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CONGESTION MITIGATION STRATEGY: MODELING THE EFFECT OF 

DIFFERENT GEOMETRIC CONFIGURATIONS OF A TWO-LANE ON -RAMP ON 

CAPACITY USING HCS2010 AND VISSIM 

RHIZLANE BRACHMI 

ABSTRACT 

     Freeway on-ramps are critical components of freeway systems since they control the 

entry of traffic to the mainline. According to the Highway Capacity Manual (HCM), a 

two-lane on-ramp configuration will achieve less turbulence than a similar one-lane on-

ramp but little guidance on the desired lengths of the acceleration lanes or their effect on 

the operation of the influence area is provided. 

     An experiment was designed to investigate the effect of the lengths of the acceleration 

lanes of isolated, two-lane on-ramps on the operation of the ramp influence area. The 

Highway Capacity Software (HCS) was used to calculate the density of the influence area 

corresponding to five length combinations for the first and second acceleration lanes, LA1 

and LA2, keeping the effective length, 𝐿𝐴𝑒𝑓𝑓 constant. The analysis was carried out using 

two sets of volumes for the freeway, VF and ramp, VR. As expected, the density of the 

ramp influence area remained constant, for each volume set, illustrating that the HCM 

methodology is not sensitive to changes in the acceleration lane lengths making up 𝐿𝐴𝑒𝑓𝑓.  

     The experiment was repeated using the microscopic traffic simulation software, 

VISSIM. As expected, the two-way ANOVA results indicated the effect of the volume 

was significant ((p<0.001, α=0.05). As, LA1 decreased from 500ft to 100ft and LA2 

increased from 500ft to 1300ft, the average density in the ramp influence area decreased 

when Vf=5000vph and Vr=1000vph. This effect was found to be significant (p=0.029, 
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α=0.05) using a one-way ANOVA. However, the effect of the acceleration lane length 

was not significant (p=0.992, α=0.05) when VF=3500vph and VR=500vph. 

     These results raise questions about the HCM equation for estimating the density of the 

influence area for two-lane on-ramps. Possible changes to the HCM equation are 

discussed. 
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CHAPTER I 

INTRODUCTION 

 

     Freeway on-ramps are one-directional segments of roadway, which provide an 

exclusive connection to a freeway facility. Ramps may be used to connect one freeway to 

another or connect a hierarchical lower level roadway, such as a rural highway or urban 

arterial to the upper level freeway. The distance along which the ramp runs parallel to the 

mainline lanes, from the ramp nose to the tapered lane drop is referred to as the 

acceleration length. Acceleration lanes are designed to enable vehicles entering a 

roadway to increase their speed to a rate at which they can safely merge with through 

traffic (HCM, 2016). A two-lane freeway on-ramp is characterized by two separate 

acceleration lanes, each successively forcing merging maneuvers to the left (HCM, 

2016). If the ramp has two lanes, the length of each acceleration lane is defined. The 

length of the first acceleration lane, LA1 is measured from the nose to the lane drop of the 

outer lane. The length of the second acceleration lane, LA2 is measured from the lane drop 

of the outer lane to the lane drop of the inner lane. The general configuration of a two-

lane on-ramp is shown on Figure 1. To date, there is no guideline on how to best choose 

the lengths of the acceleration lanes of two-lane entrance ramps. 
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Figure 1. General Configuration of the Acceleration Lanes for a Two-lane On-ramp.  

     Ramps are designed to allow vehicles to merge at high speeds with minimum 

disruption to the traffic stream on the mainline. High-speed merging is achieved through 

a small difference in design speed between the ramp and the freeway (Shin et al, 1993). 

The length of the on-ramp provides vehicles entering the freeway space to accelerate 

before merging with freeway traffic. 

     Conflicts usually occur when two traffic streams compete for the same space. Such is 

the case when the traffic on the on-ramp must merge with the traffic on the freeway 

mainline. Since acceleration lanes are designed to allow road users to perform a safe 

merge, a better understanding of the design components, such as length and its effect on 

merging is crucial for highway and traffic engineers. 

     The traffic near an on-ramp usually experiences turbulence as the vehicles from the 

on-ramp merge with the vehicles on the mainline. The turbulence is seen as a local 

increase in density as vehicles bunch together and slow down. The turbulence is expected 

to increase with the volume of traffic on the ramp, the volume of traffic on the mainline 

of the freeway, and the number of lane changes vehicles make on the mainline. 
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     Data quantifying the relationship between the lengths of the acceleration lanes and the 

density in the merge area is very scarce. According to the Highway Capacity Manual 

(HCM), the flow in the outer freeway lanes, lanes 1 and 2, immediately upstream of the 

on-ramp is generally somewhat higher for two-lane on-ramps than that for one-lane on-

ramps in similar situations, and densities in the merge area are lower (2016). This area of 

turbulence is commonly referred to as a bottleneck and under high traffic demands the 

increase in density will propagate upstream, resulting is an area of congestion. 

     Americans spend 14.5 million hours every day stuck in traffic, trying to commute, or 

move goods to market (Morgan, 2018). Since 1970 the U.S. population has grown by 

32% and the vehicle miles traveled has grown by 131%. However, the total number of 

road miles has grown by only 6% (Morgan, 2018). This imbalance between the growth in 

travel demand and the growth in infrastructure has led to an increase in the severity and 

duration of traffic congestion, which impacts many aspects of life. 

     Congestion occurs when demand exceeds the capacity of a roadway segment. In the 

case of an on-ramp and freeway merge segment, the traffic flow on both the on-ramp and 

the freeway mainline contribute to the demand but the capacity in the influence area is 

reduced because of the merging that is required. When such a merge area becomes 

congested, the road users experience decreases in travel speed and increases in travel 

time. 

     In addition, vehicles stuck in congestion produce greater tailpipe emissions, including 

carbon monoxide (CO), carbon dioxide (CO2) and volatile organic compounds. These 

compounds degrade air quality and can have profound effects on public health. 
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According to Ciccone et al. (1998), the odds for asthma and a number of other asthmatic 

symptoms increase significantly in areas with heavy traffic flow. 

     Reducing congestion can therefore improve the travel experience for road users and 

improve air quality. A better design for two-lane on-ramps could help to reduce the stop-

and-go traffic that occurs routinely near entrance ramps, which in turn could help 

alleviate some of the drawbacks of congestion.  

1.1 Research Question 

     According to HCM, the turbulence near an on-ramp can be reduced by increasing the 

number of lanes on the on-ramp. It is expected that a two-lane ramp will provide less 

turbulence than a single-lane ramp. However, no guidance is provided as to the desired 

lengths of the acceleration lanes in either case. Therefore, the guiding research question 

is; what is the estimated impact of changing the lengths of the acceleration lanes on the 

operation of the ramp influence area? 

1.2 Scope 

     The guiding research question could be construed as being quite broad, as the 

operation of a freeway segment is subject to changes in the traffic demand on the 

mainline and ramp, the behavior of the drivers, and the prevailing roadway and 

environmental conditions. This thesis was specifically focused on the impact of the 

lengths of the acceleration lanes on the mainline traffic operations. The lengths of the 

first and second acceleration lanes were varied while maintaining a constant effective 

length. The mainline and on-ramp traffic volumes were varied to improve the 

generalizability of the results. All other factors were not considered. 
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     The analysis of the impact of the lengths of the acceleration lanes was limited to 

existing analysis methods, specifically a deterministic analysis using the procedures of 

the Highway Capacity Manual and associated Highway Capacity Software, and a 

stochastic microscopic simulation analysis using VISSIM, which serves as the state of the 

practice for transportation professionals.  

1.3 Research Objectives 

     The purpose of this thesis was to investigate the effect of varying the lengths of the 

acceleration lanes of a two-lane on ramp on the operations of the ramp influence area. To 

achieve this purpose, the objectives are to: 

1. Examine whether the deterministic analytic procedures of the Highway Capacity 

Manual and associated Highway Capacity Software predict a change in the 

density of the influence area under changes to the acceleration lane lengths; and 

2. Examine whether a stochastic, microscopic traffic simulation model predicts a 

change in the operation of the influence area when the lengths of the acceleration 

lanes are changed. 

