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MODELING LIVER DISEASES USING HEPATIC CELL MICROARRAYS

ALEXANDER D. ROTH

ABSTRACT

Hepatocellular carcinoma (HCC) is an invasive and aggressive cancer of the liver that 

arises due to chronic cirrhosis. Research into understanding HCC has focused on two- 

dimensional (2D) and three-dimensional (3D) technologies to simulate the liver 

microenvironment and use animal models to model how HCC affects the rest of the body. 

3D hydrogel models are desired because they can mimic the transport behavior observed 

in vivo by structurally mimicking the extracellular matrix (ECM) without the ethical

concerns of animal models. However, hydrogels can be toxic to cells and require optimal 

procedures for appropriate handling. In this study, we created 3D models of liver diseases 

on high-throughput platforms. First, we optimized hydrogel attachment on micropillar 

chips by coating them with 0.01 w/v % PMA-OD in ethanol. Next, we optimized the 

protocol for encapsulation of viable Hep3B cells PuraMatrix peptide hydrogel, using a 

higher seeding density (6 * 106 cells/mL) and two post-print media washes. Then, we 

established the ability to transduce adenoviruses in situ in encapsulated cells and 

successfully demonstrated their dose-response behavior towards six compounds. In the 

second part, we scaled up to using the microwell chip platform and optimized the 

polymerization of oxidized methacrylated alginate (OMA) for Hep3B encapsulation. First, 

we plasma-treated microwell chips for 15 minutes at high RF to minimize bubbles. Then, 

we optimized micro-scale photopolymerization conditions at 45 % methacrylated OMA 

(OMA-45) and 2 w/v % OMA with 0.05 w/v % PI and reflective background under either 

low intensity, long duration (2.5 mW∕cm2 for 2 minutes) or high intensity, short duration 

(4.0 mW∕cm2, 30 seconds) light by testing cell viability at these conditions. Third, we used
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these OMA conditions to develop a high-throughput, real-time 3D cell migration assay on 

a newly engineered 384-pillar plate with sidewalls. We first developed a set of a protocols 

where out-of-focus cells are removed mean position of cells on a pillar are quantified. Next, 

we established a delay in growth factor release rate by co-encapsulating growth factors 

with OMA and methacrylated heparin sulfate sulfate (MH). Finally, we demonstrated 

collective cell migration occurred toward angiogenic growth factors at 6-10 μm∕day over 

two weeks. These results provide optimized chemistry between hydrogels and polystyrene, 

show effective hydrogel polymerization techniques for microscale tissue engineering, and 

yield several methods where scientists can model liver diseases in high-throughput.
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CHAPTER I

BACKGROUND AND MOTIVATION

1.1. Introduction

Liver disease affects about 30 million (or 1 in 10) Americans alone annually [1].

Included in this statistic are non-alcoholic fatty liver disease (NAFLD), hepatitis, drug- 

induced liver injury (DILI), cirrhosis, and liver cancer [1]. In addition, as sanitary 

conditions in parts of the country and world are still poor, some of the incidents for these 

diseases are on the rise. Unlike other cancers, liver cancer rates are increasing in the US 

[1,2]. Because of the presence of liver disease throughout the US and world, it becomes 

necessary to develop adequate models to understand these illnesses and develop 

compounds to combat them.

In the case of liver cancer, the most prevalent cancer of the liver is hepatocellular 

carcinoma (HCC). HCC is generally triggered by chronic cirrhosis, which itself is caused 

by previous injuries to the liver, including hepatitis and the presence of various toxins [3]. 

About 65% of national liver cancer cases and 75% of global liver cancer cases are attributed 

to this illness [4]. The increases seen in HCC seem to be increasing in regions where
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individuals do not have access to good hygiene or clean food [1,5]. This illness is the most 

common cause of death of individuals affected with cirrhosis, with estimates varying 

between 10-30% of individuals with cirrhosis eventually developing HCC [5]. HCC 

generally is associated with poor prognosis in the late stage of diagnosis, as tumors are 

highly invasive and have a great potential to metastasize locally and globally [3]. While 

there are certain therapeutics that are available to treat the illness, the therapies for HCC 

are often tied to the mechanisms that trigger the illness itself and are again generally only 

effective during early staging of the disease [3,6].

Many of the current technologies for understanding HCC and creating compounds 

to combat the illness relies on screens for in vitro hepatocyte cultures as a method to weed 

out drug candidates before clinical trials [7]. Subsequent follow-up with animal models are 

used to reduce the possible drug failure [8—10]. For developing treatments and modeling 

the illness, emphasis is put on the evolution of the tumor, looking at angiogenesis and 

metastasis in particular [4,11]. Unfortunately, these screens often have poor predictive 

value in assessing hepatotoxicity potential [12]. HCC is an illness that often takes on 

characteristics based on the individual diagnosed, so the cells and technologies used in the 

models should account for this individual variation. Thus, the goal of scientists and doctors

is to better understand the mechanisms for liver diseases and focus on individualized

treatment methods.

For understanding liver disease (and HCC in particular), there is a shift of 

researchers to investigate three-dimensional (3D) in vitro cell cultures. Two-dimensional 

(2D) cultures often simplify the models significantly, and lack any extracellular matrix 

(ECM) components, which play a major role in understanding diseases [13]. Meanwhile,
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in vivo models can give some insight into HCC, but ultimately animals are physiologically 

different enough from humans where they may not fully reflect all aspects of the disease 

[14]. Additionally, use of animals always contains some ethical issues and is expensive. 

3D in vitro models reconcile 2D in vitro models with in vivo models by replicating the

transport and mechanical properties seen in vivo while eliminating the need use of animal 

models [13]. Hydrogels are generally used in these 3D models, as they are ideal for 

replicating the tissue ECM properties [15].

In this introductory chapter, I will discuss the various mechanisms that contribute 

towards the development HCC. Next, I will highlight various models and techniques used 

in assessing HCC, focusing on distinguishing 2D in vitro cultures, 3D in vitro cultures, and 

in vivo models, and looking at particular techniques used in in vitro cultures. Finally, I will

look at materials used to in 3D in vitro studies, with particular emphasis on using various 

hydrogel materials to mimic the liver ECM.

1.2. Mechanisms of HCC Development

HCC is often caused by the development of a previous disease within the liver 

where the damaged tissue can eventually turn into cancer. Generally, these triggers can be 

manifested through exposure to liver toxins, such as alcohol/drugs, or viral insults, such as 

hepatitis. These diseases often trigger cirrhosis, which can eventually lead to HCC. 

However, other disease states, particularly ones that affect metabolism, may also trigger 

the development of HCC. The triggers and molecular mechanisms behind the development 

of HCC can be seen in Table 1. Additionally, because of the mutagenic nature associated 

with the main causes of HCC, affected individuals can contain multiple tumors, each with
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distinct markers. In this section, we intend to discuss the various mechanisms that can lead

to HCC, focusing on the pathways that lead to HCC over other forms of liver cancer.

Table 1. Mechanisms Associated with HCC

Cause for HCC Affected Pathways
Hepatitis B Virus (HBV) P53, Wnt∕β-catenin, pRB, miR-122
Hepatitis C Virus (HCV) P53, Wnt∕β-catenin

Aflatoxins P53, miR-122
Alcohol-Induced Liver Injury Wnt∕β-catenin

Diabetes P53

1.2.1. Hepatitis B and C Viruses (HBV and HCV)

Hepatitis is the most common cause of HCC, with about 80 percent of HCC 

individuals had hepatitis preceding the onset of HCC [16,17]. Of these cases, hepatitis B 

virus (HBV) is the most common form of the illness that gives way to HCC, though cases 

of hepatitis C virus (HCV) cases have also been reported [17 - 19]. Chronic viral hepatitis 

is said to trigger HCC both directly and indirectly. Most of the indirect contribution to HCC 

is from the development of cirrhosis. While both forms of hepatitis can be manifested 

acutely and initially cured, both viruses can eventually lead to the chronic version of the 

disease [20]. and it is in this state where individuals become significantly more susceptible 

to both cirrhosis and HCC. In HBV, this is particularly troublesome as young children are 

more susceptible to developing chronic hepatitis than older individuals, and chronic HBV 

is not easily treated [16,17]. While both forms of the virus play roles in the development

of HCC, the mechanisms associated with each are different. HBV is a double-stranded

DNA virus that can integrate into the host genome and induce hepatocarcinogenesis via 

promoting cell proliferation, affecting DNA repair, and inducing inflammatory damage
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[17,21]. HCV is a single stranded RNA virus that triggers host immune responses to cause 

inflammation but does not integrate with host DNA [22].

Both diseases can trigger HCC through multiple molecular mechanisms. Of all the 

causes for HCC, HBV has the potential to trigger more mechanisms than the others. These 

mechanisms include the Wnt∕β-catenin regulatory pathway [23], mutations on the p53 [24] 

or the tumor suppressor retinoblastoma (pRB) genes [5,23], complicating the mitogen- 

activated protein (MAP) kinase pathway [25], or affecting cytokine signaling [25,26]. 

Additionally, all of these pathways can act synergistically with expression of key cancer 

markers. The role of HBV in affecting these pathways involves the increased propensity 

for DNA methylation, histone modifications, and affecting the RNA interference

mechanisms that prevent the spread of cancer.

In the case of Wnt∕β-catenin, this pathway is important in regulating cell 

proliferation, cell differentiation, and cell migration [27,28]. This pathway can be

compromised via numerous mutations within the pathway, though most mutations that can 

progress to HCC directly affect β-catenin [23,27]. One thing to note about this pathway is 

that Wnt∕β-catenin dysregulation is not strictly linked to HCC, as other cancers have this 

pathway compromised, and individuals with type 2 diabetes may show an upregulation in

some isoforms of Wnt [3,28]. Both HBV and HCV have been linked with mutations to

Wnt∕β-catenin [17,23]. For β-catenin, mutations result in the increase of Wnt, linking to 

increased proliferation [28]. Mutations due to HBV and HCV in frizzled-7, a G protein 

coupled receptor (GPCR) involved in the Wnt pathways have also been found to be linked 

to increased susceptibility to HCC [29].
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In the case of the P53 pathway, often a single point mutation is enough to cause 

cancer, as inactivation of the tumor suppressor 53 (TP53) gene causing a decrease in 

apoptosis in the normal cell cycle, and general over-proliferation of cancer cells [24]. For 

HBV, this is due to a point mutation at the 249 codon [5,24]. However, mutations at codon

250 have been found to be in some cases of HCC as well [5].

In the pRB pathway, these set of genes act to suppress tumor formation by 

regulating the E2F family in cell cycle division and the activity of cyclin-dependent kinases 

(CDKs) [30]. pRB is reported to be tied to p53 as loss of pRB function results in loss of 

p53 function as well [23,30]. Mutations in the pRB pathway are specifically a mechanism 

of HBV only, with the pathways being most effected are inhibition of pl6 and 

overexpression of cyclin D1, which again promotes excessive cell growth [23].

MAP kinases play a significant role in cell proliferation, differentiation, adhesion,

and survival, as they receive signals from many of the tyrosine kinase receptors, including 

endothelial growth factor receptor (EGFR) and platelet-derived growth factor receptor 

(PDGFR) [25]. In the case of the MAP kinase pathway, both forms of hepatitis serve to 

upregulate this pathway, promoting cell proliferation and angiogenesis [3,25]. Unlike 

many of the other mechanisms for HCC discussed here, dysregulation of the MAP kinase 

pathway seems to be strictly a phenomenon related to hepatitis-induced HCC, though other 

cancers are also known to have levels of dysregulation associated with MAP kinase [23].

Mechanistically, issues related to the mutations in p53, pRB, and β-catenin are tied 

to the effect of DNA methylation by HBV or HCV, causing mutations in the various 

pathways leading to cancer [16,31]. The methylation sites result in the mutations described 

earlier, all of which result in uncontrolled cell growth [16]. Thus, the largest role of
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hepatitis in development of HCC stems from mutations in proteins that control the cell 

cycle.

This is not to say that the only mechanisms governing hepatitis-induced HCC rely 

to DNA methylation. Histones can be modified, which can also increase the likelihood of 

individuals developing HCC [31]. For example, HCV is known to increase the expression 

of protein phosphatase 2A (PP2A), which binds to protein arginine methyltransferase 1

(PRMT1) [17]. The result is a decrease in DNA desphosphorylation and histone 

methylation at sites which control hepatocellular carcinogenesis and DNA damage repair, 

though the latter is also important for viral replication [16]. For HBV, the generated viral 

protein HBx interacts with histone acetyltransferases in a way to promote their activity, 

which results in increased cellular replication [16].

Besides DNA methylation, HBV and HCV both have roles in affecting RNA 

interference and circulating miRNA, which deregulates the cell cycles. For HCV, miR- 

122, an antiproliferative microRNA can act to increase the odds of developing HCC as 

miR-122 serves to replication HCV [23,32]. On the other hand, this same microRNA acts 

against replication for HBV [32]. While generally suppressed levels of miR-122 have been 

shown to be indicative of HCC, that does not apply to individuals affected by HCV-induced 

hepatitis [32]. Other microRNAs that are associated with hepatitis include miR-141 which 

also serves to repression HBV replication, while miR-1 seems to increase HBV replication

[23,32].

1.2.2. Aflatoxins

Aflatoxins are a class of compounds characterized as secondary metabolites of the 

Aspergillus f!avus and Aspergillus paracitus molds [33]. Aflatoxins are generally found in
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contaminated harvest foods such as corn, rice, nuts and sorghum[33]. Aflatoxin metabolites 

are generally considered to be both poisonous and carcinogenic, with several versions of 

Aflatoxin considered to be strongly linked to the development of HCC [33].

One striking thing to note is how aflatoxins can also work synergistically with 

hepatitis B to manifest HCC. The incidence of HCC seems to be drastically increased when 

exposed to both aflatoxins and HBV [16,31]. Aflatoxins both stimulate the Wnt∕β-catenin 

as well as the p53 mechanisms of developing cancer [28,34]. For the p53 protein, it has 

been found that aflatoxin mutates the 249 codon, which limits the tumor suppressor gene

[35]. While this mutation is not absent in other cancers, aflatoxin’s metabolism in the liver

is cause for HCC to develop over other cancers [4,5].

Of all the potentially generated aflatoxins, the B1 variant (AFB 1) is the most potent, 

as nearly all animal tests have developed liver cancer once exposed to this toxin [24,35]. 

However, other variants of aflatoxin may also generate HCC. AFB1 may actually lead to 

HCC in utero and it has been shown that the most susceptible individuals to HCC are those 

exposed to HBV and aflatoxins at young ages [3,16]. The odds of an individual developing 

HCC in response to the presence of AFB1 can vary between 3:1 and 10:1 depending on the

health of the individual and other factors that can contribute to HCC [16,23].

The mechanisms for control of these various pathways involve DNA methylation 

and RNA interference. In the case of DNA methylation, the CYP450 generated metabolite, 

AFB 1-8,9, exo-epoxide adducts onto the guanine residues of DNA at the 249 codon in P53 

[35]. Aflatoxins may also inhibit the production of miR-122, which controls the replication 

of liver cells [32]. This makes miR-122 an interesting microRNA to exam for HCC, as
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promoting miR-122 levels could inhibit HCC due to aflatoxins, whereas it has the opposite 

effect of HCC induced by HCV [32].

1.2.3. Alcohol- and Drug-Induced Toxicity

Alcohol- and drug-induced toxicity can both contribute to the development of 

cirrhosis in the liver, and subsequently HCC. The major mechanism associated with 

toxicity developing into cancer involves the effects alcohol has on the Wnt∕β-catenin 

pathway [29,34]. Generally, β-catenin is the protein most likely to be mutated from 

alcohol- or drug-induced toxicity [16,36]. Additionally, it is believed that CYP2E1 

function is compromised via histone modifications in drug-induced toxicity [16]. This 

compromise in CYP2E1 function further inhibits drug metabolism and may affect

oxidative stress within the cell as well [37,38].

1.2.4. Other Concurrent Disease States

HCC has been shown to be caused by several other illnesses or conditions. An 

example of this is type II diabetes. As a metabolic disorder, diabetes mellitus has been 

shown to have some effects that may cause HCC, specifically inducing cirrhosis via 

affecting hormonal changes in the liver [39]. Obesity and hypertension has the effect to 

increase susceptibility to diabetes, but it may also cause HCC through separate mechanisms 

[11,39,40]. Additionally, hemochromatosis is another causative agent for HCC. The effect 

of iron-overload (hemochromatosis) has been shown to be associated with the p53 

mutations seen in aflatoxin-induced toxicity and HBV, targeting the methylation at the 249 

and 250 codons in p53 [31]. Hemochromatosis has several causes, including genetic 

mechanisms and previous disease states, including diabetes [41].
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1.2.5. Genetic and Environmental Factors

HCC does not need a pre-requisite of cirrhosis to occur, though most cases do 

follow that pattern. As HCC can occur with the presence of HBV in the system regardless 

of the concurrent conditions, any individuals that carry the virus are susceptible to 

developing cancer. African and Asian descent seem to be more at risk than other ethnic 

groups, though there is no gender predisposition to the disease [31]. Additionally, family 

history associated with HCC is shown to increase the susceptibility of an individual to 

develop the illness [16]. There are also several other carcinogens that may cause HCC. 

Generally, the carcinogens that promote cancer do so via mutations on the Ras family of 

proteins, which ultimately has the impact of increase MAP kinase protein signaling, 

specifically targeting MAP kinase kinase (MEK) 1 and 2 [25]. This has the impact of

decreasing apoptosis and increasing proliferation [25].

1.2.6. Diagnostic Measures

There are several biomarkers present that are commonly used for the detection of 

HCC. Specific microRNAs are generally as an indicator for the presence of this illness in 

individuals. However, there are other prognostic indicators. Testing for the levels of alpha- 

fetoprotein (AFP) and des-gamma carboxyprothrombin (DCP) are generally recommended 

by physicians before further examination of the tumor [42]. AFP is normally found in

elevated levels in pregnant women, playing a fetal analog or pre-cursor to serum albumin; 

but if it is detected at elevated levels, AFP can otherwise indicate the presence of benign 

or malignant germ cell tumors or other liver cancers in addition to HCC [19,43]. DCP is a 

variant of the coagulation protein prothrombin though it may also be detected in individuals 

with vitamin K deficiency [42]. Genetic profiling can also be used to diagnose HCC, as
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quantifying the levels of affected microRNAs or specific gene panels can be indicative of 

a positive diagnosis. Genetic panels can predict the illness over 90% of the time [42,44]. 

The presence of interleukins 2 and 15 (IL-2 and IL-15 respectively), regulatory T cells 

(Tregs), and tumor-associated macrophages (TAMs) are also positive diagnostic markers 

for HBV-induced HCC [45]. Additionally, CTs and MRIs are also used to observe the 

tumor and confirm diagnosis with the blood tests [36].

1.3 Models and Techniques for Understanding HCC

In order to better understand HCC, in vitro and in vivo models have been generated 

for examining the illness. Most important are the presence of appropriate cell types and the 

recapitulation of the tumor architecture. The tumor physiology is characterized by having 

a diverse set of cell types, including cancer-associated fibroblasts, cells promoting 

angiogenesis, and cancer immune cells [3]. In addition, tumor vasculature is more 

heterogeneous and less dense than healthy tissue, as blood flow and oxygen and nutrient 

transport is limited within the tumor [46]. Predictive tumor models are designed to mimic 

these features and understand the mechanisms behind cell proliferation and metastasis. In 

this section, we look to discuss the various models used to study HCC, and evaluate how 

they perform in terms of accurate representations of the illness.

1.3.1. 2D Cancer Migration Models

Because of the complexity of HCC, 2D cancer models focus on a limited number 

of variables when examining the illness. 2D models are best used when observing 

proliferation and some migration studies, as they can give insight into the effects of some 

potential chemoattractants. One such example uses wound healing assays, where artificial
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wounds are introduced into cellular monolayers, and the cancer cells migration in response 

to close the gap [47 49]. Similar models, such as the cell exclusion zone assay [50] or the 

fence assay [51], also create barriers in a monolayer of cells through which the cells must 

migrate. The cell exclusion zone assay utilizes seeding on two different sides of a removal 

barrier and watch cells close the gap, while a fence assay utilizes cells seeded inside of a 

removal insert and spread after the insert is removed. All of these migration assays are mid- 

throughput and can be used for real-time monitoring of migration. While there is ease 

associated with quantifying this type of behavior and chemical gradients can be induced, 

the 2D environment is still limited regarding nutrient transport and the interactions that can

occur between different cells [47,52].

Another method that can be used is the Boyden chamber model. Here, cells are 

seeded in a removable well with a porous membrane on the bottom surface while 

submerged in a second well containing media and any chemoattractants/repellants [47,48]. 

