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REACTIVITY OF MOLYBDENUM AND TUNGSTEN SULFIDO COMPLEXES 

WITH FIRST-SERIES TRANSITION METALS 

KHALIL IBRAHIM MUDARMAH 

ABSTRACT 

Ammonium tetrathiomolybdate (ATTM) is an important compound in 

bioinorganic chemistry, with medicinal applications. Metal complexes of sulfur-

containing ligands have been widely used as building block in biology and inorganic 

chemistry. This project aims to increase the number of Mo-S and W-S complexes that 

may contribute to fields such as bioinorganic and medicinal chemistry, by the preparation 

of heterometallic complexes containing both Mo or S and a metal of the first transition 

series. The homobimetallic complex anion salts (Et4N)2[Mo2(S)2(-S)2(edt)2] (1) and 

(Et4N)2[W2(S)2(-S)2(edt)2] (2) have been prepared from ATTM and ammonium 

tetrathiotungstate (ATTW) in order to start our work. The overnight treatment of 1 and 2 

with MCl2, ( M = Fe, Co, Ni, Cu) under nitrogen at elevated temperatures (84 ˚C) is 

hypothesized to yield trinuclear cluster anion salts. UV-visible spectra for reaction 

products 3-6 showed significantly different λmax values compared with starting materials. 

FTIR spectra were obtained for compounds 1 and 2 for comparison with products 3-6. 

While the spectra showed clear evidence of transformation from 1 or 2, the structures of 

the products could not yet be confirmed, as attempts to obtain crystals suitable for single-

crystal X-ray diffraction have so far been unsuccessful. Our future goals are to determine 

the structures of these reaction products, and examine their potential for medicinal and 

catalytic applications. 
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CHAPTER I 

INTRODUCTION 

 Molybdenum (Mo) and tungsten (W) are transition elements of Group 6 of the 

Periodic Table,  located in the second and third transition series, respectively. 

Molybdenum is known to exhibit oxidation states -2 to +6, and tungsten from +2 to +6. 

The 54th and 55th most abundant transition elements in the Earth’s crust are molybdenum 

and tungsten. However, in sea water, the most abundant redox-active transition element is 

molybdenum. Molybdenum exists in plants, soil, water, and animals, and thus the 

potential bioavailability of molybdenum is greater than tungsten1,2.  

The stability of higher oxidation states generally increases down a column of the 

d-block, so Mo(VI) and W(VI) species are generally less strongly oxidizing than Cr(VI) 

species. Mo and W display similar chemical reactivity, though there are some notable 

differences.  For example, Mo(CO)6 reacts with a variety of reagents, such as reacting 

with acetic acid to yield Mo2(OAc)4, but W(CO)6 does not react with acetic acid to give 

W2(OAc)4. Mo and W both form hexahalides such as MoF6 and WF6. Mo and W are 

nearly the same size and have similar chemical properties due to the lanthanide 

contraction.  Mo has been found as the disulfide MoS2 and it can be extracted from it by 

conversion to the oxide, followed by reduction with carbon or hydrogen. W can be 
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extracted via the fusion of its ores scheelite (CaWO2) or wolframite (FeWO4) with 

sodium hydroxide, followed by the conversion to the hydrated oxide, WO3. Reduction of 

oxide with carbon or hydrogen then yields elemental W1,3,4,5. 

Molybdenum is able to form compounds with many other elements, both salts and 

complexes with most organic and inorganic ligands. In addition, it can form bimetallic 

and polymetallic compounds containing Mo–Mo bonds and/or bridging ligands. These 

properties make the chemistry of molybdenum both complex and fascinating, and lead to 

varied applications4. 

Tungsten has a very high melting point of 3420 ° C, and a low thermal expansion 

coefficient of 4.3 x 10-6/˚C. It is well suited for use with ceramic and glass at high 

temperatures because of its ability to resist thermal expansion. Tungsten’s versatility 

makes it a very important material in applications such as light filaments, heating coils, 

radiation shields and plasma generators. Additionally, it is used in electrical devices like 

conductive coatings, circuit breakers, electronic guns, etc. because of its high electrical 

conductivity6. 

