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ADVANCED PROCESSING OF NICKEL-TITANIUM-GRAPHITE BASED METAL 

MATRIX COMPOSITES 

AMIT PATIL 

ABSTRACT 

A new class of in situ titanium carbide (TiC)/graphite (C) reinforced nickel matrix 

composites with variation in composition particularly varying C/Ti ratio have been 

processed using two different processing techniques. Firstly, via mechanical alloying (MA) 

followed by spark plasma sintering (SPS), i.e. solid-state processing. Secondly, using Laser 

engineered net shaping (LENSTM) technique, i.e. metal additive manufacturing technique. 

Mechanical alloying has gained special attention as a powerful non-equilibrium process 

for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering 

is a unique technique for processing dense and near net shape bulk alloys with 

homogeneous microstructure. Laser engineered net shaping (LENSTM) is a rapid 

prototyping technique prominently known for its ability to fabricate full dense complex 

components and functionally graded materials. These composites consist of an in situ 

formed and homogeneously distributed TiC precipitates reinforcing the nickel matrix. 

Additionally, by tailoring the C/Ti ratio in these composites the volume fraction of TiC 

reinforcement can be altered, and an additional graphitic phase can also be engineered into 

the microstructure. These Ni-TiC-C composites exhibit excellent microhardness as well as 

tribological properties as compared to pure nickel. Additionally, microstructure, 

microhardness and tribological behavior of SPS processed Ni-TiC-C composites have been 

investigated and compared with LENSTM processed counterparts. SPS processed Ni-Ti-C 

composites exhibit excellent mechanical, as well as tribological properties as compared to 
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LENSTM processed samples primarily due to uniformly distributed refined TiC and 

graphite phases within nickel matrix.  
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CHAPTER I 

INTRODUCTION 

1.1. Metal Matrix Composites (MMCs) 

Metal matrix composite is a class of material, consisting of a metal matrix 

reinforced with ceramic particulates making it suitable for numerous functional as well as 

structural applications.1-3 Metal matrix composites have very high strength to weight ratio, 

also exhibit attractive physical and mechanical properties, superior than those of a base 

metal matrix, as well as ceramic reinforcement. MMCs can be used at elevated temperature 

due to combination of metallic properties such as high strength, modulus and ceramic 

properties such as high hardness and wear resistance.1-3 The balance of such attractive 

properties, availability of relatively inexpensive reinforcements, various processing routes, 

and inherent flexibility to alter the characteristics and properties by varying the nominal 

compositions make it an ideal material for aerospace, energy, automotive and structural 

engineering applications.1-5 

Depending upon desired application, metal matrix composites can be reinforced 

with ceramic particles, continuous and non-continuous fibers, or even hybrid 

reinforcement, consisting of both particles and fibers. Out of all these, particulate 

reinforced MMCs are considered as the most attractive material due to their low production 



 

2 
 

cost and their isotropic properties.25 Generally, reinforcement particulates used in MMCs 

are ceramics such as metal carbides (TiC, SiC, WC, TaC), metal nitrides (TiN, TaN, ZrN, 

Si3N4), metal borides (WB, TiB2), and metal oxides (Al2O3, ZrO2) exhibiting excellent 

mechanical properties. These ceramic reinforcements exhibit high Young’s modulus, high 

thermal stability, high yield strength, high hardness, high melting temperature, low density, 

and low coefficient of thermal expansion. These properties can be tailored with production 

as well as processing techniques, and with the matrix system selected in the composite 

materials. Out of all the ceramic reinforcement particulates, metal carbides are most 

commonly used primarily due to their very high mechanical strength to the metal matrix. 

Selection of processing routes to fabricate MMCs, mainly depends upon applications and 

desired properties.  Factors such as size and volume fraction of the reinforcement phase 

and nature of the interfacial bonding between matrix and reinforcement affect the 

microstructure and mechanical as well as tribological properties of the composites.6-8 

Depending on the formation of reinforcement during processing, MMCs are 

classified as ex situ and in situ. The first synthesis route uses a conventional technique of 

composite fabrication in which reinforcement are externally added to the metal matrix. 

Whereas, in in situ MMCs, formation of reinforcement takes place within the matrix. Ex 

situ has disadvantages as compared to in situ MMCs such as poor interfacial bond, size 

restriction of the reinforcement, and poor wettability, resulting in the inhomogeneous 

distribution of the reinforcement particulates as compared with in situ technique. Also, 

surface contamination, and particulate agglomeration can be seen in particulate reinforced 

ex situ MMCs. Homogeneous dispersion of fine and thermally stable reinforcement in the 

metal matrix is desirable to achieve optimal mechanical properties and enhanced 
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mechanical performance of MMC. Thus, the interfacial bonding between metal matrix and 

ceramic reinforcement need to be stable as it influences the structure and the properties of 

the MMC. By using the in situ technique of fabrication, the reinforcement is synthesized 

in the metal matrix during fabrication process due to exothermic chemical reaction between 

the constituents, thus resulting in a strong and clean interfacial bonding between metal 

matrix and fine scale size of reinforcement precipitates.8,12 A more homogeneous 

microstructure and remarkably improved mechanical properties are achieved due to 

homogeneous dispersion of particles within metal matrix, control over the size, good 

wettability of the reinforcement particulates with the metal matrix allowing good 

coherency, and excellent interfacial bonding between metal matrix and ceramic 

reinforcement. Also, the in-situ reinforcement phases formed due to the chemical reaction 

are found to be thermodynamically stable in the metal matrix than that of ex situ MMCs.7,8 

Therefore due to several shortcomings of ex situ processing route, in situ processing route 

is most preferable for the fabrication of MMCs. 

K. K. Chawla, in his work, has classified the fabrication techniques for MMCs in 

two categories, liquid-state processing, and solid-state processing.36 MMCs can be 

fabricated using different processing techniques such as casting, forging, and powder 

metallurgy processing, etc. Processing routes for fabrication of MMCs play an important 

role in altering their microstructures, thus affecting their mechanical properties. Powder 

metallurgy method is most widely applied for processing MMCs, due to low cost and its 

inherent flexibility to alter the composition in order to get precisely tailored mechanical 

properties.  
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The size of the in situ formed reinforcement particles in MMCs depend on various 

factors such as external force, pressure and temperature during reaction, etc. Depending 

upon the processing temperature of the metal matrix and the reactants, S.C. Tjong has 

classified the Powder metallurgy process routes for in situ reaction into four categories:    

a) Solid-Liquid reaction process, b) Liquid-Liquid reaction process, c) Solid-Solid reaction 

process, d) Vapor-Liquid reaction process.12 These processing routes play an important 

role in altering the microstructure as well as mechanical properties of the material 

synthesized. 

In present study, Titanium carbide (TiC)-graphite(C) reinforced Nickel matrix 

composites were fabricated by powder metallurgy technique using solid-solid and solid-

liquid reaction process. Mechanical alloying (MA), which falls under solid-solid reaction 

process is a solid-state processing method and was used for in situ formation of 

reinforcement phase which was later consolidated using spark plasma sintering (SPS). In 

solid liquid reaction process, the reinforcement phase is formed in the matrix solvent via 

diffusion reaction. Laser Engineered Net shaping (LENSTM) technique was used in this 

study for fabrication of MMCs using solid-liquid reaction process. In both processing 

routes, in situ MMCs have been processed using elemental blend nickel, titanium, and 

graphite powder particles. 
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1.2. Objectives 

A. Fabrication of Ni-TiC-C composites with variation in volume fraction of in situ formed 

reinforcement precipitates using SPS and LENSTM processing techniques. 

B. Identify and study the phases evolved during the processing. 

C. Study the difference in the microstructure and the reinforcement distribution achieved 

after fabrication using two different techniques. 

D. Observe the effect of volume fraction of reinforcement on microstructure, 

microhardness, and tribological performance of the composites. 