1.4 Organization of the Thesis 

     This thesis is presented in six chapters. Chapter I includes an introduction of the topic 

and its importance and defines the research question and objectives. Chapter II provides a 

historical account of how the Highway Capacity Manual methodology has changed, from 

1950 through to 2016. Chapter III covers the experimental design and the development of 

the HCS and VISSIM models. Chapter IV contains the results from the deterministic 

HCS analysis and the VISSIM model simulations, along with the conclusions drawn from 

those results. Chapter V covers a discussion of the results as they pertain to the current 
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HCM equation for estimating the density in the influence area, the contribution of this 

thesis, and thoughts about future work. 
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CHAPTER II 

LITERATURE REVIEW 

 

     Understanding the effect of on-ramps on the operation of freeway merge areas is a 

relevant topic. The Transportation Research Board recently released a National 

Cooperative Highway Research Program (NCHRP) request for proposal to develop 

methodologies to update the HCM analysis procedures related to freeway merging, 

diverging, and weaving. In the project description, it was recognized that the procedures 

in the HCM are based on limited field collected data from over 25 years ago and that 

there now exists new datasets, collected through various roadway sensors, which may be 

used to improve these procedures. 

2.1 The Highway Capacity Manual 

     The HCM is published by the Transportation Research Board (TRB) of the National 

Academies of Science. Changes to the publication are informed by research carried out 

through the National Cooperative Highway Research Program, Transit Cooperative 

Research Program and other federally funded research programs. The research results are 

reviewed by research panels and subcommittees of TRB’s Highway Capacity and Quality 

of Service before being considered for inclusion into the HCM. 
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     The HCM represents the state of the practice for transportation engineers and as such, 

the procedures for analyzing freeway facilities, segments, merging and diverging areas 

have changed since the first edition of the HCM, published by the Bureau of Public 

Roads (BPR) in 1950. 

2.1.1 1950 HCM. As the first HCM, the 1950 publication was largely focused 

on drawing the factual, technical data contained within previously published documents 

and new data developed through various investigations, including traffic operations 

research conducted by the Bureau of Public Roads, State highway departments and other 

government agencies. The previous published documents were rather scarce in terms of 

technical data because prior to 1934, obtaining factual data had been hindered by the lack 

of field instrumentation. With the development of suitable data collection tools, traffic 

operations research led to a better understanding of the characteristics of traffic flow. 

     Part VII Ramps and Their Terminals of the 1950 HCM included a section on 

conditions affecting ramp capacity. The more important and potentially controlling 

factors were identified as the volume of traffic using the facility that the ramp connects 

to, the weaving distance between ramps, and the conditions of the ramp terminals. It was 

recognized that the merge behavior, specifically the acceptance of gaps, affected the ramp 

capacity. It was also recognized that the distribution of traffic on the mainline changed 

depending on the traffic condition. Under low flows, drivers on the mainline tended to 

move from the outer lane to the inner lanes, thus avoiding interaction with the on-ramp 

traffic flow; while under high flows, the distribution across the mainline lanes became 

nearly balanced. Ramp capacities for a few specific locations were provided. These 

locations did not have acceleration lanes (HCM, 1950). 
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     The 1950 HCM did not include any methodology to calculate the capacity of merging 

and diverging areas. Nor did the manual include any sample problems to illustrate how to 

analyze merge and diverge sections.  

2.1.2 1965 HCM and 1985 HCM. In the 1965 HCM Special Report 87, a 

complete methodology for ramps and ramp junctions was presented based upon the work 

of Joseph Hess of the Bureau of Public Roads (BPR). The main finding in this edition of 

the HCM was that the most critical element to evaluate an entrance ramp was estimating 

the lane 1 volume at merging areas.  

     A general procedure was provided for service volumes for levels of service A through 

C and an alternate procedure was provided for service volumes for levels of service D 

and E. Five worked problems were included illustrating how to apply the procedures. 

     The general procedure was described in terms of the following five steps. 

1) Establish the geometry of the study location, including the number of freeway 

lanes and details about adjacent ramps. 

2) Establish the demand volumes for the freeway and ramps. 

3) Based on the geometry of the study location, select the appropriate equations to 

compute the volume on lane 1 of the freeway. The equations were also given as 

nomographs for the various ramp geometries. 

4) Add the ramp volume to the computed lane 1 volume immediately upstream of 

the merge and compare this checkpoint volume. Adjustments were needed for 

truck volumes exceeding 5% or grades exceeding 3% as the equations represented 

mixed traffic on relatively level terrain. 
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5) Compare the checkpoint volume to the maximum service volume for the desired 

level of service, A through C. 

     The equations (or nomographs) related the volume on lane 1, V1 to the total freeway 

volume immediately upstream of the subject ramp, VF, the total volume on the subject 

ramp, VR, the total volume on the adjacent upstream ramp, VU, the total volume on the 

adjacent downstream ramp, VD, the distance to the adjacent upstream ramp, DU, and the 

distance to the adjacent downstream ramp, DD. Each nomograph came with conditions 

for use and a step by step explanation on how to use it. The nomographs covered the 

following geometric configurations: 

• Isolated on-ramp; 

• Isolated off-ramp; 

• Isolated on-ramp (loop); 

• On-ramp with upstream/downstream off-ramp; 

• Off-ramp with upstream on-ramp; 

• Consecutive on-ramps; and 

• On-ramp and off-ramp sequence. 

     There was one nomograph and two equations describing the geometric arrangement of 

a two-lane on-ramp connected to a 6 lane freeway with 3 lanes each direction. The 

following equations computed the volumes on lane 1 upstream of the ramp and within the 

merge area (HCM, 1965): 

𝑉1 = 54 + 0.070𝑉𝑓 + 0.049𝑉𝑟 

𝑉1+𝐴 = −205+ 0.287𝑉1 + 0.5751𝑉𝑟 
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where 

V1 = volume on the lane 1 of the freeway upstream of the merge 

Vf = volume on the freeway main line 

Vr = volume on the on-ramp 

V1+A = volume on lane 1 in the merge area 

For the two-lane on-ramp, the application of the methodology was limited to freeway 

volumes between 600vph and 3000vph and ramp volumes of 1100vph to 3000vph, and 

required the acceleration lane to be at least 800ft. 

     The methodology of the 1985 HCM was largely the same as that of the 1965 HCM. A 

notable difference was that the methodology had been updated to use flow rates instead 

of service volumes. Additionally, the methodology had been extended to consider the 

design speed of the freeway, offering level of service criteria for freeways with 70 mph, 

60 mph and 50 mph design speeds. 

2.1.3 1994 and 1997 Updates. Significant changes to the HCM methodology to 

evaluate the operation of freeway ramps resulted from studies conducted under Project 3-

37, “Capacity and Level of Service at Ramp-Freeway Junctions” of the National 

Cooperative Highway Research Program and were published in the 1994 update of the 

HCM. The Project 3-37 database was collected over 18 months throughout the US, 

consisting mainly of merge junctions on 6-lane freeway sections. The project resulted in a 

new set of equations with corresponding nomographs to calculate density in ramps. 

     The main change in these HCM updates was the identification of a “ramp influence 

area”, which was identified as the stretch of the road most affected by the complex 

vehicle interactions that happen in merge and diverge segments. For an on-ramp (i.e. 
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merge), the influence area extended 1,500ft downstream of the physical merge point; for 

an off-ramp (i.e. diverge), the influence area extended 1,500ft upstream of the physical 

diverge point (Roess and Prassas, 2014). 

     The research also showed that the turbulence was most experienced in the right two 

lanes of the freeway, under stable traffic conditions. While the previous HCM 

methodology focused on predicting the volume on lane 1 immediately upstream of a 

ramp junction, this new procedure calculated the volume in both lanes 1 and 2 of the 

freeway. 

    In these HCM updates, the use of density as the measure of effectiveness became 

prevalent. Therefore, the calculated volume on lanes 1 and 2 was combined with the 

volume on the ramp to calculate density. Density was then associated to a level of service 

(LOS), A through F. For instance, densities less than or equal to 10 passenger cars per 

mile per lane were categorized as LOS A. A LOS F was given for those demand flows 

which exceeded the capacity of the merge/diverge area. Equations were provided to 

estimate the speeds on the inner freeway lanes and within the influence area, for 

uncongested operations. 