1.1. Mo and W in Living Systems 

Molybdenum is not an especially abundant element in either the whole Earth or 

its crust. However, in the oceans, molybdenum is the most abundant of the redox-active 

transition metals. Living systems, from the simplest bacteria to multicellular eukaryotes 

like plants and animals, use molybdenum at the active centers of some enzymes that 

catalyze redox reactions such as in nitrogen fixation, DMSO reductase, and sulfite 

oxidase. Molybdenum enzymes play an important role in biogeochemistry,  because of 
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their ability to catalyze the transformation of a variety of inorganic and organic molecules 

and ions1,7,8,9.  

Tungsten is known to have biological functions, and it is the only metal in the 

third transition series that is known to occur in enzymes, such as ferredoxin aldehyde 

oxidoreductase. There also exist some molybdenum-containing enzymes in which 

tungsten may replace molybdenum1.  

In the Earth’s environments, it is well known that a high level of copper in soils 

leads to molybdenum deficiency, and likewise that a high level of molybdenum in soils 

can lead to copper deficiency, which can be medically serious. The presence of sulfate in 

the soil has a significant effect in ruminant animals. Molybdenum-copper antagonism is 

now understood to occur in the anaerobic rumen of sheep and cattle, in which sulfate is 

reduced to sulfide by bacterial action. Molybdenum then reacts with sulfide to form the 

tetrathiomolybdate ion MoS4
2, which coordinates to and precipitates the copper. When 

high levels of molybdenum are presented, copper is precipitated and made unavailable 

for organisms. In a similar way, when high levels of copper are presented, molybdenum 

is precipitated and made unavailable for uptake.7. 

1.2. Group 6 Thiometallates Chemistry  

The group 6 thiometallates consist of all anions containing a Cr, Mo, or W metal 

center with at least one sulfido (S2-) ligand (also known as the thio ligand). The important 

thiometallates MoS4
2- was first reported by Kruss and Corleis in late 19th century. Studies 

on this and similar species were begun in the late 1960s by Muller and coworkers, who 

examined their reactivity. The possibility using these anions in modeling biological 

systems has recently been expanded. The iron-molybdenum-sulfur cluster unit, 
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discovered by  Carmer et al., led to the synthesis of many polymetallic complexes, and 

for all of these, salts of MoS4
2- were used as starting materials10.  

 Group 6 sulfido complexes occur in metalloenzymes as well as in industrial 

processes such as hydrodesulfurization, electrocatalysis and photocatalysis. An extensive 

library of sulfido complexes of molybdenum and tungsten has been synthesized, 

providing a wide range of structural features. However, apart from tetrathiometallates 

MS4
n- and their derivatives, complexes containing  terminal sulfido ligands with M–S 

multiple bonding are less common than complexes containing the terminal oxido (also 

known as oxo) ligand O2-.  The metal-sulfur bond can react in either a nucleophilic or 

electrophilic fashion. Especially in the case of complexes with molybdenum-sulfur 

bonds, these species can have biological applications. Also, thiometallates can 

themselves act as ligands to other metals, in reactions such as the formation of 

polymetallic complexes 1,5.  

Mononuclear sulfido complexes having two or three M–S bonds are rare. There 

are few effective synthetic pathways to such complexes, and the difficulty is due to the 

following reasons:  First, sulfur containing ligands have a tendency to bridge multiple 

metal atoms, which leads to polymetallic complexes. Second, metal sulfido complexes 

can undergo redox reactions in solution by intermolecular electron transfer processes, 

leading to S–S bond formation and concomitant reduction of metal centers. For example, 

MS4
n- (M= Mo, W) anions are readily transformed to different polythiomolybdate and 

polythiotungstate anions. The reason is that the formation of sulfido complexes is 

predominantly carried out under reducing conditions, which favors metal-metal bond 

formation due to the fact that sulfurization reagents, such as alkali metal sulfides and 
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alkaline earth metal sulfides, act as strong bases. However, metals in high oxidation state 

do not have enough d electrons to form strong metal-metal bonds. Thus, it remains 

challenging to synthesize mononuclear sulfido complexes of molybdenum and tungsten. 

