
vii

TABLE OF CONTENTS

Page

ABSTRACT ...vi

LIST OF TABLES ...ix

LIST OF FIGURES ... x

CHAPTER

I. INTRODUCTION .. 1

II. AUTOMATIC USER AUTHENTICATION WITH BLUETOOTH ... 5

2.1 OUR SOLUTION ... 5

2.2 DEVELOPMENT ... 9

III. CLOUD-BASED DATA AGGREGATION .. 11

3.1 OUR SOLUTION ... 12

3.2 SYSTEM REQUIREMENTS ... 13

3.3 SYSTEM DESIGN ... 13

3.4 DATABASE DESIGN .. 15

3.5 WEB DEVELOPMENT ... 17

IV. WEB INTERFACE FOR DATA VISUALIZATION AND ANALYSIS 20

4.1 OUR SOLUTION ... 20

4.2 SYSTEM REQUIREMENTS ... 21

4.3 SYSTEM DESIGN ... 22

4.4 USER STORIES .. 23

4.5 DEVELOPMENT ... 24

4.5.1 Login Screen ... 26

4.5.2 Dashboard Screen .. 26

4.5.3 Users Management ... 27

xi

22. Number of wrong activities on each weekday .. 42

23. Wrong activity trend over the month .. 43

24. Relative Risk Factors .. 44

1

CHAPTER I

INTRODUCTION

 A software success is mainly dictated by its core features and usability of the

software. The definition of usability is in some cases just described as "simple to use".

According to ISO 9241-11 [1] "The extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use".

• Effectiveness is the completeness and precision with which clients accomplish

specified objectives. It is decided by looking at whether the user’s objectives were

met effectively and whether all work is correct. The quality of the client help built

into the interface can have a solid effect on effectiveness. The effectiveness of an

interface regularly depends on the introduction of choices in a way that's clearly

justifiable to the client. The more instructive an interface can be, the better users

are able to work in it without issues. Great interface terminology will be within

the user’s dialect and fitting to the purpose.

• Efficiency can be described as the speed (with precision) in which clients can

accomplish the assignments for which they utilize the item. ISO 9241 defines

effectiveness as the whole assets used in an assignment. Effectiveness

2

measurements incorporate the number of clicks or keystrokes required or the

overall ‘time on task’. Making the proper choices for efficient utilization of the

software depends on an understanding of the clients and how they want to work.

• Satisfaction comes when an interface is pleasant. The visual design is the

foremost self-evident component of this characteristic. The style of the visual

presentation, the number, capacities, and sorts of realistic pictures or colors, and

the utilize of any interactive media components are all portion of a user's quick

response.

Usability and client-focused design are iterative. We have to continuously monitor

client requirements and provide features accordingly to fulfill their needs. The core idea

of usability is any system should provide a complete solution in an effective way.

Privacy-Aware Compliance Tracking System is a software which is built using

Kinect [31] sensors to monitor user activities. This system was designed initially to

prevent nurse aide back injuries. In the original design of this system, there will be a

Kinect server [31] to which Kinect device is connected. A smartphone is also connected

to a Kinect server. When nurse aid enters into the room where our Kinect server present,

the user has to press the button on their smartwatch to connect to our smartphone. The

smartphone will then identify the user and inform to Kinect coordinator in our system.

From that moment, our system will track user activities. Activity Recognizer will process

Kinect server's skeleton stream and identify whether the activity performed is the wrong

activity or not. From that moment our Kinect server will count how much duration that

user was in the same posture and then it will log it for our reporting purpose. Along with

user activities, this system will also log new user information, when they are connected

3

and when they are disconnected to our system. This system will log activity information

into Amazon Web Services. Figure 1 represents system architecture [2].

Instead of finding user activities by traditional methods, tracking users using Kinect

provided a lot of new information and this will be helpful to track nurse aide actions.

Even though the current system can produce great insights about user activities, there are

usability issues. This great software will be more helpful if we can solve these usability

problems. Following will are the usability issues with current software.

• User must wear the smartwatch in order to identify them

Figure 1: Privacy-aware compliance tracking system architecture

4

• We need to have a smartphone which is connected to our server. This is going to

sleep after some time. Because of this we were not able to track users completely

and we need to track smartphone status at regular intervals of time.

• All the data is stored in XML [33] format and in MySQL [32] database, but the

client interface was not available to access via the web browser.

• There was no way to check user activity status on the go i.e. there is no mobile

application which can show user activity information.