E. Comparing two different processing techniques based on the derived results. 

1.3. Organization of thesis 

There are total five chapters in the thesis. The first chapter deals with brief review of Metal 

matrix composites, its application and classification, and fabrication techniques. It also 

provides information on the objective of the present work and further organization of this 

thesis. 

Chapter two describes the processing techniques utilized in the present work for the 

fabrication of metal matrix composites and provides information on purpose of selecting 

Ni-Ti-C ternary system for this investigation, describing its remarkable properties and 

significance importance. It also shares the previous research work carried out in relevant 

area in the form of literature review. 

Chapter three deals with experimental procedures along with the process parameters used 

to synthesize Ni-TiC-C composites using two different processing techniques i.e. 

mechanical alloying followed by SPS and LENSTM. Later, it describes the characterization 

techniques involved and the apparatus used for it. 
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Chapter four describes the results and discussion based on the processing routes as well as 

characterization techniques used and mentioned in previous chapters. This chapter 

concludes with comparing microstructure, mechanical, and tribological properties of Ni-

TiC-C composites processed via SPS and LENSTM processing routes. 

Lastly, chapter five summarizes the results and concludes the present work. 
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CHAPTER II 

METHODOLOGY 

This chapter provides understanding on the methods and processing techniques 

utilized for the fabrication of metal matrix composites in the present work and highlights 

the importance of mechanical alloying (MA), spark plasma sintering (SPS), laser 

engineered net shaping (LENSTM), and Ni-Ti-C ternary system used in this study. 

Furthermore, it also provides brief literature review on the research work previously carried 

out in relevant area. 

2.1. Powder metallurgy 

Powder metallurgy process is known for its rapid production method of accurately 

fabricating components and offers control over the microstructure and characteristic 

properties. Powder metallurgy offers precision and flexibility to control the features and 

the characteristics of the part fabricated, which is very difficult or near impossible to 

achieve using any other conventional processing techniques. It also eliminates additional 

machining operations as involved in casting, and other traditional techniques to achieve 

final dimension.28 

  The powder metallurgy technique has an excellent set of advantages such as it 

enables efficient material utilization and fabrication of complex components with near net 



 

8 
 

shape possible, fabrication of components using hard materials such as WC, TiC, and 

components can be fabricated in pure form as the purity of precursors used gets preserved 

throughout the process. It also makes utilization of wide variety of materials such as metals, 

alloys, ceramics and other immiscible systems possible.29 

The recent development in powder metallurgy has helped in developing novel 

alloys with better mechanical properties in order to crater the current industrial demands. 

It has also boosted and helped in development for the wide spectrum of additive 

manufacturing techniques. Powder metallurgy technique has helped manufacturing of pre 

alloyed powders which can be used by additive manufacturing process for the fabrication 

of complex components with improved mechanical performance. Powder metallurgy 

process has opened new routes to process advanced materials with controlled 

microstructure using processes such as mechanical alloying and rapid solidification 

processing (RSP). 

2.2. Mechanical Alloying 

Mechanical alloying (MA) is an effective solid-state powder processing technique 

permitting the development of refined microstructure and nanocrystalline size of 

homogeneously dispersed in situ reinforcement which improves the mechanical properties 

of the composite while retaining the ductility of the metal matrix.12,13 Mechanical alloying 

is a unique process allowing the production of advanced materials, which was difficult or 

impossible to fabricate with traditional techniques.  
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Figure 1. Schematic of mechanical alloying kinematics and mechanical alloying process 

It is a mechanochemical process by which in situ ceramic reinforcement can be 

induced in the composite via mechanically activated chemical reaction using elemental 

powders. It has been showed that in situ formation of composites leads to better properties 

in comparison with conventionally synthesized composites.30,31 The process starts with the 

blending of elemental powder in required proportion and is subjected to high energetic 

compressive impact forces in a mill using grinding media until a steady state is achieved. 

MA is considered as a complex stochastic process having numerous independent and 

interdependent process variables involved and depend on factors such as the desired 

phases, microstructures, and properties. Depending upon these factors, selection and 

optimization of these variables are required in order to obtained MMCs with desired 

properties.13 MA has been proven capable of processing a wide variety of materials such 

as intermetallic alloys, Ceramics, and other refractory materials. Both miscible and 

immiscible systems material systems can be processed using MA. Mechanically alloyed 

materials possess high strength and are found to be stable at both room temperature and 

elevated temperature.13 
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C Suryanarayana reported that during MA, repetitive fracturing, cold welding and 

rewelding governs the shape and size of the milled powders which increases the wettability 

and results in better dispersion of reinforcement in the metal matrix by breaking up the 

ceramic clusters.13 Previous studies have indicated that particle size has significant 

influence on the recrystallisation process affecting grain size and microstructure of the 

sintered composites.13-15 It is well known that grain size refinement of metallic materials 

to nanoscale enhances mechanical properties such as strength and hardness of the material 

maintaining the original ductility.24 Hall-Petch relationship states that grain size has a great 

influence on the composite strength as they as it acts as a pinning point and hinders the 

dislocation movement.59 Thus, ball milling was performed to reduce the particulate size 

and for homogeneous dispersion of the in situ reinforcement precipitates within the metal 

matrix.  
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2.3. Spark Plasma Sintering (SPS)  

Spark plasma sintering (SPS) also known as Field assisted sintering technique 

(FAST) is a novel consolidation technique suitable to sinter metal, alloys and composites 

at relatively low temperatures below their melting point and shorter sintering time 

compared to the conventional techniques. It has a high heating rate, shorter holding time, 

and low sintering temperature which retards the grain growth retaining refined 

microstructure and increases the microhardness as well as mechanical properties of the 

composites.16-19,47 In SPS, consolidation of powder is taking place due to microscopic 

discharge of pulsed direct current between particles under uniaxial pressure, promoting 

densification during sintering. Melting of the surface of the powder takes place due to 

resistive joules heating effect energized by DC pulsed electric current.20,21  

The composite samples processed via SPS technique can achieve full densification, 

and grain growth can also be avoided due to rapid heating up to 1000oC/min as well as 

shorter holding time. This ability to reach the processing temperature in a short duration of 

time due to high heating rate, minimizes the processing time required for sintering.48,49 In 

SPS process, part porosity can be controlled by changing the processing parameters such 

as applied pressure, holding time and processing temperature.50 In SPS, sintering takes 

place in shorter cycle time; thus, limiting grain growth and preventing undesired phase 

transformation or intermetallic reaction of the material during processing. The SPS 

technique also possesses numerous other advantages. For example, it is less sensitive to 

initial material characteristics, it can consolidate difficult to sinter material, no need of 

sintering aids, no cold compaction required before sintering as needed in other techniques 

and helps achieving improved characteristic properties of the consolidated material. These 
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outstanding advantages make the SPS process preferable over other conventional 

techniques of sintering.51 

The material sintered using SPS process can be both conductive and non-

conductive. Conductive material is heated by resistive joules heating effect and by heat 

transfer from the die. Whereas, in case of non-conductive material, heating takes place only 

through heat transfer from the die.51 Previous work has demonstrated that a wide variety of 

conducting or insulating materials such as metals, ceramics, and composites can be 

processed using the SPS technique.47-49 

 

Figure 2: Schematic illustration of the SPS system 
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Figure 2. shows schematic of SPS system. In the SPS technique, the powder to be 

sintered is placed in a graphite die when low pressure, typically less than 100MPa is 

applied. However, if the applied pressure is more than 100MPa, tungsten carbide die is 

used. Graphite foil is used inside the die and in the assembly to improve the conductivity. 

Die and Punches of the same material are used. Uniaxial pressure is applied with the help 

of plungers, blocks, and cold spacer assembly, requiring all of them to be electrically 

conductive. Generally, graphite, stainless steel, or copper is used in the assembly.51,53 If the 

applied pressure is less 100MPa, graphite is most preferred due to its high thermal 

conductivity. 