     The October 1994 update to the 1985 HCM described the methodology in three major 

steps and focused on an influence area of 1500ft including the acceleration lanes, and 

lanes 1 and 2 of the freeway. The first step was to predict the flow entering lanes 1 and 2 

of the mainline using the freeway demand flow rate and a factor PFM, which represents 

the proportion of vehicles expected to use lanes 1 and 2. Five equations were provided for 

determining the appropriate factor, PFM for different junction configurations with single-

lane on-ramps. These equations were calibrated to field data under Project 3-37. For two-
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lane on-ramps, the PFM factor was given as 1.000, 0.555 and 0.2093 for four-lane, six-

lane, and eight-lane freeway segments, respectively. The second step was to compare the 

demand to the critical capacity to determine whether traffic conditions are congested. The 

third step was to estimate the density as 

𝐷𝑅 = 5.475 + 0.0734𝑉𝑅 + 0.0078𝑉12 − 0.00627𝐿𝐴 

where  

DR = density in ramp influence area, pc/ln/mi 

VR = volume on the ramp, pc/hr 

V12 = volume in lanes 1 and 2 on the freeway, pc/hr 

LA = length of the ramp acceleration lane, ft 

     For two lane ramps, the same density equation was used except that 𝐿𝐴 was replaced 

by the effective length of the acceleration lanes, 𝐿𝐴𝑒𝑓𝑓  as computed by 

𝐿𝐴𝑒𝑓𝑓 = 2𝐿𝐴1 + 𝐿𝐴2 

where 

LA1 = length of the first acceleration lane 

LA2 = length of the second acceleration lane 

     The methodology included in the 1994 Update was the basis for the methodologies of 

the 2000 and 2010 HCMs with a few relatively minor revisions (Roess and Prassas, 

2014). 

2.1.4 2000 and 2010 HCM. The methodology for analyzing freeway on-ramp 

junctions was detailed in Chapter 25 of the 2000 HCM. The methodology was described 

as having three major steps: 1) calculating the flow entering lanes 1 and 2 of the freeway 

immediately upstream of the influence area; 2) comparing the demand to the capacity of 
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the merge segment to determine whether conditions are congested; and 3) estimating the 

density and speeds within the influence area. 

     In the 2010 HCM the methodology was described as a five step procedure: 1) 

calculating the flow rates; 2) calculating the flow rate in lanes 1 and 2 of the freeway 

immediately upstream of the merge influence area; 3) comparing the capacity of the 

merge area to the demand flow; 4) estimating the density; and 5) estimating the speeds. 

     Although rearranged, the procedure in the 2010 HCM was essentially the same as that 

of the 2000 HCM, with two notable changes. One notable change was the addition of 

another equation for calculating PFM, the proportion of the freeway flow expected to 

remain in lanes 1 and 2, for an 8-lane freeway. The 2010 version also included a section 

discussing the reasonableness of the PFM values. 

     Specific to the special case of a two-lane on-ramp, the PFM values, and use of an 

effective length of the acceleration lane remained unchanged. 

2.1.5 2016 HCM Methodology. The most recent edition of the HCM is the 

sixth edition published in 2016. The procedure for evaluating freeway on-ramps is 

provided in Chapter 14, with the procedure for two-lane on-ramps offered under a Special 

Cases section. The methodology is described as a five-step procedure, same as that in the 

2010 HCM. 

     The first step of the methodology is to determine the flow rates on the freeway 

mainline and on-ramp. The second step is to estimate the freeway flow that is expected to 

remain in lanes 1 and 2 by multiplying the freeway volume, Vf by a factor PFM. For 

analyzing two-lane on-ramps, PFM = 1.00 for four-lane freeways, PFM = 0.555 for six-lane 

freeways, and PFM = 0.209 for eight-lane freeways. The calculated demand flows are then 
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compared to the capacity of the freeway segment to determine whether or not the freeway 

segment is operating under uncongested or congested conditions. This check is done 

because the methodology is applicable to uncongested traffic conditions. The fourth step 

is to estimate the density in the ramp influence area. 

𝐷𝑅 = 5.475 + 0.00734𝑉𝑅 + 0.0078𝑉12 − 0.00627𝐿𝐴𝑒𝑓𝑓 

where 

DR = density in ramp influence area, pc/ln/mi 

VR = flow rate (pc/hr) on the on-ramp 

V12 = flow rate (pc/hr) on freeway lanes 1 and 2 

𝐿𝐴𝑒𝑓𝑓 = effective length of both acceleration lanes 

The density is then translated into a level of service (LOS) as shown in Table I. 

Table I. HCM Level of Service (LOS) Definitions 

LOS Density (pc/mi/ln) Comments 

A ≤ 10 Unrestricted operations 

B > 10 – 20 Merging and diverging maneuvers noticeable to drivers 

C > 20 – 28 Influence area speeds begin to decline 

D > 28 - 35 Influence area turbulence becomes intrusive 

E > 35 Turbulence felt by virtually all drivers 

F  Ramp and freeway queues form 

 

2.2 Research on Freeway On-Ramps 

     The changes to the HCM methodology since 1950 were based on a couple key pieces 

of research; the work by Joseph Hess and NCHRP Project 3-37. To gain a better 
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understanding of what is already known about the operation of freeway on-ramps, a 

literature review was conducted. The results are summarized below. 

     Entrance ramps have caught the attention of many traffic flow researchers because 

they are major source of recurring traffic bottlenecks and lead to breakdown thus 

hindering mobility. Elefteriadou (1995) studied congestion that occurs in the vicinity of 

on-ramps and determined that breakdown is probabilistic unlike the HCM deterministic 

capacity breakdown definition. Roess (1984) found that traffic operations in the vicinity 

of on-ramp junctions can be significantly improved when upstream vehicles are guided to 

shift from the outside lanes to the inner lanes before arriving at on-ramp junctions. Al-

Kaisy (1999) used INTEGRATION 2.0 to estimate the capacity of weave, merge and 

diverge sections and found that the most important factor in the merge area is the 

capacity of the freeway junction and the capacity of the ramp. The on-ramp capacities 

corresponding to the free flow speed on the on-ramp for both one-lane and two-lane on-

ramps are shown in Table II. 

Table II. On-Ramp Capacity for Ramp Free Flow Speed 

Free Flow Speed of On-Ramp 

(miles/hour) 

Capacity (passenger cars/hour) 

One-Lane Ramp Two-Lane Ramp 

> 50 2200 4400 

> 40 - 50 2100 4100 

> 30 - 40 2000 3800 

≥ 20 - 30 1900 3500 

< 20 1800 3200 
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     Merging is the action where two separate traffic streams form one, such as the flow 

from an on-ramp and the flow on the freeway mainline. To merge, a driver needs to 

perform several different tasks such as changing lanes to get into the desired lane, 

accelerating, decelerating, and finding adequate and available gaps to make these 

movements (Gettman 1998). According to Shin et al (1993), the capacity of an entrance 

ramp is a function of the ability of the merge section to accommodate the demand from 

the ramp and that of the mainline traffic. Many factors influence this such as the number 

of lanes, lane width and lateral clearance, and the availability of gaps on the adjacent 

expressway. 
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CHAPTER III 

MODEL DEVELOPMENT 

 

     To investigate the effect of varying the lengths of the acceleration lanes of a two-lane 

on ramp on the operations of the ramp influence area, an experiment was conducted. Two 

different approaches were used to carry out this experiment. The first approach examined 

whether the deterministic analytic procedures of the Highway Capacity Manual and 

associated Highway Capacity Software would predict a change in the density of the 

influence area under changes to the acceleration lane lengths. The second approach 

examined whether a stochastic, microscopic traffic simulation model would predict a 

change in the operation of the influence area when the lengths of the acceleration lanes 

changed. In this Chapter, the experimental design and the models used in each of these 

approaches are described. 

3.1 Experimental Design 

     The experiment was designed as a two-factor factorial. The length of the acceleration 

lanes was an independent variable. Recognizing that the volumes on the mainline and on-

ramp impacts the operations of the ramp influence area, the volume was also included as 
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an independent variable. The dependent variable was the traffic density within the 

influence area. 

     Five different on-ramp configurations were defined by varying the lengths of the first 

and second acceleration lanes, LA1 and LA2 respectively. The effective length of the 

acceleration lanes was kept constant (1500ft) to stay consistent with the HCM 

methodology. According to the Highway Capacity Manual (2016), merging causes the 

most turbulence in the area 1500ft downstream of the ramp in stable traffic conditions 

which applies to the scenarios defined in this research. The length of the first acceleration 

lane was varied between 100ft and 500ft, while the length of the second acceleration lane 

was varied from 1300ft to 500ft, as shown on Table IV. A graphical representation (not 

to scale) of the five scenarios follows in Figure 2 through Figure 6. 