The pores are small enough to make sure cells simple do not fall through the membrane 

without a chemical gradient driving the movement, meaning cells will only pass through if 

the chemoattractant is strong enough [53,54]. If the pore is sufficiently small, cells will not 

pass through but instead adhere strongly to the bottom part of the top chamber. Both of the 

wound healing assay and the Boyden chamber have some moderate-throughput potential 

to test multiple factors affecting HCC metastasis. However, the design of the Boyden 

chamber makes it a better end-point assay for cancer cell migration, whereas other 2D 

migration assays are kinetic [47].

To overcome some of the limitations of 2D cell migration, scientists have 

introduced microfluidic devices. Here, capillary flow can assist with some movement of
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the cell, while chemoattractants or repellents can be added near the periphery of the 

capillary, allowing scientists to measure how much cells may deflect in movement in 

response to these cues [55,56]. Microfluidic devices provide some shear effects seen in 

vivo and are suitable for real-time tracking of cell movement, but they are relatively 

expensive to develop and their throughput is lower than some of the other 2D migration

models [55].

1.3.2. Spheroid Models

In generating spheroids, scientists, clinicians, and researchers can observe a round 

3D structure that is similar in architecture to normal tumor models. Generally, spheroids 

strictly consist of cells, though they occasionally may include ECM components, or they 

may secrete some ECM components themselves [57]. While spheroids do not have to be 

homogenous in cell composition, spheroids do have uniform cell seeding density when 

initially developed, which is not always the case when tumors are observed [58]. 

Additionally, because most spheroids do lack the ECM components, a large part of the 

interaction between cancer cells and their microenvironment is missing, with cell-cell 

interactions dominating the signaling occurring in these models [47]. It is also difficult to 

generate spheroids based on size, and in the case of co-culture spheroids, it is sometimes 

hard to predict how various cell types are arranged within the spheroid [59,60]. However, 

much like actual tumors, spheroid cultures do maintain the aspects of the cell density 

arrangement; namely, cells in the center of the spheroid tend to be both hypoxic, nutrient 

deficient, and necrotic, whereas cells closer to the spheroid periphery are more proliferative 

and have better exposure to nutrients and oxygen [47,61].
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There are several methods in which to create spheroid structures. Using hanging 

droplets within plates is one way to generate spheroids, as gravity forces cells to aggregate 

near the bottom of the droplet [62]. Depending on the size of the plate, several spheroids 

can be generated, with homogenous size distributions [63]. However, because these 

spheroids are generated in media or PBS, many of the architectural supports associated 

with 3D matrices and the ECM have been eliminated, unless cells are able to generate these 

components themselves [63,64]. Additionally, for more thorough assays, the spheroids 

need to be transferred to a different plate, which is very labor intensive and more 

susceptible to human error than other methods for generating spheroids [47]. Finally, the 

volumes associated with hanging droplets are quite low, making the droplet more 

susceptible to evaporation, which has a direct impact on the osmolarity of the solution, and 

hence, the viability of the cells in the spheroid [62].

Another common method for spheroid generation are using ultralow attachment 

plates. Seeding cells on non-adherent substrates such as agar can force cells to interact with 

each other and form spheroids [65]. Like the hanging droplet method, ultralow attachment 

plates can produce vast quantities of spheroids [66]. Spheroids generated this way are also 

easier for transfer than ones in hanging droplets, making them somewhat less labor 

intensive [65,66]. However, the spheroid suspensions generated this way tend to be 

heterogeneous in size, and they too suffer from issues where a lack of ECM components 

can make holding together the spheroid more difficult [65].

While hanging droplet and ultra-low attachment plates can generate large amounts 

of spheroids, addition of hydrogels or ECM components can strengthen the spheroid via 

promoting cell-cell and cell-ECM interactions typically seen in vivo. Here, cells are either
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seeded on top of or within hydrogels, and over time, cells will naturally aggregate if 

incubated and maintained with cell culture media [49]. Generation of spheroids this way 

relies on the mechanisms of the cells to aggregate and bond to the surrounding structures 

than reactions to physical stimuli [47,67]. Spheroids generated this way tend to have 

characteristics more similar to in vivo studies and these spheroids can also be generated in 

high-throughput [67]. Like ultra-low attachment plates, spheroids generated this way are 

typically heterogenous in size and structure and using hydrogels or ECM components can 

occasionally cause problems when staining or imaging cells [47,65].

Generation of spheroids can be subsequently used in either 2D or 3D migration 

assays. Much like the fence assay, spread of cells away from the spheroid can be measured 

in real time to characterize the cells [68]. Additionally, spheroids can be embedded or 

seeded on top of hydrogel matrices and directed to migrate in response to certain cues [49]. 

The problem with using spheroids this way is that while behavior of the spheroid can be 

tracked easily, individual cell movement is harder to track as compared to many of the 2D

models [68].

1.3.3. Sandwich Culture Assays

In sandwich culture, cells are seeded between two hydrogel layers, in which the 

hydrogel layers contain various chemoattractants or chemorepellants [69]. The cells 

respond to the chemoattractants or repellants either through increased growth or through 

migration in response to the signal [69,70]. Like spheroids, cells in sandwich culture exist

in 3D, so the mechanical and chemical interactions are closer to in vivo cultures. Like

spheroids, imaging can be difficult, although this is generally less of a problem as 

individual cells are easier to track once outside the spheroid [47,71]. Some of the cell-cell
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interactions are not completely reflected on initial seeding, as it takes time for the cells to 

organize themselves into 3D structures [70]. However, spheroids can also be seeded in 

sandwiches, though individual cell tracking is still difficult with sandwich spheroids [72]. 

Another drawback is that because the cells are seeded within hydrogels, there are other- 

potential barriers to delivery of nutrients and oxygen to the sandwiched cells, which can 

make sustained culture of sandwiched cells somewhat more difficult as compared to other 

HCC mimics [73]. Like the other cultures, there are relatively few limits to cells sourced 

for sandwich culture, which means explants and heterogenous tissues can be seeded [74].

1.3.4. Co-Culture Systems

Liver co-culture systems provide the advantage of giving a more complete profile 

of liver behavior in the presence of drugs. While the liver is primarily composed of 

hepatocytes, there are other cells present, including several different kinds of lymphocytes,

sinusoidal endothelial cells, and stellate cells [75]. In the case of cancer, co-cultures can

consist of any combination of the cancers cells with fibroblasts, immune cells, stem cells, 

and potentially other cell types present in the affected organ, including normal functioning 

cells (i.e., co-cultures of hepatocytes and HCC cells) [76,77]. In addition, the liver is 

organized based on proximity to blood vessels. Cells closer the portal vein are more 

involved in oxidative metabolism, β-oxidation of fatty acids, ureagenesis, and 

gluconeogensis, whereas cells further from major blood vessels are involved in 

biotransformation of drugs, glutamine synthesis, lipid synthesis, and glycolysis [78]. As a 

result, development of models for understanding liver disease is more complex While co- 

culture systems tend to be more complex than some of the other HCC systems discussed, 

they generally do incorporate 3D behavior and better recapitulation of the tumor
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microenvironment than other systems [79]. Additionally, co-cultures can be incorporated 

into some of the previously mentioned technologies, including 2D migration assays [80] 

and spheroid cultures [61].

Most HCC co-cultures focus on the use of HCC along with fibroblasts and immune 

cells, as these cells are generally necessary to best model the in vivo responses. While 

utilizing HCC is obvious, fibroblasts are important for secretion of ECM proteins such as 

laminin and fibronectin [81]. Laminin is especially important, as this component is 

generally present in greater quantities in HCC than in healthy livers [6,46,82]. Generally,

fibroblasts can be incorporated in 3D suspensions with HCC cells, regardless of the 

presence or absence of hydrogels [79]. Additionally, 2D co-cultures can also be achieved. 

By seeding fibroblasts first, several ECM components can be secreted, which allows for 

easy adherence of HCC cells onto various surfaces and can promote cell-ECM interactions 

that are normally absent in 2D culture [83].

Several kinds of immune cells have interactions with HCC and the ECM in ways 

that involve inflammation responses that can subsequently lead either the liver’s tolerance 

or adaptive immunity to certain signals. While KCs are native to the liver, other cells, 

including CD8+ T cells and regulatory T cells (Tregs) both play a role in the progression of 

HCC [45]. The relative presence of tumor-associated macrophages (TAMs) is also an 

indicator of the prognosis of potential outcomes for an individual affected with HCC [84]. 

HCC co-cultures with lymphocytes generally have the lymphocytes in suspension, 

responding to signals of static HCC cells, as the lymphocytes will act on the tumor [84].

Disadvantages of coculture platforms involve the complexity of the scaffolds to 

accurately mimic the in vivo liver environment, as well miniaturization being limited due

17



to the number of cells needed to create a full model of a tumor. The assay miniaturization 

is of particular importance, as this also impacts scalability and cost. Even integrating all 

cell types on a 96 well-plate platform is challenging because decreasing the number of cells 

limits interactions observed between different cell types. Thus, size of culture optimization 

should be considered when designing small scale liver tissues for toxicity testing.

1.3.5. In vivo Models

Animal models make up a large fraction of the studies used in scientific literature

for HCC [85]. While in vitro models can use excised tumors or immortalized cell lines such

as Hep3B, HepG2, or Huh7 cells, rat and mouse models make up most organisms used for 

in vivo studies [86]. Cells and the animals they are implanted into can vary significantly 

depending on the mechanism of HCC development studied. Many in vivo models use 

xenografts of HCC tumors by injecting HCC cells subcutaneously [84]. Generally, this 

procedure is less invasive and easier to monitor than orthotopic models, where HCC cells 

are surgically implanted within the liver. However, the orthotopic model is considered to 

be more accurate as the cells are residing at the site where the illness normally starts, so 

growth and metastasis of the tumor is more adequately reflected [85].

Scientists have successfully shown the treatment of various HCCs developed in 

vivo using the orthotopic model. The aforementioned Hep3B, HepG2, and Huh7 cell lines

have all been implanted into mice, with cell growth demonstrated to have occurred in these

various models, and treatment was found to be affected in some of them [85]. The

drawback to using in vivo models is that even with humanized mice, several functions 

cannot be completely replicated in a different species, and the size of mice also limits how 

large tumors can grow within the organism [60], making it much easier to treat the illness
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here than clinically. Additionally, because of the in vivo implementation of tumors, the 

imaging of the tumors is generally done with CT or MRI, which are more expensive and 

time consuming than the methods used to visualize in vitro models [4,11].

1.4. Materials to Mimic the 3D Liver Architecture

As discussed earlier, the best methods for understanding the behavior of the liver 

or other tissues in vitro rely on the development of materials that allow for cells to organize 

themselves into their native architecture. Most often, this relies on hydrogels or similar 

materials to recapitulation the 3D architecture seen in the tissues. Hydrogels are most 

commonly used as their high degree of water content allows the hydrogel to reflect some 

of the mechanical properties seen in tissues [87]. Here we discuss the various kinds of 

hydrogels as well as other 3D platforms that have been used to characterize HCC.

1.4.1. Alginate

Alginate is an anionic polysaccharide hydrogel derived from algae [88]. It forms a 

gel in the presence of strong divalent cations, which serve to crosslink the negatively 

charged hydroxyl groups [89]. Alginate was originally used medically to encapsulate 

pancreatic islet cells as a potential to treat patients with diabetes [89]. Since then, its use 

has expanded to other cell lines, including the study of hepatic cells [60]. The use of 

alginate hydrogels is popular as alginate is generally structurally stable and the 

polymerization mechanisms are relatively nontoxic [90]. However, because of it being 

derived from plant matter, alginate lacks many of the necessary functional groups for cell 

adherence [89]. Subsequently, this limits the amount of manipulation cells can have on 

their microenvironment and slows down any changes should they come.
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In order to bypass these issues, alginate can be modified with functional groups. 

Integrin-binding sites at RGD residues can be added within the hydrogel structure, which 

allows for better cell adherence [91]. Other peptide binding sequences have also been 

conjugated onto alginate to promote cell adhesion [91]. Additionally, co-encapsulation 

with mammalian derived hydrogels such as Matrigel can also improve cell-ECM 

interactions [92]. Alginate is generally best employed when emphasizing structure stability 

of the hydrogel with some level of co-encapsulation with somewhat more biocompatible 

polymers, such as modified polyethylene glycol (PEG), polycaprolactone (PCL), or 

polylactic acid (PLA) [91].

1.4.2. Collagen

Collagen is a structural protein found in many organs in the body, including the 

liver. Most of the liver’s structural protein mass consists of collagen I, though there is a 

noticeable amount of collagen IV in the liver as well [52]. Collagen can also be used as a 

biomimetic hydrogel via temperature-based polymerization [93 ]. The advantage to using 

collagen is that since it is a native protein, hepatocyte and hepatoma cells have favorable 

interactions with the protein, making it a suitable host for cell encapsulation and migration 

[72]. Collagen’s natural compatibility with liver cells has made it so that liver models 

mimic many of the key liver functions, including drug and glucose metabolism [94]. The 

disadvantage to using collagen as a hydrogel is because it is a native liver protein, it is more 

susceptible to degradation and ECM remodeling, which may or may not be desired in a 

given experiment [13]. Additionally, because of the temperature-controlled polymerization 

mechanism, cells must be kept at lower temperatures to prevent premature gelation, and 

this temperature cycling can have a deleterious effect on cells [95].
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1.4.3. Gelatin

Gelatin is another biologically derived hydrogel, composed of peptides and proteins 

following the hydrolysis of collagen in the connective tissue, skin, and bones of 

mammalian organisms [96]. Gelatin can be polymerized in a variety of different ways, 

including natural polymerization in sufficient concentrations in water [97]. However, 

addition of crosslinking agents or enzymatic polymerization using transaminases can 

improve hydrogel stability [98]. Because of the fact that gelatin is biologically derived and 

has multiple methods for polymerization, it is a popular hydrogel for cell encapsulation 

purposes. However, addition of a crosslinker always increases the chance for cytotoxicity 

and the use of enzymatic catalysis for polymerization often results in inconsistent 

crosslinking densities, which makes the hydrogel less tunable for desired properties [47].

Gelatin naturally contains many of the important functional groups necessary for 

cell adhesion to the ECM. While gelatin is a popular hydrogel for several different kinds 

of tissue engineering, methacroyl gelatin (GelMA) has seen increasing popularity for 

wound healing purposes [98]. Here, GelMA is modified with methacrylate groups, which 

allows for a photo-polymerization based mechanism of the hydrogel [99]. This serves to 

increase the stiffness of the hydrogel relative to gelatin and makes it somewhat more 

resistant to degradation while still allowing cells the ability to reshape the surrounding 

tissue [98]. However, the process for photopolymerization is also quite toxic, as radicals 

generated from the polymerization can generate ROS and cause oxidative damage [98,99]. 

1.4.4 Hyaluronic Acid

Hyaluronic acid (HA) is a glycosaminoglycan (GAG), a long polysaccharide chain 

containing a urea group in every other saccharide molecule [100]. It is found in connective
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and epithelial tissue throughout the body and serves as a structural molecule to anchor cells 

while also having numerous regulatory processes [100]. HA is degraded relatively easily, 

which makes it a suitable material for both structural stability and ECM remodeling 

[15,101]. The mechanism by which hyaluronic acid forms gels can depend on the 

modifications associated with the material [100,101]. This can be enzymatic 

polymerization, photopolymerization, or polymerization using a cross-linking agent like

glutaraldehyde. The drawbacks to using HA are, much like gelatin, related to the agents 

used for crosslinking more than compatibility issues with the hydrogel itself [100,102].

1.4.5. Fibrin

Fibrin is the natural product polymer formed during scar tissue formation when 

fibrinogen is polymerized by thrombin [96,103]. The same mechanism governs the

formation of this hydrogel. Because it is a naturally occurring hydrogel, the toxicity 

associated with fibrin is quite low, and it is easily compatible with multiple cell types [96]. 

The drawback with using fibrin is that it is arguably the most susceptible to degradation,

as cells have a natural mechanism to restructure the ECM around scar tissue [90].

Additionally, this hydrogel generally has weaker mechanical properties compared to other 

hydrogels, so it is best used in conjunction with other degradation-resistant hydrogels such 

as alginate or hyaluronic acid [104,105]. However, the ability for fibrin to be degraded and 

be biocompatible means cells have better abilities to reshape their microenvironment.

1.4.6. Peptide-Functionalized Materials

Cells can adhere to ECM proteins as a result of interactions between integrins and 

certain peptide motifs such as RGD sequences. While synthetic hydrogels have been used 

to serve as mimics of the in vivo ECM, biocompatibility issues pose a problem which
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affects cell viability, function, and the ability of the cell to reshape its environment. 

Modification of hydrogels to include the integrin-binding peptides can promote cell- 

adhesion and improve biocompatibility of many synthetic hydrogels [106]. As cells are 

adherent, they are also more likely to move and manipulate the environment in reaction to

various chemical cues.

Generally, the hydrogels that are peptide-functionalized include many of the 

polysaccharide-based hydrogels, including alginate, chitosan, and hyaluronic acid [107— 

109]. Fibrin, collagen, and derivatives of these hydrogels already have the functional sites 

necessary for cell adhesion. Additionally, several synthetic hydrogels are commercially 

available that contain peptide groups, including PuraMatrix, PGMatrix, and HydroMatrix 

[110]. Because of the use of peptide linkages, these matrices are more suited for soft-tissue 

models [110,111]. A disadvantage of using these hydrogels are the expenses associated 

with them [110]. While the other hydrogels can be obtained in bulk from natural sources, 

peptide hydrogels must be synthesized, and peptide functionalization of natural hydrogels 

incurs its own preparation costs that may be more expensive than other hydrogel

modifications.

1.4.7. Nanofibers

An alternative to using hydrogels or derived liver matrices for in vitro 3D cell

culture are nanofibers. Nanofibers are fibers with nanometer-sized diameter that may be 

synthesized from a variety of different functional materials, including polyvinyl alcohol 

(PVA), PCL, PLL, PEG, and others [112]. They are generally synthesized via

electrospinning or phase separation process. In both cases, fiber alignment can be random, 

or controlled depending on the application [113,114]. After fibers are synthesized, cells are
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seeded. While the fibers offer some of the structure advantages of hydrogels (namely, 

increased stiffness and homogeneity of structure), nanofibers are not necessarily degraded 

by the cells, which gives the cell little ability to shift the environment [115]. Fibers can be 

used in migration studies, particularly if they are aligned to promote directional movement

[116].

1.5. Significance and Aims of the Research

The goal of this study is to have a better understanding of various liver disease 

states by utilizing a comprehensive high-throughput platform. Initially, we intended to use 

this platform for analyzing the potential for an individual to be susceptible to drug induced 

liver injury (DILI). DILI refers to injuries from ADRs because of individual, non-dose-

dependent responses. The advantage of our system includes rapid generation of 

miniaturized liver tissue constructs in microarrays via bioprinting technology, which 

allows us to examine combinations of microenvironment conditions. Our system is capable 

of printing hydrogels onto small, microscope slide-sized micropillar/microwell chips

containing 532 individual tests, or onto larger 384-pillar plates that are paired with standard 

384-well plates. The microwell chip can be used as a vessel for a layer-by-layer printing 

approach for 3D cell culture. Alternatively, the microwell chip can contain media and be 

paired with the micropillar chip, which is used for culturing a small, but sizeable number 

of cells for individual assays. The 384-pillar plate with sidewalls offers a slightly larger 

scale test that pairs with a known, readily available platform, and the sidewalls on the 

platform can hold hydrogels in place as the plate changes between various media 

compositions in the 384 well plate. The basis of our work relies on the hypotheses that 1) 

three-dimensional (3D) hydrogel layers are a better mimic of the in vivo liver
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microenvironment than two-dimensional (2D) platforms or other 3D platforms, 2) layer-

by-layer printing of hydrogels can be used to create organized liver tissue organoids in 

vitro, and 3) liver cancer cells will migration through hydrogels in vitro towards potential

metastatic cues and that this migration can be quantified in 3D.

The most significant outcome of this study is the creation of miniaturized liver 

tissue constructs and an ability to accurately measure and quantify cell migration in situ. 

These results can be used to better understand metastasis, or any kind of cell migration to 

various chemical cues. Another potential outcome is the ability to control for genetic 

expression of key enzymes affected during certain liver disease states. While not all 

contributing factors towards DILI or liver cancer will be examined in this study, our 

platform can be used for future studies to examine those other factors.

Specific Aims: The specific aims (and subsequent chapter themes) are:

Aim 1: Encapsulate hepatic cells in hydrogels that can be used for high-throughput

drug screening and in situ adenoviral transduction. The goal of this work was to 

develop a platform where we could encapsulate Hep3B human hepatoma cell line in 

PuraMatrix that could provide the cells with a stable and non-toxic architecture while also 

being suitable for genetic modification using adenoviral transduction.