In this process, the powder particles are sintered due to the surface evaporation and 

melting of the powder surface followed by solidification during cooling. Due to 

microscopic discharge of pulsed DC current between particles, a local high temperature 

state of several hundreds to thousands of degrees centigrade is formed. This high 

temperature causes evaporation and melting on the surface of the powder particles and neck 

formation around the contact area between the particles takes place. Also, the flow of 

material due to plasticity and under applied pressure brings particles together and promotes 

necking. This processing phenomenon under applied pressure, allows sintering through 

SPS at lower temperatures as compared with other processing techniques.51,52 The amount 

of current required during the SPS cycle depends on factors such as die geometry, 

processing temperature, conductivity of the material processed, etc. For high heating rates, 

large sizes of die, and high processing temperature, a higher current is required. In present 

study, SPS 10-3 by Thermal Technologies was used. This system can apply up to 10000 
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kg of pressure, 3000 Amps and 10 volts of current. Generally, the pulse DC signal is ON 

for 30ms, and OFF for 2ms 

Several research works were carried out on fabrication of in situ MMCs via SPS 

preceded by high energy mechanical alloying using ball mill and a substantial improvement 

in mechanical properties particularly, in terms of mechanical strength, wear resistance, 

hardness, thermal conductivity was observed. It was also noticed that even after 

consolidation, the nanocrystalline size obtained via MA was preserved. 25,27,34 

Currently, the industrial application is limited to the area where it is difficult to 

process high performance materials using traditional techniques. Also, further machining 

is required for the material consolidated through the SPS process but still you can get near-

net shape. 

2.4. Laser Engineered Net Shaping (LENSTM) 

Laser Engineered Net Shaping (LENSTM) is an additive manufacturing technique 

first developed at Sandia National laboratory in the United States and was subsequently 

commercialized by Optomec Inc. It is a directed energy deposition technique and solid 

metal forming process for the fabrication of 3d components. Due to its rapid cooling and 

high solidification rate, it is advantageous in achieving homogeneous as well as refined 

microstructure with improved mechanical properties as compared with other conventional 

methods. LENSTM is an additive manufacturing technique prominently known for its 

ability to fabricate full dense, complex components as well as functionally graded 

materials.  
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Application of LENSTM technique includes rapid prototyping, low volume 

manufacturing, and product development for aerospace, medical and defense industries, 

and surface engineering applications. This technique has the flexibility to deposit material 

on existing or pre-deposited, makes it possible to repair. Material restrictions, such as it 

can only use spherical metal powders with a size range of 50µm – 150µm is used as a raw 

material for fabrication.37 Unlike other rapid prototyping techniques, no plastic-coated 

materials, filler materials, or binders is required in this processing technique. The 

fabrication of component takes place under controlled inert Argon environment in the 

hermetically sealed glove box with oxygen content as low as 10ppm, to prevent 

contamination, and avoiding the formation of any undesired intermetallic phases. Figure 3. 

depicts the working schematic of LENSTM process. 
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Figure 3: Schematic illustration of the LENSTM system54 

Depending on the material to be deposited, and power output required, Nd-YAG or 

fiber laser can be used to process various types of elemental powders. It has a four co-axial 

nozzle powder feeder system; it is designed in such a way that all the nozzles are focused 

at a point where the laser beam is focused. Delivery of elemental powder from the powder 

hoppers through the nozzle is carried out with the help of inert gas delivery system. The 

high-power density from the focused laser beam generates a melt pool on surface of the 

substrate or previously deposited layer. The substrate is moved relative to the laser beam 

to deposit thin layers of controlled width and thickness. The movement of the substrate and 

the flow rate of powder is controlled by the control system.  Powder through the delivery 
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system is sprayed and absorbed in the melt pool. Due to small melt pool geometry and 

rapid cooling rate, this component fabricated using this component has very fine refined 

microstructure with fine grain size.38,39 Materials such as stainless-steel alloys, tool steel 

alloys, titanium alloys, nickel and nickel based super alloys, cobalt alloys and other 

composite materials have been fabricated via LENSTM. 

LENSTM system uses multiple hoppers for powder feeder which add to its flexibility 

and make it possible to fabricate compositional graded components. This ability makes it 

possible for deposition of functionally graded materials (FGMs). FGMs are advanced 

materials, whose composition and the microstructure change gradually from one direction 

to other. Its main characteristic is its graded composition and microstructure, resulting in 

variation of properties. This tailored composition and microstructure of the components, 

helps in achieving distribution of properties as desired for wide range of applications. [40,41] 

FGMs can be processed via several methods such as CVD, Plasma spraying, Powder 

Metallurgy, SHS, LENSTM, etc. But due to limitation of shape and size of the die in pressure 

aided sintering. LENSTM process is most suited for the fabrication of FGMs.42 

Some examples of previous work carried out on fabrication of MMCs using 

LENSTM and demonstrating its efficacy, includes laser based fabrication of IN625 based 

MMCs with Ni-coated and uncoated TiC particles as reinforcement by Zheng et al.43, WC- 

Co cermets fabricated by Xiong et al.44, Liu et al worked on fabrication of FGM TiC/Ti  

composites using LENSTM process42, deposition of Ti-6Al-V4 using LENSTM.46 
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2.5. Nickel-Titanium Carbide-Graphite 

Nickel exhibits various attractive properties such as excellent corrosion and wear 

resistance, ductility, toughness and has a low coefficient of thermal expansion. Owing to 

its properties such as heat resistance, resistant to fatigue and abrasion, resistant to oxidation 

and its ability to retain its shape and strength even at high temperature, nickel and nickel-

based superalloys has been widely used in aerospace, petrochemical industry and numerous 

other processing industries.7,8 Nickel based MMCs with ceramic reinforcement are used 

for various industrial applications including operations involved with cutting, stamping, 

punching, rolling, piercing, etc.3 

Titanium Carbide (TiC) is a refractory material with excellent combination of 

properties such as high hardness of 3200 (HV), high Young's modulus (440 GPa), low 

density (4.93 g/cm3), low coefficient of friction, excellent corrosion and wear resistance, 

high melting point (32000C), resistant to abrasion, and infusibility. These remarkable 

properties make TiC an ideal candidate as ceramic reinforcement adding high mechanical 

strength to the metal matrix.7-12 

TiC has high hardness value but is extremely brittle thus cannot be used as 

monolithic ceramic for direct engineering application. Therefore, TiC is a prominent 

reinforcement material in ductile and tough Nickel base metal matrix and makes an 

excellent hybrid material for automotive, petrochemical, aerospace and high-temperature 

structural applications where high compressive strength, low coefficient of friction, and 

high wear resistance are required at elevated temperatures. It is also known that as 

compared to other metals, nickel exhibits a low wetting angle with Titanium carbide, thus 

leading to an improved interfacial bonding in TiC reinforced nickel matrix.7 Nickel has 
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very less affinity towards carbon, so it does not form an equilibrium carbide phase which 

makes it a suitable metal matrix for TiC reinforcement. Moreover, TiC being chemically 

inert it does not undergo phase transformation and it is thermodynamically stable in metal 

matrix.10,11 TiC is the hardest of all metal carbides, it is 33 percent harder and has very low 

density in comparison with Tungsten carbide (WC).26 These combined properties of TiC 

reinforced with nickel matrix makes it potential replacement for WC based materials for 

structural applications where high wear resistance, and low density is desired. Thus, the 

combination of Ni and TiC was selected for the MMC due its significant importance in 

plenty of industrial applications because of its remarkable properties. Also, by altering C/Ti 

ratio in Ni-TiC-C composites an additional graphite can also be engineered in the 

microstructure. Additional Graphite phase shows lower shearing strength under friction 

thus it remarkably increases solid lubrication and reduces coefficient of friction making it 

significantly promising for surface engineering application.7,8 

Previously many researches were conducted extensively on fabrication of in situ 

formed TiC reinforcement in Nickel metal matrix to attain optimal mechanical properties 

and to envisage its potential applications. It emphasized on the optimization of the 

mechanical properties of nickel using TiC as reinforcement precipitates.7-9,12,34 