• There is no way to compare different user activity information

• There are very few metrics available to analyze activity information

Even though the list is very big, we can consolidate all the list items into the

following problems.

• The authentication system is interfering with nurse aide daily routine and there are

maintainability problems with hardware used in the authentication system.

• The current system provides only very few types of data analytics.

• User activity analytics are not easily accessible

In the following chapters, we will discuss each problem in detail and propose our

solution to each problem and compare it with the existing solution and its usability

improvements.

5

CHAPTER II

AUTOMATIC USER AUTHENTICATION WITH BLUETOOTH

 In the existing system, each user has to wear a smartwatch. If any user forgot to

wear a smartwatch, then our system will not recognize the user. As users will wear and

remove smartwatch every day, there is a high probability that a user can forget to wear a

smartwatch. Along with this, providing smartwatch to each user in a large organization

will cost more. Even if we provide smartwatches to each user, it has to be detected by our

smartphone placed along with the server. Most of the smartphone devices will be

automatically going to sleep mode when they are idle. So, there is a high probability that

we might miss user authentication when our smartphone is in sleep mode. In order to

track their activities, we have to regularly monitor our smartphone and instruct all our

user to wear a smartwatch every day.

2.1 OUR SOLUTION

 To overcome this problem, we have to build a solution which is of low cost and it

should not interfere with nurse aide daily routine. After doing some research, we found

that Low Energy Bluetooth beacons [2] can fit our purpose. Bluetooth beacons are

nothing but small Bluetooth devices which can transmit their signals to a very short

6

distance. They have very long battery life and they can work for years with a small

battery. They are very tiny and very cheap when compared to smartwatches. Each

Bluetooth beacon will transmit data packets which contain its ID and some other data via

its Bluetooth signal. There are currently being used in museums and shopping malls for a

better shopping experience. When a user is nearby, based on received Bluetooth signal

[3], the smartphone may get associated notifications or web page links. We can even

estimate Bluetooth beacon distance from our smartphone which Bluetooth support.

Figure 2 will represent one of the short-range beacons available in the market by

estimate. There are different types of beacons with different ranges and features. In most

of the use cases in e-commerce, health care, and location-based services [4][5], these

beacons are placed at a fixed position and when the user comes near to it, the users smart

device will detect its signal.

Based on the above features, Bluetooth beacons are a perfect match for our case.

We will introduce a new authentication system which will use Bluetooth beacons to

identify the user. For this purpose, we will select a small range of Bluetooth beacon as we

will only identify users within the small room. As Bluetooth beacons are very

Figure 2: Sticker beacon by estimate

7

lightweight, we can attach them to user Identity Card. These Bluetooth beacons will be

identified by our system. This solves our first problem where the user needs to alter their

daily routine. With Bluetooth beacons attached to a user ID card, it is no longer a

problem to the user. It will also save a lot of cost to the organization. As these beacons

can run over years with a small battery, maintenance cost is also very low.

Our next problem was with the smartphone which identify the user by using

beacon ID which is transmitted. As discussed earlier, these smartphones might get into

sleep mode after some amount of time. Also, a smartphone is a different hardware than

our Kinect server. So, it will add up more maintenance cost to the organization. Luckily

Microsoft Windows 8 will support Bluetooth LE protocol and it can identify Bluetooth

LE devices. As our Kinect server is also running on Windows 8 or later operating system,

we can completely eliminate the need for a smartphone to detect Bluetooth beacons.

While scanning for nearby beacons, we should identify beacons whose signal strength is

more than threshold only. We should modify this threshold based on conditions. If the

threshold is very small, users outside our room will be detected and if threshold is very

high, the user in the same room who are little far from server will not be identified.

Figure 3 represents new system architecture with Bluetooth beacon detector. As

discussed, user will wear ID card with Bluetooth beacon. Kinect server have Bluetooth

LE advertisement watcher which will continuously scan for beacon signals. When it finds

new beacon, it will identify unique ID of beacon and identify user based on that unique

identifier. From this moment, our system will start tracking user activities and log them to

cloud based database against identified user. If we compare Figure 1 and Figure 3, we

can clearly see that we have eliminated lot of hardware components like smart watch,

8

smart phone, server, server task etc. which will reduce overall maintenance effort. Also,

as we eliminated smart watch and smart phone components, have reduced significant

amount of system cost.