Aim 2: Optimize hepatic cell encapsulation conditions in a photopolymerizable

hydrogel for creating layered cell structures. While PuraMatrix is a suitable platform 

for adenoviral gene transduction, the protocol for cell printing and the hydrogel itself was 

toxic due to the removal of salts from printing solutions and acidity of PuraMatrix. 

Additionally, the micropillar plate platform was unsuitable for long-term multicellular
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tissue culture as the low volume of cells used during the print may not be enough for the 

encapsulated cells to develop an appropriate liver microenvironment seen in disease states. 

Thus, we decided to try new hydrogels for Hep3B cell encapsulation and find a more 

suitable platform for 3D cell culture. Here, we optimized the use of photopolymerizable 

oxymethacrylated alginate (OMA) for cell encapsulation for 3D cell culture in the 

microwell chip. OMA polymerizes in the presence of photoinitiator (PI) 2-Hydroxy-4'-(2-

hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) while exposed to near-UV light. 

Our desire to use this material is for layer-by-layer printing; a photopolymerizable hydrogel 

gives us more control over when we decide to initiate polymerization in situ.

Aim 3: Simulate migration of liver cancer cells in 3D and quantify their migration in 

situ in high throughput. After optimizing photopolymerizable OMA for use, we simulate 

hepatocellular carcinoma (HCC) by printing Hep3B cells in OMA and quantify Hep3B cell

migration in 3D in the presence of various chemoattractants. Our group designed a 384- 

pillar plate with sidewalls paired with a 384-well plate using the same assay protocol. This 

new modification allows for better nutrient transport to all cells while being usable for 

combinatorial studies. First, we tested the effects of leaching of various growth factors and 

ECM proteins known to exist in the microenvironment of HCC by encapsulating the 

compounds with OMA in the presence and absence of heparin sulfate. Next, we 

demonstrated the ability to image cells in situ by transducing Hep3B cells with lentiviruses 

containing fluorescent proteins. Finally, transduced cells migrated in 3D because of 

exposure to various growth factors and ECM proteins. This migration was quantified using 

a set of macros developed for ImageJ that filter out out-of-focus cells, quantify the intensity 

of the filtered cell images, then calculates the mean position of the cells on the pillar.
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CHAPTER II

POLYMER COATING ON A MICROPILLAR CHIP FOR ROBUST

ATTACHMENT OF PURAMATRIX PEPTIDE HYDROGEL FOR 3D HEPATIC

CELL CULTURE

2.1. Introduction

Recent advances in three-dimensional (3D) cell culture technologies demonstrate 

clear advantages over traditional two-dimensional (2D) cell cultures, which include cells 

in biomimetic 3D microenvironments, promoting cell-cell and cell-extracellular matrix

(ECM) interactions that are critical for many biological and physiological processes 

[78,117,118]. The transport of drugs and nutrients is vastly different between the two 

systems, resulting in some 2D cell culture systems that cannot accurately predict certain 

biological disease states [78,119,120]. Mimicking 3D microenvironments are crucial in

both modeling disease states with cell models and understanding how to treat these diseases

One way to mimic in vivo 3D cell structure is to use hydrogels as a scaffold for cell 

growth. Hydrogels can provide a mechanical and biochemical environment that is similar
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to in vivo cell-ECM interactions, promoting the formation of tissue-like structures [90]. 

Hydrogels might be biologically derived, completely synthetic, or somewhere in between 

the synthetic and biological extremes [87,96,102,121-123]. Hydrogels can be polymerized

in the presence of divalent ions (e.g., alginate), UV-light (methacrylated collagen), 

enzymes (fibrinogen), or changes in temperature and pH (Matrigel), all of which depend 

on the hydrogel being studied [124-127]. Many of the synthetic hydrogels use biological 

motifs found in the ECM to improve cell attachment, and thus, providing biocompatibility 

[96,121,123]. Nonetheless, large scale 3D-tissue culture in hydrogels is challenging for

high-throughput screening (HTS) of potential drug candidates due to cumbersome steps 

necessary for dispensing viscous hydrogels and changing growth media over time, 

difficulty in imaging 3D-cultured cells, limited diffusion of nutrients within a 3D construct,

and high costs of primary human cells.

To alleviate these issues, miniaturized 3D cell cultures in hydrogels have been 

investigated, including cellular microarrays [128- 130]. While microarray technologies

have existed for molecular detection, including nucleic acids [131-133] and proteins 

[134,135], cellular microarrays are relatively recent development [90,136]. Cells

suspended in hydrogels may be micropatterned onto various surfaces using 

photolithography [137-140], or they may be printed in mini-arrays on functionalized glass

slides and plastic chips using automatic liquid dispensation systems [129,130,136,141 ]. 

These bioprinted cells were cultured in 3D and subsequently exposed to various 

compounds and viruses for toxicity assessment [129,130,136]. For example, Kwon et. al.

and Lee et. al. have developed a micropillar/microwell chip system that can support 

miniaturized 3D cultures with 50 - 400 cells seeded on each micropillar for recapitulating
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certain in vivo behaviors and is small enough to provide sufficient nutrient transport to cells 

within hydrogels (Figure 1) [136,142,143]. Thus, the chip platform is great for assay

miniaturization, as biological assays can be performed at one hundredth the volume of the 

same test performed on a 96-well plate. Additionally, when using the microwell chip as a 

vessel for containing media and other reagents, it is easier to change growth media and 

modify culture conditions without disturbing the cells as is the case for well plate 

experiments.

PuraMatrix droplet 
containing Hep3B cells

Compounds

Figure 1. Schematic representation of the micropillar and microwell chip platform for use 
in Hep3B cell encapsulation in PuraMatrix and compound toxicity assessment.

In the present study, PuraMatrix was explored as a hydrogel matrix for cell 

encapsulation on the micropillar chip. PuraMatrix is a peptide hydrogel containing a 

repeating sequence of arginine-alanine-aspartic acid-alanine (RADA) residues. These 

residues are analogous to the arginine-glycine-aspartic acid (RGD) sequence found in the 

tissue ECM that cell-surface integrins bind to, which makes PuraMatrix an ideal synthetic
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hydrogel for recapitulating in vivo cell-ECM interactions. While the study of PuraMatrix

has been performed for use in neural cell lineages [111,144] and tissue vascularization 

[103], limited work has been performed with hepatic cell lineages for HTS of potential 

drug candidates. However, PuraMatrix has been used for tumor spheroid models in 

conjunction with other hydrogels [145], and it has been shown that PuraMatrix is positively 

associated with albumin synthesis compared to other hydrogels, a function specific to 

hepatocytes [115]. Additionally, PuraMatrix has been shown to improve the formation of 

bile canaliculi in 3D [146]. Another major motivation for using PuraMatrix is its peptide

structure, which makes encapsulated cells amenable to viral transduction. This is in 

contrast with alginate, which has been used successfully in the culture of hepatic cell lines 

on the micropillar/microwell chip in the past, but has not been successfully used for

adenoviral transduction [ 136,143].

The goal of the research was to establish the use of PuraMatrix as a viable hydrogel 

for hepatic cell culture in 3D on the micropillar chip and prove that control of protein 

expression via adenoviral transduction into hepatic cells is possible while cells are 

encapsulated in hydrogels. Surface chemistry was optimized with several amphiphilic 

polymers with maleic anhydride groups for robust spot attachment, and gelation 

mechanisms were compared by printing with various salts and ionic polymers. With 

optimized 3D cell culture conditions, Hep3B cells encapsulated in PuraMatrix and cultured 

in 3D were exposed to recombinant adenoviruses to demonstrate on-chip gene transduction. 

Finally, 3D-cultured Hep3B cells in PuraMatrix on the chip cells were tested with several 

model compounds at various concentrations, and IC50 values obtained were compared with 

literature in vivo and in vitro toxicity values.
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2.2. Materials and Methods

2.2.1. Materials

Polyethylene oxide-maleic anhydride copolymers including ACM 1510, ADM 1510, 

AEM1510, AKM0530, and AKM1510 used for surface coating of the micropillar chip 

were kindly supplied from Nippon Oil and Fat Co., Japan. Poly(maleic anhydride-alt-l-

octadecene) (PMA-OD) and poly(maleic anhydride-alt-1-tetradecene) (PMA-TD) were 

purchased from Sigma Aldrich. The chemical formulae of the compounds are given in 

Figure 2. PuraMatrix peptide hydrogel was obtained from BD Biosciences. Hep3B human 

hepatoma cell line and human embryonic kidney (HEK293) cells were obtained from

ATCC (catalog nos. HB-8064 and CRE-1573 respectively), as were all cell culture 

ingredients, including growth media, sera, and antibiotics. The micropillar and micro well 

chips were manufactured by MBD Korea (Suwon, South Korea). Model compounds 

including acetaminophen, lovastatin, rotenone, tamoxifen, menadione, and sodium citrate 

were obtained from Sigma Aldrich. Sucrose, Dulbecco’s phosphate-buffered saline (D- 

PBS), sodium alginate, BaCl2, NaCl, and CaCl2 were also obtained from Sigma Aldrich. 

Calcein AM and ethidium homodimer were obtained from ThermoFisher. 96-well plates 

and 0.01% (w∕v) poly-L-lysine (PLL) solution were obtained from ThermoFisher.

2.2.2. Cell culture

Hep3B cells at the passage number between 15-50 were cultured in T75 flasks with 

Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 10% (v∕v) fetal

bovine serum (FBS). For chip experiments, Hep3B cells were cultured in complete RPMI
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containing 10% (v∕v) FBS, 1% (v∕v) penicillin and streptomycin (P∕S), and 0.1% (v∕v) 

gentamycin. HEK293 cells at the passage number between 2-10 were cultured in eagle’s 

minimum essential medium (EMEM) with 10% (v∕v) FBS for the amplification of

recombinant adenoviruses and the measurement of viral titers.

Figure 2. Chemical structures of amphiphilic polymers used to coat the micropillar chip: 
(A) Polyethylene oxide-maleic anhydride copolymers including ACM 1510, ADM1510, 
AEM1510, AKM0530, and AKM1510 which are the names designated by the company 
manufacturing the polymers. (B) Poly(maleic anhydride-alt-1-octadecene) (PMA-OD) and 
poly(maleic anhydride-alt-l-tetradecene) (PMA-TD).

2.2.3. Microwell chip preparation

For all experiments, a 950 nL/microwell printing protocol was used to print growth 

media into the microwell chips. The microwell chips were always warmed 30-60 min in

humidified, air-tight chambers to 37oC in a Heracell 150i CO2 incubator from

ThermoFisher before stamping printed cell cultures. All printing protocols were performed

while keeping the chip deck at 7oC to avoid water evaporation.

2.2.4. Optimization of surface coating of the micropillar chip

Ethanol was used to dissolve all the polymers used for surface coating. All stock 

solutions contained 1% (w∕v) polymer. Hydrophobicity of the polymers was tested by
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attempting to dissolve 1% (w∕v) polymers in water under continuous stir for 24 h. In 

addition, 0.1% (w∕v) polymer solutions in ethanol were prepared for surface coating of the 

micropillar chips. A shallow-well staining plate was filled with 2 mL of 0.1% (w∕v) 

polymer solution in ethanol per chip, and then the micropillars briefly submerged in the 

plate. The micropillar chips were air dried for a minimum of 1 h before dispensing 40 nL

of 0.25% PuraMatrix onto the chips using a S+ microarray spotter (Samsung 

ElectroMechanics, Co. or SEMCO). Samples were dried again for a minimum of 4 h. 

Samples that were not printed with cells within 24 h were stored in the refrigerator for 

future use. Hep3B cells were printed at a concentration of 4 million cells/mL in 0.25% 

PuraMatrix containing 10% (w∕v) sucrose onto the micropillar chips using a 40 

nL/micropillar printing protocol with the S+ microarrayer. Following printing, Hep3B cells

were allowed to sit for 5 min before sandwiching (or “stamping”) with pre-warmed 

microwell chips containing complete RPMI. The sandwiched chips were kept in

humidified chambers at 37oC and 5% CO2 for 30 min before stamping with a fresh, pre- 

warmed microwell chip containing complete RPMI. Hep3B cells in PuraMatrix were then

incubated 48 h in the microwell chips containing complete RPMI before live-dead cell 

staining was performed. Hep3B cells were imaged with a multiband filter using an initial 

gain of 150. Both staining and imaging protocols are detailed near the end of the 

experimental section. In addition to cell viability, the formation of bubbles was 

characterized as a measure of air-liquid interfaces generated by the interaction of the 

polymer with the cell culture media. Spot detachment was also quantified by calculating 

the percentage of micropillars that did not maintain covalent attachment with the hydrogel.

2.2.5. Printing of PuraMatrix gelation agents
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Our optimized surface coating chemistry is provided in Figure 3. Micropillar chips

were coated with 0.01% (w∕v) PMA-OD in ethanol and dried under ambient air for 4 h. To

enhance affinity between PMA-OD coating and cell-PuraMatrix spots, 0.25% PuraMatrix 

in sterile deionized water was printed on the micropillar chips using the S+ microarrayer 

at 60 nL/micropillar and dried under ambient air for 4-24 h. 60 nL/micropillar of gelation

agents were printed onto the micropillar chips and dried under ambient air for 4 h. Potential 

gelation agents tested were sterile deionized water (control), Dulbecco’s phosphate- 

buffered saline (D-PBS), 0.01% alginate, 0.01% PLL, ¼ diluted saline solution (containing 

37.5 mM NaCl and 5 mM CaCl2), and 25 mM BaCl2. Microwell chips were printed with 

950 nL of complete RPMI per microwell using the S+ microarrayer, which were warmed

to 37oC in a 5% CO2 incubator 1 h before stamping with micropillar chips. To reduce the

viscosity of PuraMatrix, 1% (w∕v) stock of PuraMatrix was sonicated for 30-60 min before 

printing. Hep3B cells were trypsinized and centrifuged at 200 g for 4 min using Eppendorf

centrifuge 5702. The supernatant was discarded, the cell pellet was resuspended in RPMI 

1640 containing 10% FBS, and then the cell number was counted with an ORFLO Moxi Z

Mini Automated Cell Counter (MXZ000). Hep3B cell suspension was centrifuged again at 

200 g for 4 min. The supernatant was discarded, and the cell pellet was gently resuspended 

in 7 mL of warmed 10% sucrose. The cells were centrifuged again at 200 g for 5 min. The

supernatant sucrose was discarded, and Hep3B cells were resuspended in 10% sucrose to 

a final concentration of either 8 million or 12 million cells/mL. The resuspended cells were

combined with 20% sucrose and 1% PuraMatrix in a 2:1:1 ratio to create a final cell sample 

containing either 4 million or 6 million cells/mL in 0.25% PuraMatrix containing 10%

sucrose. 60 nL of these cell samples were printed onto each micropillar of the chip.
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Micropillar chips were stamped with microwell chips containing complete RPMI and

incubated at 37oC in a 5% CO2 incubator for 30 min. For the 6 million cells/mL micropillar

chips and some of the 4 million cells/mL micropillar chips, there was a second stamping 

and 30 min incubation with microwell chips containing complete RPMI, as this stamping

process serves to neutralize the highly acidic PuraMatrix. After the fιrst/second rinsing, 

Hep3B cells were stamped again with a microwell chip containing complete RPMI and

incubated at 37oC in a 5% CO2 incubator for 72 h. Micropillar chips were subsequently

stained with a dye solution containing 0.5 μM calcein and 0.5 μM ethidium homodimer in 

D-PBS. Cell images were acquired using a S+ scanner (SEMCO) under 4x magnification, 

multiband filter, and a gain of 150. Cell viability was quantified using the ColorSplit macro 

in ImageJ to quantify the green fluorescence intensity, and spot detachment was counted

Figure 3. Optimized surface chemistry for printing Hep3B cells encapsulated in 
PuraMatrix onto the micropillar chip.

2.2.6. Adenoviral expansion and titering
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Genes for green fluorescent protein (GFP) and red fluorescent protein (RFP) were 

coded into an adenoviral expression system using the protocols from Kwon et. al. to 

generate recombinant adenoviruses carrying genes for GFP (Ad-GFP) and RFP (Ad-RFP) 

[136]. HEK293 cells were used to expand the adenoviruses. T75 flasks were seeded at 50- 

70% confluency and grown for twenty-four hours in EMEM containing 10% FBS before

exposure to the viruses. Cells were incubated with the viruses and serum-free EMEM using 

a multiplicity of infection (MOI) of fifty for 24 h. The growth medium was removed and 

replaced with serum-free EMEM. When significant cytopathic effect (CPE) was observed 

(usually 2-4 days after the viral particles were removed), the infected HEK293 cells and 

media were removed from the flask. To lyse the cells and release the viral particles into the

media, cells underwent three rapid freeze-thaw cycles where cells were frozen at -80°C for

30 min, followed by thawing at 37oC for 10 min. The cells were centrifuged at 1500 g for

5 min at 4oC to remove the debris. The supernatant was placed in a centrifugal filter unit

with a molecular weight cut-off (MWCO) of 100,000 kDa and centrifuged at 4,000 g at

4oC for 45 min. Viral particles were washed twice with 10 mL bronchial epithelial cell

growth medium (BEGM) without additives using the centrifugal filter unit before being 

resuspended in 1 mL serum-free BEGM. To determine adenoviral titer, an end-point 

dilution assay was used, utilizing HEK293 cells to determine CPE [147]. Final Ad-GFP 

and Ad-RFP stock concentrations ranged between 108 and 10l0 PFU∕mL.

2.2.7. Adenoviral transduction in PuraMatrix

Hep3B cells were printed using the optimized gelation agent (water) as described 

earlier in the materials and methods section, using two media washes and a seeding density
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of 6 million cells/mL. After 24 h of incubation in complete RPMI, 950 nL of the

adenoviruses in complete RPMI were printed into microwell chips, and Hep3B cells were 

exposed to various MOI of the adenoviruses for 24 h. Following adenoviral exposure, the 

microwell chip was discarded and replaced with a microwell chip containing fresh 

complete RPMI. The micropillar chips were incubated for additional 48 h before being 

dried under ambient air in a dark environment for another 24 h. Fluorescent cell images 

were obtained with the S+ scanner using a multiband filter, and individual green and orange 

filters at 4x magnification. A gain of 100 was used to examine fluorescence.

2.2.8. Drug toxicity assessment

Hep3B cells were printed at the optimum condition described in the adenoviral 

transduction procedure. After 24 h of incubation, six model compounds were printed into 

microwell chips at six dosages per compound. Tested compounds include acetaminophen 

(2.10 - 2125 μM), lovastatin (0.03 - 29.5 μM), rotenone (0.03 - 29.5 μM), tamoxifen (0.03 

- 29.5 μM), menadione (0.04 - 44.3 μM), and sodium citrate (1.38 - 1417 μM). Compounds

were four-fold serially diluted in complete RPMI starting with the highest concentration of 

a tested compound to develop dose-response curves. Following 48 h of Hep3B cell 

exposure to the compounds, the cells were stained and imaged for viability as described in

Section 2.9.

2.2.9. Live-dead ceil staining and image acquisition

Micropillar chips were rinsed via submersion in 5.5 mL of D-PBS in a deep-well

staining plate for 5 min twice. Any excess D-PBS solution from the chip was drained by 

tilting the chip at an angle of 45° and removing the remaining solution from the side of the
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chip with a paper towel. A dye solution containing 0.5 μM calcein and 0.5 μM ethidium 

homodimer in D-PBS was used for live-dead cell staining. Hep3B cells were stained in a 

shallow-well staining plate in the dark using 2 mF of the dye solution per well for 1 h. The 

cells were then rinsed with 5.5 mL of D-PBS in the deep-well staining plate for 15 min

twice. Following the last wash, the excess water was drained from the chip and the cells 

were left to dιy overnight in the dark before imaging with the S+ scanner. Cell images were 

acquired using the S+ scanner under 4x magnification, multiband filter, and a gain of 150.

2.2.10. Analysis of cell images

All images were separated for analysis based on color using the ImageJ plugin in 

“ColorSplit”, which splits the colors of individual images into distinct red, green, and blue 

emission spectra. Each image underwent a basic background subtraction, followed by 

thresholding using the moments method [148]. Finally, the total fluorescence in the image 

was quantified using an integrated density function.