     Two different volume sets were defined. The volumes were chosen to achieve 

uncongested conditions and be able to capture enough interaction between vehicles. The 

first volume set included a freeway volume, VF=5000vph and an on-ramp volume, 

VR=1000vph. The second set included a freeway volume, VF=3500vph and an on-ramp 

volume, VR=500vph. These volume sets were not expected to exceed the capacity of the 

merge area and therefore would not result in oversaturated (i.e. congested) conditions. 
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Table III. On Ramp Configurations for Five Scenarios 

Scenario First acceleration lane length, LA1 

ft 

Second acceleration lane length, LA2 

ft 

1 100 1300 

2 200 1100 

3 300 900 

4 400 700 

5 500 500 

 

 

Figure 2. Graphical Representation of Scenario 1 

 

Figure 3. Graphical Representation of Scenario 2 
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Figure 4. Graphical Representation of Scenario 3 

 

Figure 5. Graphical Representation of Scenario 4 

 

Figure 6. Graphical Representation of Scenario 5 

 

 



 

22 

3.2 Highway Capacity Software  

     HCS is a deterministic, macroscopic traffic analysis tool that implements the 

methodologies published in the HCM. It was originally developed as a companion to the 

1985 HCM by the Center for Microcomputers in Transportation (McTrans) at the 

University of Florida that was founded by the Federal Highway Administration in 1986. 

The HCS was updated for the 2000 HCM, 2010 HCM and 2016 HCM. 

3.2.1 HCS Model Setup. To setup the base model for the freeway on-ramp 

junction in the HCS, the following freeway ramp components were defined: 

● 3 freeway lanes 

● 70mph freeway free flow speed 

● 2 ramp lanes 

● 55mph ramp free flow speed 

● Right side ramp connection 

● No adjacent ramps 

3.2.2 Ramp Influence Area Density Calculation. The HCS calculates the 

ramp influence area density according to the HCM methodology. The volume in the two 

outer lanes, V12 is estimated by 

𝑉12 = 𝑉𝐹 × 𝑃𝐹𝑀 

where 

VF=the volume on the freeway, pc/h 

PFM=the portion of the freeway mainline volume 

● PFM=1.000 for four-lane freeways 

● PFM=0.555 for six-lane freeways 
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● PFM=0.209 for 8-lane freeways 

     The factor, PFM represents the change in behavior observed on the freeway mainline. 

Under low flows, drivers will move to the inner lanes to avoid interacting with the on-

ramp traffic flow. However, this factor does not take into account the change in this 

behavior that occurs between low-flow and high-flow traffic conditions. As traffic 

volumes increase, drivers are less likely to move to the inner lanes. 

     Once the volume in the two outside freeway lanes is estimated, the density of the 

influence area is calculated as 

𝐷𝑅 = 5.475 + 0.00734𝑉𝑅 + 0.0078𝑉12 − 0.00627𝐿𝐴𝑒𝑓𝑓 

where 

DR=density, pc/ln/mi 

VR=flow rate (pc/hr) on the on-ramp 

V12=flow rate (pc/hr) on freeway lanes 1 and 2  

𝐿𝐴𝑒𝑓𝑓=effective acceleration lane length, ft 

The effective acceleration lane length is calculated using the lengths of the first and 

second acceleration lanes as 

𝐿𝐴𝑒𝑓𝑓 = 2𝐿𝐴1 + 𝐿𝐴2 

where 

LA1=length of the first acceleration lane, ft 

LA2=length of the second acceleration lane, ft 

The resulting density describes the amount of turbulence in the on-ramp influence area. 

This density is then translated to a level of service (LOS), as per Table I. 

 



 

24 

3.3 VISSIM 

     VISSIM is a microscopic traffic simulation software, developed by Planung Transport 

Verkehr (PTV) in Germany and distributed in the USA by PTV North America. 

Transportation networks are defined through links representing basic roadway segments 

and connectors, which join links together, and each is defined by a variety of attributes 

(e.g. number of lanes, lane width, speed). The vehicle flows are composed of a defined 

mix of vehicle types, drawn from different vehicle classes. The behavior of the vehicles is 

prescribed by the Wiedemann psycho-physical car-following model and the Sparmann 

lane changing model. 

     Lane changing behavior is divided into two types: 1) moving to a faster lane; and 2) 

moving to a slower lane. To make the lane change decision, three situations are 

evaluated: 1) whether there is a desire to change the lane; 2) whether the present driving 

situation in the neighboring lane is favorable; and 3) whether the movement to a 

neighboring lane is possible (Kan and Bhan, 2007). In VISSIM there are two kinds of 

lane changes: 1) necessary lane changes; and 2) free lane changes. The necessary lane 

change is applied when the vehicle needs to reach a connector. The free lane change 

happens when the vehicle is seeking more space or higher speed. No matter which type of 

lane change it is, the first step for the vehicles in VISSIM is to find a suitable gap (PTV, 

2008). 

     The capabilities of the VISSIM software far exceeds the needs of this research. For 

this particular research question, VISSIM was used to create five simple network models 

of a freeway two-lane on-ramp junction with varying lengths of the first and second 

acceleration lanes and simulate their operation under a defined traffic volume. 
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3.3.1 VISSIM Model Setup: The freeway on-ramp junctions were modeled as 

a series of two merges, with each merge modelled by a single link representing all of the 

acceleration lanes and freeway mainline lanes. This approach was based on a 

recommendation from the Maryland Department of Transportation (MDOT, 2016).  

     Figure 7 illustrates how links and connectors were arranged to model the two-lane on-

ramp merging with the three-lane freeway. Link 1 represented the three freeway lanes 

and Link 2 represented the two on-ramp lanes, upstream of the on-ramp merge. The first 

merge area was modelled by Link 3 with five lanes representing the three lanes on the 

freeway plus the two lanes of the on-ramp for the length of LA1. The second merge area 

was modelled by Link 4 with four lanes representing three lanes of the freeway and the 

second acceleration lane for the length of LA2. Link 5 represented the three lanes of the 

mainline freeway, downstream of the on-ramp merge. Connectors were defined to join 

each link with the next link immediately downstream.  

 

 

Figure 7. VISSIM Link and Connector Network 

     The five links were created by selecting Links from the Network Objects toolbar. 

Through the link dialog window, the number of lanes and width for each link was input. 

The configuration for the first freeway segment, Link 1 and the on-ramp, Link 2 are 

shown in Figure 8. The link length can only be modified manually through dragging the 

edge of the link. Many parameters can be changed to allow VISSIM users to model 
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different scenarios and field conditions. In this model, the behavior type of each link was 

set to freeway (free lane selection). 

     To join links to each other, connectors were created. Connectors should be short, with 

only a small amount of overlap with the two links they connect. There are two important 

connector parameters that need to be adjusted by traffic modelers. The first one is the 

lane change distance, which is the distance before the downstream connector where 

vehicles begin to make lane changes. The second parameter is the emergency stop, which 

is the distance before the downstream connector where vehicles can make last chance 

lane changes. In this model, both these connectors parameters were left to their default 

values. 



 

27 

 

Figure 8. VISSIM Configuration for Link 2 

3.3.2 Driver Behavior Parameters. The default VISSIM Wiedemann 99 driver 

behavior parameters (CCO, CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8, CC9) were 

used as shown in Table IV. The default parameters were recommended by different 

VISSIM protocols for State Department of Transportations around the nation, including 

VDOT, WSDOT, and ODOT as they adequately reflect the traffic conditions of a merge 

(MDOT, 2016). 

 



 

28 

Table IV. Wiedemann 99 Behavioral Parameters 

Category Code Description Value 

Thresholds for 

Dx 

CC0 Standstill distance: 

Desired distance between lead and 

following vehicle at v = 0 mph 

4.92 ft 

CC1 Headway Time: 

Desired time in seconds between lead and 

following vehicle 

0.9 sec 

CC2 Following Variation: 

Additional distance over safety distance 

that a vehicle requires 

13.12 ft 

CC3 Threshold for Entering ‘Following’ State: 

Time in seconds before a vehicle starts to 

decelerate to reach safety distance 

-8.00 sec 

Thresholds for 

Dv 

CC4 Negative ‘Following’ Threshold: 

Specifies variation in speed between lead 

and following vehicle 

0.35 ft/s 

CC5 Positive ‘Following Threshold’: 

Specifies variation in speed between lead 

and following vehicle 

0.35 ft/s 

CC6 Speed Dependency of Oscillation: 

Influence of distance on speed oscillation 

11.44 
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Category Code Description Value 

Acceleration 

Rates 

CC7 Oscillation Acceleration: 

Acceleration during the oscillation process 

0.82 ft/s2 

CC8 Standstill Acceleration: 

Desired acceleration starting from 

standstill 

11.48 ft/s2 

CC9 Acceleration at 50 mph: 

Desired acceleration at 50 mph 

4.92 ft/s2 

 

3.3.3 Conflict Areas and Priority Rules. Conflict areas are regions where links 

and connectors overlap. Conflicting movements were resolved by setting the priority 

rules to code the merging of vehicles from the entrance ramp onto the freeway. Figure 9 

depicts the conflict areas shown in green and red. VISSIM highlights the conflict areas 

after selecting the conflict area option from the Network Objects menu and allows users 

to define the right of way. In this model the vehicles on the entrance ramp were modeled 

to yield to the ones on the mainline. The status shows that vehicles travelling on the 

freeway have the right of way as shown in Figure 10 and Figure 11. 

