 11.0 2.1 – – –
Anisotropic 8070 3500 0.4 0.25 4600 2.2 11.0 2.1 1.67 7.27 1.6

5.5.1 Torsional Load Path - Isotropic H451

Torsional loading is the first elastic-inelastic load path examined. This load path is rep-

resentative of a thin-wall tube subjected to a torque. Here an r (associates with x1), θ

(associates with x2) and z (associates with x3) coordinate system is utilized. Figure 41 de-

picts a virgin threshold surface along with a torsional load path and the resultant increment

in inelastic strain vector associated with this load path. The normality of the increment in

inelastic strain vector to the threshold flow surface requires that the vector will have not

only a shear strain components but a normal strain components as well. Thus in a thin-

wall tube fabricated from graphite (see Burchell’s (2007) work) subjected to a torsional

load, radial, circumferential and axial normal strains should be expected, not just torsional

strains. The direction cosines associated with the components of the increment in inelas-

tic strain under torsional loading are (0.1214, 0.1214, 0.1214, 0, 0, 0.9852). Here direction

cosine values correspond to the total strain components (ε11, ε22, ε33, ε23, ε13, ε12). The nor-

mal increments in inelastic strains (dε11, dε22, and dε33) will be slight in comparison to the

increments in inelastic shear strain. In comparison, if only a uniaxial load is applied to

the tube (either in tension or compression) only increments in inelastic axial strains are

predicted by the model. For a J2 model where a material behaves the same in tension and

compression, a torsional load path produces only shear strains. This is depicted graphically

in Figure 42.

Stress-strain curves for an H451 graphite subjected to a torsional load path are pre-

sented in Figure 43. Again these curves represent the response of a thin walled tube being

subjected to a torque. The strain components ε33 (axial) and ε12 are plotted versus the ap-

plied torsional stress. The ε11 (radial) and ε22 (circumferential) strains are identical to the
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Figure 41: Threshold surface for isotropic H451 Graphite with a torsional load path showing the
incremental strain direction. Stresses in MPa.

ε33 strain response. The stress state at the end of the load path is

σij =


0 0 0

0 0 4.3

0 4.3 0

 (5.8)

which corresponds to the following total strains at the end of the load path

εij =


0.17 0 0

0 0.17 1.38

0 1.38 0.17

× 10−3 (5.9)

This assumes there are no restraints (i.e., boundary conditions) on the tube other than the

applied torque.

151



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

σ33

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

σ23

Load Path

dǫI

Figure 42: J2 (Von Mises) threshhold surface shown with a torsional load path. Stress in MPa.
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Figure 43: Predicted stress-strain curves for a tube fabricated from isotropic H451 graphite sub-
jected to a torque 41. Stress in MPa.
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5.5.2 Pressure Vessel Load Path - Isotropic H451

The next elastic-inelastic load path considered represents a thin-wall tube subjected to an

internal pressure. The stress matrix for this load path is identified as

σij =


0 0 0

0 2σ 0

0 0 σ

 (5.10)

Here ε22 corresponds to a circumferential strain and ε33 is a longitudinal strain. For a J2

model associated with a material that has identical inelastic behavior in tension and com-

pression only increments in inelastic strain associated with ε22 (i.e., the circumferential

direction) would be predicted. The J2 model predicts zero inelastic strain in the ε33 direc-

tion (see Figure 45). For isotropic H451 the pressure vessel load path generates increments

in all three normal inelastic strain components. The ε22 and ε33 components of the inelas-

tic strain vector are depicted graphically in Figure 44. Here the pressure vessel load path

is projected onto a virgin threshold surface for an isotropic H451 graphite material. Al-

though in this figure only the ε22 and ε33 components of the increment in inelastic strain

vector appear, the entire increment of the inelastic strain rate vector has direction cosines

(−0.03, 0.90, 0.43, 0, 0, 0). A contraction in the radial direction corresponds to a thinning

of the pressure vessel wall. For this load path the final stress state is

σij =


0 0 0

0 6.14 0

0 0 3.07

 (5.11)