2.2.11. Statistical analysis

Fluorescence intensities obtained from Hep3B cells exposed to media alone 

(control) and compounds were plotted as a function of dosages using S+ chip analysis 

software to generate dose response curves and calculate IC50 values [141]. In addition, 

average, standard deviation (SD), and standard error mean (SEM) of sample fluorescence 

were calculated for analysis of variance (ANOVA) using GraphPad Prism 4. Samples 

exposed to various compounds underwent dose-response curve plotting using the S+ chip 

analysis software.
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2.3. Results

2.3.1. Optimization of polymer coating on the micropillar chip for PuraMatrix attachment

The amphiphilic polymers chosen for surface coating of the micropillar chip

include maleic anhydride analogs. The carboxylic groups from hydrolyzed maleic 

anhydride may have ionic interactions with the positively charged arginine residues on 

PuraMatrix, while the main alkyl and ethylene/propylene oxide chains may have 

hydrophobic interactions with the micropillar chip made of polystyrene (Figure 2). This 

results in a situation where these polymers can anchor PuraMatrix onto the surface of the 

micropillar chip. Additionally, while PuraMatrix contains amine functional groups, these

polymers can conjugate to any hydrogel containing amine functional groups, or cross- 

linking molecules containing amine functional groups such as poly-L-lysine.

The results of the polymer coating experiment on micropillar chips are summarized 

in Table 2. It was found that six out of the seven tested polymers were soluble in ethanol. 

The one that was insoluble in ethanol, AKM1510, was also insoluble in water; this polymer 

was subsequently excluded for further surface coating experiments. Of the six remaining 

polymers, three dissolved in water (ADM1510, AEM1510, and AKM0530), while three 

formed colloidal suspensions (ACM1510, PMA-OD, and PMA-TD) at a 0.1 % (weight per

volume, or w/v) concentration. The initial polymer coating condition at 0.1% (w/v) proved 

to be too toxic to Hep3B cells presumably due to polymer leaching so that the concentration 

was diluted to 0.01% (w∕v) to minimize basal toxicity.

Table 2. Polymers used for coating the micropillar chip made of polystyrene.
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Polymers 
used for 
coating

Length 
of chains

a

EO/AO
b (%)

Solubility 
in ethanol

Solubility 
in water

Bubble
formation

Spot
detachment

(%)

ACM1510 m = 26 
k= 10 20 + c - ++ 1 ±0.5d

ADM1510 m = 27 
k= 10 30 + + + 13 ±5

AEM1510 m = 28 
k= 10 40 + + + 19 ± 12

AKM0530 m= 10 
k = 30 100 + + - 12± 15

AKM1510 m = 33 
k= 10 100 - - N/A N/A

PMA-OD n = 16 N/A + — — 0
PMA-TD n= 12 N/A + — + 0

No coating N/A N/A N/A N/A - 25 ± 16
a Chains refer to the number of repeating units in the structures described in Fig 2.

b Ethylene oxide (EO), alkylene oxide (AO), propylene oxide (PO). AO = EO + PO. For 
where these oxides are in the polymer, see Fig 2.

c “++” denotes the aspect was greatly observed above the normal, “+” denotes the aspect 
was somewhat observed, and denotes that the aspect was not observed. 

d “±” denotes standard deviation (SD)

For cell-based assays on the micropillar chip, bubble formation and spot 

detachment were tested. Air bubbles entrapped between the hydrogel spot on the 

micropillar chip and the growth media in the microwell chip imply that the surface of

polymer coating may not be uniform, or a polymer may be unsuitable for coating. With 

excess air bubbles, cells encapsulated in hydrogels may experience nutrient deficiency and 

could potentially dry out. In addition, robust spot attachment on the micropillar chip is 

critical for 3D cell culture and imaging. Uniform surface coating of a polymer and the 

affinity of a bottom layer between the PuraMatrix spot and the polymer-coated surface of 

the micropillar chip play a significant role.
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When examining the chips, bubble formation was only absent in the cases of 

AKM0530 and PMA-OD, while excess bubbles were observed with ACM1510 coating.

This result indicates that there is no correlation between bubble formation and the

hydrophobicity of the coating polymers or their alkyl/alkylene oxide chain lengths. We 

suspect bubble formation occurs due to the presence of dissolved O2 in the media that could 

collect at the surface of the micropillar chips though we could not tie this to a particular 

property associated with any of the dissolved polymers.

When spot detachment was calculated, it was found that PuraMatrix detached more 

readily with hydrophilic polymer coating over hydrophobic polymer coating. We 

hypothesize that this detachment was due to relatively high solubility of the hydrophilic 

polymers in growth media, leading to weak interactions between PuraMatrix and the 

surface of the micropillar chip. In contrast with the hydrophilic polymers, the hydrophobic 

polymers will be remained intact on the surface of the micropillar chip for interactions with 

PuraMatrix. In the case of the no-surface treatment control, we found that spot attachment 

was reduced although bubble formation was not an issue. Overall, PMA-OD found to be 

the best coating with PuraMatrix due to robust spot attachment and no bubble formation. 

Therefore, all subsequent experiments were conducted on the micropillar chip coated with 

0.01% (w∕v) PMA-OD (Figure 3).

2.3.2. Salts and ionic polymers for gelation of PuraMatrix and enhanced spot attachment

Tests were performed to determine if there are additional salts or ionic polymers 

necessary to ensure robust spot attachment immediately after cell printing in PuraMatrix. 

The results of using the various salts and ionic polymers as gelation mechanisms are
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summarized in Figure 4. In general, salts in growth media are used as a gelation agent for 

PuraMatrix as they facilitate the self-assembly of the hydrogel, resulting in a β-sheet type 

structure [149,150]. The bonds that hold the hydrogel together include ionic interactions 

between the aspartic acid and arginine residues, hydrophobic interactions between the 

alanine residues, and hydrogen bonding associated with the β-sheet type structure [151— 

154]. Significant spot detachment was only observed when D-PBS without Ca2+ and Mg2+ 

was printed on 0.01% (w∕v) PMA-OD coating to assist PuraMatrix gelation (Figure 4B). It 

is hard to deduce why D-PBS was so unfavorable for PuraMatrix spot attachment given 

that the diluted saline and BaCl2 solutions showed high spot attachment levels. Perhaps, 

excess salt crystals formed on the surface of the micropillar chip due to high concentration 

of NaCl (137 mM) in D-PBS prohibit robust attachment of PuraMatrix droplets on the 

surface. Interestingly, PuraMatrix droplets were robustly attached on the surface of the 

micropillar chip without any salts and ionic polymers added, which indicate that salts in 

growth media are sufficient to form PuraMatrix gelation, and PuraMatrix spots printed are 

adherent to PMA-OD coating.

Day 0 Day 1 Day 2 Day 3

A
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106 cells/mL, one wash 

106 cells/mL, two washes 
106 cells/mL, two washes

B C

Figure 4. (A) Bright-field microscopic images of Hep3B cells in PuraMatrix printed on 
the micropillar chip and cultured over time in combination with the microwell chip. The 
scale bar is 200 μm. (B) Detachment of PuraMatrix droplets containing Hep3B cells (60 
nL/spot at 6 million cells/mL) as a function of salts and ionic polymers used for PuraMatrix 
gelation after two media washes. (C) Hep3B cell viability as a function of salts and ionic 
polymers used at different cell seeding and wash conditions. Error bars represent SEMs, n 
= 72.

Hep3B cell viability was measured on the salt and ionic polymer layer at different 

cell seeding density and media wash conditions (Figure 4C). Overall, Hep3B cells were 

viable within PuraMatrix, and cell viability was somewhat reduced in the presence of 25 

mM BaCl2 and 0.01% (w∕v) PLL, but not significantly in either. As PuraMatrix is acidic, 

we decided to test the effects of additional growth media rinsing in the microwell chip and 

high cell seeding density. Briefly, the mixture of PuraMatrix and Hep3B cells was

prepared by rinsing the Hep3B cell pellet with sucrose, centrifuging the cell-sucrose 

mixture, and then resuspending the cell pellet in the mixture of PuraMatrix-sucrose at a 

seeding density of 4 or 6 million cells/mL. To further neutralize acids in PuraMatrix, 

freshly printed Hep3B cells on the micropillar chip were rinsed with an additional 

microwell chip containing fresh growth media 30 min after cell printing. Overall,
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increasing from one to two media washes increased Hep3B cell viability as described in 

manufacturer’s instruction for 96-well plate cultures. In addition, we noticed that additional 

sucrose rinsing to remove salts in growth media can disturb cell membrane integrity, 

leading to low cell viability. Therefore, sucrose rinsing was performed once very gently 

without vigorous pipetting. Finally, cell seeding density greatly affected the viability of 

Hep3B cells in PuraMatrix on the chip. Increasing cell seeding density from 4 to 6 million

cells/mL resulted in higher cell viability and increased reproducibility. The biggest 

contributors towards improving cell viability involved increasing the number of media 

washes and the cell seeding density.

Since additional salts and ionic polymers did not significantly enhance spot 

attachment and cell viability, we decided to eliminate this step. Therefore, all subsequent 

experiments were conducted on the 0.01% (w∕v) PMA-OD-coated micropillar chip with 

60 nL of 6 million Hep3B cells/mL (360 cells seeded per micropillar) after two media

washes. Hep3B cells in PuraMatrix formed 3D spheroid structure over time in this 

condition (Figure 4A).

2.3.3. Adenoviral transductions

With the optimized Hep3B cell culture condition in PuraMatrix on the chip,

adenoviral transduction was performed in the presence of recombinant adenoviruses 

carrying genes for green fluorescent protein (Ad-GFP) and red fluorescent protein (Ad- 

RFP), and the results are shown in Figure 5. Adenoviral transduction is important as a 

method to efficiently deliver genes such as metabolizing enzyme genes and control protein 

expression in vitro, as to develop predictive cell models for testing the toxicity of
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compounds [136]. However, adenoviral gene delivery is often difficult in 3D systems due 

to strong interactions of virus particles with a hydrogel matrix and diffusion issues into 3D 

constructs. Unlike alginate, PuraMatrix successfully facilitated adenoviral gene 

transduction on 3D-cultured Hep3B cells as demonstrated with individual Ad-GFP and Ad- 

RFP (Figure 5). Hep3B cells transduced with both Ad-GFP and Ad-RFP exhibited a 

yellow-orange color, indicating that both green and red fluorescent proteins were 

simultaneously expressed and detected by a multiband filter. Analysis of fluorescence 

intensity at different MOI showed that both GFP and RFP exhibited dose-dependent 

fluorescence intensity changes, with the exception that the 10 MOI Ad-RFP showed 

slightly reduced fluorescence compared to the 5 MOI Ad-RFP alone. This may be caused 

by red fluorescence generally being weaker than green fluorescence, particularly when 

cells have been infected with both viruses and are exhibiting yellow fluorescence.

A
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Infection Condition ■ Green Fluorescence
■ Red Fluorescence

B

Figure 5. Adenoviruses transduced into Hep3B cells encapsulated in PuraMatrix on the 
micropillar chip. A) From left to right, images showing transduction in the presence of no 
virus, 5 MOI Ad-GFP, 20 MOI Ad-GFP, 10 MOI Ad-GFP + 10 MOI Ad-RFP, 5 MOI Ad- 
RFP, and 20 MOI Ad-RFP. B) Corresponding fluorescence intensity measurements 
observed on the micropillar chip. Error bars represent SEMs, n = 72.

2.3.4. Drug toxicity assays

Six model compounds were tested on 3D-cultured Hep3B cells in PuraMatrix to 

demonstrate the capability of the chip platform for rapid toxicity assessment (Figure 6). 

The IC50 data from 3D-cultured Hep3B cells on the chip were compared with the in vitro 

IC50 data from HepG2 cell monolayers in 2D, IC50 values from human hepatocytes, in vivo 

human Cmax values, and iu vivo LD50 data from mice exposed orally to these compounds 

(Table 3). The iu vivo data were sourced from Sigma for acetaminophen, lovastatin, 

Cayman Chemicals for rotenone and tamoxifen, Applichem for menadione, and Sagent 

Pharmaceuticals for sodium citrate. Acetaminophen and sodium citrate were found to be
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non-toxic for the range of compound concentrations tested, which is consistent with 

previous experiments in 2D using the micropillar chips [136], and with other previously

cited literature values from 2D experiments [152-155]. All drug concentrations tested had 

IC50 values within one order of magnitude of in vitro toxicity data, with Hep3B cells 

encapsulated in PuraMatrix exhibiting normal dose-response type behavior, with increased 

concentrations of compounds reducing cell viability and the middle range of concentrations 

producing a more dramatic shift in cell viability. These results point towards the ability of 

Hep3B cells encapsulated in PuraMatrix to be used to assess potential drug toxicity in the

liver.

Table 3. Comparison of IC50 and LD50 values of the model compounds.

Compound

3D Hep3B
IC from

50
the chip 

(μM)

2D HepG2 IC 
r 50

from literature 
(μM)

Human
Hepatocyte IC50 
from literature 

(μM)

Cmax from 
literature 

(μM)

Mouse oral
LD from

50
MSDS
(mg∕kg)

Acetaminophen >2100 630 (Neutral red 
assay) [154]

28200 (MTT) 
[156] 130 [157,158] 338

Lovastatin 23 20 ±3.7 (MTT) 
[159]

96 (CYP3A4 
activity) [160]

0.01
[157,158] >1000

Rotenone 2.4 0.5 ± 0.1 (Fluo-4 
AM) [155]

1.0 (CellTiterGlo) 
[161]

50
[155,157,158] 2.8

Tamoxifen 4.3 60 ± 5.9 (Fluo-4 
AM) [155]

21.5-98.4
(CellTiterGlo)

[162]

0.4
[155,157,158] 2200

Menadione 1.2 13 (Luc-CEE) 
[163]

4.2 (TMRM) 
[164]

5
[157,158,165] 500

Sodium Citrate >1400 >1000 (Fluo-4 
AM) [155]

>1000 (Hoechst) 
[166]

N/A
[155,157] 5000
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Acetaminophen Rotenone Menadione

Concentration [∪M] Concentration [uM] Concentration [uM]

B

Figure 6. (A) Representative image of Hep3B cells encapsulated in PuraMatrix treated 
with menadione (low dosage: 43 nM, high dosage: 44.3 μM). (B) Dose response curves of 
Hep3B cells exposed to the model compounds while encapsulated in PuraMatrix on the 
micropillar chip, n = 12.
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2.4. Discussion

The goal of this research was to design a chip platform containing hepatic cells in 

a 3D biomimetic microenvironment that can be suited for rapid assessment of potential 

drug candidates and controlled expression of genes via viral transduction. PuraMatrix was 

selected as an analog for cellular ECMs as the peptide structure is used for anchoring sites 

of the cellular integrins to attach [111,144]. Generally, PuraMatrix has been used for 

applications in neural tissue engineering, as the hydrogel has mechanical properties similar 

to that of other hydrogels used for neural ECM substitutes [111]. PuraMatrix also forms

fibrous strands similar to that of the tracks found in the white matter of the brain [111].

While the liver does not necessarily contain the exact architecture of these tracks, integrins 

are important for cells to adhere to the ECM in any tissue or organ.

Initially, surface chemistry needed to be optimized for PuraMatrix attachment onto 

the micropillar chip. This part was of particular importance as a good attachment serves to 

provide numerous replicates for experiments, making the micropillar chip a suitable 

platform for cell culture and imaging. Additionally, surface chemistry developed may be 

applied towards hydrogels other than PuraMatrix. In particular, coating the surface of the 

micropillar chip with 0.01% (w∕v) PMA-OD in ethanol creates a favorable interaction 

between the micropillars and the amine-reactive polymers and hydrogels as now the 

micropillar chip has been functionalized with amine-reactive maleic anhydride groups, 

while there is an anchor formed via the hydrophobic interactions between the micropillar 

chip made of polystyrene and the alkyl side chains from PMA-OD. Since spot detachment 

was positively correlated with hydrophobicity, this makes PMA-OD a good choice for 

ensuring the robustness of the surface chemistry. Ultimately, PMA-OD was a better choice
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than ACM 1510 or PMA-TD because of the lack of bubbles formed when using PMA-OD, 

which means that PMA-OD also does not impede the ability of cells in hydrogels to come 

into contact with media, creating an environment ideal for microscale 3D cell culture.

As another part of this study, it was necessary to observe if printing salts and ionic 

polymers on the surface of the micropillars will result in improved attachment of 

PuraMatrix. PuraMatrix forms a gel in the presence of salts, which promotes ionic 

interactions between arginine and aspartic acid; thus, Hep3B cells suspended in PuraMatrix 

must be pretreated with 10% (w∕v) sucrose which is both isotonic and non-ionic. It was 

initially hypothesized that printing salts would hasten the gelation process once Hep3B 

cells in PuraMatrix were printed on the micropillar chip. In addition, a pre-printing step of

diluted PuraMatrix was used to provide high affinity to the PMA-OD-coated micropillars 

for which the cell-laden PuraMatrix may attach. The results showed that printing of the 

salts and ionic polymers seems to be unnecessary as a method for improving surface 

attachment. In the case of D-PBS, the printing of high concentrations of salts significantly 

increased the detachment of PuraMatrix spots, and thus decreased the number of spots that 

could be analyzed. The results indicate that salts in growth media are sufficient for gelation, 

and PuraMatrix gelation prior to immersion in growth media is unnecessary presumably 

due to high affinity of the PuraMatrix bottom layer.

More importantly, PuraMatrix exists at an acidic pH of 2-3, which is toxic to Hep3B 

cells and needs to be neutralized for 3D cell culture. This is supported by two results: 1) 

neutralizing PuraMatrix with two media washes provided more consistent, highly viable 

cells and 2) increasing the cell density from 4 million cells/mL to 6 million cells/mL

effectively increased the exhibited green fluorescence intensity (and thus, the amount of
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live cells) and decreased in spot-to-spot variation. Both results were independent of the 

salts and ionic polymers used to initiate gelation. While the 3D cell culture on the 

micropillar chip focused on optimization of gelation conditions for PuraMatrix, previous 

experimental protocols utilized PBS [103,149] or culture media [111,149] to initiate

gelation. The results of the experiments performed on the micropillar chip indicate that D- 

PBS is not a suitable gelation agent for PuraMatrix for this scaffold, indicating the 

importance of using divalent cations as supposed to monovalent cations for improved 

surface attachment and gelation of PuraMatrix.

The major drawback of using PuraMatrix is that the preparation for cell printing 

relies on several steps that could be toxic and time-sensitive. This may make PuraMatrix 

unsuitable to be used for cell types that may be averse to these harsh conditions. It because 

of the low pH of PuraMatrix that it was necessary to subsequently increase cell seeding 

density in the spots and wash each chip twice with excess growth media to neutralize the 

pH of PuraMatrix. While these steps did make results for subsequent experiments more 

consistent, and improve general culture conditions, Hep3B cell growth seems to be 

generally less than that experienced in other hydrogel cultures [143]. This is particularly 

apparent with less spheroid formation, a general indicator that Hep3B cells are thriving in

3D.

The major advantage towards using PuraMatrix is the fact that it can be used to 

encapsulate cells while having minimal interactions with viral capsids, allowing for 

controlling the expression levels of key enzymes [136,167] Adenoviruses were designed 

for expansion in HEK293 cells as an expression vector due to their relatively low 

pathogenicity and their expression is transient in nature [136,143]. The results conclusively
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show the ability for Hep3B cells to be infected with adenoviruses while encapsulated in 

PuraMatrix. Additionally, the S+ scanner imaging system can distinguish Hep3B cells 

expressing GFP and RFP, while the cells exhibited MOI-dependent infection capability. 

Although Hep3B cells in PuraMatrix on the chip were used for infection with adenoviruses 

carrying genes for GFP and RFP, our approach could be further expanded to include 

various other viruses, allowing for control of genetic expression of enzymes and proteins 

important in drug discovery.