 

Figure 9. VISSIM Model Screenshot 
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Figure 10. VISSIM First Conflict Area and Priority Rule 

 

Figure 11. VISSIM Second Conflict Area and Priority Rule 

3.3.4 Simulation Settings. The units of the model were set to imperial. To 

account for simulation variance, the simulation for each scenario was repeated five times 

using five random seed numbers 42, 40, 35, 38, and 39. According to the PTV Group 

website, random seeds change the start values of the random value generators used 

internally in the model which influences the arrival times of vehicle in the network, the 

driving behavior and also the selection of a certain distribution values wherever 

distributions are used. Those changes are comparable to the daily changes of the traffic 

patterns at the same location. 

     Each simulation was programmed to run for 1800 seconds. A warm-up period of 

approximately 120 seconds was included to allow time for the network to be populated 

before collecting traffic data. The simulation speed was set to maximum and the 

resolution to 10.Sim.sec. A high simulation resolution allows vehicles to make decisions 

at a higher frequency and get a smooth looking simulation.  

3.3.5 Traffic Settings. Two sets of traffic volumes were chosen for the model 

simulation. The first set of volumes were 5000vph on the freeway with 1000vph on the 

ramp. The second set of volumes were 3500vph on the freeway and 500vph on the ramp. 
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The link volumes were assumed to be made up of only passenger cars and were 

consistent during the simulation. 

     The desired speed distributions for the freeway and ramp are shown on Figure 12 and 

Figure 13 respectively. For the mainline, the desired speed was set as a linear distribution 

from 69mph to 71mph as shown in the figure below. For the ramp, the desired speed was 

set as a linear distribution from 50mph to 65mph. 

 

Figure 12. Desired Speed Distribution on the Freeway 
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Figure 13. Desired Speed Distribution on the Ramp 

     Additional model parameters were defined. The grade of the road was set to terrain 

and all the parameters pertaining to vehicles such as their length, width, and acceleration 

rates were left to VISSIM default values. Along with all these parameters, a reduced 

speed area was added to the model. A reduced speed area is usually defined for turning 

movements in intersections. However, since lower speeds are usually observed in ramps, 

a reduced speed area was added to the ramp for a length of 150ft with a speed of 55mph. 

VISSIM allows users to define both acceleration and deceleration rates. In this model the 

deceleration rate and acceleration rate were left to their default value of 6.56ft/s2 

3.3.6 Data Collection. VISSIM can output various measures of effectiveness 

(MOEs) such as volume, speed, travel time, queue length, delay, density, etc. For the 

purpose of this experiment, two MOEs, density and delay were selected as reporting 
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measures. From the main menu, the evaluation tab was selected to configure the model to 

collect this data. Data was collected for each link by lane. The start and end time for the 

link evaluation was set to the end of the warm-up period, and end of the simulation run, 

respectively. 

3.3.7 Output. For each simulation run, the results were displayed in the Link 

Segment Results table as shown in Figure 14 and saved to an att file that could be 

imported to Excel.  

 

Figure 14. VISSIM Link Segment Results 

3.3.8 Ramp Influence Area Density Calculation. To be consistent with the 

HCS software performance measure, the density was calculated for the ramp influence 

area in VISSIM. Since there is no direct output from VISSIM for the ramp influence area 

density, the density for each of the four right lanes (the two acceleration lanes and two 

adjacent through lanes) were collected for Link3 for a distance equal to 𝐿𝐴1of the link and 

the densities for the three right lanes for Link4 were collected for a distance equal to 𝐿𝐴2 . 

Recall that  𝐿𝐴1 +𝐿𝐴2= 1,500ft, which is the length of the influence area. The density of 

the ramp influence area was then estimated by calculating the average density across 

lanes (Milam et al, 2007). 
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CHAPTER IV 

RESULTS AND ANALYSIS 

 

     The results of the HCM and VISSIM analyses are presented in this chapter. First the 

influence area density 𝐷𝑅  with the corresponding LOS computed by HCS 2010 is 

presented, followed by the density in the ramp influence area resulting from the analysis 

of the VISSIM simulation runs. 

4.1 HCS Results 

     The Highway Capacity Software was run for each combination of traffic volumes and 

acceleration lane lengths. A sample output is provided in Appendix A. Summaries of the 

results are provided in Appendix B. When the volume set was VF=5000vph and 

VR=1000vph, the analysis resulted in a density of 42.41pc/mi/ln, which is described by a 

LOS E. When the volume set was VF=3500vph, VR=500vph, the analysis resulted in a 

density of 27.04pc/mi/ln and a LOS C.  

4.2 HCS Conclusions 

     Changing the lengths of the acceleration lanes LA1 and LA2 while keeping their 

effective length 𝐿𝐴𝑒𝑓𝑓 constant resulted in the same DR and LOS for a given speed set. 

This is because the equation used in the HCS to compute DR does not have LA1 and LA2 
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as variables but instead includes the effective acceleration lane length, 𝐿𝐴𝑒𝑓𝑓 . Therefore, 

the current HCM methodology is insensitive to changes in acceleration lane length when 

the effective length remains constant. That result implies that the operation within the 

influence area does not benefit from changing how the effective length is delivered in 

terms of LA1 and LA2. 

4.3 VISSIM Results 

     Each VISSIM model was run five times using separate random seeds, for each 

combination of traffic volumes and acceleration lane lengths, for a total of 50 simulation 

runs. A sample VISSIM output is provided in Appendix C. Summaries of the lane and 

link density results output from VISSIM are provided in Appendix D. Using the lane and 

link density results, the density in the ramp influence area was calculated.  

     The density results, for each of the 50 simulation runs, are summarized in Table V 

through Table IX. The average density across the 5 random seeds, for each combination 

of traffic volumes and acceleration lengths, was calculated and included in the summary 

tables. The results for the first volume set are plotted on Figure 15 and the results from 

the second volume set are plotted on Figure 16. 



 

36 

Table V. Density in Ramp Influence Area for LA1=100ft, LA2=1300ft 

Random Seed Density (veh/ln/mi) 

VF=5000vph, VR=1000vph VF=3500vph, VR=500vph 

35 16.48 17.46 

38 21.3 16.89 

39 17.38 13.78 

40 20.58 18.1 

42 18.02 14.81 

Average 18.75 16.2 

 

Table VI. Density in Ramp Influence Area for LA1=200ft, LA2=1100ft 

Random Seed Density (veh/ln/mi) 

VF=5000vph, VR=1000vph VF=3500vph, VR=500vph 

35 24.97 12.01 

38 22.04 16.24 

39 28.67 18.06 

40 26.09 12.71 

42 20.20 20.08 

Average 24.25 15.82 
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Table VII. Density in Ramp Influence Area for LA1=300ft, LA2=900ft 

Random Seed Density (veh/ln/mi) 

VF=5000vph, VR=1000vph VF=3500vph, VR=500vph 

35 33.64 17.33 

38 32.13 18 

39 27.86 15.51 

40 16.89 13.21 

42 24.26 15.64 

Average 26.96 15.94 

 

Table VIII. Density in Ramp Influence Area for LA1=400ft, LA2=700ft 

Random Seed Density (veh/ln/mi) 

VF=5000vph, VR=1000vph VF=3500vph, VR=500vph 

35 19.07 13.5 

38 26.01 14.94 

39 25.08 15.18 

40 29.51 10.06 

42 15 24.13 

Average 22.93 15.56 
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Table IX. Density in Ramp Influence Area for LA1=500ft, LA2=500ft 

Random Seed Density (veh/ln/mi) 

VF=5000vph, VR=1000vph VF=3500vph, VR=500vph 

35 31.66 11.32 

38 28.26 13.79 

39 27.68 17.35 

40 26.75 12.17 

42 25.85 21.19 

Average 28.04 15.16 

 

 

Figure 15. Ramp Influence Area Density VF=5000vph, VR=1000vph 
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Figure 16. Ramp Influence Area Density VF=3500vph, VR=500vph 

4.4 Analysis of VISSIM Results 

     To test whether the traffic volumes and lengths of the acceleration lanes effect the 

density in the ramp influence area, a two-way ANOVA analysis with repetition for the 

random seeds was conducted. The results are provided in Appendix E. The effect of 

changing the lengths of the acceleration lanes on the influence area density was not 

significant (p=0.150, α=0.05) and the effect of changing the traffic volumes was 

significant (p<0.001, α=0.05). The interaction between the effects was not significant 

(p=0.066, α=0.05). 