J. Zhuang. et al. in his research utilized MA and SPS to synthesize Titanium 

Carbide reinforced Copper matrix composites and efforts were made to study its influence 

on dry sliding wear behavior. It was reported that addition of TiC reinforcement in Cu 

matrix, substantially reduced the coefficient of friction and improved wear resistance.27     

K. Ravi et al. synthesized Aluminum matrix composites reinforced with TiC using stir 

casting method and found that addition of TiC in Aluminum alloy increased hardness, 
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density and tensile strength of the composite. They have noticed that hardness of composite 

increased further with increase in TiC particles.33 Y. Li et al. have studied the effects of 

TiC content in Ni-TiC matrix processed using Direct Laser Fabrication technique and 

found increase in microhardness and improved microstructure due to presence of in situ 

formed hard TiC precipitates.32 S. Zohari et al. utilized MA and SPS to fabricate in situ Ni-

TiC nanocomposite clad layer on st37 steel substrate and found enhancement in hardness 

and density due to in situ processing technique.34 Recently, B. AlMangour et al. studied in 

situ reinforcement of TiC particle in stainless steel matrix using MA followed by selective 

laser melting technique and found that a continuous, well hardened tribolayer demonstrated 

the enhanced wear resistance.35 

In this study, efforts have been made to fabricate Ni-TiC-C composites of various 

C to Ti stoichiometric ratio using two different processing techniques. Firstly, using 

Mechanical alloying of Ni-Ti-C powder followed by consolidation using Spark plasma 

sintering. Secondly, using Laser engineered net haping (LENSTM) process. Several 

different compositions of Ni-TiC-C metal matrix composites were sintered, with varying 

the C/Ti ratio in order investigate effect of volume fraction of TiC reinforcement and 

graphite phase on the microstructures, mechanical, and tribological properties of these 

composites. 

 

  



 

21 
 

 

 

 

 

CHAPTER III 

EXPERIMENT METHODS 

3.1. Processing using Mechanical alloying followed by Spark Plasma Sintering 

(SPS) 

Elemental powders of Nickel (3-7 µm, 99.9% pure), Titanium (-325 mesh, 99.5% 

pure) and Graphite (-325 mesh, 99% pure) were selected as a starting precursor. These 

powders were sourced from Alfa Aesar. Samples were stoichiometrically mixed in several 

different nominal compositions with varying atomic weight percentage of Nickel, 

Titanium, and Graphite as shown in Table I. The blend of these elemental powders was 

then mechanically alloyed using high energy ball milling (HEBM) equipment. 

For brevity, the powders mixed with the nominal composition 80at%Ni-10at%Ti-

10at%C is further referred as Ni-10Ti-10C. Similarly, this will be followed for all other 

Ni-Ti-C composites. The compositions with varying atomic weight ratio of Carbon to 

Titanium (C/Ti) are listed in Table I. 

  



 

22 
 

Sr. No. Sample Nickel (at%) Titanium (at%) Carbon (at%) C/Ti 

1.  Pure Ni 100 - - - 

2.  Ni-10Ti-5C 85 10 5 0.5 

3.  Ni-10Ti-10C 80 10 10 1 

4.  Ni-5Ti-10C 85 5 10 2 

5.  Ni-7Ti-20C 73 7 20 2.86 

6.  Ni-6Ti-20C 74 6 20 3.33 

7.  Ni-5Ti-20C 75 5 20 4 

8.  Ni-4Ti-20C 76 4 20 5 

9.  Ni-3Ti-20C 77 3 20 6.66 

Table I: Nominal composition of SPS processed sample in atomic weight percentage 

Planetary micromill FRITSCH Pulverisette 7 premium line which is a planetary 

ball mill was employed for mechanical alloying with 3 mm diameter Tungsten carbide 

(WC) milling media with Ball to Powder weight ratio (charge ratio) of 15:1. Samples were 

ball milled at 600 rpm for 24 hours in 80 ml Tungsten carbide grinding bowl. To avoid 

cross contamination of the milled powders grinding vessel and grinding medium of same 

material were selected. In order to prevent excessive temperature rise during milling, 60 

mins of milling was followed by cooling interval of 30 mins. Mechanical alloying was 

performed under inert argon gas atmosphere to prevent oxidation of powder. 2 wt % of the 

total powder charge of stearic acid (C18H36O2) was used as a process control agent in order 

to prevent excessive cold welding of these powder during ball milling. 

The as milled powders were then sintered using spark plasma sintering technique. 

SPS 10-3 by Thermal Technologies LLC was used for sintering of mechanically alloyed in 
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situ Ni-Ti-C composite powder. The SPS process was programmed by specific sets of 

operation instructions such in the software, ITools. Set points for temperature, applied force 

with rate, heating rate, dwell time, ramp up/ramp down time were assigned in the program. 

The sintering process was carried out at 11000C with a heating rate of 100 0C/min 

under maximum uniaxial pressure of 50 MPa with dwell time of 5 minutes. A cylindrical 

graphite die of 20mm inner diameter was used. An optical pyrometer was used to yield the 

temperature inside the die.  

The SPS consolidated samples were mounted on graphite based conductive resin at 

359OF under 4000 psi. The mounted samples resulted into one and quarter inch specimen, 

making it easier to hold and polish the sample. The mounted samples were then 

mechanically polished using abrasive silicon carbide (SiC) paper having high friability to 

remove external graphite layer. The samples were polished sequentially using 240, 400, 

600, 800 and 1200 grit SiC paper. Polishing was carried out under constant supply of water 

for cooling and removal of debris. Final lustrous metallographic finish was achieved by 

polishing using micro-cloth and 0.04µm colloidal silica solution. The samples were then 

washed in an ultrasonicate using soap solution, water and ethanol rinse each respectively 

for microstructural characterization. 
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3.2. Processing using Laser engineered net shaping (LENSTM) 

Elemental powder of Nickel (40-150 µm), Titanium (40-150 µm) and nickel coated 

graphite powders (which can pass through -300/ +325 mesh) were selected as starting powder. 

These powders were sourced from Alfa Aesar. All the powders were gas atomized. The 

powders were stoichiometrically mixed in several different nominal compositions with 

varying atomic weight percentage of nickel, titanium, and graphite as mentioned in Table 

II. 

Sr. No. Sample Nickel (at%) Titanium (at%) Carbon (at%) C/Ti 

1.  Pure Ni 100 - - - 

2.  Ni-10Ti-5C 85 10 5 0.5 

3.  Ni-10Ti-10C 80 10 10 1 

4.  Ni-7Ti-20C 73 7 20 2.86 

5.  Ni-3Ti-20C 77 3 20 6.66 

Table II: Nominal composition of LENSTM processed sample in atomic weight percentage. 

It is well known that variation in flow rate of powder is possible due to differences 

in the density and irregularity in the surface. It has also shown that metal coated powder 

particles improved flowability and the powder feeding, which was mainly due to increased 

particle density, and smoother surface of the particle. [43] Thus, to avoid the flow variation 

of the powders, nickel coated graphite powder was used instead of pure graphite powder. 

Nickel coated graphite powder used had composition of 75wt% of C and 25wt% of Ni. 

Four different nominal compositions with varying atomic weight percentage of nickel, 

titanium and nickel coated graphite were stoichiometrically mixed twin-roller mixer. Twin-

roller mixer consist of two rollers moving in opposite direction.  The powders were mixed 
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for 6 hours at 300rpm in order to achieve near homogeneous mixture. The powder mixture 

was then loaded in the powder feeder of the LENSTM system. 