After successful adenoviral transduction, adverse drug responses were monitored 

via Hep3B cell exposure to six model compounds at different concentrations and measured

their relative toxicities. Results showed that the IC50 values obtained from 3D-cultured

Hep3B cells in PuraMatrix were similar to those obtained from HepG2 cells in 2D for four

out of six compounds yet not quite perfectly aligned with the toxicity values observed from 

in vivo animal data obtained from the chemical manufacturers [156,159,163]. Additionally,

there are differences between Cmax literature values and the calculated IC50 values for

Hep3B in PuraMatrix [ 155,157,158]. These variations can be attributed to the nature of 

metabolism and clearance being heavily dependent on the genetic makeup of drug 

metabolizing enzymes (DMEs) and drug transporters. Therefore, in vivo toxicity data from 

animals and humans can be completely different. Among hepatic cell lines, in vitro toxicity

data can be also varied depending on the levels of DME expression. For example, 

acetaminophen is a well-known metabolism-sensitive compound, which is activated in the 

presence of DMEs such as cytochrome P450 (CYP450) isoforms. Unlike primary

hepatocytes, Hep3B cells don’t express high levels of DMEs [168], leading to no activation 

of acetaminophen on the chip platform. In addition, tamoxifen is metabolized by a variety
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of CYP450 isoforms, a key family of enzymes expressed within the liver [169]. In the cases

of Hep3B and HepG2, both cell lines experience significant decreases in the expression of

CYP450 2D6 (CYP2D6), the isoform most associated with tamoxifen metabolism

[168,169]. Likewise, menadione metabolism is heavily dependent on CYP450s for

adequate clearance [170]. In the case of other compounds, significant differences can exist 

between in vivo and in vitro data because the in vitro experiments cannot account for all 

drug metabolism. For lovastatin, metabolism occurs both in the liver and the intestine [160] 

The ultimate effect of this are multiple cell types that can metabolize a potentially harmful 

drug, which reduces the toxicity observed in vivo compared to in vitro. In the case of other 

compounds, the results were consistent with both in vivo and in vitro results. This is true 

for sodium citrate, a generally nontoxic salt, and rotenone, whose mechanism of action 

affects mitochondria, which is present in many cell types, though in very high levels in 

hepatocytes [161]. In the case of acetaminophen, the general mechanism of toxicity is also 

associated with impaired mitochondrial function [171,172]. This is particularly apparent 

when comparing rat and mouse in vivo results, where rats are less susceptible to oxidative 

stress from acetaminophen because of their elevated levels of mitochondria per hepatocyte 

as compared to mice [172]. Overall, the IC50 values of tamoxifen and menadione were 

reduced in the presence of PuraMatrix on the chip as compared to other in vitro data. This 

could be potentially due to the additive effects of toxicity from the test compounds and 

PuraMatrix. Since it was necessary to increase cell seeding density to improve Hep3B cell 

viability on the micropillar chip, it is also possible that cells exhibited a decreased tolerance 

towards these compounds due to the added stresses. Additionally, these reductions may 

also be due to the effect of culturing cells in 3D instead of 2D, as cells cultured in 3D
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experience cues from more cells than cells grown in 2D, including potential triggers for 

cell death. Regardless, discrepancies between PuraMatrix, in vivo, and other in vitro results 

can be attributed to the varying nature of metabolism presented in these experiments and 

any stresses associated with using PuraMatrix as a scaffold for Hep3B cell growth.

The developed platform can replicate toxic reactions, but there are some drawbacks 

to this system. The use of PuraMatrix is tricky as its pH requires several neutralization 

steps after printing and makes it tricky for use larger scale 3D cultures. Additionally, 

because it gels in the presence of salts, it necessitates cells to be resuspended in an isotonic, 

10 % sucrose solution. This resuspension causes cells to clump and can also be toxic if 

cells are kept in suspension for long periods of time.

Another drawback is the scale of the platform. The size of the microwell chip and 

the micropillar chip means total droplet size cannot be greater than 60 nL per spot, or the 

hydrogel could hit the bottom surface of the microwell chip. Because the droplet is so small 

in size, the depth in which cells form 3D structures is equal to only two cell diameters. 

Thus, while there is some 3D organization, the thickness means that drugs can easily 

diffuse through all cell layers, which is not necessarily the case for larger scale 3D or in

vivo cell cultures.

2.5. Conclusions

Here, it has been demonstrated that PMA-OD can improve PuraMatrix attachment 

on the surface of the hydrophobic micropillar chip made of polystyrene. A procedure was 

optimized by which Hep3B cells encapsulated in PuraMatrix can be cultured on the chip
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for low-volume, high-throughput applications. In addition, genetic expression was 

successfully modified via adenoviral transduction of Hep3B cells encapsulated in 

PuraMatrix on the micropillar chip, which can be potentially extended to gain- and loss- 

of-function studies such as metabolism-induced toxicity of compounds by over-expressed 

DMEs or lack of specific DMEs. While toxicity did not perfectly correlate with in vivo

data, much of this can be attributed to differences between in vivo and in vitro metabolism

and its contribution to toxicity. Potential variations between in vitro data can be associated 

with stresses put on cells encapsulated in PuraMatrix, or differences between cell types and 

the comparison of cells in 2D vs. cells in 3D.
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CHAPTER III

OPTIMIZATION OF OXYMETHACRYLATED ALGINATE (OMA) FOR USE

IN MINIATURIZED 3D HEPATIC CELL CULTURES

3.1. Introduction

The majority of in vitro 3D cell culture relies on the use of hydrogels as 

extracellular matrix (ECM) mimics to promote the appropriate interactions between cells 

and their surrounding environment [87,90,102]. While the standard 2D system offers ease 

of set-up, hydrogels provide several distinct advantages over 2D and other 3D systems. 

Namely, hydrogels have flexible chemical and physical properties that allow for cell 

adhesion and growth, providing a stable structure for cells to mature in 

[78,117,118,120,173]. It is the goal of researchers to develop biomimetic, tunable 

hydrogels that can provide the necessary structural and chemical stability to promote cell 

growth and maturation in 3D.

Hydrogels have great diversity in structure and mechanisms for polymerization. 

Common hydrogels include those with polysaccharide structures (alginate [91,142], 

chitosan [137,138], hyaluronic acid [100,174]) and peptide/protein-based structures
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(Matrigel [175,176], fibrin [96,103], collagen [94,96]), and both generalized structures 

may be biologically derived [93,177] or synthesized artificially [88,89,106,111]. Gelation

mechanisms for hydrogels include changes in temperature [95], introducing certain ions 

into the polymer [178], UV-light based polymerization [179], enzyme-catalyzed 

polymerization [127], and changes to pH [180]. With the hundreds of methods and 

compositions used to form hydrogels, it is important to choose an optimum mimic for in

vivo 3D-architectures.

As discussed in the previous chapter, PuraMatrix was not a suitable hydrogel for 

larger scale 3D cultures because the mechanisms for polymerization and its natural pH 

created some toxicity from the cells. Thus, we chose to explore photopolymerizable 

hydrogels. Photopolymerizable hydrogels have durability in their physical properties and 

are more structurally stable than hydrogels that rely on ionic mechanisms of polymerization 

[ 179,181—184]. Photopolymerization relies on the use of a photoinitiator (PI) to generate 

radicals, which can serve as a crosslinker or use radical-based polymerization in the 

presence of hydrogels [183,185,186] Because of the covalent bonds formed during the 

polymerization process, photopolymerized hydrogels are more resistant to degradation 

than hydrogels that rely on ionic coordination or temperature activation for polymerization 

[179,182,186]. However, because of the presence of radicals in solution, there is inherent 

toxicity to the cell due to generation of reactive oxygen species (ROS), which can have a 

variety of effects from DNA damage and loss of protein function to peroxidation of the 

lipid membrane [187,188].

Oxy-methacrylated alginates (OMAs) provides many distinct advantages over 

native alginate. While alginate utilizes divalent cations to initiate ionic crosslinking with
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carboxylic acids, OMA relies on the use of a PI with near-UV light to create covalent 

polymerization. This crosslinking has been demonstrated to be markedly more robust than 

alginate, both mechanically and its resistance to degradation [189]. While OMA has been 

used for a variety of studies, including in vivo implants and drug delivery, the use of OMA 

for microscale tissue culture and as a 3D scaffold on high-throughput platforms is lacking. 

While large scale cultures can potentially mimic more features of the various organs but 

suffer from inefficient nutrient transport and cost associated with the scale [190—193]. 

Miniaturizing these tissue cultures can improve some of these hurdles, yet further 

optimization of crosslinking is necessary, as the consumption of a PI and the penetration 

of light may be different at smaller scales [194,195]. Subsequently, there is a need to better 

understand what happens to cells and hydrogels in miniaturized 3D cell culture.

In this study, we attempted to optimize the parameters for polymerizing OMA 

within a microwell chip with a goal of finding a set of conditions yields stable and viable 

cells in 3D. The microwell chip contains 532 wells capable of holding ~ 1 μL spot volume, 

ideally designed for miniaturized 3D culture (Figure 7). While we have previously utilized 

the microwell chip as a vessel for containing media to be paired with the micropillar chip 

containing cells, we wanted to work with a platform that is more conducive to multi-layered 

3D culture as spot volumes on the micropillar chip are quite small, and only allow for a 

thickness of two cells for 3D structures. We examined a variety of factors affecting 

polymerization, including surface background color, OMA concentration, intensity of light, 

duration of light exposure, and PI concentration. Additionally, we compared results 

between synthesized OMA samples that have different concentrations of methacrylate 

functional groups. We compared viability results and the formation of gels amongst all
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conditions at various heights within the microwell, which ultimately allowed us to assess 

the efficiency of polymerization of OMA in small volumes.

Microwell Chip Hep3B cells in 
(640 nL)

Complete 
RPMI (15 mL) 
in petri plate

Microwell Chip with 
printed cells

A B

C

Figure 7. Schematic representation of (A) a microwell chip with printed Hep3B cells in a 
OMA matrix and (B) that same chip submerged in media in a petri plate. (C) Picture of a 
microwell chip against a microscope glass slide.

3.2. Materials and Methods

3.2.1. Materials

Hep3B human hepatoma cell line (catalog no. HB-8064) and all cell culture 

ingredients, including RPMI, fetal bovine serum (FBS), penicillin-streptomycin (PS), and
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gentamicin were provided from ATCC. The microwell chips were manufactured by MBD 

Korea (Suwon, South Korea). Staining solutions, including calcein AM and ethidium 

homodimer-1 were purchased from ThermoFisher. 2-Hydroxy-4'-(2-hydroxyethoxy)-2- 

methylpropiophenone (trade name, Irgacure2959, catalog no. 410896) for

photopolymerization was obtained from Sigma Aldrich.

3.2.2. OMA Synthesis

OMA-15 and OMA-45 were prepared by the previously reported method with 

modification by Dr. Oju Jeon and Dr. Eben Alsberg from Case Western Reserve University 

[181,189]. Briefly, sodium alginate (10 g, Protanal LF 20/40, FMC Biopolymer) was

dissolved in ultrapure deionized water (diH2O, 900 ml) overnight. Sodium periodate (1 and 

1.75 g, Sigma) was dissolved in 100 ml diH2O, added into separate alginate solutions under 

stirring to achieve 10 and 17.5 % theoretical alginate oxidation, and allowed to react in the 

dark at room temperature for 24 hrs. The oxidized, methacrylated alginate (OMA) 

macromers were prepared by reacting OA with 2-aminoethyl methacrylate (AEMA). To 

synthesize OMA, 2-morpholinoethanesulfonic acid (MES, 9.76 g, Sigma) and NaCl (8.765

g) were directly added to an OA solution (500 L) and the pH was adjusted to 6.5. N- 

hydroxysuccinimide (NHS,0.44 and 1.325 g, Sigma) and l-ethyl-3-(3- 

dimethylaminopropyl)-carbodiimide hydrochloride (EDC, 1.46 sand 4.375 g, Sigma) were

added to the mixture under Stirling to activate 15 and 45 % of the carboxylic acid groups 

of the alginate, respectively. After 5 min, AEMA (0.635 and 1.9 g, Polysciences) (molar

ratio of NHS:EDC:AEMA = 1:2:1) was added to the solution, and the reaction was

maintained in the dark at RT for 24 hrs. The reaction mixture was precipitated into excess 

of acetone, dried in a fume hood, and rehydrated to a 1 % w/v solution in diH2O for further
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purification. The OMA was purified by dialysis against diH2O using a dialysis membrane 

(MWCO 3500, Spectrum Laboratories Inc.) for 3 days, treated with activated charcoal (5 

g/L, 50-200 mesh, Fisher) for 30 min, filtered (0.22 μm filter) and lyophilized.

3.2.3. Plasma Treatment of Microwell Chips

Polystyrene microwell chips were exposed to plasma using a PDC-001-HP high 

power expanded plasma cleaner from Harrick Plasma. Up to ten microwell chips were laid 

out on the pyrex loading plate and placed inside the chamber. Initially, the chamber, 3-way 

valve, and metering valve were closed before the machine and vacuum were turned on for 

five minutes, lowering the chamber pressure to 100-200 mTorr. The three-way valve was 

opened to the processing position, and air was bled in at 250-350 mTorr for one minute. 

Following initial air processing, the plasma RF power was turned onto “medium” or “high” 

for one minute. Finally, RF power was maintained, and the metering valve was adjusted 

for air processing at 800-1000 mTorr for 5, 10, 15 and 20 minutes. After the final

processing, samples were tested for successful treatment by immersing chips in 15 mL 

complete media in a petri plate following treatment. The microwells containing bubbles 

were evaluated as a function of the percentage of total microwells. We subsequently used 

the protocol that gave us the fewest average amount of bubbles. From this point forward, 

all samples were stored at room temperature for up to three days before cell printing

occurred.

3.2.4. Preparation of OMA and PI

To create a 12 w/v % OMA solution, 120 mg of OMA-15 with 5% oxidation and 

OMA-45 with 17.5 % oxidation were separately dissolved in 1 mL complete RPMI
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containing 10 v/v % fetal bovine serum (FBS), 1 v/v % penicillin and streptomycin (PS), 

and 0.1 v/v % gentamicin. Dissolving OMA consisted of vigorous manual mixing using a 

sterile spatula followed by vortexing and then centrifuging at 500 g for 5 minutes. This 

process was repeated up to twice until completely dissolved. If OMA was not adequately 

dissolved after three cycles of manual mixing, vortexing, and centrifugation, the sample 

was discarded, and dissolving started with a fresh sample. OMA is printed and polymerized 

one day after being dissolved in complete RPMI and is stored room temperature if printing 

occurs within one hour of dissolution, or at 4oC should it occur later. For polymerization 

and ease of mixing, 100 mg of Irgacure-2959 was dissolved in 1 mL of 70 v/v % ethanol

via vortexing to a final concentration of 10 v/v %. Dissolved PI was stored at 4oC for up to 

a week before printing.

3.2.5. Printing Hep3B Cells in Microwell Chips

Hep3B cells (P15-P50) were cultured in RPMI + 10 % FBS + 1 % PS in T-75 flasks

and grown to 90% confluence before passaging. Before printing, cells were resuspended 

to concentrations of 8 or 12 x 106 cells/mL in complete media. Cells, OMA, Irgacure2959, 

and complete media were mixed for the final printed solution, with concentrated cells 

representing half of the volume of the printed sample. The final concentrations Hep3B were

4 or 6 x 106 cells/mL. The final concentration of OMA was 1, 2, or 4 w/v %. The final

concentration of Irgacure2959 was 0, 0.025, 0.05 or 0.10 w/v %. Cells were printed using 

a S+ Microarrayer from ATI Korea (South Korea) into a microwell plate at 640

nL/microwell.

3.2.6. Photopolymerization of OMA
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Photopolymerization was initiated using an Omnicure Series 1500 UV curing 

system from Lumen Dynamics. The light source was fixed 20 cm above the exposed 

surface. The exposed surface was kept at 6oC during the duration of the polymerization to 

prevent sample evaporation. Up to two microwell chips were exposed to near UV light 

during a given exposure. For optimizing polymerization and viability of Hep3B cells in

both OMA-15 and OMA-45, we varied the background color on which the chips rested 

(black cardboard paper versus reflective stainless steel), exposure time (30 seconds to 4 

minutes), exposure intensity (45 versus 70% maximum intensity), PI concentration (up to 

0.10 w/v %), and OMA concentration (1-4 w/v %) with a fixed cell seeding density (4 x 

106 cells∕mL).. For scenarios in which different regions on a microwell chip were exposed 

to different durations of light, the region experiencing shorter exposure was covered with 

black cardboard paper during the extended duration. Additionally, control samples were 

run in 96-well plates without plasma treatment. After polymerization at desired intensities, 

cells were placed in sterile petri plates and immersed in 15 mL pre-warmed complete RPMI

3.2.7. Viability Analysis

Cells were assessed for viability using calcein AM and ethidium homodimer-1 to 

stain for live and dead cells. Microwell chips were initially washed twice in a saline 

solution containing 140 mM NaCl and 20 mM CaCl2 for ten minutes per wash, and dried 

before and after washes by gently blotting with Kimwipes. Each chip was submerged in 8 

mL of D-PBS containing 0.5 μM calcein AM and 0.5 μM ethidium homodimer-1 and

incubated at room temperature in darkness for 2 hours. After washing, microwell chips 

were washed twice again with the saline solution for 20 minutes each in darkness and 

blotted dry using Kimwipes. After the final wash, micropillar chip surfaces were covered
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with a Breath-Easy gas permeable sealing membrane for microtiter plates from Diversified 

Biotech, and subsequently scanned using a S+ Scanner from ATI Korea (South Korea). 

Microwell plates were scanned at a gain of 100 using a green filter. Samples that were not 

immediately scanned were placed in a moist incubation chamber and stored at 4oC until 

scanning could occur. All samples were scanned within 24 hours of the completion of 

staining. Fluorescence intensity was extracted for each layer using an in-house macro 

developed by Yu et. al [141]. Images were filtered of light that fell outside of green 

wavelengths. We then quantified the green fluorescence intensity across an entire image.

3.2.8. Statistical Analysis

Mean, standard deviation, and standard error were calculated in Microsoft Excel.

One-way analysis of variance (ANOVA) was conducted in GraphPad Prism comparing the 

various factors impacting gelation. This analysis was conducted between different 

conditions across the same layer, focusing on the layers with highest cell densities.

3.3. Results

3.3.1. Surface Chemistry for Printing Cells in Microwell Chips

Surface chemistry was assessed by quantifying the percentage of microwells in a 

given chip that containing bubbles after treated chips were immersed in complete media. 

Bubble formation results are shown in Table 4. Ultimately, we found that for our microwell 

chips, bubble formation is minimized while processing plasma at high intensity at a 

pressure of 800-1000 mTorr for 15 minutes. Processing at medium intensity resulted in an

increased amount of bubbles formed in the microwells, as did decreasing the duration of
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the processing. Longer processing at the same intensity and pressure produced no 

noticeable effect on improving the hydrophilicity of the wells in the microwell chips.

Table 4. Bubbles Present in Plasma-Treated Microwell Chips (n=6)

Time

(Minutes)

Area covered with bubbles (%)

Medium RF High RF

5 69.4 ± 1.9 73.8 ±5.3

10 46.6 ±2.8 47.3 ±8.1

15 32.5 ±9.2 14.6 ± 1.4

20 35.5±2.8 20.1 ± 1.5

3.3.2. Effect of Background on Polymerization

Our first attempts at improving OMA polymerization efficiency (and thus, the 

robustness of the 3D system) involved using black and reflective backgrounds while 

maintaining a surface temperature of 6oC. Our initial belief was that a reflective 

background could would provide more energy for more uniform polymerization, but we 

also wanted to test against using a normal lab bench-top color. As a result, background 

color did not impact 3D morphology of the hydrogel, but viability was impacted at 0.1 w/v 

% (Figure 8). We hypothesized that temperature within the microwells could be elevated 

locally due to black background. Since the cooling surface on which the chips sat is made 

of stainless steel, we used a reflective background to potentially increase the energy 

received to initiate photopolymerization. Since both black and reflective backgrounds 

resulted in no differences in the ability to form a gel, we decided to use a reflective 

background for simplicity of future experiments.
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Reflective Background Black Background

Pl Concentration (w∕v %) PI Concentration (w∕v %)

3 Minute Exposure
Black Reflective

6 Minute Exposure
Black Reflective

A B

C

Figure 8. Demonstrated effect of using (A) reflective and (B) black background on the 
viability of Hep3B cells in 2 w/v % OMA-45. Samples were exposed to 0.1-0.3 w/v % PI 
using ~2.5 mW∕cm2 near UV-light for 3-6 minutes and measured at 300 μm above the 
bottom of the well. (C) Images corresponding with graphs at 300 μm above the bottom of 
the microwell (scale bar = 200 μm). Error bars represent SEMs, n = 72.
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3.3.3. Effect of PI

When we examined PI concentration, the viability was optimized around using 0.05 

w/v % Irgacure2959 (Figure 9). Decreasing the PI concentration resulted in decreased 

polymerization efficiency as cells could be observed in 2D. Meanwhile, increasing to 0.1 

w/v % decreased cell viability, and subsequent increases would result in large cell death, 

resulting in a “goldilocks” scenario of using 0.05 w/v % Irgacure2959.

3.3.4. Effect of OMA Concentration

We found that Hep3B cell viability was optimized with 2 w/v % of OMA-45 

(Figure 9). Increasing the hydrogel concentration to 4 w/v % caused numerous problems 

for the cells, including decreased viability and issues with printing due to increased 

viscosity of the materials. In addition, decreasing the concentration of OMA also affected 

the formation of 3D structures, yielding a “goldilocks” scenario of using 2 w/v % OMA- 

45. Furthermore, decreasing the PI concentration to 0.025 w/v % resulted in decreased 

polymerization efficiency while maintaining high cell viability.