     Given that the acceleration lane length and the density appeared to be positively 

related for the first volume set and negatively related for the second volume set, each 

dataset was analyzed separately using a one-way ANOVA. For the first volume set, 

VF=5000vph, VR=1000vph, the effect of the acceleration lane length was significant 
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(p=0.029, α=0.05). For the second volume set, VF=3500vph, VR=500vph, the effect of 

the acceleration lane length was not significant (p=0.992, α=0.05). 

4.5 VISSIM Conclusions 

     As expected, the density in the influence area appeared to decrease when the traffic 

volumes were reduced from VF=5000vph and VR=1000vph to VF=3500vph and 

VR=500vph. This effect was found to be significant. The conclusion that can be drawn is 

that when there are larger conflicting flows vying for the same space, such as that which 

occurs within a merge section, vehicles become impeded and congestion occurs. 

     The density results under the various combinations of acceleration lane lengths 

appeared to increase as LA1 increased for volume set 1 (VF=5000vph, VR=1000vph) and 

decrease as LA1 increased for volume set 2 (VF=3500vph, VR=500vph). However, there 

was visible overlap in the density results across the acceleration lane lengths, for volume 

sets 1 and 2. Across both volume sets, the effect of the acceleration lane length on the 

influence area density was not found to be significant. However, when analyzed 

separately, the effect of the acceleration lane length on density was significant for the 

first volume set, VF=5000vph, VR=1000vph. The conclusion that can be drawn is that at 

the higher freeway and ramp volumes, an increase in LA1+LA2 was associated with a 

decrease in influence area density. 

4.6 Conclusions 

     The densities output by HCS and VISSIM were very different. For the first volume 

set, the HCS estimated a density of 42.41veh/ln/mi or LOS E and the VISSIM simulation 

results showed a range of average density from 18.75veh/ln/mi or LOS B to 

28.04veh/ln/mi or LOS C. For the second volume set, the HCS estimated a density of 
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27.04veh/ln/mi or LOS C and the VISSIM simulation results showed a range of average 

density from 15.16veh/ln/mi or LOS B to 16.2veh/ln/mi or LOS C. The conclusion that 

can be drawn from these results is that the two modeling approaches were not 

comparable. 

     The HCM/HCS procedure is based on regression equations developed under NCHRP 

Project 3-37 and first introduced into the HCM for the October 1994 Update. The 

regression equations were developed based on field data and estimate density in the 

influence, DR as a function of the ramp volume, VR, the volume on the outer two freeway 

lanes, V12, and the length of the acceleration lane, LA, as 

𝐷𝑅 = 5.475 + 0.0734𝑉𝑅 + 0.0078𝑉12 − 0.00627𝐿𝐴 

For two lane ramps, the same density equation is used except that 𝐿𝐴 is replaced by the 

effective length of the acceleration lanes, 𝐿𝐴𝑒𝑓𝑓, as 

𝐿𝐴𝑒𝑓𝑓 = 2𝐿𝐴1 + 𝐿𝐴2 

     The VISSIM model describes the movement and interaction of individual vehicles. 

For this experiment, the default car-following and lane-changing parameters were 

retained. The conclusion that can be drawn is that the default driver behavior in VISSIM, 

and the chosen speed profiles were not representative of the field operations that were 

observed to develop the regression equations for the HCM procedure. 
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CHAPTER V 

DISCUSSION AND FUTURE WORK 

 

     The experiment was designed to investigate the impact of the acceleration lane lengths 

and traffic volumes on the density of the on-ramp influence area for an isolated, two-lane 

on-ramp. The HCM equation for estimating the influence area density includes both of 

these variables and therefore an effect was expected. The one-way ANOVA results 

indicated that the acceleration lane length impacted the density under the higher volume 

set but not under the lower volume set. While the two-way ANOVA results indicated that 

the volume impacted the density. These relationships are further discussed as they pertain 

to the HCM influence area density equation, along with some thoughts about future work. 

5.1 Current HCM Influence Area Density Equation 

     To begin this discussion, the current HCM equation for calculating the influence area 

density and its recommended use were reviewed. Recall the basic equation is 

𝐷𝑅 = 5.475 + 0.0734𝑉𝑅 + 0.0078𝑉12 − 0.00627𝐿𝐴 

where 

DR=density in the ramp influence area, pc/ln/mi 

VR=the ramp volume, pc/h 
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V12=the volume on lanes 1 and 2 of the freeway, pc/h 

LA=the length of the acceleration lane, ft 

For the application of this equation, the influence area is assumed to be 1500ft and as 

such, it is not recommended to use an acceleration lane length greater than 1500ft, thus 

extrapolating beyond what the equation was calibrated for. When field data is not 

available, the recommended input is 800ft. However, there is no guidance as to a 

minimum value for the acceleration lane length. 

     What is concerning about this equation is the constant term. When the flows on the 

ramp and freeway lanes 1 and 2 are zero, the density in the influence area is estimated to 

be 5.475 pc/mi/ln, which does not make sense. By the fundamental traffic flow theory, 

density is either zero or at jam density when the flow is zero. Jam density occurs when 

traffic has come to a stop (LOS F), and vehicles are spaced at their minimum headway. 

     In the previous HCM methodology, the equations and nomographs for estimating the 

volumes in the outer freeway lane (i.e. lane 1) included a restriction that the length of the 

acceleration lane needed to be at least 800ft. If that restriction applies to the current 

equation, then the -0.00627LA term becomes an adjustment for acceleration lanes greater 

than 800 ft.  

     Perhaps it could be argued that LA needs to be removed from the influence area 

density equation and applied as an adjustment to the calculated density when the 

acceleration lane length exceeds some reference value to account for the additional space 

vehicles have to merge onto the freeway. The constant term could be forced to zero by 

setting the reference acceleration lane length to 885ft. Then each additional 160ft of 

acceleration lane length would be addressed by applying a density reduction of 1pc/ln/mi. 
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This is approximately the marginal impact of the acceleration lane length in the current 

HCM equation. 

     Given the effect of the lengths of the acceleration lanes was not significant at the low 

volume set but was significant at the higher volume set, it could be argued that the 

adjustment to the density could depend on the traffic volumes. At low volumes, an 

adjustment there may be warranted, as vehicles have ample opportunity to merge into the 

outer freeway lane. At high volumes, with fewer usable gaps in the freeway traffic, the 

longer acceleration lanes increase the opportunity to merge. Thus, the adjustment for the 

length of the acceleration lanes may be greater under higher traffic volumes. 

5.2 Current HCM Influence Area Density Equation for Two-Lane On-Ramps 

     For the special case of a two-lane on-ramp, the length of the acceleration lane, LA in 

the influence area density equation is replaced with the effective length of acceleration 

lane, 𝐿𝐴𝑒𝑓𝑓. The effective length of acceleration lane is equal the total length of the 

acceleration lanes, 2LA1 + LA2.  

     Operationally, the two lengths, LA and 𝐿𝐴𝑒𝑓𝑓 are not equivalent. The vehicles on LA 

have direct access to the gaps in the outer lane of the freeway. The vehicles on the inner 

lane of the two-lane on-ramp, which has a length LA1+LA2 also have direct access, 

however the vehicles on the outer lane do not. Those vehicles must first merge onto the 

inner acceleration lane. Perhaps a better replacement for LA would be LA1+LA2, since 

each has direct access to lane 1 of the freeway. 

5.3 Contributions of Thesis 

     This research was done to examine whether changing the lengths of the acceleration 

lanes effects the operation of the ramp influence area and was motivated by the notion 
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that two-lane on-ramps will produce less turbulence on the mainline than a comparable 

one-lane on-ramp. If the design of two-lane ramps can be manipulated to control the 

density impact, then there may be potential to design on-ramps to satisfy some congestion 

criterion. 

     Based on the HCM equation for estimating the influence ramp density, an increase in 

the acceleration lane length LA is expected to reduce the density in the influence area. For 

two-lane on-ramps, the LA term is replaced by 𝐿𝐴𝑒𝑓𝑓=2LA1+LA2. When using a constant 

𝐿𝐴𝑒𝑓𝑓 changes to LA1 and LA2 are not expected to impact the density. This was illustrated 

through the HCM/HCS analysis. However, the VISSIM results indicated that changing 

LA1 and LA2 did impact the density. When LA1+LA2 was used to represent the length of 

the acceleration lane, the results for the first volume set indicate that the density 

decreases as LA1+LA2 increases. This result led to the thinking that it is not appropriate to 

replace LA with 𝐿𝐴𝑒𝑓𝑓. 