However, Enemark and Young have isolated mononuclear sulfido complexes of 

molybdenum and tungsten using a bulky (pyrazolyl) borate auxiliary ligand11. 

1.3. Importance of ATTM in Biological Systems 

 Wilson’s disease is a rare, autosomal, recessive genetic disorder of copper 

metabolism leading to copper accumulation in both the liver and extrahepatic organs such 

as the brain and cornea. It was first described as a syndrome by Kinnier Wilson in 1912. 

This disease affects between 1 in 30,000 and 1 in 100,000 individuals. It has been found 

that ammonium tetrathiomolybdate (ATTM), (NH4)2MoS4, is an effective initial 

treatment for Wilson’s disease12. 

Ceruloplasmin is a copper protein which was found to be a molecular link 

between copper and iron metabolism13,14. In Wilson’s disease, copper toxicity is caused 

by free copper, which is not bound to ceruloplasmin in the blood. Researchers at the 

University of Michigan found that ATTM could strongly control free copper levels over 

8 weeks of treatment in 55 patients in an open-label trial, and was a good control of free 

copper levels over 8 weeks treatment in a 44-patient double-blind trial15. 

 ATTM is a superior and unique anti-copper drug for the treatment of the 

neurologic presentation of Wilson’s disease. In one study, ATTM was tested on mouse 

cancer models to see if tumor growth would be inhibited based on an antiangiogenic 

effect, and it was found that ATTM was very effective in these models. Also, ATTM can 

inhibit copper-dependent cytokines involved in inflammation, leading to its displaying 
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anti-inflammatory properties. These properties may be involved in ATTM’s anticancer 

effect, since cancers attract inflammatory cells that release a plethora of additional 

proangiogenic agents16. In another study, it was shown that tetrathiomolybdate can 

rapidly remove copper from metallothioneins, a family of small,  cysteine-rich metal-

binding proteins which are significant for zinc and copper homeostasis and protection 

against oxidative stress and toxic heavy metals. Tetrathiomolybdate treatment led to an 

increase in bile and blood copper levels in Long-Evans Cinnamon rats17. 

 Although copper is an essential metal for many biological functions, excessive 

amounts can stimulate inflammation and oxidative stress. As ATTM is a copper chelator 

for the treatment of Wilson’s disease, and lowers the severity of autoimmune arthritis in 

mice, a study on the effect of ATTM on a mouse model for psoriasis was reported. It was 

found that ATTM significantly decreased epidermis thickness and the expression of ki-

67, an antigen that is expressed in all vertebrates and is used as a marker of proliferation 

used for grading tumors, in inflamed skin. Moreover, ATTM reduced the skin cytokine 

levels and systemic inflammation, and inhibited activation in keratinocytes and 

splenocytes with a reduction in phosphorylation in Erk1/2 and STAT 3. These results 

were evidence that ATTM can inhibit psoriasis in a mouse model18,19. 

1.4. Reactivity of (NH4)2 MS4 

ATTM has been shown to be an effective antidote for poisoning by certain metal 

ions. Also, replacement of the ammonium cation by sodium, resulting in the salt 

Na2MoS4, reduced the acute toxicity (LD50 value) which is significant for clinical trials of 

these salts20. 
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Molybdenum-sulfur (Mo-S) species are significant in both metalloenzymatic and 

industrial catalytic systems. Due to this importance, a various studies of the chemistry of 

molybdenum in sulfur coordination environments have been conducted.  The binary Mo-

S anions, such as MoS4
2-, Mo2S8

2-, Mo2S10
2-, Mo2S12

2-, Mo3S9
2-, and Mo3S13

2- constitute 

an interesting class of Mo-S complexes, comprising a remarkable range of 

stoichiometries, coordination geometries, oxidation states, and bonding modes. 