3.3.5. Effect of Light Intensity and Duration

With the Irgacure system, we found several conditions that were ideal for 

polymerization of OMA-45 (Figure 10). Using a 45% intensity (~2.5 mW∕cm2) of the 

Omnicure Series 1500 UV curing system, we found polymerization to be achieved with a 

two-minute exposure. At a 70% intensity (~4.0 mW∕cm2), the exposure necessary to form 

gels dropped to 30 seconds. In these cases, subsequent increases of exposure time would 

often result in decreased viability, while decreases of exposure time would result in poor 

gelation, as is the case of with PI concentration. As a result, we decided to use a 70%
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exposure intensity for 30 seconds as we believed this decreased the activation time for the 

PI while also minimizing the effect that changes in temperature could have on sample 

drying.

2 w/v % OMA-45 4 w/v % OMA-45

PI Concentration (w/v %) PI Concentration (w/v %)

A B

2 Minute Exposure
2 % OMA 4 % OMA

4 Minute Exposure
2 % OMA 4 % OMA

C
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Figure 9. Demonstrated effect of varying concentration of OMA and PI using (A) 2 w/v % 
and (B) 4 w/v % OMA-45 on the viability of Hep3B cells. Samples were exposed to 0.025- 
0.1 w/v % PI using ~2.5 mW∕cm2 near UV-light for 2-4 minutes and measured at 300 μm 
above the bottom of the well. (C) Images corresponding with graphs at 300 μm above the 
bottom of the microwell (scale bar = 200 μm). Error bars represent SEMs, n = 72.

3.3.6. Optimization of OMA-15

Our attempts at optimizing photopolymerization while maintaining high Hep3B

viability in OMA-15 in microwell chips proved to be unsuccessful (Figure 11). We found 

polymerization could not be achieved within the microwells for cells grown in OMA-15 in 

a way that would also allow for viable cells. Additionally, we attempted to see if increasing 

the exposure conditions while keeping microwell plates submerged in water to minimize 

temperature increase could aid in polymerization. However, we found that we were unable 

to achieve polymerization of OMA-15 within the microwell chips in this case too. We 

concluded that it is necessary to have methacrylation of 45% (use OMA-45) to achieve 

quick crosslinking at the microscale.

2 w/v % OMA-45 4 w/v % OMA-45

Pl Concentration (w/v %) PI Concentration (w/v %)
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A B

30 Second Exposure
2 % OMA 4 % OMA

60 Second Exposure
2 % OMA 4 % OMA

C

Figure 10. Demonstrated effect of using higher intensity, shorter exposures with (A) 2 w/v 
% and (B) 4 w/v % OMA-45 on the viability of Hep3B cells. Samples were exposed to 0.0- 
0.1 w/v % PI using 4.0 mW∕cm2 near UV-light for 30-60 seconds and measured at 300 μm 
above the bottom of the well. (C) Images corresponding with graphs at 300 μm above the 
bottom of the microwell (scale bar = 200 μm). Error bars represent SEMs, n =72.

2 w/v % OMA-15 4 w/v % OMA-15

PI Concentration (w/v %) PI Concentration (w/v %)
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A B

30 Second Exposure 60 Second Exposure
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Figure 11. Comparative results using OMA-15 at (A) 2 w/v % and (B) 4 w/v % hydrogel 
concentration. Samples were exposed to ~ 4 mW∕cm2 intensity light for 30-60 seconds, 
using 0.0-0.1 w/v % PI. Analysis was done for samples at 300 μm above the bottom of the 
microwell. (C) Images corresponding with graphs at 300 μm above the bottom of the 
microwell (scale bar = 200 μm). Erτor bars represent SEMs, n = 72.

3.4. Discussion

The goal of this study was to develop a set of parameters that can polymerize OMA 

for miniaturized tissue cultures to produce viable cells in 3D. We found multiple factors 

that influence this process. While protocols for surface functionalization and etching using 

plasma utilize up to five minutes for treatment [196,197], we found it necessary to treat for 

fifteen minutes to minimize the formation of bubbles. Owing to the fact that microwell 

chips have depressions for containing media and cells, it was necessary to extend treatment
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to ensure that media could adequately enter the wells when the chips were submerged. 

Extending treatment time past fifteen minutes did not decrease hydrophobicity of the chip, 

and changes in intensity of plasma exposure had a saturating effect when treating for longer 

durations. We believe that higher plasma energy was necessary to properly etch the surface 

of the chips, with saturation in the surface treatment having occurred at fifteen minutes. 

Increases or decreases in chamber pressure also tended to result in more bubbles in the 

microwells. We believe that having too little O2 in the chamber means there is insufficient 

surface charge generated, while having too much O2 resulted in decreased gas ionization, 

and thus decreasing the charge on the surface of the microwell chips. While bubbles do 

form within empty chips, bubble formation decreases significantly once 320 nL cell spots 

were printed into the wells. This indicates that we can completely eliminate air bubble 

entrapment by filling up the micro wells (1.5 mm well depth and 1.15 mm well diameter)

with cell spots with plasma treatment, which is critical for long-term cell culture in the 

micro well chip.

When examining polymerization of OMA, background color, PI concentration,

OMA concentration, light exposure duration, light exposure intensity, and the relative 

presence of methacrylate functional groups all effected viability and the ability for Hep3B 

cells to grow in 3D. The results are listed at the top of Table 5 and compared with other 

photo-crosslinked hydrogels. We initially sought to compare black and reflective surfaces, 

along with examining PI concentrations of 0.1 to 0.3 w/v % Irgacure2959. Irgacure2959

was chosen owing to its relatively high solubility in water while requiring low 

concentrations to initiate photopolymerization as compared to other PIs [188]. While 

significant differences were not apparent between black background and reflective
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background at higher PI concentrations, microwell chips placed on a reflective background 

had cells with greater viability at 0.1 w/v % PI. We suspect that this is due to the effect of 

temperature when the light is exposed, as the black color can absorb the light from the 

source and increase localized heat instead of dissipating it. Since our surface was naturally

reflective and our cells were most viable at 0.1 w/v %, we used these as baselines for

subsequent experiments.

Table 5. Optimized Parameters for OMA Polymerization

Cells
Used

Hydrogel PI Light Ref.

Type Functionali 
zation (%)

Cone.
(w/v %)

Type Conc.
(w/v %)

Intensity I
(mW∕cm2)

Duration
(min)

Hep3B OMA 45 2 Irgacure
2959

0.05 2.5-4.0 0.5-2 N/A

hMSC
s

OMA 15 2 Irgacure
2959

0.05 1 10 [198]

Chond
rocytes

OMA 45 2 Irgacure
2959

0.05 1 10 [181]

hADM
SCs

GelMA 80 6 Irgacure
2959

0.05 2 5 [199]

VA086 0.75

MDA
MB
231s

GelMA 80 10 Irgacure
2959

0.05 1 10 [99]

VICs GelMA 94 15 Irgacure 0.5 7.2 0.25 [200]
2959

Abbreviations: human mesenchymal stem cells (hMSCs); human adipose-derived MSCs 
(hADMSCs); methacrylated gelatin (GelMA); MD Anderson metastatic breast 231 (MDA 
MB 231) cancer cells; aortic valvular interstitial cells (VICs);

Results indicated that PI concentration significantly affected viability to the extent 

that subsequent experiments required using 0.1 w/v % PI as an upper limit to the 

concentration. We believe that the decrease in viability was due to the formation of the

73



radicalized PI via the UV light in such heavy quantities that subsequent generation of 

radicals caused oxidative damage to the cells. Using 0.1 w/v % PI was even shown to be 

toxic to cells as compared to 0.025 and 0.05 w/v % when accounting for fluctuations in 

light intensity and duration. We ultimately decided to use 0.05 w/v % PI, as this gave us 

consistent results in both cell viability and polymerization of OMA. We believe this is due 

to the “goldilocks” scenario achieved where at 0.05 % w/v, the concentration of PI is high 

enough where the radicals formed from the light can initiate sufficient polymerization of 

OMA, but not at such high concentrations that cause significant oxidative stress to the cells.

Regarding OMA concentration, our results clearly indicate that using higher 

concentrations of OMA (4 w/v %) resulted in decreased cell viability. This result indicates 

that high crosslinking with high concentrations of OMA (typically above 2 w/v %) is 

cytotoxic and may lead to diffusion limitations of nutrients and oxygen. We believe the 

high concentration of OMA impacted viability as the presence of too many cross-linking 

sites limited the ability of the Hep3B cells to thrive. Generally, divalent cation-polymerized 

alginate can be used at lower percentages than OMA because the cross-linking density is 

enough to support 3D cell growth while not so large as to restrict it or have a toxic effect 

on the cells [91,136]. Simply using 2 w/v % instead of 4 w/v % allowed us to maintain 

high cell viability without compromising the ability of OMA to be polymerized in the 

microwells. This result was consistent regardless of the exposure conditions used to initiate 

polymerization. An additional benefit of using 2 % w/v instead of 4 % w/v OMA is the 

decreased solution viscosity, which was generally easier to handle manually and is easier 

to print with our robotic dispensing system (S+ Microarrayer). Other groups also found
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that use of lower concentrations of OMA were also favored for better cell viability

[181,198].

The major variations between macro- and micro-scale photopolymerization are due 

to the effects of light exposure such as the duration and intensity of light. The penetration 

depth of light would be up to ten times different between macro- and micro-scale 

photopolymerization (1 cm vs. 1 mm). In the case of the exposure conditions, we were able 

to achieve successful photopolymerization of OMA while optimizing viability of Hep3B 

under at least two conditions. Both relatively short duration, higher intensity light and 

longer exposure, lower intensity light yielded optimal results while polymerizing 2 w/v % 

OMA with 0.05 w/v % PI. While the light is necessary for photopolymerization, activation 

of radicals and temperature increase both occur as a result of using this light source. 

Temperature is highly tied to both intensity and duration of light, as increasing either of

these variables increased the ambient temperatures to above 38oC. In the case of PI,

polymerization becomes active in the presence of near UV-light, so increases in intensity 

and duration resulted in increased concentration of radicals and subsequent oxidative stress 

to the cells. Our results were similarly reflected by Chen et al who initiated GelMA 

polymerization in a microfluidic device, and found that shorter duration, higher intensity 

exposure was better suited for forming 3D hydrogels at smaller scales [200].

In addition, the relative presence of methacrylate groups in OMA was also a major 

factor in polymerization efficiency in the microwell chip. Despite trying numerous

combinations of factors affecting polymerization we were unable to achieve 3D culture in 

OMA-15 in the microwell chip. We believe the reason for this is that with fewer sites for 

crosslinking, the ability to form a gel within the microwell is limited. Increasing
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concentration of OMA resulted in cell death, while decreased concentration still resulted

in a lack of polymerization of OMA-15. All of this occurred independent of PI

concentration and parameters affecting exposed light. Polymerization within the microwell 

chip is somewhat hampered compared to on glass slides or other smooth surfaces, as the 

intensity of light experienced at the bottom of the well is effectively 25-30 % less than that 

experienced at the top of the well. This necessitates increasing exposure intensity or 

duration to generate enough radicals for polymerization without impacting cell viability. 

While this may not limit the ability of OMA-15 to be used as a hydrogel for microscale 

tissue culture, it does mean that low methacrylate concentration within the OMA may not 

be polymerized effectively in small volumes with relatively low exposed surface areas. As

a result, OMA-15 cannot be used for microscale tissue culture in such situations (i.e.,

within our microwell chips).

While microwell chips are an improvement compared to micropillar chips in terms

of recapitulating 3D cell behavior, there are several drawbacks. One issue is that because 

microwell chips require submersion in petri plates to sustain sufficient nutrient growth, 

microwell chips cannot be used in combinatorial studies for testing drug efficacy or toxicity 

Additionally, media can only enter through the top of the well, so there is the potential for

nutrient diffusion limitation issues to cells located near the bottom of the well.

3.5. Conclusions

We were able to successfully create viable 3D-cultured Hep3B cell structures 

within microwell chips using a photopolymerizable hydrogel, OMA-45. While the material
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parameters of 0.05 w/v % Irgacure2959 and 2 w/v % OMA-45 concentration and 

methacrylate concentration work to produce viable cells encapsulated in strong hydrogels, 

polymerization is best achieved using 4.0 mW∕cm2 intensity light for 30 seconds or 2.5 

mW∕cm2 light for two minutes. There is a significant contribution to the ability to form 

viable 3D spheroids from the size of the reaction and the apparatus, as OMA-15 could not 

be polymerized in microwell chips. Additionally, larger scale polymerizations generally

require lower intensity and significantly longer durations of exposure, while microscale 

polymerizations benefit from higher intensity and quicker reactions. Ultimately, these 

results are promising for generating miniaturized tissue constructs within the microwell 

chips. In the future, we hope to use OMA-45 as a hydrogel scaffold for full recapitulation 

of the in vivo liver functions and to create a model for observing specific liver disease states

in vitro.
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CHAPTER IV

A HIGH-THROUGHPUT 3D HEPATIC CANCER CELL MIGRATION ASSAY

ON A 384-PILLAR PLATE WITH SIDEWALLS

4.1. Introduction

Hepatocellular carcinoma (HCC) is the most widely distributed liver cancer in the 

world, constituting about sixty five percent of liver cancer patients, and it is the sixth most 

prevalent of all cancers globally [4]. HCC, unlike other cancers in the United States, is 

seeing an increase of incidence, with estimates placing the number of affected individuals 

having tripled since the 1980s [1,5]. These triggers are likely due to the fact that poor 

sanitation conditions have seen an increase in individuals infected with hepatitis, where the 

hepatitis B and hepatitis C viruses (HBV and HCV respectively) are known to lead to HCC 

[1]. HCC is characterized by generally being treatable if detected early but having poor 

prognosis during later staging of the disease if metastasis has occurred [31,36]. Thus, it is 

the goal of scientists and doctors to understand what causes metastasis of HCC, how to 

prevent the spread of the disease, and how to better treat a patient who is experiencing

metastasis.
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Cancer metastasis can be triggered by external cues, signaling cells to migrate away 

from the initial tumor site towards otherwise unaffected parts of a previously affected organ 

or to different organs entirely [59]. The nature of these cues is diverse, ranging from 

changes in confirmation of the extracellular matrix (ECM) in the tumor, to small and large 

molecule signaling from lack of nutrients [59,201]. The tumor ECM plays a large role in

the metastasis of a cancer, as tumors are generally poorly vascularized, and have a much 

more heterogeneous cell distribution than a healthy tissue [6,202]. Once angiogenesis 

within the tumor occurs, the cells from the HCC have a means from which to migration out 

[6,203]. Often, these markers for angiogenesis are triggers for metastasis in themselves

[204-206].

Because of the variety of biomarkers and triggers for cancer metastasis, scientists 

desire methods to mete out any false positives for cancer detection and determine how

these various factors interact with each other. Growth factors (GFs) such as basic fibroblast

growth factor (bFGF) and transforming growth factor beta 1 (TGFβl) play important roles 

in cellular reorganization, but also in angiogenesis as signal molecules for cancer cell 

metastasis [60,207-209]. Due to the variant nature of cancer, it is important for scientists 

and doctors to know the distinct molecules that can signal for metastasis based on the type

of cancer and the individual case.

Often, scientists will use cell migration studies as an in vitro assessment of potential 

metastatic cues. General migration tests have focused on two-dimensional (2D) 

assessments, such as wound healing assays, to signal and promote cell movement [47,210]. 

However, 2D migration systems lack the directionality of movement associated with true 

metastatic behavior observed in vivo [47,56]. Additionally, media supplementation to these
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systems cannot mimic the nutrient transport observed in a three-dimensional (3D) in vivo 

environment [205,211]. 3D cell migration has focused on developing cell spheroids and 

quantifying the dispersal of cells away from spheroids or tracking individual cell 

movement through ECM mimics [47,56,212]. The main draw back with using 3D systems

is that it is trickier to determine modes of migration, particularly in high-throughput when 

numerous factors need to be considered for understanding the nature of a tumor [47,68,212]

Our group has previously developed several small-scale high-throughput platforms, 

mostly used in the development of drug toxicity testing. Originally, we worked with the 

micropillar chip for cell culture and paired with a microwell chip containing media and

various dissolved compounds [ 142,143,213,214]. Because of the size limitations 

associated with micropillar chip cultures, adequate 3D cell cultures could not be generated. 

We subsequently used microwell chips as the platform for cell seeding while immersing 

the chips in media in petri plates. While this allowed a better recapitulation for certain cell 

culture aspects, the microwell chip is not ideal for combinatorial work as media 

composition cannot vary between wells on the same chip due to the need to immerse whole 

chips in individual petri plates to supply sufficient nutrients to cells. Additionally, cells 

located within a microwell chip beneath several other layers of cells could suffer from lack 

of nutrients. The current system developed by Bigdelou et. al. utilizes pillar plates designed 

with sidewalls fitted to a 384-well plate (Unpublished). Here, cells encapsulated in 

hydrogels would grow on the pillars while being supported by the sidewalls beneath the 

pillars. The sidewalls can help anchor cell droplets, while the spaces between the walls 

allow for nutrients from growth media to come into contact with cells on the pillar. The 

sidewalls can hold about 4 μL of hydrogel droplet volume, which is sufficient for several
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layers of printed cells. Because the platform is designed to be paired with a 384-well plate, 

combinatorial studies can be conducted using varied growth media, making it ideal for 

understanding the multitude of factors affecting cancer cell migration.

The goal of this work is to develop a high-throughput 3D cancer cell migration test. 

In order to do this, we will let cells migrate in response to the presence of various growth 

factors and extracellular matrix (ECM) components within the 384-pillar plate with 

sidewalls (Figure 12). We used oxidized methacrylated alginate (OMA-45) for cell 

encapsulation. The use of OMA-45 for microscale polymerization has been optimized as 

detailed in Chapter III, while the design of the 384-pillar plate with sidewalls was 

optimized by Bigdelou et. al. (unpublished). The design of the test is similar to a typical 

sandwich assay. On the first-printed layer, we print OMA with various growth factors 

which will be stabilized with the presence of methacyrlated heparin sulfate (MHS). On the 

second layer, we will print cell-laden OMA. The Hep3B cells used in the top layer will 

have been infected with lentiviruses containing mCherry expression so that we can monitor 

in real time if cells are migrating in response to the materials in the bottom layer. Cells will 

be monitored for up to two weeks to determine if migration occurs in response to the 

presence of certain chemoattractants by taking pictures of the cells at various heights within 

the pillars. Finally, this migration will be quantified using developed in house macros 

which will filter out any background associated with out-of-focus cells. This will ultimately 

give us a method in which we can quantify 3D cell migration in high-throughput.
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384-pillar plate with sidewalls

Growth factors Hep3B cells in Media in 384- 
in OMA and OMA(2μL) well plate 
Heparin (2 μL)

Cells migrating in response to 
growth factors

C

Figure 12. (A) Schematic representation of 384-pillar plates with sidewalls. (B) A 
photograph of a 384-pillar plate with sidewalls. (C) Schematic representing migration 
assay in 384-pillar plate with side walls. Initially, growth factors are bound to heparin 
sulfate and encapsulated with OMA. Then, cells are encapsulated in OMA and printed on 
a second layer. This is inverted and stamped into a 384-well plate, where cells migrate in 
response to growth factors.

4.2. Materials and Methods

4.2.1. Materials

Hep3B human hepatoma cell line (catalog no. HB-8064), HEK293T cells (catalog 

no. CRL-11268) and all cell culture ingredients, including RPMI, DMEM, fetal bovine

serum (FBS), penicillin-streptomycin (PS), and gentamicin were provided from ATCC.
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The microwell chips were manufactured by MBD Korea (Suwon, South Korea). Staining 

solutions, including calcein AM and ethidium homodimer-1, Opti-MEM reduced serum 

media (31985062), and lipofectamine 2000 (11668027) transfection reagent were 

purchased from ThermoFisher. 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone 

(trade name, Irgacure-2959, 410896) for photopolymerization, polybrene infection/

transfection reagent (TR-1003-G), and heparin sodium salt from porcine intestinal mucosa 

(H3393) was obtained from Sigma Aldrich. The growth factors basic fibroblast growth 

factor (bFGF, cyt-218), hepatocyte growth factor (HGF, cyt-244), transforming growth 

factor beat (TGF-β, cyt-716), and vascular endothelial growth factor (VEGF, cyt-241) were 

all sourced from ProspecBio. The VEGF ELISA kit (DY293B-05) and the ancillary reagent

kit (DY008) were sourced from DuoSet. E-Shell 450 Clear M (RES-02-422) from

EnvisionTEC was used to create the initial mold for the printed 60-pillar plate with side 

walls described in Bigdelou et al (Unpublished) before the optimized 384-pillar plate with 

sidewalls manufactured via plastic injection molding at TechOne.

4.2.2. Synthesis of OMA

OMA-45 was prepared by the previously reported method with modification by Dr. 