Figure 46 shows the stress-strain curves for a thin wall tube fabricated from isotropic H451

material and subjected to a pressure vessel load path. The final accumulated strains associ-
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Figure 44: Threshhold surface for isotropic H451 shown with a pressure vessel load path and the
corresponding increment in inelastic strain vector. Stress in MPa.
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Figure 45: J2 (Von Mises) threshhold surface shown with a pressure vessel load path. Stress in
MPa.
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Figure 46: Predicted circumferential and longitudinal stress-strain behavior for pressure vessel load
path 44 as a function of circumferential strain and longitudinal strain. The material is isotropic
H451 graphite. Stress in MPa.

ated with this stress state are

εij =


−0.00026 0 0

0 0.0030 0

0 0 0.0013

 (5.12)

5.5.3 A Non-proportional Load Path - Isotropic H451

The third elastic-inelastic load path represents a uniaxial stress (σ11) followed by the ap-

plication of a shear stress (σ12), i.e., a non-proportional load path. This load path lies

completely within the elastic range for the initial uniaxial segment. This segment starts at

a zero stress and increases to a value of 2.2 MPa. While holding the uniaxial stress at 2.2

MPa a shear stress is applied in the subsequent load segment. The shear stress is similarly

increased from a value of zero to a value of 2.2 MPA. Given how the load path is imposed
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Figure 47: Non-proportional load path with initial, subsequent and final threshold surfaces using
isotropic H451. Stress in MPa.

inelastic strains are only accrued along the second segment of the load path for isotropic

H451. In the next section a load path with similar end point stress values is examined with

a proportional load path and final strain states will be compared to the non-proportional

strains cited in this section. The load path is depicted graphically in Figure 47. In this fig-

ure the inner threshold surface is a virgin threshold surface, and the outer threshold surface

represents the material after it has hardened isotropically. Given the attending geometry of

the inelastic threshold surface and the increment in inelastic strain vector we expect and

obtain inelastic strains in both the ε11 and ε12 directions under the application of the σ12

stress in segment AB of the load path.

Figure 48 supports this expectation with an σ11 and ε11 stress-strain curve over the entire

load path. The first portion of this stress-strain curve response is elastic and corresponds

to segment OA of the load path. The plateau region in this stress-strain curve represents

the inelastic response developed from applying a shear stress in the second segment of the

load path. The increase in axial strain under the application of a shear stress while the
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Figure 48: The σ11-ε11 stress-strain curve for the non-proportional load path OABC 47 - isotropic
H451 graphite. Stress in MPa.

uniaxial stress is held constant is the result of the normality condition built into the model.

In addition, compressive ε22 and ε33 strains are predicted.

Figure 49 depicts the σ12 and ε12 stress-strain curve for the entire load path (OAB).

Elastic shear strains are not accumulated along segment OA of the load path. However,

along segment AB of this load path shear strains are accumulated. The material response

is entirely inelastic along segment AB and as a result the shear stress-strain curve in Figure

49 is non-linear with an increasing rate of inelastic shear strain being accumulated as the

increment in the inelastic strain vector rotates as shown in Figure 47.

The final stress state is

σij =


2.2 2.2 0

2.2 0 0

0 0 0

 (5.13)
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Figure 49: The σ12-ε12 stress-strain curve for the non-proportional load path OABC 47 - isotropic
H451 graphite. Stress in MPa.

The final accumulated strains are

εij =


0.318 0.025 0

0.025 −0.113 0

0 0 −0.116

× 10−3 (5.14)

5.5.4 A Proportional Load Path - Isotropic H451

In a previous section results from a pressure vessel load path were presented. That load

path can be considered a proportional load path. In this section the analytical results for

a second elastic-inelastic proportional load path are presented. For this proportional load

path a normal stress and a shear stress are concurrently applied in a 1:1 ratio to an isotropic

H451 graphite. This load path with its one-to-one slope is identified by line segment OA

in Figure 50. Again the inner threshold surface is a virgin threshold surface, and the outer

threshold surface at the end of the load path represents the material after it has hardened
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isotropically. At the end of the load path the final stress state is identical to the stress

state identified for the non-proportional load path where the uniaxial and torsional stress

components were applied sequentially. As expected the final accumulated strains for the

proportional load path are different from the accumulated strains for the non-proportional

load path with identical stress components at the end of the load path. Clearly the final

strain state of the material is path dependent.
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Figure 50: Proportional load path with initial, subsequent and final threshhold surfaces using
isotropic H451. Stress in MPa.