Moreover, these anions have been significant in the investigation of the chemical 

reactivity and redox properties of molybdenum-sulfur complexes and have proved to be 

convenient precursors for synthesizing other Mo-S species, particularly those containing 

the syn-Mo2S4
2+ core structure21. 

Compared to Mo-S species, the chemistry of sulfur-coordinated tungsten 

complexes has encountered less attention, despite the activity of tungsten sulfide 

hydrotreating catalysts. Such catalysts are used in hydrogenation processes that saturate 

unsaturated hydrocarbons and  remove contaminants such as sulfur- and nitrogen-

containing organic compounds in fossil fuels22.  Biological roles for tungsten have 

recently been uncovered21. Thus far, only a few binary W-S  anions have been described 

and of these, only the tetrathiotungstate dianion, WS4
2- has been shown general synthetic 

interest. Similarly, complexes consisting the W2S4
2+ subunit remain unusual 21.  

The salts (NH4)2MS4 (M = Mo, W)  have been found to decompose first to MS3 

and then to MS2 upon heating to 220-240 °C. These decompositions result from a 

complex series of reactions. Muller and coworkers found that the final product of 

tetrathiomolybdate decomposition was MoS2. On the other hand, the final product for 
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tetrathiotungstate decomposition was a mixture of WS2 and WO2, formed in the 

presence of O2, with the average stoichiometry WO0.5S1.75
23

.  

Cohen and Stiefel have reported rational syntheses of dimetallic tungsten(V) and 

molybdenum(V) sulfide complexes having high sulfur-to-metal ratios. The M2S12
2- 

anions (M = W or Mo) have been prepared in high yields as their tetraethylammonium 

(NEt4
+) salts from the reactions of elemental sulfur with (NH4)2 MS4 in hot N,N-

dimethylformamide (DMF). By single-crystal X-ray diffraction methods, (NEt4)2W2S12 

was characterized. The structure of the W2S122- anion contains of a syn-W2(S)2(μ-S)2
2+ 

core coordinated by two bidentate tetrasulfido (S4
2-) ligands. An analogous structure such 

as Mo2(S)4(S4)2
2- was observed for (NEt4)2Mo2S12. Both (NEt4)2W2S12 and 

(NEt4)2Mo2S12 have been found to be convenient precursors for the synthesis of other 

dimetallic complexes21. 

1.5. Reactivity of Dimetallic Molybdenum(V) Sulfide Complexes 

Wei and coworkers  found that the reaction of (Et4N)2[(edt)2Mo2(S)2(µ-S)2] (edt2- 

= ethane-1,2-dithiolate) with equimolar amounts of CuBr gave rise to the hexanuclear 

cluster anion salt (Et4N)2[(edt)2Mo2(µ-S3)(µ3-S)Cu]2
.2CH2Cl2 (Figure 1). Also, the 

treatment of  (Et4N)2[(edt)2Mo2(S)2(µ-S)2] with two equivalents of CuBr in the presence 

of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (py) ligands afforded two 

neutral clusters [(edt)2Mo2O2(µ-S)2Cu2(dppm)2] and [(edt)2Mo2O2(µ-S3)(µ3-S)Cu2 (py)4], 

respectively (Figure 1). The oxygen in these two species probably came from either O2 in 

air or small amount of water in the solvents used as Wei and coworkers reported. Finally, 

the reaction of (Et4N)2[(edt)2Mo2S2(µ-S)2] with 2 equivalents of CuBr followed by the 
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addition of a 2:1 mixture of py and dppm formed another neutral tetranuclear cluster, 

[(edt)2Mo2(µ-S)2 (µ3-S) Cu2(dppm)(Py)].6Py24 (Figure 1). 