Similar to other additive manufacturing technology, LENSTM process also begins 

with computer-aided design (CAD) file of a three-dimensional component to be fabricated. 

Fabrication is carried out by layer by layer deposition of the component on a nickel 

substrate. Using the powder delivery system, the homogeneous mixture of powder was 

ejected through the nozzle at a focused point which converges at a point where the high-

power laser beam is focused. In this experiment, a high powered 500W Nd: YAG laser 

emitting near infrared laser radiation at a wavelength of 1.064µm was used. The Laser 

beam was focused to create a melt pool of powder ejected on a substrate with the help of 

inert argon gas flowing through a four-nozzle assembly. Subsequently, the substrate is 

moved relative to the laser beam to deposit thin layers of controlled width and thickness. 

Scan speed of 10 inches/min and hatch width of 0.018 inch and a layer thickness of 0.01 

inch was used during the deposition.  The layer deposition is carried out in a controlled 

inert argon gas environment in the hermetically sealed glove box. The argon gas is 

continuously recirculated at a flow rate of 3 liters/min throughout, and the oxygen content 

was maintained below 10 parts per million (PPM) during deposition. 

The in situ composites were deposited on the substrate in a cylindrical geometry of 

diameter 10mm and height 10mm. These deposited composites were taken out from the 

glove box through the anti-chamber present in the LENSTM system to avoid any 

atmospheric oxygen contamination and were cut from the nickel base plate using electric 

discharge machine. (EDM). These samples were then mounted and mechanically polished, 

using same procedure as described in the previous section.  
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3.3. Characterization of Ni-Ti-C composites 

3.3.1. X-Ray diffraction (XRD) 

X ray diffraction technique was used to identify the phases present in the composite 

samples. It works on the principle of Bragg’s Law, given by nλ = 2dsinƟ  

Where, n= Integer determined by the given order, λ= Wavelength of the radiation in 

angstrom (Å), d= Interplanar spacing in angstrom (Å), Ɵ= Angle of diffraction in radians.60 

The radiations from the emitter are reflected at different planes at different angles 

with variation in intensity which is detected by the detector. The emitter and detector are 

rotated with variation in angle to complete a full scan of the sample, some of the incident 

rays are reflected off the first atomic plane while some rays are reflected from the adjacent 

atomic plane as shown in Figure 4. 

 

Figure 4: Schematic illustration of Bragg’s Law 

When the incident radiations are reflected from different planes meets each other, 

constructive or destructive interference takes place. If the interference is destructive, it will 

reflect low intensity and a flat line will appear. Constructive interference will occur when 
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a full phase shift in the rays takes place that is when the sum BC+CD is an integer and the 

Bragg’s law fits true. In case of constructive interference, it will reflect an intensity peak 

in XRD profile. Constructive interference occurs only at specific angles, depending upon 

crystallography.60 These specific angles reveal the crystal structure of the phases present 

in the sample. The results after analyzing the data determines hkl values of the crystal 

planes. The X-ray diffraction data is plotted between the intensity (arbitrary units) of the 

peaks versus the diffraction angle which was measured in 2Ɵ (degree). 

In this experiment, tests were carried out in Rigaku SmartLab X-ray diffractometer. 

XRD analyses was performed employing monochromatic Cukα radiation generated at 40 

KV with a wavelength of 1.5402Å. 

Following parameters were used to collect the data: 

scan speed: 1.0 deg/min; step width: 0.04 deg; scan range: 20deg – 100deg 

3.3.2. Scanning electron microscopy (SEM) 

Additional characterization was done to observe the microstructure, phases and 

study the effect of the processing techniques used, the composite samples processed using 

SPS and LENSTM techniques were analyzed using scanning electron microscope (SEM). 

Inspect F50 from FEI Corporation was used in obtaining secondary and backscattered 

micrographs to investigate the morphology as well as phases present in these composites, 

and to identify the effect of SPS and LENSTM processing technique on their microstructure. 
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3.3.3. Vickers Microhardness 

Vickers microhardness was determined using Wilson VH1202 hardness tester from 

Buehler having an accuracy of ±1.5%. Microhardness was evaluated under test force of 0.5 

kgf and dwell time of 10 seconds as recommended by ASTM E384 standards. A pyramid 

shaped diamond indenter was used for indentation. Indent diagonals were measured using 

the measurement system in the Wilson DiaMet and the Vickers microhardness number was 

calculated for the load and indent dimensions. 

Vickers hardness number (VHN) is calculated using equation mentioned below, 

VHN = 2Psin(α/2)/d2 = 1.854P/d2 

Where, P is the test force in gram-force, d is the average of the diagonals of the indentation 

in µm, α is the indenter tip angle which is taken as 136o.61 

The test was carried out according to ASTM E384 standards. Test was performed 

under ambient conditions and at least ten readings at different position were taken for each 

sample. 

3.3.4. Tribology 

The dry sliding wear tests of the processed samples were conducted using Falex 

ISC-200 Ball-on-disc system by Implant Sciences. Testing was carried out at room 

temperature. Tests were performed under a normal load of 100g (1 N). The load (N), sliding 

speed, and track radius is kept constant throughout the test. Coefficient of friction was 

obtained from the ratio of tangential load to normal load. To show steady-state friction 
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behavior, tribological test was carried out in dry sliding conditions with sliding distance of 

140m for each sample. 

3.3.5. Energy Dispersive Spectroscopy 

EDS characterization technique is a chemical analyzation technique used along 

with SEM to identify the unknown material from its elemental phases and its relative 

proportion present in the sample. This technique was used identify the phases and the 

composition of the composite samples.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1. SPS processed Ni-Ti-C composites 

4.1.1. X-Ray diffraction analysis 

X-ray diffraction patterns for SPS processed Ni-Ti-C composites are shown in 

Figure 5. From these patterns it is apparent that, Ni (FCC), TiC (NaCl-FCC) and C (HCP) 

are the only principal phases present in these composite samples indicating no undesired 

intermetallic phases or impurities were present in the sample. Absence of any peaks 

corresponding to NiTi intermetallic phase shows no reaction between Nickel and Titanium. 

Peaks corresponding (111), (200), and (220) crystallographic planes of FCC nickel, 

whereas peaks corresponding (111), (200), (220) and (311) crystallographic planes of FCC 

titanium carbide phase were observed at the position which agrees with the X-ray 

diffraction data files of pure nickel and TiC.58 
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Figure 5: XRD pattern for SPS processed samples 

From the characteristic peaks of TiC phase with FCC Bravais lattice, it is apparent 

that Titanium and graphite have undergone an in situ reaction in order to form titanium 

carbide (TiC). It also indicates the stability of TiC in the nickel matrix. Figure 5. Indicates 

that Ni-10Ti-5C and Ni-10Ti-10C exhibited highest intensities for TiC peaks as compared 

to other Ni-Ti-C composites. This increase in intensity of TiC peak in these composites are 

primarily due to large volume fraction of TiC precipitates present in these composites.  

In XRD analyses result, the presence of hcp (0002) carbon peak at ~260 in the XRD 

pattern confirms the presence of Graphite phase in the composites. It is possible to engineer 

an extra lubricious graphite phase by altering the C/Ti ratio. Also, intensity of (0002) 

carbon peak increases with increasing C/Ti ratio, as carbon does not have solubility with 
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nickel and there is not much titanium available to react and form TiC. It was observed that 

with increasing C/Ti ratio, the intensity of peak increases but later it decreases with increase 

in intensity of (0002) Carbon peak as the C/Ti ratio increases further beyond 1.  
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4.1.2 Microstructural Analysis 

The microstructural analysis of pure nickel and Ni-Ti-C composite samples were 

characterized under FEI Inspect F50 equipped with backscattered electron detector.  