Even though this system works great, there are some serious challenges we faced

while implementing this new authentication system. Signal generated by beacons has

occasional delays and non-uniform transmission intervals. As these bacons are made by

Figure 3: Bluetooth beacon-based authentication system

9

third-party vendors, we do not have much control over their behavior. Because of

irregular intervals of signal transmission by Bluetooth beacons, it will be a problem to

identify the actual user in the room. For example, if our system identifies the user who is

above the signal strength threshold, there are chances that signal from the intended users

is not received by the server because of its irregular signal transmission. Because of this,

there are fair chances that our system might report current user activity details to some

other user. To overcome this challenge, we introduced time slot-based beacon

identification. In this pattern, once we detect a beacon, then our system will not identify

any other user within that time slot. After given time slot, when our system receives a

new signal, it will try to check the signal strength of all beacons and it will pick last

detected beacon if it is present in the received beacon list (We will ignore any beacons

with more signal strength). This helps us to solve irregular interval signal transmission

problem. This time duration tracking will start when the new beacon is detected by the

system and stop tracking for beacons when it lost its signal. We should carefully decide

time slot duration until which our system wait to track next beacon signal. If this window

is too large and users switched in between this time slot, then our system will report the

wrong data. It would be a good idea to put this duration to some minutes, but we need to

adjust this duration based on practical use cases.

2.2 DEVELOPMENT

 Windows SDK has support to detect Bluetooth LE devices. Windows provide

BluetoothLEAdvertisementWatcher class. It will provide Start method to start scan for

Bluetooth devices. This class accepts Received event listener. Delegate which we

provided to Received will be called when new beacon is detected. In Received delegate,

10

we can iterate over all nearby Bluetooth beacons and get meta data related to respective

beacon. This meta data includes unique identifier, signal strength etc.

As discussed till now, Bluetooth beacon authentication is very low cost and easily

usable alternative to existing smartwatch-based authentication. As technology is

progressing at a very faster rate, we are hoping that we can overcome above-mentioned

challenges in the near future without compromising our functionality.

11

CHAPTER III

CLOUD-BASED DATA AGGREGATION

 Privacy-Aware Compliance Tracking System will track all user activities and

stores in the cloud database. In the existing system, .Net based GUI was provided to

visualize data. Using this visualization system, we can visualize data related to one or all

users in a specific date range. Even though this system works well, there are many

usability problems with this system.

 In the current system, data is directly inserted into MySQL database and

processed data is exposed via SQL stored procedures. Stored procedures are very good

when it comes to performance but in order to access this data, client need to have SQL

driver support. For example, if we want to build an interface which cannot connect to the

SQL database directly, then it is not possible to visualize data. To support multiple

clients, we need to build a data processing component which can be connected from all

types of clients and provide data in a format which can be understood by all clients. If we

can build such a system, we can build lightweight clients which will only render data

received from the data processing component. This leads to more maintainable system.

12

3.1 OUR SOLUTION

 To reuse data processing logic, we will expose our data via web service. A web

service is a piece of software which exposes itself via the internet. Web services accept

input data and produce output. There are two types of web services [11].

1. SOAP web services: It is XML based protocol for accessing web services. It is

independent of platform and language

2. RESTful web services: This is not a protocol, it is just an architectural style. It

will support many types of request and response data types like text, HTML,

XML, JSON, etc. This is very flexible and is accessed like any other URL.

RESTful web services are simple to consume.

Because of the simplicity and interoperability of RESTful web services we are going

to use this as our data exchange medium. As RESTful web services support a variety of

data types, we have the option to choose the best data type which suits our purpose. As

we want to transfer structured data and we will transfer large amounts of data, it is very

important to choose data type which consumes less bandwidth for the same amount of

data. The JSON format is a light-weight format which can hold a large amount of data. It

is very easy to consume JSON in most of the programming languages. JSON is very easy

to write and read. It supports a lot of data types like arrays, numbers, text, etc. Figure 4

will show sample JSON.

Figure 4: Sample JSON

13

3.2 SYSTEM REQUIREMENTS

 We need to build a system which accepts activity data as input. It should save

input data to appropriate database tables. When the user request data analytics, it should

provide data analysis on up to date data. As we are building privacy aware software, we

should allow only authorized users to view user's data. One user should be able to access

other user data only if he has appropriate authorization. Our system should allow user

management. The system should expose processed data via RESTful web services (we

will call these web services as Rest API) using JSON format. Each web service should

have access restriction. The system should support data logging and data analysis.