The σ11 – ε11 stress-strain curves are presented in Figure 51 for this load path. The

linear segment of the curve represents the elastic response of the material up to the virgin

threshold surface (load segment OA). Loads beyond point A on the virgin threshold sur-

face causes the material to harden isotropically and the tensile stress-strain curve becomes

nonlinear. Figure 52 depicts the same trends in the σ12 – ε12 stress-strain curve.
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Figure 51: Tensile stress-strain curve for the proportional load path OA depicted in Figure 50 applied
to isotropic H451 graphite. Stress in MPa.
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Figure 52: Torsional stress-strain curve for the proportional load path OA depicted in Figure 50
applied to isotropic H451 graphite. Stress in MPa.
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The final stress state at the end of the load path is

σij =


2.2 2.2 0

2.2 0 0

0 0 0

 (5.15)

The corresponding final accumulated strains for this load path are

εij =


0.694 0.759 0

0.759 −0.00762 0

0 0 −0.0792

× 10−3 (5.16)

As indicated in the discussion above the final strains are different than the strains accumu-

lated along the non proportional load path.

5.6 The Inelastic Response of Anisotropic H451

The effect of combined shear and tensile total strains are examined in this section utilizing

the material properties for anisotropic H451 graphite. Two load paths are examined. The

first load path represents tensile and shear stresses applied sequentially. For the second load

path these stresses are applied proportionally. Material properties for aniostropic H451

graphite can be found in Table IV. An assumed preferred material direction for both load

paths is identified as di = (0.707, 0.707, 0). These non-proportional and proportional load

paths are identical to the load paths applied to isotropic H451 in an earlier section.

5.6.1 A Non-proportional Load Path - Anisotropic H451

Results for the elastic-inelastic load path representing a uniaxial stress (σ11) followed by the

application of a shear stress (σ12), i.e., a non-proportional load path, are presented here. The

load path is identical to the non-proportional load path applied to isotropic H451 presented

in Section 5.5.3. The entire load path (OABCD) is identified in Figure 53. For this load
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Figure 53: Non-proportional load path with initial, subsequent and final threshold surfaces for
anisotropic H451 with a preferred material direction di = (0.707, 0.707, 0). Stress in MPa.

path the preferred material direction is not aligned with the orientation of the uniaxial stress

σ11. This misalignment tends to rotate the threshold surface and subsequent surfaces in the

counter clockwise direction (again, see Figure 53). The applied tensile stress associated

with load segment OAB exceeds the inelastic threshold stress for anisotropic H451 at point

A. Along load segment AB of the load path the material hardens isotropically. As a result

of the rotated threshold surfaces (rotated counterclockwise relative to load segment OAB)

negative inelastic shear strains are generated after the virgin threshold surface is attained.

At point B the tensile stress is held fixed at a value of 2.2 MPa and a shear stress is

subsequently applied. This combined state of stress is applied along segment BCD. Along

load segment BC the load path backs away from the current inelastic threshold surface and

the material behaves elastically. At point C the material once again behaves inelastically.

However, as indicated in Figure 53 the normality assumption rotates the increment in in-

elastic strain vector such that it the shear strain component of that vector changes sign at

point C.

The normal component of the increment in inelastic strain vector remains positive
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Figure 54: Tensile stress-strain curve for the non-proportional load path OABCD Figer 53 applied
to anisotropic H451 with a preferred material direction di = (0.707, 0.707, 0). Stress in MPa.

throughout the load path. Figure 54 shows that the tensile stress-strain curve is linear

to point A on the load path and then becomes slightly non-linear until point B is attained

on the load path. From point B onwards there is an increase in tensile strain without an

increase in tensile stress along load segment BCD. This is captured in Figure 54 with the

plateau region of the stress-strain curve

Predictions for the combined applied normal stress and shear stress segment of the load

path for shear strain are complicated and need a bit of explanation. First due to the rotation

of the preferred material direction the accumulation of shear strain under the application

of a normal stress is due to to material anisotropy. As noted earlier when the load path

transitions into the inelastic region we continue to expect a negative inelastic shear strain.