 
 

Figure1: Products from the reaction of (Et4N)2[(edt)2Mo2S2(µ-S)2] with CuBr in the 
presence or absence of dppm and/or py24 

 
Another tetranuclear cluster was prepared by Wang and You in 2009 ( figure 2). 

The reaction of (Et4N)2[(edt)2Mo2(S)2(µ-S)2]with two equivalents of Ag(CH3CN)4ClO4 in 

the presence of (dppm) afforded [Ag2Mo2(edt)2(S)2(µ-S)2(dppm)2].3DMF 25. 
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Figure 2: Structure of [Ag2Mo2(edt)2(S)2(µ-S)2(dppm)2].3DMF 25 
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In 2009, You and Liu investigated the treatment of (Et4N)2[(edt)2Mo2(S)2(µ-S)2] 

with two equivalents of CuCN, and found that this gives rise to the anionic tetranuclear 

cluster salt (Et4N)2[Cu2Mo2(edt)2(S)2(µ-S)2(CN)2]. Figure (3)26. 

 
Figure 3: structure of (Et4N)2[Cu2Mo2(edt)2(S)2(µ-S)2(CN)2]26 

 

The chemistry of sulfido-bridged dimetallates  [(edt)2M2(S)2(µ-S)2]2- (M = Mo, 

W) with different transition metals has been widely investigated. However, the reaction 

of (Et4N)2[(edt)2M2(S)2(µ-S)2] (M = Mo, W) with first-row late transition elements in 

their +2 oxidation states, such as Fe(II), Co(II), Ni(II), or Cu(II) salts, is not well known. 

We wished to examine the reactivity of (Et4N)2[(edt)2M2S2(µ-S)2] with these first-row 

transition elements, with the possible eventual use of new species formed in catalysis or 

medicine. Our goal is to increase the number of Mo-S and W-S complexes that may 

contribute to fields such as bioinorganic and medicinal chemistry.
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CHAPTER II 

MATERIALS AND EXPERIMENTAL METHODS 

Air- and moisture-sensitive reagents and products were manipulated under dry 

nitrogen in an MBraun Labstar Pro glovebox. Reactions performed in the glovebox used 

glassware that was oven-dried at 160˚C. Hexane, acetonitrile (CH3CN), diethyl ether 

(Et2O), and dichloromethane (DCM) were deoxygenated by sparging with dry nitrogen 

and then dried by passage through activated alumina in an MBraun MB-SPS solvent 

purification system. Dry, oxygen-free N,N-dimethylformamide (DMF) was purchased 

and used in the glove box without further purification. Ammonium tetrathiomolybdate 

(NH4)2MoS4 (ATTM), ammonium tetrathiotungstate (NH4)2WS4 (ATTW), 

tetraethylammonium bromide Et4NBr, ethane-1,2-dithiol, and anhydrous FeCl2 CoCl2, 

NiCl2, and CuCl2 were commercially obtained and used without further purification. All 

other solvents were used in air outside of the glovebox.   

  Reaction mixtures were stirred using a Teflon-coated magnetic stir bar. When 

heat was required, reaction mixtures were set up in the glovebox in a Schlenk tube with a 

Teflon stopcock, tightly sealed, and heated in a silicone oil bath in the fume hood, before 

being cooled, returned to the glovebox, and worked up. All UV-visible spectra were 
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obtained on a Shimadzu UV-2600 spectrometer. UV-visible spectra were performed on 

samples in quartz cuvettes (path length 1.2 cm), and all solutions for UV-visible 

spectroscopy were prepared open to air.  