 
Figure 6: Backscattered images of Pure Ni at a) 250X, b) 500X, c) 1KX, d) 2KX 

magnification 

Figure 6. shows SEM images of SPS processed pure nickel sample. Pure nickel 

exhibits randomly oriented grains along with annealing twin boundaries which are clearly 

seen in Figure 6. These annealing twins were formed due to relatively low stacking fault 

energy of nickel thus reducing the total interfacial energy of the system. Also, the grain 

size of pure nickel was observed in few microns ranging between 15µm to 30µm. 
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Figure 7: Backscattered images of Ni-10Ti-5C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

SEM images of SPS processed Ni-10Ti-5C are shown in Figure 7. It can be seen 

clearly from the micrographs that nanosized TiC precipitates exhibiting spherical 

morphology are homogeneously distributed within the randomly oriented nickel grains. 

These uniformly distributed TiC precipitates help in retaining the refined nickel grains by 

obstructing their grain growth during SPS processing. These uniformly distributed hard 

TiC precipitates along with refined nickel microstructure contributes to the increase in 

hardness of the composite by obstructing grain boundary dislocations during plastic 

deformation. 
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Figure 8: Backscattered images of Ni-10Ti-10C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 
Figure 8 shows that Ni-10Ti-10C exhibits, uniform dispersion of TiC precipitates 

within nickel matrix. Also, in SPS processed Ni-10Ti-10C sample, some unreacted 

graphite was observed indicating that not all the titanium reacted with graphite for in situ 

TiC formation, and maybe solid solution with nickel matrix is formed even though carbon 

has negligible solubility with pure nickel. High volume fraction of homogeneously 

distributed TiC precipitates is clearly seen in Figure 8. This was expected due to high 

content (at%) of titanium and carbon as compared to Ni-10Ti-5C, which promotes in situ 

TiC formation during mechanical alloying followed by SPS processing. Moreover, it was 

also seen that due to higher C/Ti atomic ratio in Ni-10Ti-10C composites, the size as well 
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as volume fraction of TiC precipitates are larger as compared to Ni-10Ti-5C composites 

still retaining their spherical morphology. 

 

Figure 9: Backscattered images of Ni-5Ti-10C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

Figure 9. shows SEM images of Ni-5Ti-10C composites. The presence of extra graphite 

phase exhibiting acicular morphology left after the reaction of titanium with carbon 

forming in situ TiC precipitates has been clearly seen. From Figure 9. it can be clearly seen 

that the volume fraction and size of TiC precipitates present in Ni-5Ti-10C are smaller as 

compared with Ni-10Ti-10C composite since lower (at%) of titanium were available to 

form in situ TiC precipitates. 
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Figure 10: Backscattered images of Ni-7Ti-20C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

SEM images of Ni-7Ti-20C are shown in Figure 10. It clearly shows homogeneous 

distribution of in situ TiC precipitates within the nickel grains along with present of extra 

graphite phase in the nickel matrix. In comparison with Ni-5Ti-10C the volume fraction of 

in situ TiC precipitates and graphite phase present in Ni-7Ti-20C are more, also coarser 

TiC precipitates have been observed as compared to Ni-5Ti-10C composites. This is 

mainly attributed to the increased content of both titanium and carbon in the composite. 
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Figure 11: Backscattered images of Ni-6Ti-20C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

Figure 11. shows backscattered images of Ni-6Ti-20C. It shows increment in volume 

fraction of graphite phase and decrease in TiC precipitates as compared with Ni-7Ti-20C, 

which was expected. Also, bimodal size distribution of in situ TiC precipitates has been 

clearly seen in Ni-6Ti-20C composites, which required further investigation. 
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Figure 12: Backscattered images of Ni-5Ti-20C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

Figure 12. shows SEM images of SPS processed Ni-5Ti-20C composite. In this micrograph 

it can be observed that the volume fraction of TiC precipitates is lower as compared to Ni-

10Ti-10C, Ni-7Ti-20C, and Ni-6Ti-20C. Also, coarser and uniformly distributed graphite 

phase within nickel matrix has been clearly seen primarily due to higher atomic percent of 

graphite present in these composites. 
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Figure 13: Backscattered images of Ni-4Ti-20C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

Figure 13. shows SEM images of SPS processed Ni-4Ti-20C composite. It shows increased 

volume fraction of graphite phase with decrease in TiC precipitates as compared to Ni-7Ti-

20C and Ni-6Ti-20C. It can be clearly seen from the micrographs that as the C/Ti ratio 

increases, the volume fraction of graphite phase is these composites increases. 
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Figure 14: Backscattered images of Ni-3Ti-20C at a) 1KX, b) 10 KX, c) 25KX, d) 50KX 

magnification 

Micrographs of Ni-3Ti-20C composites are shown in Figure 14. As compared to 

previous Ni-Ti-C composites lowest volume fraction of TiC precipitates were observed in 

these Ni-3Ti-20C composites, due to presence of very less at% of titanium available to 

react with graphite in order to form in situ TiC precipitates. It is apparent that, the volume 

fraction of in situ TiC precipitates decreases and volume fraction of graphite phase in Ni-

Ti-C composites increases as the C/Ti ratio increases.  

This microstructural characterization shows that pure nickel exhibits coarser grains 

as compared to that of Ni-Ti-C composites, as no second phase precipitates such as TiC 
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and graphite are present to restrict the grain boundaries and limit the grain growth during 

sintering. Backscattered micrographs of Ni-Ti-C composites clearly indicate that the 

dimension of in situ formed spherical TiC precipitates are in nanosized level and are 

uniformly dispersed in the nickel matrix. Crystallite size of TiC precipitates in Ni matrix 

remained in nanosized even after SPS processing. The TiC precipitates bordering graphite 

phase has also been observed since in situ TiC forms near graphite source due to 

availability of carbon in the composition. Additionally, acicular graphite region is also 

visible and uniformly distributed within nickel matrix. This is mainly due to unreacted 

carbon/graphite left after in situ TiC formation, exhibiting extra/unreacted graphite phase 

available in the matrix, which increases the wear resistance of the composite due to inherent 

solid lubrication nature of graphite, making it suitable for high temperature surface 

engineering application. Also, randomly oriented nickel grains have been observed in all 

Ni-Ti-C composites validating the feasibility of mechanical alloying and spark plasma 

sintering techniques for processing these in situ metal matrix composites.  

4.1.3. Vickers microhardness 

Vickers microhardness of SPS processed Ni-Ti-C composites is shown in Figure 

15. It is observed that the microhardness drastically increased due to addition of titanium 

carbide reinforcement in nickel matrix as compared with pure nickel depicting hardness 

value of 147 VHN. It can be attributed to the clean interfacial bond, refined size, 

uniformity, and interfacial strength of in situ formed TiC particulates.  
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Figure 15: Vickers microhardness of SPS processed samples 

Ni-10Ti-5C exhibited the highest hardness value of 598 VHN. composite, this can 

be attributed to presence is mainly due to high volume fraction of TiC reinforcement 

present and excess of Titanium in the Nickel matrix. Highest microhardness was expected 

in Ni-10Ti-10C as compared to Ni-10Ti-5C, however it exhibited hardness value of 475 

VHN which is lower as compared with Ni-10Ti-5C. It may be due to presence of unreacted 

graphite which is also seen in the backscattered micrograph of Ni-10Ti-10C. 

From Figure 15. it is apparent that the microhardness decreases as C/Ti ratio 

increases, which was expected and can be attributed to reduction in the volume fraction of 

TiC precipitates and increase in volume fraction of graphite phase in the composite. Ni-

7Ti-20C exhibited hardness value of 318 VHN. However, as the C/Ti ratio increased 

further not much variation in microhardness value was observed. This is due to reduction 

of titanium content in the composition, resulting in very less in situ TiC formation along 

with presence of lubricious graphite phase dispersed throughout the sample.  
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An increase in microhardness clearly indicates pronounced improvement in the 

mechanical performance of the composite. This is mainly due to dispersion strengthening, 

smaller grain size, and grain boundary strengthening.  