Jeon and Dr. Alsbserg of Case Western Reserve University [181,189]. Briefly, sodium 

alginate (10 g, Protanal LF 20/40, FMC Biopolymer) was dissolved in ultrapure deionized 

water (diH2O, 900 ml) overnight. Sodium periodate (1 and 1.75 g, Sigma) was dissolved 

in 100 ml diH2O, added into separate alginate solutions under stirring to achieve 10 and 

17.5 % theoretical alginate oxidation, and allowed to react in the dark at room temperature 

for 24 hrs. The oxidized, methacrylated alginate (OMA) macromers were prepared by 

reacting OA with 2-aminoethyl methacrylate (AEMA). To synthesize OMA, 2-
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morpholinoethanesulfonic acid (MES, 9.76 g, Sigma) and NaCl (8.765 g) were directly

added to an OA solution (500 L) and the pH was adjusted to 6.5. N-hydroxysuccinimide 

(NHS, 0.44 and 1.325 g, Sigma) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide

hydrochloride (EDC, 1.46 sand 4.375 g, Sigma) were added to the mixture under stirring 

to activate 45 % of the carboxylic acid groups of the alginate. After 5 min, AEMA (0.635 

and 1.9 g, Polysciences) (molar ratio of NHS:EDC:AEMA = 1:2:1) was added to the

solution, and the reaction was maintained in the dark at RT for 24 hrs. The reaction mixture

was precipitated into excess of acetone, dried in a fume hood, and rehydrated to a 1 % w/v 

solution in diH2O for further purification. The OMA was purified by dialysis against diH2O 

using a dialysis membrane (MWCO 3500, Spectrum Laboratories Inc.) for 3 days, treated 

with activated charcoal (5 g/L, 50-200 mesh, Fisher) for 30 min, filtered (0.22 μm filter) 

and lyophilized.

4.2.3. Cell Migration in Microwell Chips

We initially tested migration using microwell chips, with a Matrigel-OMA bottom 

layer and a top layer of OMA. Microwell chips were exposed to plasma using a PDC-001- 

HP high power expanded plasma cleaner from Harrick Plasma. Samples were processed 

for 15 minutes at high intensity. 120 mg OMA-45 was dissolved in 2 mL complete RPMI

to a concentration of 6 w/v %. 100 mg PI was dissolved in 1 mL 70 v/v % ethanol to a 

concentration of 10 w/v %. 80 μL OMA was added to 1.2 μL PI with variable amounts of 

9.1 mg/mL Matrigel and complete media to a final volume of 240 μL. The final

concentration of the bottom layer of solution consisted of 2 w/v % OMA-45, 0.05 % w/v 

PI, and 0, 1,2, 3, or 4 mg/mL Matrigel, all diluted in complete RPMI. Additionally, a 

control was run that contained 0 mg/mL Matrigel and 0 % w/v PI. The bottom layer was
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printed with an S+ Microarrayer at 320 nL/microwell and gelled using the Omnicure 1500S 

system at 4 mW∕cm2 for 30 seconds. We then combined 600 μL OMA-45, 9 μL PI, 900 μL 

8 x 106 cells/mL, and 291 μL complete RPMI to form the top layer, which consisted of 2 

w/v % OMA-45, 0.05 w/v % PI, and 4 X 106 cells/well. The top cell layer was printed on 

top of the Matrigel bottom layer at 320 nL/well, and gelled using the Omnicure 1500S 

system at 4 mW∕cm2 for 30 seconds. Cells were submerged in 15 mL media in petri plates, 

where media was changed as needed. Microwell chips were removed 0, 3, 7, and 14 days 

after initial print for cell staining.

4.2.4. Cell Staining

Cells were assessed for viability using calcein AM and ethidium homodimer-1 to 

stain for live and dead cells. Microwell chips were initially washed twice in a saline 

solution containing 140 mM NaCl and 20 mM CaCl2 for ten minutes per wash, and dried 

before and after washes by gently blotting with Kimwipes. Each chip was submerged in 8 

mL of D-PBS containing 0.5 μM calcein AM and 0.5 μM ethidium homodimer-1 and

incubated at room temperature in darkness for 2 hours. After washing, microwell chips 

were washed twice again with the saline solution for 20 minutes each in darkness and 

blotted dry using Kimwipes. After the final wash, micropillar chip surfaces were covered 

with a Breath-Easy gas permeable sealing membrane for microtiter plates from Diversified 

Biotech, and subsequently scanned using a S+ Scanner from ATI Korea (South Korea). 

Microwell plates were scanned at a gain of 100 using a green filter. Samples that were not 

immediately scanned were placed in a moist incubation chamber and stored at 4oC until 

scanning could occur. All samples were scanned within 24 hours of the completion of 

staining. Fluorescence intensity was extracted for each layer using an in-house macro
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developed by Yu et. al [141]. Images were filtered of light that fell outside of green 

wavelengths. We then quantified the green fluorescence intensity across an entire image.

4.2.5. Surface Treatment of 384-Pillar Plates with Sidewalls

384-pillar plates were sandwiched with 384-well plates containing 30 μL∕well 0.05

% w/v PMA-OD and left to dry under ambient air at room temperature for 2-3 hours. The 

pillar plates with sidewalls were then sandwiched with 384-well plates containing 30 

μL∕well 0.0033 w/v % PLL solution and left to air dry over night before printing.

4.2.6. Growth Factor Leaching

Initially, 120 mg of OMA-45 was dissolved in 2 mL complete RPMI (RPMI + 10 %

v/v FBS, 1 % v/v PS, and 0.1 % v/v gentamicin) using a metal spatula, then vortexed and 

centrifuged at 500 g for 5 minutes. If precipitate was present, this process was repeated 

until the precipitate was gone. For heparin-dependent leaching, we added 12 mg of heparin 

to the 120 mg OMA-45 before adding the media. This yielded a 6 % w/v OMA-45 and 0.6 

% w/v heparin solution. We diluted 10 μL of the VEGF in 500 mM NaCl to form a 40 

μg∕mL solution of VEGF. We then combined 133.3 μL of our OMA with 2 μL of 10 %

w/v PI in 70 % ethanol and 214.7 μL complete RPMI as our stock solution. 35 μL of the 

stock solution was combined in separate tubes with 0-5 μL of the 20 μg∕mL VEGF solution 

and finished off with 0-5 μL media. This yielded a 2 % w/v OMA-45 hydrogel (with

possible 0.2 % w/v heparin), and 0.5 μg∕mL bound VEGF and 0.05 % w/v PI in a total 

volume of 40 μL. Samples were manually pipetted into the depression of the 384-pillar 

plate with sidewalls at 2 μL∕pillar. Samples were then exposed to UV-light from using an 

Omnicure Series 1500 UV curing system from Lumen Dynamics. Exposure occurred at 20 

cm beneath the light source at 12 cm above the plate for 60 seconds. For the top layer, we
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combined 133.3 μL 6 % w/v OMA-45, 2 μL 10 % w/v PI in 70 % ethanol, and 264.7 μL

complete RPMI to form a final solution of 2 % w/v OMA-45 and 0.05 % w/v PI in a total 

volume of 400 μL. 2 μL were added to the same wells our VEGF-containing samples were 

mixed in and re-exposed to the UV light at the previously described conditions. The top 

layer was printed at 2 μL∕pillar on top of the growth factor layer in the 60-pillar plate with 

sidewalls using a S+ Microarrayer. Samples were re-exposed to light at the previous 

described conditions. Samples were then immersed in 50 μL complete RPMI in a 384-well 

plate. All the media in the wells was taken out and replaced with fresh media at 1, 4, 8, and 

24 hours, followed by media replacement every other day starting at day 2 until day 14. 

Samples were frozen until analysis of leaching was performed.

4.2.7. Quantifying the Leach Concentration

Leached VEGF was quantified using a VEGF ELISA kit from DuoSet. Capture 

antibody was coated overnight at room temperature in a 96 well plate. Wells were washed 

three times with tween-20, then exposed to 300 μL∕well BSA blocking solution for one 

hour. Wells were washed again three times before exposure to samples and standards (15.6- 

1000 pg∕mL). Samples were incubated for another two hours and washed three times again. 

Samples were exposed to the capture antibody at room temperature for two hours. Samples 

were washed again then exposed to strep-HRP for 20 minutes. Wells were washed three 

times again and exposed to two color reagents. The reaction was stopped after 20 minutes, 

and absorbance measurements were taken at 450, 540, and 570 nm immediately.

4.2.8. Design and Expansion of Lentivirus Vector

The lentivirus was designed and expanded using the protocols of Joshi et al. 

(Unpublished). HEK293T cells (passage < 10) were expanded to 50 % confluence in
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DMEM + 10 v/v % FBS + 1 v/v % PS in a T-25 flask. In one tube, 200 μL Opti-MEM

reduced serum media was mixed with 16 μl lipofectamine 2000 reagent. In a second tube, 

266 μL opti-MEM reduced serum media was mixed with 30 μL pLV-mCherry vector (40 

ng∕μL), 1 μL pMDG2 (800 ng∕μL), and 2 μL pSOX2 (800 ng∕μL). The contents of the two 

vials were mixed to a total volume of 525 μL with 2.28 ng∕μL pLV-mCherry, 1.52 ng∕μL

pMDG2, and 3.05 ng∕μL pSOX2. Media was removed from the flask and cells were 

washed before this solution was added with 2 mL DMEM +10 v/v % FBS and 2.5 μL 10 

mg/mL polybrene to assist in transfection and incubated for one day at 370C and 5 % CO2, 

after which transfection was observed at > 90%. Subsequently, supernatant was collected

and 2.5 mL fresh DMEM + 10 v/v % FBS + 1 v/v % PS was added, and cells were

continually incubated for another three days. The supernatant was collected again and 

pooled with the supernatant collected at day 1 and stored at -80 oC until further use. 

Samples were concentrated using centrifugal filtration and titered using FACS.

4.2.9. Transduction of Lentiviruses into Hep3B Cells

1 * 106 Hep3B cells (Pl5-30) were plated on a T-25 flask and grown in 5 mL RPMI

+ 10 % FBS + 1 % PS for 48 hours, or until 50-60 % confluence was reached. Media was

removed and replaced with 2 mL antibiotic-free RPMI + 10 % FBS, 40 μL lentivirus stock 

solution, and 2.5 μL 10 mg/mL polybrene for a multiplicity of infection (MOI) of 1. Cells 

were grown in the flask for 24 hours before addition of 5 mL RPMI + 10 % FBS. These

cells were grown for another 24 hours before passaging and expansion. Cells were frozen 

at -80oC for future experiments.
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4.2.10. Cell Migration with Encapsulated Growth Factors

For cell migration, we followed a similar protocol to our leach experiment. OMA 

and heparin were dissolved in complete RPMI at 6 and 0.6 % w/v respectively using a 

combination of manual stirring and vortexing, then centrifuging at 500 g for 5 minutes to

remove bubbles. Next, samples were combined with 10 % w/v PI in 70 % ethanol, 

individual growth factor solutions (stock concentration: 200 μg∕mL), and complete RPMI. 

All growth factors (TGFβl, VEGF, bFGF, and HGF) were printed at a final concentration 

of 1 μg∕mL, with OMA and heparin at 2 and 0.2 % w/v respectively, and PI at 0.05 % w/v. 

Samples were incubated for three hours at room temperature before being dispensed on the 

384-pillar plate with side walls at 2 μL∕pillar using a S+ Microarrayer. Samples were then 

polymerized via exposure to near UV-light at 70% intensity 12 cm above the plate for 60 

seconds. The top layer was then prepared, combining 120 μL of 8 * 106 infected Hep3B 

cells/mL, 80 μL 6.0 % w/v OMA-45 in complete RPMI, 1.2 μL 10 % w/v PI in 70 % 

ethanol, and 38.8 μL RPMI. This gave us a final concentration of 4 * 106 infected Hep3B 

cells/mL in 2.0 % w/v OMA-45 and 0.05 % w/v PI. This top layer was printed at 2 μL∕well 

using a S+ Microarrayer. After the top layer was printed, cells were allowed to settle for 

five minutes before being polymerized by near UV-light. Cells were imaged at seven 

different positions spaced 250 μm apart, starting from the top edges to the side wall until 

hitting the pillar surface daily for two weeks after seeding. Images were taken using a S+ 

Scanner with an orange filter (SEMCO, TxRed-4040C-000) using 100 and 400 gain at on

day zero with decreasing the high gain until day 14 was reached, when 25 gain was used.
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4.2.11. Quantification of Cell Migration

We developed a macro through which we eliminated out-of-focus cells first. The 

macro developed in Image J would have images undergo a finite Fourier transform (FFT), 

with bandpass filtering at 50 and 250 Hz before undergoing inverse FFT (iFFT). Finally,

the macro would sorted into folders containing common z-positions based on labels within 

the file names. Next, fluorescence was quantified using an in-house developed bioprinting 

macro for ImageJ that quantifies the range of fluorescence between 0 and 50 to only 

quantify the red signal. After the signal was quantified, we calculated the mean position of 

the cells using the following equation:

Where Z is the mean position of the cells, f and zi are the corresponding fluorescence

intensity and z-position height in row i. We then calculated a rate of cell movement by 

comparing mean z-positions in identical wells across various time points.

4.2.12. Statistical Analysis

Mean, standard deviation, and standard error were calculated in Microsoft Excel.

One-way analysis of variance (ANOVA) was conducted in GraphPad Prism comparing the 

individual and combinations of growth factors in the gel and in solution. Graphs for ELISA 

standards, fluorescence intensity, leaching, and migration were generated in SigmaPlot.
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4.3. Results

4.3.1. Migration in Microwell Chips

The quantification of migration showing mean position in the wells of the 

microwell chips is shown in Figure 13. We were able to successfully distinguish cells 

between layers using our macro and observed some cell movement. However, much of this 

movement was limited, and none of our results showed chemoattraction towards Matrigel. 

Additionally, because our procedure required staining of the cells, samples had to be 

disposed after imaging and could not be used for subsequent monitoring of migration, 

which forced us to use Hep3B cells infected with lentiviruses to track migration.

4.3.2. Lentivirus Transduction

The results of lentiviral transductions are shown in Figure 14. We were able to 

successfully transduce lentiviruses into cells. Efficiency of transfection was estimated 

around 80 percent. Furthermore, infected Hep3B cells were successfully frozen and thawed 

after infection with the virus. There was no significant impact with viability on the cells, 

and cells retained expression of mCheιτy up to ten passages after the frozen cell line was 

thawed. Thus, we were able to create a stable Hep3B cell culture capable of expressing 

mCherry for the purposes of tracking migration.
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B

Figure 13. A) Calcein-AM stained Hep3B cells encapsulated in 2 w/v % OMA-45 and 
printed into a microwell chip on the top layer, with the bottom layer for this set of images 
containing 1.5 mg/mL Matrigel. Scale bar = 200 μm. B) Average position of Hep3B cells 
within the microwell chip measured as distance from the bottom of the well based on our 
process described in section 4.2.11. Error bars represent SEMs, n = 72.

4.3.3. Growth Factor Leaching

The results of our leaching indicate that we were able to observe leaching effects 

primarily within the first 24 hours that slowly increased over time (Figure 15). Moreover,
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growth factor leaching was greater without MHS continuously, and was completely 

released by four days after printing, though the rate of release seemed to dissipate after the 

first day. Samples bound to MHS had a slower, but continual release profile. This linear 

release is consistent with literature values for growth factor release studies for heparin 

sulfate-bound samples [215,216]. Thus, our results indicate the need for MHS to stabilize 

growth factors in hydrogels.

Figure 14. 2D cells infected with lentiviruses containing expression for mCherry 2D 
images on a 96 well plate of cells 15 passages after transduction. Scale bar = 200 μm.

Early Release Delayed Release

A B
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Figure 15. Analysis of the leaching of 1 μg∕mL bFGF from OMA-45 either mixed with 
0.2 w/v % heparin or no heparin A) within the first 24 hours of immersion B) for the 
duration of the experiment. Error bars represent SEMs, n = 12.

4.3.4. Cell Growth in 384-Pillar Plates with Sidewalls

The results of our cell growth experiments are shown in Figure 5. As it can be seen, 

cells successfully proliferated for up to two weeks after the initial print, though it was hard 

to quantify differences in fluorescence intensity in significantly proliferated samples after 

day 6 due to the saturation in fluorescence at 100 gain after day 6. It is hard to give an exact 

cell count with this procedure, given the nature of spheroid formation potentially 

amplifying or impeding red signals. Samples were initially rather dark on day 0 owing to

the fact that after infected Hep3B cells are passaged, mCherry expression subsequently 

decreases and takes time to recover, which likely results in underestimating the actual cell 

number on day 0. The samples that proliferated the most were all, HGF, and TGFβl. 

Furthermore, we observed spheroid cultures forming within the plate, indicating that our 

platform is suitable for long term 3D culture. Spheroid generation seemed to increase with 

time and start forming 4-6 days after the initial print for all conditions regardless of the 

presence of growth factors. Fluorescence intensity of infected cells increased with time up 

to about six days after seeding indicating that the infection also has long term stability in 

3D culture and can be used to monitor the cells. Additionally, spheroid cultures formed 

readily here unlike in microwell chips where cells seemed to proliferate though with limited 

growth potential. This shows that the 384-pillar plate with sidewalls is better for long-term 

sustenance of cell growth and mimicking the HCC tumor architecture than microwell chips. 

One drawback is the formation of bubbles that can occur between layers, which somewhat 

hampered our ability to monitor migration and adequately quantify fluorescence.
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Conditions which seemed to cause the greatest formation of spheroids were cells in the 

presence of HGF and the combination of growth factors. This proliferation is reflective of 

the effect this growth factor has on the cells in vivo. Other growth factors did not induce 

the formation of spheroids as compared to the absence of growth factors.

A
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Figure 16. A) Representative images of Hep3B cells expressing mCherry in a 384-pillar 
plate with sidewalls after being exposed to various growth factors for up to two weeks. 
Images were taken 500 μm away from the pillar surface Scale bar = 200 μm. B) 
Fluorescence intensity changes as a function of time. For fluorescence intensity, this 
reflects the total fluorescence observed summed over all z-positions. Error bars represent 
SEMs, n= 12.

4.3.5. Migration in 384-Pillar Plates with Sidewalls

The results of our migration experiments in 384-pillar plates with sidewalls is

shown in Figure 17, with rates of migration discussed in Table 6, with deviations in 

linearity denoted by root square mean (R2). All conditions were found to have an average 

initial position between 740 and 750 μm from the pillar surface, which is consistent with

where the start of the second layer should be given the area between the sidewalls. We 

found some levels of migration to be promoted with VEGF, bFGF, TGFβl, and
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combinatorial growth factors, while HGF did not seem to induce migration relative to 

controls. Most of this migration seemed to take place later in the assay, though error was 

significantly large at individual time points to show no individual deviations between 

samples at individual time points. Even still, the trends for movement towards the layer 

with printed growth factors and against gravity were apparent. In all cases, there was some 

movement towards the first printed layer, particularly later in the assay. HGF and control 

samples showed relatively little migration. We were able to distinguish spheroid formation 

vs. migration by eliminating out of focus cells using our developed in-house macro, which 

eliminates low and high frequencies after undergoing FFT. Migration potential was 

greatest in the case of VEGF, followed by combinations of growth factors used. bFGF, 

VEGF, and combination growth factor used generally showed migration moving in the 

direction of growth factors, while TGFβl exposed samples did not necessarily follow the

same continue trend.
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Figure 17. Relative average position of cells in the presence of growth factors as a function 
of time. Note: 500 μm from the pillar surface represents the distance beneath the pillar 
surface, meaning decreases in height represent movement of cells against gravity. Error 
bars represent SEMs, n = 12.

Table 6. Average Cell Migration as a Function of Growth Factor

Exposed Growth 
Factor

Average Cell 
Movement (μm∕day) R2

None -3.96 0.74

bFGF -10.42 0.67

TGFβl -8.01 0.41

VEGF -11.68 0.61

HGF -2.73 0.34

All -10.73 0.84

4.4. Discussion

In this work, we created a high-throughput cancer cell migration assay. To perform 

this study, we combined several different engineering designs, including the creation of a 

fluorescent lentivirus for subsequent transfection in a cell line to make permanently 

fluorescence Hep3B cells, synthesized a chemically modified version of alginate that is 

photopolymerizable, engineered a platform capable of supporting 3D cell-culture that is 

compatible with other high-throughput technologies, and developed our own image 

processing capabilities to fully analyze cell migration. Integrating these engineering 

strategies creates a platform through which 3D cell migration and cell proliferation can be 

monitored in real-time and in high throughput for up to two weeks after initial cell seeding.
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Initially we attempted to study migration in a microwell chip using calcein and 

ethidium stains. This protocol was based on previous work performed in Chapter III where 

we optimized OMA viability and polymerization in microwell chips. While cells were 

viable out to two weeks, growth seemed to be static within the microwell chips as compared 

to the 384-pillar plate with sidewalls. We suspect this is due to potential nutrient 

deprivation experienced by cells within the microwells, as we successfully generated 

spheroid culture within the 384-pillar plate with sidewalls. The design of the microwell 

chips allows for nutrients to diffuse through one surface: the top interface between the 

hydrogel and the cell culture media. Cells further from this surface are less likely to see 

any nutrients and oxygen, meaning there are diffusion limitations to their growth. This is 

not a problem in the 384-pillar plate with sidewalls, as the slits between the sidewalls give 

encapsulated cells more access to nutrients.