 
Figure 4: Structure (Et4N)2[Mo2(S)2(-S)2(edt)2], edt = ethane-1,2-dithiolato 

 
2.1. Preparation of Compound 1: (Et4N)2[Mo2(S)2(-S)2(edt)2] 

The procedure reported by Pan and coworkers27 was followed, with minor 

modification. In the glovebox, 1.29 g (4.9 mmol) of ATTM was added to a 100-mL 

Schlenk tube containing a stir bar. Next, 0.63 ml (7.5 mmol) of ethane-1,2-dithiol was 

dissolved in 32 ml of degassed DMF, and then added to the Schlenk tube to dissolve 

ATTM, yielding a red solution. The Schlenk tube was sealed tightly, removed from the 

glovebox, and heated in a silicone oil bath with stirring for 90 minutes at 90 ˚C, after 

which the red reaction mixture was cooled and returned to the glovebox without being 

opened. In the glovebox, 1.5 g (7.2mmol) of Et4NBr was added. After all the Et4NBr 

dissolved, the reaction was filtered. Diethyl ether was added to the filtrate to the point of 

incipient precipitation, and the filtrate was allowed to cool at -30 ˚C overnight. The next 

day, red-orange crystals formed, which were filtered, washed by diethyl ether, and dried 

under vacuum, yielding 1.4 g product (73% 1.83 mmol).  
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Figure 5: Structure of (Et4N)2[W2(S)2(-S)2(edt)2] 

2.2. Preparation of Compound 2: (Et4N)2[W2(S)2(-S)2(edt)2] 

The procedure reported by Pan and coworkers27 was followed, with minor 

modification. In the glovebox, a solution of 0.8 g (2.3 mmol) ATTW in 15 mL DMF was 

added to a solution of 0.3 mL ethane-1,2-dithiol (3.6 mmol)  in 10 mL DMF in a Schlenk 

tube with magnetic stir bar, yielding a yellow solution. The reaction mixture was tightly 

sealed, removed from the glovebox, and heated in a silicone oil bath with stirring for 120 

min at 120 ˚C. The color changed gradually from yellow, to orange, to red. After this 

time, the reaction mixture was cooled to room temperature and returned to the glovebox 

without being opened. In the glovebox , 0.8 g (3.8mmol) Et4NBr,  was added to the 

reaction mixture. After all the Et4NBr dissolved, diethyl ether was added to the reaction 

mixture to precipitate an orange-red powder. This powder was filtered and washed with 

methanol to remove a white solid impurity, and dried under vacuum to yield 0.56 g 

product (50% 0.59 mmol). 

In an effort to prepare heterotrimetallic complexes, 1 or 2 was treated with a 

metal(II) chloride from the first transition series M´Cl2, where M´ = Fe, Co, Ni, or Cu, 

with the proposed reaction shown below. 
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Figure 6: Synthesis of heterometallic complexes 

2.3. Treatment of Compound 1 with FeCl2 

 To a 100-mL Schlenk tube with stir bar was added a solution of 98 mg (0.1 

mmol) 1 in 10 ml of CH3CN. To this solution was slowly added a solution of 19 mg (0.1 

mmol) FeCl2 in 5 mL CH3CN. The color changed gradually from orange-red color to a 

darker color. The reaction mixture was removed from the glovebox and heated overnight 

(20-24 h) at about 84˚C in a silicone oil bath. After the reaction mixture was cooled to 

room temperature the following day, the solvent of the mixture was removed on the 

Schlenk line system without exposing the mixture to air, and the solid crude product was 

returned to the glovebox. To the crude product was added 10 mL CH2Cl2, and the 

mixture was filtered, giving a red-brown filtrate. The filtrate was collected, 10 mL hexane 

was gently layered on top, and the mixture was placed in the glovebox freezer at -30 ºC . 

Crystals were formed within 2 to 4 days in the freezer. The supernatant was removed, and 

the crystals were washed by hexane and dried under vacuum yielding 0.019 g product, 

the structure of which is proposed to be compound 3 below. 