 

Figure 16: Vickers indent impression on a) Ni-10Ti-10C, b) Ni-7Ti-20C, c) Ni-3Ti-20C 

Figure 16. shows indent impression of Vickers pyramid on the sample used for the 

measurement of the Vickers hardness number. The images were taken at 50X 

magnification. Indent on Ni-10Ti-10C has an average diagonal of ~45µm. The average 

diagonal size of indent impression on Ni-7Ti-20C was measured as ~54µm. It can be 

attributed to presence of hard carbide precipitates present in the sample, acting as a barrier 

for indent penetration. The diagonal size of indent impression in graphite rich Ni-3Ti-20C 

was found to be ~60µm. This trend clearly indicates that the diagonal size of indent was 

found to be increased C/Ti ratio was increased, which resulted in decrease hardness 

number. It is observed that microhardness decreases with increase in volume fraction of 

soft graphite phase present in the composites. A literature study reveals that this decrease 

in microhardness is due to graphite agglomeration.22 However, despite large volume 

fraction of graphite phase in Ni-3Ti-20C composite, it still exhibited relatively higher 

microhardness or almost twice as that of pure nickel. 
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4.1.4. Tribological test 

Ball on disc tribometry tests were performed under a normal load of 100g (1 N) 

using a 0.125” Si3N4 ball. Tests were carried out with track radius of ~2.5 mm and at 

constant sliding speed of 2.0-2.1 cm/sec. Steady-state friction behavior was observed and 

coefficient of friction (CoF) was calculated for a sliding distance of 140m for SPS 

processed Ni-10Ti-10C, Ni-5Ti-10C, Ni-7Ti-20C, and Ni-3Ti-20C samples. 

 

Figure 17: Steady state friction of SPS processed samples 

Figure 17. shows steady state coefficient of friction (CoF) for SPS processed Ni-

Ti-C composites. Lowest coefficient of friction value of ~0.08 was obtained for Ni-3Ti-

20C. Second lowest CoF value was seen for Ni-10Ti-10C, which was unexpected. But this 

resulted mainly due to presence of unreacted graphite phase present in the composite along 
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with TiC precipitates, both beneficial in forming a good lubricious tribofilm on the surface. 

Average coefficient of friction value of ~0.09 was seen for Ni-7Ti-20C, which was 

expected due to presence of lubricious graphite phase in the composite is beneficial in 

reducing the coefficient of friction. 

Highest coefficient of friction value of ~0.2 was obtained for Ni-5Ti-10C in 

comparison with other samples. This is attributed to low volume fraction of graphite 

present in the sample, which is also apparent from the SEM micrographs. Also, it was 

observed that coefficient of friction increased at a constant rate over time, exhibiting non 

steady state behavior. It may be due to poor adhesion between the phases or large distance 

between the graphite phases which prevents the formation of tribofilm on surface of the 

sample. Another reason for this unusual behavior can be caused due to severity in the 

movement of the pin over wear debris deposited on the sliding track from previous run 

leading to asperity on the surface. This causes abrupt increase in temperature at the contact 

area which favors the adhesive phenomena, thus increases the coefficient of friction.56 
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4.2. LENSTM processed Ni-Ti-C composites 

4.2.1. X-Ray diffraction analysis 

Figure 18: XRD pattern for LENSTM processed samples 

Figure 18. shows the x-ray diffraction patterns for LENSTM processed Ni-Ti-C. Ni-

10Ti-5C and Ni-10Ti-10C exhibited FCC nickel as well as FCC titanium carbide (TiC) 

phases without presence of any HCP graphite peak. This clearly shows that titanium and 

graphite has undergone in situ reaction during LENSTM processing forming titanium 

carbide (TiC). Peaks corresponding (111), (200), and (220) crystallographic planes of FCC 

nickel, whereas peaks corresponding (111), (200), (220) and (311) crystallographic planes 
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of FCC titanium carbide phase were observed at the position which agrees with the X-ray 

diffraction data files of pure nickel and TiC.58 Increase in peak intensity of FCC titanium 

carbide was observed mainly due to increase in the volume fraction of TiC precipitates 

which will be shown in microstructural analysis. No intermetallic phases such as NiTi, 

Ni3C were observed. Additionally, peak corresponding to graphite phase is shown in 

enlarged view, as it reflected relatively low intensity as compared to other phases. No peak 

corresponding to graphite phase was observed in Ni-10Ti-5C and Ni-10Ti-10C, this 

indicates that all the carbon present in the composition undergone in situ reaction with 

titanium forming TiC precipitates. The HCP (0002) peak reflecting at ~260 was seen only 

in Ni-7Ti-20C and Ni-3Ti-20C, which was expected due to excess amount of carbon. Also, 

there is an increase in intensity of (0002) carbon peak as the C/Ti ratio increases. 
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4.2.2. Microstructural analysis 

SEM images of Ni-10Ti-5C and NI-10Ti-10C is shown in Figure 19. From the 

micrograph it is clearly visible that titanium and carbon has undergone in situ reaction 

forming TiC precipitates in the nickel matrix. This uniform distribution of the TiC 

precipitates can be attributed to the stirring effect produced by the high energy density 

beam. Vigorous convection flow due to motion of liquid metal in the melt pool is another 

reason for homogeneous distribution of the in situ formed reinforcement precipitates 

throughout the microstructure.43,55 

 
Figure 19: Backscattered images of LENSTM processed sample a) Ni-10Ti-5C @ 5KX b) 

Ni-10Ti-5C @ 20KX c) Ni-10Ti-10C @ 2KX d) Ni-10Ti-10C @ 20KX 
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Ni-10Ti-5C composite exhibits presence of needle shape TiC precipitates 

uniformly distributed in the nickel matrix. These observed TiC precipitates are primarily 

eutectic TiC precipitates obtained during solidification of molten Ni-10Ti-5C composites. 

Ni-10Ti-10C composite exhibits cuboidal as well as needle shape TiC. Micron sized 

cuboidal TiC are primary TiC, whereas fine scaled needle shape TiC are eutectic TiC. In 

this Ni-10Ti-10C composites, primary TiC acts as a heterogeneous nucleation sites for 

eutectic TiC during solidification.7 Volume fraction of TiC precipitates is more in Ni-10Ti-

10C as compared to Ni-10Ti-5C composites, due to higher at% of carbon present for 

titanium to react forming in situ TiC precipitates. A pseudo binary section of ternary Ni-

Ti-C system is shown Figure 20. 

 

Figure 20: Pseudo binary section of ternary Ni-Ti-C system57 
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Figure 21: Ternary phase diagram of Ni-Ti-C system 

Figure 21. shows ternary phase diagram of Ni-Ti-C system. It is shown that at 

temperature of 27250C both nickel and in situ formed TiC are in liquid phase. During 

cooling as the temperature falls below 25000C primary TiC starts forming in the melt pool. 

As the temperature falls further below 12800C, the remaining liquid in the melt pool 

undergoes pseudo-binary solidification forming eutectic Ni and eutectic TiC. It can be 

observed from the SEM images that the primary TiC acts as a nucleation site for the 

formation of eutectic TiC. In case of Ni-10Ti-5C where the nickel content is 85%, phase 

evolution different than that of Ni-10Ti-10C was observed. In Ni-10Ti-5C only eutectic 

TiC was formed on solidification. The pseudo-binary isothermal section of Ni-Ti-C system 

shown in Figure 21. helps to understand phase transformation in these Ni-Ti-C composites. 
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Figure 22: Backscattered images of LENSTM processed sample a) Ni-7Ti-20C @ 5KX   b) 

Ni-7Ti-20C @ 20KX c) Ni-3Ti-20C @ 5KX d) Ni-3Ti-20C @ 30KX 

Figure 22. shows backscattered images of Ni-7Ti-20C and Ni-3Ti-20C. In Ni-7Ti-

20C and Ni-3Ti-20C both primary TiC as well as eutectic TiC were observed within the 

nickel matrix. It can also be seen that higher volume fraction as well as coarser titanium 

carbide precipitates have been observed in Ni-7Ti-20C as compared to Ni-3Ti-20C 

composites primarily due to high at% of titanium present for in situ chemical reaction.  