As the load path changes direction at point B and shear stress is applied, the load path is

elastic to point C. Therefore along load path BC the strains elastic. Along load segment

CD the strains are again inelastic. From the normality condition these inelastic strains are

expected to be positive. This is shown in Figure 55.
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Figure 55: Shear stress-strain curve for the non-proportional load path OABCD in Figure 53 applied
to anisotropic H451 with a preferred material direction di = (0.707, 0.707, 0). Stress in MPa.

The final stress state is

σij =


2.2 2.2 0

2.2 0 0

0 0 0

 (5.17)

and the final accumulated strains are

εij =


21.5 20.6 0

20.6 2.4 0

0 0 −0.80

× 10−3 (5.18)

5.6.2 Proportional Loading - Anisotropic H451

Results for the elastic-inelastic load path representing the application of a uniaxial stress

(σ11) and a shear stress (σ12) in 1:1 proportion are presented here. The load path is

identical to the proportional load path applied to isotropic H451 presented in Section

5.5.4. The entire load path (OAB) is identified in Figure 56. For this load path the pre-

ferred material direction is not aligned with the orientation of the uniaxial stress σ11 since
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Figure 56: Proportional load path with initial, subsequent, and final threshold surfaces for
anisotropic H451 graphite with a preferred material direction di = (0.707, 0.707, 0). Stress in
MPa.

di = (0.707, 0.707, 0). This misalignment again rotates the threshold surface and subse-

quent surfaces in the counter clockwise direction (again, see Figure 56). The applied pro-

portional stress associated with load segment OAB exceeds the inelastic threshold stress for

anisotropic H451 at point A. Along load segment AB of the load path the material hardens

isotropically. For this load path both the tensile and shear strain components of the incre-

ment in inelastic strain vector are positive. This is easily seen as a result of the normality

condition in Figure 56.

The σ11 – ε11 stress-strain curves are presented in Figure 57 for this load path. The

linear segment of the curve represents the elastic response of the material up to the virgin

threshold surface (load segment OA). Loads beyond point A on the virgin threshold sur-

face causes the material to harden isotropically and the tensile stress-strain curve becomes

nonlinear. Figure 58 depicts the same trends in the σ12 – ε12 stress-strain curve.
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Figure 57: Tensile stress-strain for the proportional load path OAB, Figure 56 applied to anisotropic
H451 with a preferred material direction di = (0.707, 0.707, 0). Stress in MPa.

0.000 0.002 0.004 0.006 0.008
ε12

0.0

0.5

1.0

1.5

2.0

σ12

Figure 58: Shear stress-strain curve for the proportional load path OAB Figure 56 applied to
anisotropic H451 with a preferred material direction di = (0.707, 0.707, 0). Stress in MPa.
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The final stress state is

σij =


2.2 2.2 0

2.2 0 0

0 0 0

 (5.19)

and the final accumulated strains are

εij =


8.94 9.25 0

9.25 1.32 0

0 0 −0.364

× 10−3 (5.20)

When compared to the final strain state for the non-proportional load path applied to

anisotropic H451 the final strains are different for identical final stress states. Clear in-

dication that the model captures path dependence.
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CHAPTER VI

Conclusion and Future Work

This effort represents a multi-axial inelastic constitutive theory for isotropic and anisotropic

nuclear grade graphite. The complete theory is derived from an inelastic threshold potential

function. The potential nature is exhibited in the manner by which the flow and evolution-

ary laws are derived. The potential-normality structure of the theory dictates the direction

of the increment in inelastic strain vector for each point is directed normal to the threshold

surface. Thus the structure of the inelastic constitutive theory is tied to the concepts of

potential functions and normality.

Tensorial invariant theory served as the primary structure in the development, where

an integrity basis was derived for the anisotropic formulation. This structure reduces to

the isotropic formulation under suitable choices of threshold stress values. A subset of the

basis was adopted. Using the invariants that composed the basis insured that the inelastic

threshold stress is form invariant.