     The freeway and ramp flows were also included in the investigation and were 

expected to have a positive linear relationship with the density. The results of the 

experiment indicated such a relationship, and the effect of the traffic volumes was found 

to be significant. In this respect, the results were consistent with the HCM equation. 

     The experiment, and associated results, represent the beginning of a line of inquiry 

that has the potential to impact the way in which two-lane on-ramps are designed and 

analyzed. It is just a beginning. While addressing one question, many others have 

surfaced. Those questions are discussed next. 
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5.4 Expanding Upon Thesis 

      In this experiment, a constant 𝐿𝐴𝑒𝑓𝑓  was used and assigned to LA1 and LA2 in five 

different ratios 100ft:1300ft, 200ft:1100ft, 300ft:900ft, 400ft:700ft, and 500ft:500ft. If 

these acceleration lengths are described in terms of LA1+LA2, it represents a range from 

1000ft to 1400ft. If 𝐿𝐴𝑒𝑓𝑓 was allowed to vary, a value of LA1+LA2 could be achieved 

through various combinations of lane lengths. For instance, LA1+LA2=1000ft could be 

achieved using LA1=500ft, LA2=500ft with 𝐿𝐴𝑒𝑓𝑓 f=1500ft, or LA1=300ft, LA2=700ft with 

𝐿𝐴𝑒𝑓𝑓=1300ft. The question that is then posed is; Does the density change when LA1+LA2 

is held constant but 𝐿𝐴𝑒𝑓𝑓 is allowed to vary? The results of such an investigation would 

shed light on the operational difference of including the outer acceleration lane. If the 

inclusion of the outer acceleration lane does not improve the density in the influence area, 

then it only serves as a queueing area for vehicles wanting to merge onto the freeway. 

     If LA1+LA2 replaces LA in the HCM equation, a range in acceleration lane length of 

1000ft to 1400ft would yield and expected change in density of approximately 

2.5pc/mi/ln. Comparing the average densities, a difference of 9.288 was recorded for the 

first volume set, VF=5000vph, VR=1000vph, and a difference of -1.044 was recorded for 

the second volume set, VF=3500vph, VR=500vph. This raises the question of whether the 

impact of the acceleration lane length becomes more prevalent as the volumes increase. 

In the VISSIM model, of the volume sets generated densities in the influence area 

represented by LOS B and C. The experiment should be expanded to examine the effect 

of the acceleration lane lengths under higher freeway and ramp volumes, creating 

conditions representing LOS C, D and E. 
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     Expanding upon this thesis by investigating whether changing 𝐿𝐴𝑒𝑓𝑓, while holding 

LA1+LA2 constant impacts the influence area density, and whether the impact of the 

acceleration lane length, LA1+LA2 on the influence area density increases at higher 

freeway and ramp volumes, will provide a better understanding of the potential 

operational benefits of isolated two-lane on-ramps. That understanding could lead to 

changes in the design and use of two-lane on ramps to improve freeway traffic flow. 

5.5 Expanding Beyond the Thesis 

     The experiment was designed for an isolated two-lane on-ramp operating with fixed 

freeway and ramp speeds. These conditions represent a very specific application for a 

two-lane on-ramp. In reality, operating conditions can include the presence of upstream 

ramps which can influence the operation of the ramp junction, a range of freeway and 

ramp volumes, and a range of freeway and ramp speeds. These are factors considered in 

the HCM methodology and could be explored for two-lane on-ramps. 

     When designing the experiment, the 𝐿𝐴𝑒𝑓𝑓 was set to 1500ft to coincide with the 

recognized length of the influence area. This length was established through NCHRP 

Project 3-37, which dates back to over 50 years ago. Changes in driving population, 

vehicle performance and safety features, may have impacted merge behavior and thus the 

length of the influence area. This is a topic that could be revisited. For instance, it would 

be interesting to see whether the length of the acceleration lane itself, or the inclusion of 

the outer lane of a two-lane on-ramp, are contributing factors to the extent of the 

disruption to the freeway traffic lanes, as represented by the influence area. 

     The overall purpose of learning what conditions impact the operation of two-lane on-

ramps and to what extent two-lane on-ramps impact the operations of the freeway, is to 
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be able to better design freeway ramp junctions to meet the needs of its users. Improving 

upon the operation of freeway junctions has the potential to improve traffic flow. The 

effectiveness of the junction improves as more vehicles are serviced, and the efficiency of 

the junction improves as the occurrence and severity of congestion is reduced, the 

benefits of which include improved mobility and reduced environmental impact. 
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Appendix A. Sample HCS Output 

 

 

Figure 17. Sample HCS Output 
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Appendix B. HCS Results 

Table X. HCS 2010 Density and LOS Results for First Set of Volumes 

Scenario 𝐷𝑅  (pc/mi-ln) LOS 

𝐿𝐴1 =100 ft, 𝐿𝐴2=1300 ft 42.41 E 

𝐿𝐴1 =200 ft, 𝐿𝐴2=1100 ft 42.41 E 

𝐿𝐴1 =300 ft, 𝐿𝐴2=900 ft 42.41 E 

𝐿𝐴1 =400 ft, 𝐿𝐴2=700 ft 42.41 E 

𝐿𝐴1 =500 ft, 𝐿𝐴2=500 ft 42.41 E 

 

Table XI. HCS 2010 Density and LOS Results for Second Set of Volumes 

Scenario 𝐷𝑅  (pc/mi-ln) LOS 

𝐿𝐴1 =100 ft, 𝐿𝐴2=1300 ft 27.04 C 

𝐿𝐴1 =200 ft, 𝐿𝐴2=1100 ft 27.04 C 

𝐿𝐴1 =300 ft, 𝐿𝐴2=900 ft 27.04 C 

𝐿𝐴1 =400 ft, 𝐿𝐴2=700 ft 27.04 C 

𝐿𝐴1 =500 ft, 𝐿𝐴2=500 ft 27.04 C 
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Appendix C. Sample VISSIM Output 

 

Figure 18. Sample VISSIM Output 
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Appendix D. VISSIM Results 

Table XII. DR, LA1=100ft, LA2=1300ft, Random Seed=40 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 1.97 3.69 

3 2 9.33 16.90 

3 3 20.64 16.26 

4 1 20.71 16.23 

4 2 15.58 17.44 

4 3 31.75 18.40 

4 4 44 14.76 

DR 20.58 14.81 

 



 

55 

Table XIII. DR, LA1=100ft, LA2=1300ft, Random Seed=35 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 1.49 4.46 

3 2 5.08 2.81 

3 3 13.85 15.69 

4 1 33.86 13.65 

4 2 14.03 15.24 

4 3 30.6 16.94 

4 4 35 19.56 

DR 16.48 11.46 
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Table XIV. DR, LA1=100ft, LA2=1300ft, Random Seed=38 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 4.89 8.09 

3 2 7.9 8.20 

3 3 20.41 17.44 

4 1 33.6 18.40 

4 2 14.05 7.47 

4 3 29.07 18 

4 4 39.7 7.5 

DR 21.3 12.15 
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Table XV. DR, LA1=100ft, LA2=1300ft, Random Seed=39 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 4.89 1.69 

3 2 7.9 7.58 

3 3 20.41 7.38 

4 1 20.5 18 

4 2 14.05 18.05 

4 3 28.28 17.49 

4 4 25.68 19.27 

DR 17.38 12.78 
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Table XVI. DR, LA1=100ft, LA2=1300ft, Random Seed=42 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 4.38 1.2 

3 2 13.85 5.47 

3 3 33.77 15 

4 1 23.81 17 

4 2 19.14 17.44 

4 3 16.22 18.4 

4 4 15.03 17.25 

DR 18.02 13.1 
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Table XVII. DR, LA1=200ft, LA2=1100ft, Random Seed=40 

Link Lane Density 1(veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 5.42 3.5 

3 2 10.24 9 

3 3 23.56 14.98 

4 1 34.69 14.46 

4 2 24.91 9.67 

4 3 46.91 23.1 

4 4 36.94 14.45 

DR 26.09 12.71 
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Table XVIII. DR, LA1=200ft, LA2=1100ft, Random Seed=35 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 5.07 6 