3.3 SYSTEM DESIGN

 After careful analysis of existing database and requirements, we came up with the

following entities for which we need to support create, update, delete and fetch

operations.

• User: User is the person who is being tracked by our Kinect sensor or the person

who want to access our data analytics. Based on this we defined two types of

users

o Administrator: User who can view data analytics of all users and manage

all user information. User with this role will have all permission in the

system.

o Employee: Employee is the person who is being tracked by our sensors.

He can only view his own data and he should be able to update his own

information in the system.

14

• Session: When our Kinect server first identifies user, then a session will start and

when the user disconnects from our system, then we will end our session. User

activities will be tracked by session. User can have multiple session.

• Activity: This represents the intended activity performed by the user. There can

be multiple activities in session. Each activity will be performed for some

duration. Duration of these activities and the number of times a user performs this

kind of activity is our point of interest. We will analyze it in different dimensions

over time.

Figure 5 represents our entity relationships.

Figure 5: ER diagram of our entities

15

 We need to expose operations via Rest API. These are very important to our

system because these APIs will support logging our data analytics into the database.

Along with this, we will expose our data analysis as a web service. Each web service

will be represented by a URL. We can call these URLs from our clients and pass

input data JSON. Our server will process input data and send the response as JSON.

Our clients can parse returned response data and display it to end user. Figure 6 will

represent system architecture.

3.4 DATABASE DESIGN

We already discussed that we have 3 entities in our application i.e. user, session,

activity.

Figure 6: Data processing system architecture

16

User Table: Table 1 shows user table schema.

Field Type Length

id INT 10

signin_id VARCHAR 255

first_name VARCHAR 255

last_name VARCHAR 255

email VARCHAR 255

password VARCHAR 255

role VARCHAR 255

institute VARCHAR 255

api_token VARCHAR 255

created_at TIMESTAMP

updated_at TIMESTAMP

Table 1: User table schema

Session Table: Table 2 displays the session table schema.

Field Type Length

id INT 10

worker_id INT 10

start_time DATETIME

duration DECIMAL 12,2

created_at TIMESTAMP

updated_at TIMESTAMP

Table 2: Session table schema

17

Activity Table: Table 3 shows the activity table schema. We are duplicating worker_id

in this table to improve the performance of data analytics.

Field Type Length

id INT 10

session_id INT 10

worker_id INT 10

description VARCHAR 255

start_time DATETIME

duration DECIMAL 12, 2

created_at TIMESTAMP

updated_at TIMESTAMP

Table 3: Activity table schema

3.5 WEB DEVELOPMENT

We are building an application using PHP. PHP is very popular and very easy to

develop and deploy web applications. PHP can connect to our MySQL server to fetch

data. Instead of directly using PHP to develop an application, we used a framework

which is built on top of PHP. The framework which we used to develop our application is

Lumen [12]. This is a very lightweight framework which supports easy development and

deployment of Rest API using PHP. It will provide support for user authentication and

authorization for each API. It also provides an easy way to access data in our database to

manage them in the object pattern. For basic operations, we can almost eliminate writing

SQL queries. This results in a more understandable and maintainable code. In Lumen, we

call each Entity as Model. This is provided by Eloquent [13] framework. In Eloquent

18

framework, we can define model by extending Model class provided by framework. This

class accepts $table variable which hold table name related to our model. Our model will

fetch data from the mentioned table when we request data. In this model, we can define

another array $fillable which holds array of field names which can be directly mapped

from input request. This will be convenient when we want to map large amount of data

attributes from request to model. This class also accepts $hidden field which hold array

of fields not to be exposed to end user. Usually we do not want to send information like

password as response for every user. This is because password is a sensitive data. We can

find all properties in its documentation.

Model class expose a lot of utility method on our class to save, update, delete and

fetch record of this type. For each model, we define a table. In our table, the framework

will automatically add two extra columns named created_at and updated_at. This will

help us to track when each record was created or updated. Lumen also provides an

interface to execute raw database queries in SQL format. This helps us to run complex

SQL queries on the database. This feature is mainly helpful in data analysis.

 To expose operations on models as API, we need to create a controller [14] which

intern will be exposed via route [15]. While exposing our controller methods as routes,

we have to map each route to HTTP request method. The following are the conventions

used while developing RestAPI.

• GET request type to fetch any data from the server

• POST request type to insert any data into the server database like activity,

session, etc.