Projections of equal to a constant value representing states of inelasticity illustrated the

transversely isotropic nature of anisotropic graphite. Theoretical predictions of an isotropi-

cally hardening threshold surface homogeneously stressed and strained elements were pre-

sented and discussed. Predictions were generated that compared favorably to available

data sets. The predictions demonstrates the model’s ability to capture real world behav-

ior as well as the flexibility in capturing the non-linear, inelastic behavior of transversely
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isotropic nuclear graphite.

In the development of the theory the dependence of the scalar function was restricted

such that members of the integrity basis are linear or quadratic in stress. In the adopted

form of the polynomial, the linear members of the integrity basis were then multiplied

by the first invariant to generate a polynomial quadratic in stress. Rational forms for the

function, i..e., division by invariants, could have been adopted. However this leads to the

possibility of singularities if a particular invariant became zero.

For simplicity the theory was developed assuming isotropic hardening. In the future the

model should be extended to accommodate kinematic hardening. Finally, attention should

be given to extending the concepts presented here to capture phenomenon such as creep,

relaxation, recovery, as well as strain rate sensitivity. This can be accomplished by adopting

concepts originally proposed by Duffy (1987) and Robinson (1978).

In addition, we recommend running multiaxial tests of the various grades of graphite.

These tests should be used to verify the model presented in this work. Specifically, we

would prefer that the tension-torsion test presented here be run. Then incorporating this

model into a finite elemental analysis program would be the next step.
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APPENDIX

Invariant I9 Equivalence Proof

Here the original I9 invariant will be manipulated to show that the updated version is equiv-

alent. Starting with the original definition for I9.

I9 = aiajdjdkσkmσmi

=
1

2
(aiajdjdkσkmσmi + aiajdjdkσkmσmi)

=
1

2
(aiajdjdkσkmσmi + abajdjdcσkmσmiδbiδck)

(1)

The last step above change the index from ai to ab by adding the δbi term and also changed

the dk index to dc by including the δck term. The next set of steps are changing the indexes

on the right portion of the I9 invariant.

I9 =
1

2
(aiajdjdkσkmσmi + abajdjdcσkmσmiδbiδck)

=
1

2
(aiajdjdkσkmσmi + abajdjdcσemσmiδbiδce)

=
1

2
(aiajdjdkσkmσmi + akajdjdcσemσmiδkiδce)

=
1

2
(aiajdjdkσkmσmi + akajdjdcσemσmfδkfδce)

=
1

2
(aiajdjdkσkmσmi + akajdjdiσemσmfδkfδie)

(2)

Finally the indexes will be contracted by removing the Kronecker deltas.

I9 =
1

2
(aiajdjdkσkmσmi + akajdjdiσimσmfδkf )

=
1

2
(aiajdjdkσkmσmi + akajdjdiσimσmk)

=
1

2
(aiajdjdkσkmσmi + akajdjdiσkmσmi)

(3)
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Tensile stress-strain data

Table V.: Tensile Stress (MPa) and Strain Data for various Graphites. Bratton (2009)