3 2 11.56 11 

3 3 23.56 16.91 

4 1 27.13 14.42 

4 2 24.12 15.31 

4 3 45.03 21 

4 4 38.34 17 

DR 24.97 14.01 
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Table XIX. DR, LA1=200ft, LA2=1100ft, Random Seed=38 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 6.06 9.97 

3 2 13.65 10.65 

3 3 24.9 19.8 

4 1 31.3 12.28 

4 2 20.74 15.79 

4 3 37.8 41 

4 4 46.01 42 

DR 22.04 18.24 

 



 

62 

Table XX. DR, LA1=200ft, LA2=1100ft, Random Seed=39 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 5.34 12.04 

3 2 41.21 34 

3 3 24.14 15.98 

4 1 25.33 10.5 

4 2 29 12.09 

4 3 47.01 23 

4 4 34 37.27 

DR 28.67 20.69 
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Table XXI. DR, LA1=200ft, LA2=1100ft, Random Seed=42 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 6.38 17 

3 2 11.5 13.6 

3 3 21.22 42.3 

4 1 30.85 21.07 

4 2 18.92 10.54 

4 3 34.7 32.1 

4 4 17.87 11 

DR 20.20 21.08 
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Table XXII. DR, LA1=300ft, LA2=900ft, Random Seed=40 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 10.01 2.3 

3 2 15.83 8.26 

3 3 27.35 18.82 

4 1 38.81 22.26 

4 2 28.71 19 

4 3 37.51 22.26 

4 4 30.77 13.87 

DR 26.99 15.25 
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Table XXIII. DR, LA1=300ft, LA2=900ft, Random Seed=35 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 7.38 8.96 

3 2 17.10 6.7 

3 3 40.31 26.14 

4 1 42.33 26.9 

4 2 47.57 23.8 

4 3 47.55 16.74 

4 4 33.26 12.09 

DR 33.64 17.33 

 



 

66 

Table XXIV. DR, LA1=300ft, LA2=900ft, Random Seed=38 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 6.41 2.59 

3 2 13.75 1.47 

3 3 26.75 16.93 

4 1 56.50 47.18 

4 2 48.97 23.84 

4 3 40.75 17.21 

4 4 31.8 16.82 

DR 32.13 18 
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Table XXV. DR, LA1=300ft, LA2=900ft, Random Seed=39 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 8.10 3.35 

3 2 25.81 1.43 

3 3 25.59 13.62 

4 1 32.69 42.5 

4 2 49.39 15.85 

4 3 25.63 16.35 

4 4 21.92 16.39 

DR 27.86 15.51 
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Table XXVI. DR, LA1=300ft, LA2=900ft, Random Seed=42 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 7.10 6.52 

3 2 12.97 5.97 

3 3 24.43 17.50 

4 1 34.76 26.99 

4 2 31.63 17.49 

4 3 34.67 17.50 

4 4 30.32 17.57 

DR 24.26 15.64 
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Table XXVII. DR, LA1=400ft, LA2=700ft, Random Seed=35 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 7.03 3.4 

3 2 3.56 7.06 

3 3 20.06 9.93 

4 1 19.8 14.19 

4 2 25.9 16.09 

4 3 15.31 19.04 

4 4 16 14.87 

DR 19.07 15.18 
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Table XXVIII. DR, LA1=400ft, LA2=700ft, Random Seed=38 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 12.34 1.84 

3 2 5.70 1,21 

3 3 15 13.88 

4 1 28.9 21.67 

4 2 18.1 12.65 

4 3 21.65 22.06 

4 4 27.22 17.54 

DR 26.01 14.94 
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Table XXIX. DR, LA1=400ft, LA2=700ft, Random Seed=39 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 8.99 2.15 

3 2 7.52 3.12 

3 3 19.8 11.32 

4 1 27.74 6.84 

4 2 14.29 11.19 

4 3 28.68 19.11 

4 4 24 15.48 

DR 25.08 10.06 
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Table XXX. DR, LA1=400ft, LA2=700ft, Random Seed=40 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 7.24 5.63 

3 2 9.98 0.41 

3 3 11.06 5.09 

4 1 17.57 10.6 

4 2 19.17 18.31 

4 3 12.31 16.25 

4 4 14.8 22.43 

DR 15 13.5 
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Table XXXI. DR, LA1=400ft, LA2=700ft, Random Seed=42 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 13.94 0.6 

3 2 8.70 5.8 

3 3 27.11 17.35 

4 1 19.56 9.87 

4 2 29.04 22 

4 3 14.06 18.13 

4 4 33.94 17.70 

DR 29.51 24.13 
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Table XXXII. DR, LA1=500ft, LA2=500ft, Random Seed=35 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 13.41 2.54 

3 2 14.06 4.42 

3 3 20.42 16 

4 1 50.05 23 

4 2 46 21.03 

4 3 43.73 24.36 

4 4 34 12.93 

DR 31.66 11.32 
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Table XXXIII. DR, LA1=500ft, LA2=500ft, Random Seed=38 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 9.35 1.42 

3 2 18.84 5.87 

3 3 38.06 17.74 

4 1 36.72 18.61 

4 2 28.9 23.39 

4 3 32 29.04 

4 4 34 18.12 

DR 28.26 18.79 
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Table XXXIV. DR, LA1=500ft, LA2=500ft, Random Seed=39 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 2.30 2.59 

3 2 16.12 12.73 

3 3 36.54 12.73 

4 1 42.44 21.05 

4 2 22 19.91 

4 3 16.99 25.43 

4 4 32 14.56 

DR 27.68 17.35 
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Table XXXV. DR, LA1=500ft, LA2=500ft, Random Seed=40 

Link Lane Density (veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 3.9 4.78 

3 2 8.89 16.76 

3 3 25.88 13.84 

4 1 50.12 20 

4 2 36.91 19.28 

4 3 24.7 17.06 

4 4 36.91 16.09 

DR 26.75 17.17 
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Table XXXVI. DR, LA1=500ft, LA2=500ft, Random Seed=42 

Link Lane Density 1(veh/ln-mi) 

VF=5000vph, 

VR=1000vph 

VF=3500vph, VR=500vph 

3 1 26.10 10.65 

3 2 23.47 10.51 

3 3 23.51 24.07 

4 1 30.37 39.06 

4 2 25.65 23.9 

4 3 34.86 23.1 

4 4 17.15 12.54 

DR 25.85 21.19 
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Appendix E. ANOVA Results 

 

Figure 19. Two-way ANOVA Results 

  

3500/500 Anova: Two-Factor With Replication

SUMMARY 5000/1000 3500/500 Total

100/1300

Count 5 5 10

Sum 93.76 81.04 174.8

Average 18.752 16.208 17.48

Variance 4.35352 3.36547 5.228422

200/1100

Count 5 5 10

Sum 121.97 79.1 201.07

Average 24.394 15.82 20.107

Variance 11.15583 11.88245 30.65965

300/900

Count 5 5 10

Sum 134.78 79.69 214.47

Average 26.956 15.938 21.447

Variance 45.21403 3.47587 55.36116

400/700

Count 5 5 10

Sum 114.67 77.81 192.48

Average 22.934 15.562 19.248

Variance 33.79743 27.11682 42.16922

500/500

Count 5 5 10

Sum 140.2 75.82 216.02

Average 28.04 15.164 21.602

Variance 4.93565 16.67988 55.66006

Total

Count 25 25

Sum 605.38 393.46

Average 24.2152 15.7384

Variance 27.75547 10.55093

ANOVA

Source of Variation SS df MS F P-value F crit

Length 115.8487 4 28.96219 1.788044 0.150267 2.605975

Volumes 898.2017 1 898.2017 55.45244 4.51E-09 4.084746

Interaction 155.597 4 38.89925 2.40153 0.065809 2.605975

Within 647.9078 40 16.1977

Total 1817.555 49
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Figure 20. One-way ANOVA Results for First Volume Set 

 

  

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

1400 5 93.76 18.752 4.35352

1300 5 121.97 24.394 11.15583

1200 5 134.78 26.956 45.21403

1100 5 114.67 22.934 33.79743

1000 5 140.2 28.04 4.93565

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups268.3054 4 67.07635 3.372146 0.029021 2.866081

Within Groups397.8258 20 19.89129

Total 666.1312 24
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Figure 21. One-way ANOVA for Second Volume Set 

 

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

1400 5 81.04 16.208 3.36547

1300 5 79.1 15.82 11.88245

1200 5 79.69 15.938 3.47587

1100 5 77.81 15.562 27.11682

1000 5 75.82 15.164 16.67988

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups3.140376 4 0.785094 0.062787 0.992147 2.866081

Within Groups250.082 20 12.5041

Total 253.2223 24
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