• PUT request type to update any existing record like user basic details

19

• DELETE request type to delete any record from our system

Along with these basic controls, we will provide API to login into our system and

maintain their session. But Rest API is based on HTTP protocol which does not support

session between multiple requests. For this reason, we came up with the following

mechanism.

 When a user is trying to login into the system, we will check for the validity of

email and password. If email or password is wrong, then we will return HTTP 401 error

code which indicates that authentication failed. If email and password matches, then we

will generate a unique token and save that against the matched profile. We will return this

token to the user as a response. User has to send this token in "Authorization" header in

an HTTP request when he is requesting access restricted data. This way we can easily

identify the user.

With the above features, we provided a mechanism to save activity logs using API

and share data analytics to multiple clients by proving appropriate security. Our new

design is flexible and extensible. We can build multiple clients on different platforms

without worrying about data processing logic. This improves the reachability of our

application and this enables us to expose our data to multiple platforms very fast.

20

CHAPTER IV

WEB INTERFACE FOR DATA VISUALIZATION AND ANALYSIS

 In the current system, data is available on the server with .Net client. This limits

the usability of our system. If someone want to view data analytics, they have to come to

the server and see the data analytics. Also, it does not provide any security which

prevents a user from viewing unauthorized data. To monitor their daily activates, they

need to take some time out of their busy schedule to go to the server. This will hurt their

daily schedule

4.1 OUR SOLUTION

We will build a web interface which supports most of the browsers. By exposing our

data analytics via the web interface, users can stay at their own place and check their

data. We can even restrict the user from viewing other user's data by role. Along with

this, we can also provide user management where an administrator can create or update

users.

21

4.2 SYSTEM REQUIREMENTS

We need a web interface for our users to view their own or their employee's real-time

data analytics in a web browser. Our application should support all major browsers.

Following are the required features our application should support.

• User should be able to login into the system using their email and password.

• The administrator should be able to view all users in the system.

• The administrator should be able to update all user related information.

• The administrator should have the ability to change the password of any user.

• Users should be able to update their own profile.

• Each user should only be able to view his own data over a period of time.

• User should be able to view average wrong activity duration by each day.

• User should be able to view average wrong activity duration by each weekday.

• User should be able to view average wrong activity duration by each month.

• User should be able to view average wrong activity duration by each hour in a

day.

• User should be able to view the total number of wrong activities performed by

each day.

• User should be able to view the total number of wrong activities performed by

each weekday.

• User should be able to view the total number of wrong activities performed by

each month.

• User should be able to view the total number of wrong activities performed by

each hour in a day.

22

• User should be able to view data as a Bar chart which helps to compare data by a

specific date.

• User should be able to view data as Line Chart which helps to compare data over

a period of time.

4.3 SYSTEM DESIGN

After careful analysis of system requirements, we should have the following

components in our system.

• Data access service is needed to send or receive data from the Data Processing

System API.

• Data store service is needed to save global information for our application and

share the data to all pages in our system.

• Web Interface to display data to end user.

Figure 7 shows the system architecture.

Figure 7: Web interface architecture

23

4.4 USER STORIES

After careful analysis of system requirements, we came up with the following user stories

• Create a screen to provide login functionality to end user. This screen has to take

email, password and validate their correctness. After a successful login, the user

should be redirected to the Dashboard Page. The screen should look like Figure 8.

• The dashboard should be able to display user analytics based on the start date, end

date, analytic type, and chart type. The screen should look like Figure 9

• Create a page to display all users. This should be available only to administrators

• Create a navigation link to access user profile from the menu

• Create an option to log out of the system

• Create a Line Chart to display analytic type

• Create a Bar chart to display analytic type

• Create a service to access data form RestAPI provided by Data Processing

System.

Figure 8: Login screen

36

Once the user selects input data, they can access data by clicking on "GET

DATA" button. This will generate line charts with each color representing different users.

Figure 16 will show sample screen of the generated chart.

As our application is very simple and easy to use, it will save a lot of time for

users when they are reviewing their analytics. They access their data on the go. Because

of this, employee can view their data while travelling back to home or when they have

time.

Figure 15: Input selection

37

Figure 16: Generate chart

38

CHAPTER VI

ANALYSIS OF DATA USING NEW DATA VISUALIZATION SYSTEM

 Till now, we just build a system to produce analytics and multiple clients on

different platforms to display them to end users. We unleash the real power of this system

when we are able to get useful information from the analytics provided by the system. As

discussed earlier, we are providing multiple types of analytics. We choose to provide

these types of data analytics because they can provide insights about data in different

dimensions.