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
0.691576069 1.40625E-05 0.03211 0 0.39834 0.00002746 0.18505 0.000010929
1.296705172 7.03126E-05 0.1124 4.63321E-06 0.85358 9.61098E-05 0.40694 3.82513E-05
2.247622552 0.00016 0.20874 1.38996E-05 1.30882 0.00015 0.66586 6.55738E-05
2.766304828 0.00021 0.28902 2.08494E-05 1.82097 0.00021 0.99865 0.00011
3.284987241 0.00027 0.35325 2.54826E-05 2.33311 0.00027 1.33151 0.00015
4.063010138 0.00034 0.43353 0.000034749 2.95907 0.00036 1.66431 0.00019
4.408799586 0.00037 0.56199 4.63321E-05 3.86956 0.00048 2.034 0.00025
4.841034138 0.00044 0.75467 6.25483E-05 4.72313 0.00058 2.44073 0.0003
6.224185931 0.0006 0.89918 8.10811E-05 5.4629 0.00069 2.88444 0.00036
7.693784483 0.0008 1.10792 9.72973E-05 6.03195 0.00076 3.36524 0.00042
9.509173793 0.00103 1.26848 0.00012 6.71482 0.00084 3.73494 0.00047
11.1516669 0.00127 1.50934 0.00014 7.51149 0.00093 4.21568 0.00053
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Tensile Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
12.18903048 0.0014 1.73413 0.00016 8.08054 0.00103 4.65931 0.0006
12.79416083 0.00149 2.03921 0.00019 8.64959 0.00111 5.10302 0.00066
13.65862993 0.00162 2.21583 0.00021 9.33246 0.00121 5.58369 0.00072
14.52310076 0.00174 2.47274 0.00023 9.8446 0.00129 5.99035 0.00078
15.30112476 0.00185 2.69754 0.00025 10.64128 0.00139 6.35998 0.00084
16.07914703 0.00196 2.93839 0.00028 11.21033 0.00147 6.84059 0.00091
17.37585366 0.00216 3.21135 0.0003 11.77938 0.00157 7.32119 0.00098
18.84545559 0.00237 3.42009 0.00033 12.51915 0.00168 7.76469 0.00106
20.22860655 0.00258 3.61277 0.00035 13.14511 0.0018 8.31916 0.00115
21.26597014 0.00274 3.80545 0.00037 13.65725 0.00187 8.68873 0.00121
22.3897831 0.00291 3.96602 0.00038 14.22631 0.00195 9.09526 0.00128
23.340694 0.00307 4.12659 0.0004 14.79536 0.00207 9.53883 0.00136
24.20516903 0.00321 4.39955 0.00043 15.47822 0.00218 9.94535 0.00143
24.98319131 0.00335 4.57618 0.00045 16.04727 0.00228 10.38885 0.0015
25.93410731 0.00349 4.7528 0.00047 16.67323 0.00239 10.72151 0.00156
26.97147931 0.00367 4.91337 0.00049 17.24228 0.00249 11.12797 0.00163
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Tensile Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
27.66304552 0.00379 5.08999 0.00051 17.86824 0.00259 11.4976 0.00169
28.35462014 0.0039 5.28268 0.00054 18.4942 0.0027 11.8302 0.00175
29.39198883 0.00409 5.55564 0.00057 18.89253 0.00279 12.23666 0.00183

5.84466 0.0006 19.5754 0.00288 12.64306 0.00191
6.08551 0.00064 20.31516 0.00299 13.01255 0.00198
6.35848 0.00067 20.88422 0.00309 13.34507 0.00205
6.6475 0.00071 21.73779 0.00324 13.56675 0.00209
6.8723 0.00074 22.53447 0.00336 13.82534 0.00215
7.08103 0.00077 23.16043 0.00349 14.12076 0.00222
7.33794 0.0008 23.90019 0.00361 14.49012 0.0023
7.61091 0.00084 24.35544 0.00368 14.82264 0.00237
7.86782 0.00088 24.92449 0.00379 15.11799 0.00244
8.15684 0.00092 25.32282 0.00386 15.33954 0.0025
8.4298 0.00096 25.83497 0.00397 15.56102 0.00256
8.68671 0.001 26.34712 0.00408 15.85624 0.00264
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Tensile Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain

8.92756 0.00103 26.80236 0.00419 16.15145 0.00273
9.18447 0.00107 27.2007 0.00426
9.48955 0.00112 27.48522 0.00432
9.7304 0.00116 28.11118 0.00446
9.9552 0.0012 28.39571 0.00453
10.13182 0.00124 29.42 0.00476
10.29239 0.00127
10.46901 0.00132
10.67775 0.00137
10.8062 0.00143
10.87043 0.00146178



Compressive stress-strain data

Table VI.: Compressive Stress (MPa) and Strain Data for various Graphites. Bratton (2009)