Additionally, graphite phase with acicular morphology was also visible in Ni-7Ti-

20C and Ni-3Ti-20C micrographs. High volume fraction of graphite phase has been 
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observed in Ni-3Ti-20C, which is mainly due to low at% of titanium available to react with 

carbon. These observations are consistent with what we have seen in x-ray diffraction 

analysis. This increased volume fraction of Graphite plays an important role considerably 

reducing the coefficient of friction. Also, it was observed that volume fraction and size of 

primary TiC are lower in Ni-3Ti-20C as compared to Ni-7Ti-20C. 

4.2.3. Vickers microhardness 

 

Figure 23: Vickers microhardness of LENSTM processed samples. 

Figure 23. clearly indicates change in the microhardness number, as the function of 

increasing C/Ti ratio. The highest microhardness was recorded for Ni-10Ti-10C, its mainly 

due to high volume fraction of in situ formed primary as well as eutectic TiC precipitates. 

This in situ formed homogeneously dispersed TiC precipitates acts as a barrier for grain 

boundary dislocation, therefore the penetration of indent is restricted. Ni-7Ti-20C and Ni-

3Ti-20C exhibit lower microhardness value than Ni-10Ti-10C due to lower volume 

fraction of hard TiC precipitates and higher volume fraction of soft graphite phase present. 
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Also, as expected the hardness number for the composite decreased as the C/Ti ratio 

increased. This can be attributed to reduction in TiC precipitate, and an increase in graphite 

content in the composite. Moreover, standard deviation represented in error bar also shows 

that the readings were consistent throughout the sample. This very small variation in 

obtained microhardness number clearly indicates the homogeneous dispersion of TiC 

phase and graphite phase in the sample, which was also noticed from backscattered 

micrographs of the sample. 

4.2.4. Tribological test 

Tribological test were performed under a normal load of 100g (1 N) using a Si3N4 

ball. Test was carried out with track radius of ~2.14 mm and at constant sliding speed of 

2.1-2.2 cm/sec. Steady-state friction behavior was observed and coefficient of friction 

(CoF) was calculated for a sliding distance of 140m for LENSTM deposited pure Ni, Ni-

10Ti-10C, Ni-10Ti-5C, Ni-7Ti-20C, and Ni-3Ti-20C samples. 
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Figure 24: Steady state friction of LENSTM processed samples 

Figure 24. shows steady state coefficient of friction for LENSTM processed Ni-Ti-

C composites. Pure nickel exhibited highest coefficient of friction of ~0.7 as compared 

with Ni-TiC-C composites. It was obvious as metallic nickel exhibits adhesive behavior 

and has no lubricious friction properties. Lowest value of CoF value of ~0.1 was obtained 

for Ni-3Ti-20C, which is mainly due to high volume fraction of graphite phase present in 

the composition. Later, it was observed, that the coefficient of friction value increased as 

the volume fraction of lubricious graphite present in the sample was reduced. 
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4.2.5 EDS mapping 

 
Figure 25: EDS maps of Ni-10Ti-10C 

Figure 25. shows SEM image of LENSTM processed Ni-10Ti-10C its EDS maps of 

C, TiC, and Ni. The EDS maps reveal the dispersion of TiC precipitates within the nickel 

matrix and is in congruence with the XRD and SEM results. It indicates the presence of 

primary TiC and eutectic TiC in the nickel matrix.  
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4.3. SPS process vs LENSTM process 

 

Figure 26: Microhardness comparison between SPS and LENSTM processed samples 

Figure 26. shows difference in microhardness of composites of same nominal compositions 

but fabricated using two different processing techniques, one using MA followed by SPS 

process and other using LENSTM process. 

In processing using MA followed by SPS technique, in situ TiC precipitates are formed 

due to solid-solid reaction process. In this process it was observed that nanosized TiC 

precipitates are formed due to exothermic reaction during MA. Later, the fabrication was 

carried out using SPS technique which allowed sintering at relatively lower temperature 

below the melting point with shorter sintering time. In this process fabrication is carried 

out via solid state reaction which retards the grain growth of nickel. Whereas, in LENSTM 

process the in situ reaction take place via solid-liquid reaction. In this reaction, a melt pool 
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is formed at a temperature relatively higher as compared to SPS processing, thus the grain 

sizes of nickel as well as in situ formed TiC precipitates are larger. This increased size of 

TiC precipitates and nickel grain reduces the hardness of the composites as compared to 

SPS processed Ni-Ti-C composites. 

 It is clearly seen that the composites fabricated using MA and SPS process possess higher 

hardness as compared to LENSTM deposited composites. It can be attributed mainly to the 

large volume fraction of nanosized and more uniform dispersion of in situ formed TiC 

precipitates within the nickel matrix. The reinforcement precipitates formed in LENSTM 

processed composite is also uniformly distributed but are coarser as compared to former 

process which has also seen in SEM micrographs. It clearly indicates that, the formation of 

nanosized in situ reinforcement via MA and the restricted grain growth in SPS process 

leads to the high microhardness of the composite.  
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CHAPTER V 

CONCLUSION 

Fabrication of in situ TiC/C precipitates reinforced in nickel matrix was carried out 

successfully using powder metallurgy route by mechanically alloying followed by spark 

plasma sintering process and, by metal additive manufacturing technique, i.e. LENSTM 

processing technique. 

Microstructure evolution and mechanical properties of the processed composites 

were investigated successfully via SEM, XRD, Vickers hardness test, and tribological test. 

The results indicate that in situ TiC reinforcement in the nickel matrix substantially 

increases the hardness of the materials. By altering C/Ti ratio, change in the volume 

fraction as well as size of TiC precipitates has been attained and was also able to engineer 

an extra graphite phase in these composites, which considerably lowered the coefficient of 

friction as compared with pure nickel. 

Homogeneous distribution of in situ reinforcement has been achieved using both 

the processing routes. In Ni-TiC composites processed via MA followed by SPS technique, 

it was observed that the dispersion of in situ formed TiC precipitates within the nickel 

matrix was homogeneous and were in nanosized with spherical morphology. It is mainly 
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attributed to mechanical alloying via high energy ball milling followed by spark plasma 

sintering. Whereas, two different morphologies of TiC precipitates with size ranging in few 

microns have been observed in LENSTM processed composites. The cuboidal shaped 

primary TiC acting as a heterogeneous nucleation site for the precipitation of fine needle-

shaped eutectic TiC precipitates during solidification of these Ni-Ti-C composites. 

In Ni-Ti-C composites, it was observed that the hardness of the composite increases 

as the volume fraction of in situ TiC precipitates increases. The nanosized level of TiC 

precipitates attained via MA acts as a pinning point retarding grain growth. Also, the nickel 

grain size observed in SPS processed composites was much refined as compared to 

LENSTM processed composites. This is mainly due to relatively low processing 

temperature and shorter holding time involved in SPS processing technique as compared 

to LENSTM processed samples. Therefore, due to a relatively smaller size and more uniform 

dispersion of TiC precipitate within the nickel matrix, high microhardness was achieved in 

the SPS processed composites in comparison with LENSTM processed counterparts. 

Improvement in tribomechanical properties with a reduction in coefficient of 

friction was seen in Ni-Ti-C composites. It was seen that the coefficient of friction reduces 

as the C/Ti ratio increases. It can be attributed mainly due to increase in the volume fraction 

of lubricious graphite phase in these composites. 

Therefore, the addition of hard TiC reinforcement and lubricious graphite phase in 

the nickel matrix increases hardness and reduces the coefficient of friction making it a 

suitable candidate for structural and surface engineering applications. 
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