Figure 17: Wrong activity duration trend

39

LiftingDoneRight system collected data about different nursing aids for over 3

months. We loaded this data into our data processing system to test our system analytic

capability and usability. With our system, we are able to see single person wrong activity

duration trend over time which helps the user to review/correct his/her activities in the

future. Figure 17 show user wrong activity duration over time.

When we view single user data over time, it will just provides insights about his

own data. But we will get actual results and insights when we are able to compare

different user analytics over time. Figure 18 shows multiple user’s data over time.

From Figure 18, we can see that User 3 wrong activity duration is relatively more

when compared to User 6. With this, we can inform User 3 that he/she should take more

care while serving patients. If we want to compare the wrong activity duration by each

day, we need a different type of analytics. Our Bar chart represented in Figure 19.

Figure 18: Multiple user’s wrong activity average duration over time

40

We can see from Figure 19, User 3 has performed the wrong activity for more

duration on 2017-02-24. And on 2017-03-02, they almost performed equal duration. This

helps us in comparing different user's data at the exact point of time.

Above analytic is informative but it would be great we can extract more insights

from data. Wrong activities might not be distributed equally over time. For any human,

energy and enthusiasm will change over time in a day or based on a weekday. User

energy and enthusiasm might be varying over time. The user might be very strong in the

morning and slowly energy might come down by evening. To find out this, we are

providing data analysis over time in a day.

Figure 19: Wrong activity duration on each date

41

Figure 20 will show User 3 wrong activity duration over time in a day. User 3 is

doing more wrong activities at 11 AM. So, we can analyze what is going wrong with

User 3 at 11 AM and provide additional assistance at that point of time.

Figure 20: Average wrong activity duration in a day over time

Figure 21: Average wrong activity duration over a weekday

42

We are further interested in wrong activity duration by weekday. We want to

know where our users are having more wrong activity duration. Figure 21 will show

average wrong activity duration over a weekday.

We can see from Figure 21 that Monday average wrong activities are very low.

On Tuesday, Wednesday, Thursday, Friday and Saturday, the wrong activity duration is

almost the same. To get more insights about the wrong activity trend over a weekday, it

would be more helpful if we can see a number of wrong activities performed on each day.

This is shown in Figure 22.

From Figure 22, we can see that the number of wrong activities are more on

Wednesday. If we observer Figure 22, the average duration of the wrong activity on

Wednesday is also high. So, we can conclude that User 3 is doing more wrong activities

on Wednesday.

 From the above analytics, the Administrator will provide feedback to users

continuously and provide the required assistance to users in their daily activities. An

Figure 22: Number of wrong activities on each weekday

43

administrator might be interested to see user wrong activity trend over each month so that

the administrator can identify how his assistance is helping the user. To provide more

insight about this data to the administrator, we provided the duration of wrong activity

trend by month. Figure23 shows the wrong activity trend over each month.

 We can see from Figure 23 that we user’s duration of wrong activity is not

decreasing day by day. This help administrator to identify users with this pattern and

notify them and provides further assistance if required.

 With the above results we can actually compare different user activities

graphically. With these charts, we can tell who is performing better but we want to know

how much better User 3 when compared to User 6. With the existing information we

cannot tell this. For this reason, we are proving normalized data so that we can actually

compare two user’s performance. To calculate normalized value per user, first we will

find average duration of wrong activities by user. Then we will find the maximum value

of these averages. In statistical terms, normalization can be calculated with following

Figure 23: Wrong activity trend over the month

44

formulae. If X is the series with values x1, x2, …. xn and xmaximum is maximum value of

this series and xmin is minimum value of this series, then normalized value of xi is

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑥𝑚𝑖𝑛

 In our case there is no maximum value for average duration. For this reason, we

are considering maximum value in average duration as maximum value. Minimum value

of our series in best case is 0 i.e. user did not perform any wrong activity. We are calling

this normalized value as “Relative Risk Factor” as this represent a value from 0 to 1

based on average duration of wrong activities. We are calling value as relative risk factor

because we considered maximum value as maximum value in current series values. In

real scenarios, this can be any value. We can see this value in Figure 24.

From the above results, we can see that our system provides more insights into

data collected and help users to avoid wrong activities. Along with this our system further

provides good insights about different users to an administrator. The entire system is built

by keeping simplicity in mind and to minimize number click to access data insights.

Figure 24: Relative Risk Factors