While spot detachment has been an issue with a previously designed 384-pillar 

plate and micropillar chips, the combination of surface modifications our group previously 

developed and the capillary forces within the depression in the pillar serve to anchor the 

hydrogel to the pillar. Bubble formation was somewhat of an issue with printing as the 

nozzles with our machine are designed to print smaller volumes that 2 μL droplets, and 

bubbles could also get trapped between printed layers. Additionally, bubbles within the 

media in 384 well plates could be trapped within the pillars, so care needs to be taken when 

media is dispensed into the 384-well plate.

Hep3B cells were successfully transduced with lentivirus containing mCherry at 

about an 80-90 % transduction efficiency. Moreover, the lentivirus expression was stable, 

as cells passaged ten times after transduction still expressed mCherry. The expression of
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the lentivirus was optimal about 3-4 days after passaging when cells reached 80-90 % 

confluence on the T-flask. We believe that the reason for this is that as cells are passaged, 

cell surface proteins are affected, which diverts much of the cells’ energy towards 

processes to ensure their survival. This result is consistently reflected in our 

migration/growth studies, where samples at day 0 produced relatively little fluorescence 

that was only observable after two days growth. After cells are passaged, they are more 

likely to proliferate in either 2D or 3D conditions, which explains why this expression is

stronger days after passaging. Moreover, the use of lentivirus transduced cells allows us to 

monitor cell movement in real time without disposing our samples. With calcein-stained 

samples, cells had to be disposed of after staining due to the degradation of the fluorophore 

over time and the toxicity associated with increased exposure to the fluorophore. This 

means that only end-point monitoring of migration could be performed with stained 

samples, so migration could not be accurately assessed with the stained samples.

We were able to successfully encapsulate growth factors within OMA for slow 

release for our migration studies. MHS was used for binding to growth factors to stabilize 

them within OMA. The tested growth factors all have sites that natural bind to heparin 

sulfate which is to allow for a slower release of growth factors from the hydrogel 

[83,130,217-219]. Ultimately, we found that MHS does stabilize growth factor in OMA 

after an initial quick leach in the first 24 hours with an extended linear leach after that time, 

while VEGF in the absence of heparin sulfate also had a much faster immediate leach and 

was fully leached within four days. While many of release studies done on growth factor- 

heparin binding are conducted directly on the surface of materials, growth factors have 

more ways to escape the matrix in the 384-pillar plate with sidewalls. This potentially had
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an impact on the growth factor leaching, which may have also been exacerbated given the 

small area for polymerization and migration, producing an initially very fast first leach. In

the case of the heparin-bound samples, we believe the initial release growth factor is from 

unbound VEGF. Jeon et al have demonstrated the use of these growth factors at lower 

concentrations, producing linear release profiles [220]. This means that the growth factor 

concentration relative to the heparin sulfate may be high, producing the quick release seen 

in the first 24 hours for both samples. Strong initial release kinetics of heparin-bound 

VEGF have been observed previously, though it tends to have a linear release profile after 

the first day following our MHS model [216,220]. One other thing to note is that heparin 

sulfate binding and release kinetics can vary between growth factors, so it is quite possible 

more or less growth factor is released when using other growth factors [220-222]. This 

may produce different release profiles, though this behavior is expected to also be gradual 

if binding is successful. While there is still leaching of growth factors in the presence of 

MHS, ultimately the concentration of leached growth factors in media is still significantly 

less than the growth factor concentration in the printed OMA layer.

One of the major factors that also plays a role in migration and tumorgenesis is the 

role of O2 diffusion within the tumor. As hypoxia is common in larger tumors, cells in parts 

of the tumor are necrotic, while others begin moving in search of more nutrients, and O2 in 

particular. The transcription factor hypoxia-inducible factor 1-alpha (HIF-lα) which is 

downregulated by the presence of O2 is known to cause the expression of various proteins 

that signal for angiogenesis and proliferation, specifically upregulating both VEGF and 

TGFβl in vivo [223]. Additionally, HIF-lα is tied to the expression of metastatic and 

invasion cues, including several matrix metalloproteases (MMPs) and the c-Met
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[6,223,224]. With the formation of cancer spheroids within our system, the growth factors 

we supplemented are also secreted within the spheroids themselves, which can further 

enhance growth or migration.

We have successfully shown that several of our growth factors can trigger the 

expansion of Hep3B cells into spheroid structures. Some of these growth factors like HGF 

[225,226] and bFGF [83] are known to initiate cell growth independent of the status of the 

cancer. What was interesting was that growth was greatest in the presence of HGF more 

than other growth factors or the combination of growth factors. It is known that Hep3B 

cells do proliferate in response to stellate cells secretion of HGF [226]. This is likely due 

to the fact the HGF is secreted by stem cells in the liver to assist in wound healing. While 

it is unknown if Hep3B functions in the stem-cell like nature of cancer cells, it is known

that all of these growth factors can induce the proliferation of hepatic cells, including 

several known cancer cell lines. Hep3B in particular is known to express high-levels of 

FGF receptor II (FGFRII), which binds to bFGF [227]. Comparatively, Hep3B cells also 

secrete higher levels of TGFβl, which may also explain why they too experienced 

increased proliferation in the presence of this growth factor [227]. Since spheroid formation 

can occur independent the presence of growth factors (though it is enhanced by certain 

growth factors), it is important to eventually quantify the growth factors that are secreted 

instead of delivered. Subsequent growth factor quantification for intracellular production 

of growth factors can be performed looking at the genetic expression of the growth factors 

within the cell or performing western blot analysis on isolated cell samples.

Our results showed a mixed amount of migration, that was growth-factor dependent 

Specifically, bFGF and VEGF (and, to a lesser extent, TGFβl) seemed to stimulate
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migration, while HGF did not generate much cellular movement. This is likely due to 

bFGF’s, TGFβl,s and VEGF’s roles in angiogenesis [28,209] and HGF’s role in 

proliferation [226]. While spheroid formation did occur in all conditions, spheroid

formation seemed to be contained to the second printed layer and individual cells migrated 

to the first printed layer as observed by the fact that spheroids did not exist near the pillar 

surface where the growth factors were printed. We believe this is due to the fact that while 

angiogenic growth factors seem to play a role in inducing migration, the growth factors 

that play a role in cell proliferation will not impact migration. Individual cells, particularly

ones searching for nutrients, are able to move through the matrix, while the tumors

themselves are static within the culture.

Another interesting result is that the combination of growth factors experiment 

yielded more migration than the control, but less than VEGF experiments, and how 

proliferation seemed to increase in the combination growth factor experiment relative to 

the control but was less than the HGF and TGFβl cases by day ten. We believe this is due 

to the limitation of room for heparin to bind growth factors. Thus, the combination 

experiment likely had less growth factor bound long term as all four growth factors were 

competing for the same space, which resulted in a response that trends towards the presence 

of individual growth factors but is somewhat muted because there are less overall.

4.5. Conclusions

We successfully developed a high-throughput 3D cell migration assay on a platform 

compatible with 384-well plates. The migration assay was able to quantify relative rates of 

migration in real-time for up to two weeks after initial seeding. We were also able to
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quantify proliferation rates of Hep3B cells in the presence of various growth factors. Our 

results reflected in literature that growth factors that promote angiogenesis also induce 

HCC migration and metastasis. Subsequent studies will look into comparing Hep3B cells 

with other cell lines so as to use this platform as a potential diagnostic marker for HCC. 

We also hope to look at different combinations of growth factors and ECM components as 

chemoattractants for cell migration and incorporate fibroblasts for co-culture to study the 

effects of restructuring of the ECM during angiogenesis and metastasis of HCC.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

5.1. Conclusions

There is a recent shift in the development of in vitro cell cultures for modeling liver

disease from using 2D cultures to 3D cultures. This shift reflects the desires of individuals 

from academia and industry to have a model that reflects the in vivo behavior. These models 

can be of use in drug development for toxicity and efficacy studies, or as diagnostic and 

treatment tools as well. This thesis details methods for creating 3D liver cultures and assays 

for use in better understanding liver diseases, specifically focusing on HCC and ADRs. In 

this study, we have successfully used and optimized three different platforms and two 

hydrogels for the culture of Hep3B cells in 3D. We have also demonstrated how viral 

transductions can be used to code for various fluorescent proteins. Furthermore, we showed 

how we can use Hep3B cells transfected with lentiviruses can be tracked for a high- 

throughput 3D cell migration and invasion assay, and that this assay can be successfully 

conducted for up to two weeks after initial seeding.

The work presented here has several implications for industrial, pre-clinical, and 

academic use. The surface modification techniques discussed in aims 1 and 2 give
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researchers methods for immobilizing hydrogels onto polystyrene surfaces. In addition, 

these modifications are suitable hydrogel-based microarray technologies, as our group has 

subsequently used both PMA-OD and plasma treatment to immobilize other hydrogels 

onto the surfaces of our polystyrene-based microarray platforms. In aims 1 and 3, we 

successfully transduced viruses into cells containing the expression of fluorescent proteins. 

In the case of PuraMatrix, this transduction means that encapsulated cells may be 

transduced with adenoviruses in situ, allowing for scientists to modify the genetic 

expression within encapsulated cells. This allows researchers to study various disease 

states, including genetic polymorphisms that may affect DILI or HCC. DILI is a likely 

candidate for future studies as cells encapsulated in PuraMatrix exhibited dose-dependent 

responses to several tested toxic compounds. The transduction performed using 

lentiviruses on Hep3B cells created a permanently fluorescent cell line that could be used 

to track cell growth and movement in vitro. We optimized the polymerization parameters 

for two hydrogels for microscale tissue culture, which allows for both of these hydrogels 

to be used in other small-scale tissue cultures. Finally, aim 3 also saw the development of 

a high-throughput, quantitative 3D cell migration assay. The techniques developed in the 

third aim can be applied for monitoring multiple cell types if different cell types contain 

individual fluorescent tags, meaning that more complex tissue models can be studied. 

While this assay was designed with HCC in mind, other types of cancer or any mammalian 

cells that respond to the presence of growth factors can also be assessed. Table 7 presents 

the key findings of these studies.
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Table 7. Summary of Results from Individual Aims

Aim 1 Aim 2 Aim 3
Encapsulate hepatic cells in 
hydrogels that can be used 
for high-throughput drug

screening and in situ 
adenoviral transduction

Optimize hepatic cell 
encapsulation conditions in 

a photopolymerizable 
hydrogel for creating 
layered cell structures

Simulate migration of liver 
cancer cells in 3D and 

quantify their migration in 
situ in high throughput

• Provided robust spot • Optimized surface plasma • Created a macro that can
attachment between treatment of microwell quantify cell migration in
hydrogels and micropillar chips 3D
chips • Found optimal • Transduced lentiviruses

• Optimized parameters for OMA into Hep3B cells
polymerization of polymerization based on containing expression for
PuraMatrix on the background color, PI mCherry
micropillar chip concentration, OMA • Demonstrated stability of

• Transduced adenoviruses concentration, light MHS-bound growth
into encapsulated Hep3B intensity/duration, and factors in OMA for two-
cells methacrylation week long leaching.

• Demonstrated dose- percentage • Proliferated encapsulated
response behavior of Hep3B cells for two
encapsulated cells weeks after seeding

• Demonstrated migration
of Hep3B cells in
response to angiogenic
factors

5.2. Future Directions and Recommendations

1) Cells encapsulated in PuraMatrix are susceptible to toxicity due to the handling of the 

cells before printing and the rather low pH of the hydrogel before the washing steps. Other 

cell lines may be less susceptible to the toxic effects of this hydrogel. Additionally, as 

demonstrated within the first aim, Hep3B cells can be transduced with adenoviruses in situ. 

Future experiments can focus on transductions carrying genes coding for various DMEs

with a focus on DILI.

2) Temperature is a major factor when controlling for toxicity associated with OMA 

polymerization. This is the reason why gelation and viability were optimized on a narrow
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range of conditions. If the height of the lamp above the exposed surface is changed, 

remember to also change the exposure intensity accordingly.

3) The roughness of the surface increases the duration of plasma treatment necessary to 

prevent bubble formation. Smoother polystyrene surfaces can be plasma exposed for as 

little as five minutes to ensure proper functionalization. All of our scaffolds are generally 

considered to not be smooth, but other microarray technologies may be different.

4) While we demonstrated the migration potential of Hep3B cells, we did not compare 

these results to other HCC cells lines, patient samples, other kinds of cancer, or other cells 

that are known to move in response to various cues. As a potential diagnostic assay, future 

studies should focus on comparing migration potential of Hep3B cells against other known 

tumor cell lines and explanted tumor tissue and using other chemorepellants and 

chemoattractants to induce migration.

5) Our current system does not account for growth factor generation during cancer cell 

proliferation, and there is no discussion of understanding the role of O2 transport in the 

behavior of cells within the spheroids. To fully understand these phenomena, it is necessary 

to model transport of growth factors and O2 within the spheroid, and possibly monitor 

expression of HIF-lα or try to stain hypoxic regions within the samples.

6) Our platform is ideally suited for combinatorial studies, yet most of the experiments 

were performed with high numbers of replicates with few combinatorial studies done to 

limit error. Work on the micropillar chip does not focus on the impacts of multiple drugs 

within a system, and the work on the 384-pillar plate with sidewalls uses only one or four 

combinations of growth factors to study migration. Additionally, growth factor 

concentration was fixed for the study.
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7) ECM components were not incorporated as another mechanism that could impact cell 

proliferation and migration, which is especially important in the tumor microenvironment.

8) The cancer microenvironment consists of several different cell types, so the current 

model is rather simplistic from a biological perspective. Future experiments will focus on 

the use co-cultures of fibroblasts and HCC cells to model the restructuring of the tumor 

during angiogenesis. If these experiments are successful, we may incorporate some cells 

of the immune system as well.

9) As use of the 384-pillar plate with side walls was suitable for fourteen days of cell culture, 

we hope to expand the time used in the culture to longer periods. Furthermore, we hope to 

use the system to model the behavior of cells in liver co-cultures and look into organoid 

development on this platform to study liver biology and other liver diseases.
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A. 1. OMA-15 Viability and Polymerization Results

Table 7 Lists all of the various experiments performed on using OMA-15 as a 

scaffold for growing Hep3B cells. All experiments were performed with the same 

optimized plasma surface treatment of high RF exposure for 15 minutes. In general, OMA- 

15 proved to be an unsuitable scaffold at the conditions we tested. While viable cells were 

achieved at several of the listed conditions, polymerization was not observed in an of the 

indicated conditions. Ultimately, unpolymerized hydrogels resulted in cell settling at the 

bottom of the microwell chip forming 2D confluent layers if toxicity was not observed.

Table 8. Photopolymerization tested on OMA-15

Concentration
(w/v %)

Exposure 
Intensity (%)

Exposure 
Time (min)

PI
(w/v %)

Viable
Cells?

Gel
formed?

4,8

0.1, 0.2, 
0.3 No No

4 45 0.3, 0.4, 
0.5 No No

3,6 0.025, 
0.05, 0.1 Yes No

2 45 3,6 0.1, 0.2, 
0.3 No No

2
70 0.5, 1 0.025, No No

4
0.05, 0.1

2
70 0.75, 1.5 

(immersion)
0.025, Yes No

4
0.05, 0.1

2
70 1,2

(immersion)
0.025, 

0.05, 0.1
Yes(l
min) No

4
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An additional experiment we performed was testing how immersion of our samples 

in water could affect polymerization. Our reasoning was that increased temperatures due 

to the intensity of exposed light can warm the sample sufficiently enough to either damage 

the cells or make them more susceptible to oxidative stress. Samples that were immersed 

in water had a breath-easy membrane added to the surface after printing but before 

exposure. Ultimately, the results had no effect on increasing polymerization efficiently 

though viable 2D cells were achieved during shorter durations.

A.2. Photopolymerizable Collagen Results

We attempted to work with a commercialized variation of methacrylated collagen. 

Since much of the liver ECM scaffold consists of collagen I, we thought using a 

photopolymerizable variant would yield an optimized biocompatibility while give us 

control over when gelation occurs. Moreover, photocrosslinking would increase robustness 

of a hydrogel that polymerizes due to increases in temperature. Cells would be printed at 4 

* 106 cells/mL into microwell chips, with collagen concentration varying between 1 and 3 

mg∕mL, and PI concentration at 0.05 w/v % (using Irgacure 2959). Before adding cells, 

collagen must be suspended in 20 mM acetic acid and then neutralized with the requisite 

neutralization solution provided by Advanced BioMatrix (52O1-1EA). 

Photopolymerization occurred at 4 mW∕cm2 for 30 seconds, followed by incubating 

microwell chips at 370C for half an hour in a moisture-controlled chamber before being 

immersed into complete RPMI in petri plates.

The results of the experiment are shown in Figure 18. Polymerization of collagen

was successful at 2 and 3 mg∕mL, while using 1 mg/mL produced confluent cells. The use
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of PI had a toxic effect at all indicated concentrations. The results indicate that at our tested

values, while collagen is a suitable hydrogel, adding the photocrosslinking step does not 

improve the robustness of the hydrogel at any concentrations and impacts viability 

throughout. Like 0MA-15, we discarded use of this hydrogel after several attempts to 

decrease the toxicity associated with photopolymerization while varying polymerization 

parameters. It is possible that this hydrogel is

A.3. pcDNA Transfections into Hep3B cells.

As an alternative method to create a permanently fluorescent cell line, we attempted 

to transfect plasmid DNA into Hep3B cells. We used a Lipofectamine 2000 Transfection 

Kit (Thermofisher scientific, catalog no. 11668027) with high concentrations of pcDNA 

(500-5000 ng∕mL) containing the expression of RFP. After leaving the transfection

reagents on for 48 hours, we attempted to select out cells using genticin with variable 

concentration (1-10%). Our results were ultimately unsuccessful. While transfection was 

successful, Hep3B cells proved not to be susceptible to genticin toxicity, meaning we could 

not select out cells that were not transfected. While this method could be potentially used 

for other cell lines, it is not compatible with Hep3B cells.

A.4. Assessing Fluorescent Reagents for CYP450 Activity

Several fluorescent and one luminescent assay was conducted to work with 

CYP450 enzymes (table 9). These substrates were tested for activity according to 

manufacturer’s protoctols against pure enzymes, against cells infected with adenoviruses 

containing the expressions of these enzymes, and cDNA/pcDNA transfected cells. With 

the exceptions of 7-EC and MFC, all substrates fluoresced/luminesced when tested against 

their specific enzymes. However, only EOMCC/BOMCC worked against virus infected
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cells. This indicates that these substrates are the only ones that can be use of the tested 

enzymes for cell-based activity. Furthermore, only CYP1A2 and CYP2C9 expression was 

successfully transduced into Hep3B cells.

Table 9. Substrates tested for CYP450 activity

Substrate Metabolite Isoform Enzyme
Activity

Virus
Activity

7-Ethoxycoumarin (7-EC) 7-Hydroxycoumarin 1A2 - -

Dibenzyl-fluorescein (DBF) Fluorescein 2C9 + -

3-[2-(N,N-diethyl-N- 
methyl-ammonium)ethy1]-7- 
methoxy-4-methylcoumarin 
(AMMC) Iodide

3-[2-(N,N-diethyl-N-
methyl-
ammonium)ethy1] -Ί- 
hydroxy-4- 
methylcoumarin 
(AHMC) Iodide

2D6 +

7-Methoxy-4-
Trifluoromethylcoumarin
(MFC)

7-hydroxy-4- 
Trifluoromethylcoum 
arin (HFC)

2E1

7-benzyloxy-4-
Trifluoromethylcoumarin
(BFC)

HFC 3A4 +

7-ethyloxymethyloxy-3- 
cyanocoumarian (EOMCC)

7-hydroxy-3-
cyanocoumarin

1A2/2D
6/2E1

++/+∕+ +/-∕-

7-benzyloxymethyloxy-3- 
cyanocoumarian (BOMCC)

7-hydroxy-3-
cyanocoumarin

2C9/3A
4

+/++ +/-

Luciferin-
pentafluorobenzene
(Luciferin-PFBE)

Luciferin 3A4 +

(-) No activity detected. (+) Moderate response. (++) significant response.
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