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
-0.674892069 -4.14013E-05 -0.31341 -3.04679E-05 -0.54383 0 -55.20001 -0.02097
-2.02467669 -0.00014 -1.0447 -9.14037E-05 -1.81275 -0.00014 -54.65454 -0.02053
-3.711907724 -0.00023 -2.08939 -0.00021 -4.16933 -0.00041 -53.67272 -0.01961
-5.736581103 -0.00029 -3.86538 -0.0004 -6.34464 -0.00069 -52.25453 -0.01852
-9.111042759 -0.00041 -5.43242 -0.00055 -7.97612 -0.00083 -51.05453 -0.0177
-11.13571945 -0.0005 -7.10394 -0.0007 -9.97015 -0.0011 -49.52727 -0.01672
-13.83528503 -0.0006 -8.87992 -0.00094 -11.60163 -0.00124 -48 -0.01575
-16.87230097 -0.00075 -10.76038 -0.00122 -13.95821 -0.00172 -46.36364 -0.01477
-20.58420497 -0.00091 -12.53636 -0.00149 -16.49606 -0.002 -45.16364 -0.01406
-23.9586611 -0.00108 -13.89447 -0.00174 -18.67137 -0.00234 -43.09091 -0.01303
-28.00801455 -0.0013 -15.35705 -0.00204 -20.6654 -0.00276 -41.12728 -0.012
-30.37013738 -0.00147 -17.34197 -0.00244 -22.8407 -0.00303 -39.27273 -0.01096
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Compressive Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
-33.40715586 -0.00164 -19.11795 -0.00289 -25.01601 -0.00345 -37.20002 -0.00998
-38.13139483 -0.00199 -21.31182 -0.00344 -27.37259 -0.00379 -35.23637 -0.00906
-43.53052938 -0.00238 -22.66992 -0.0039 -29.18534 -0.00414 -32.83637 -0.00803
-45.55520945 -0.00255 -24.23697 -0.00451 -31.17937 -0.00455 -31.30909 -0.00738
-48.92967069 -0.00284 -25.38614 -0.005 -33.53595 -0.0049 -29.45455 -0.00656
-53.31646352 -0.00319 -26.43083 -0.00555 -35.71126 -0.00531 -27.38183 -0.00586
-56.01603248 -0.00344 -27.37106 -0.00615 -37.52401 -0.00572 -25.3091 -0.00515
-59.053024 -0.00373 -28.6247 -0.00692 -39.88059 -0.00614 -23.56364 -0.00455
-62.76494476 -0.00412 -29.46045 -0.00759 -41.87462 -0.00648 -20.83636 -0.00379
-65.80195986 -0.00449 -30.08727 -0.00826 -44.04993 -0.0069 -18.54545 -0.0032
-69.17642103 -0.00489 -30.81856 -0.0089 -45.50013 -0.00738 -16.58182 -0.00276
-71.20109103 -0.00518 -31.34091 -0.00941 -46.76906 -0.00766 -12.76364 -0.00195
-73.90066676 -0.00555 -31.75879 -0.00996 -47.85672 -0.00793 -10.03636 -0.00146
-76.93769531 -0.00604 -32.17667 -0.01048 -49.48819 -0.00834 -8.07273 -0.00108
-79.97471041 -0.00654 -32.49007 -0.011 -51.11967 -0.00869 -6.32727 -0.00087
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Compressive Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain
-81.99938041 -0.00689 -32.80348 -0.01164 -53.29497 -0.00931 -4.25455 -0.00054
-84.36149648 -0.00739 -33.01242 -0.01222 -55.83283 -0.01014 -2.50909 -0.00027
-85.71128772 -0.00768 -33.01242 -0.01264 -58.00813 -0.01069 -0.21818 1.97986E-07
-87.39851159 -0.00803 -33.11689 -0.01295 -59.45834 -0.01124
-88.74830283 -0.00836 -61.27109 -0.01179
-90.43550648 -0.00876 -63.26512 -0.01248
-91.78531117 -0.00911 -64.35278 -0.0129
-92.46018317 -0.00929 -65.80298 -0.01331

-67.61573 -0.014
-68.88466 -0.01462
-70.69741 -0.01545
-72.14761 -0.01607
-73.23527 -0.01662
-74.5042 -0.01717
-75.41058 -0.01779
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Compressive Stress (MPa) and Strain Data for various Graphites. Bratton (2009) Continued

2114 AGOT G110 H451
Stress Strain Stress Strain Stress Strain Stress Strain

-76.49823 -0.01834
-77.58588 -0.01903
-78.8548 -0.01972
-79.94246 -0.02034
-80.66756 -0.0209
-81.57394 -0.02145
-82.48032 -0.02207
-83.02414 -0.02262
-83.56797 -0.02317
-84.11179 -0.02372
-85.01817 -0.02455
-85.562 -0.02524
-86.28709 -0.02593
-86.64965 -0.02648
-87.0122 -0.02697
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