15 
 

 
Figure 7: Structure of compound 3 

2.4.Treatment of Compound 2 with CoCl2  

In the glovebox, to a 100-mL Schlenk tube with stir bar was added a solution of 

95 mg (0.1 mmol) 2 in 10 mL of CH3CN. To this solution was slowly added a solution of 

21 mg ( 0.1 mmol) CoCl2 in 5 ml CH3CN. The color changed gradually during the 

addition from orange-red to a darker color; the exact color of the darker solution was 

difficult to determine. The Schlenk tube was tightly sealed, and the reaction mixture was 

removed from the glovebox was heated overnight (20-24 h) at about 84 ˚C in a silicone 

oil bath. The following day, the reaction mixture was cooled to room temperature, the 

solvent was removed on the Schlenk line without exposing the mixture to air, and the 

crude solid product was returned to the glovebox. To the crude product was added 10 mL 

CH2Cl2, and the mixture was filtered, giving  a red filtrate. To the filtrate was then added 

10 mL hexane, gently layered, and the mixture was put in the glovebox freezer at -30 ˚C, 

giving green crystals in several days. The supernatant was removed, and the crystals were 

washed by hexane and dried under vacuum, yielding 0.027 g product, with 4 as the 

proposed structure.  
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Figure 8: Structure of compound 4 

2.5. Treatment of Compound 2 with NiCl2 

 In the glovebox, to a 100-mL Schlenk tube with stir bar was added a solution of 

91mg (0.1mmol) 2 in 10 mL CH3CN. To this solution was slowly added a suspension of 

18 mg (0.1 mmol) NiCl2 in 5 ml CH3CN (the NiCl2 was only partially soluble). No color 

change was observed upon mixing. The Schlenk tube was tightly sealed, removed from 

the glovebox, and heated  overnight (20-24 h) at about 84 ˚C in a silicone oil bath. The 

mixture darkened gradually upon heating. The following day, the reaction mixture was 

cooled to room temperature, solvent was removed on the Schlenk line without exposing 

the mixture to air, and the solid crude product was returned to the glovebox. In the 

glovebox, 10 mL CH2Cl2 was added to the crude product, and the mixture was filtered to 

give a dark red filtrate. Atop the filtrate was gently layered by 10 mL hexane, and this 

mixture was put in the glovebox freezer at -30 ˚C, giving crystals within 2 to 4 days. The 

supernatant was removed, and the crystals were then washed by hexane and dried under 

vacuum, yielding 0.020 g product, whose proposed structure was compound 5 below. 
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Figure 9: Structure of compound 5 

2.6. Treatment of Compound 2 with CuCl2 

 In the glovebox, to a 100-mL Schlenk tube with stir bar was added a solution of 

93 mg (1mmol) 2 in 10 mL CH3CN. To this solution was slowly added a solution of 17 

mg (0.1 mmol) CuCl2 in 5 mL CH3CN. The color changed gradually upon addition from 

orange-red to dark orange. The Schlenk tube was tightly sealed, removed from the 

glovebox, and heated overnight (20-24 h) in a silicone oil bath at about 84 ˚C. The 

following day, the reaction mixture was cooled to room temperature, solvent was 

removed on the Schlenk line without exposing the mixture to air, and the solid crude 

product was returned to the glovebox. In the glovebox,10 mL CH2Cl2 was added to the 

crude product, which was then filtered, giving  an orange-red filtrate. Atop the filtrate 

was gently layered 10 mL hexane, and this mixture was put in the glovebox freezer at -30 

˚C, giving crystals within 2 to 4 days. The supernatant was removed, and the crystals 

were washed by hexane and dried under vacuum, yielding 0.021 g product, whose 

proposed structure was compound 6 below.  

 

 
 

 

 
Figure 10: Structure of compound 6 



18 
 

CHAPTER III 

RESULTS AND DISCUSSION 

3.1. UV-Visible Spectra 

All samples for UV-visible spectroscopy were prepared in CH3CN solvent. The 

concentrations were not measured because the structures have not yet been confirmed. 

UV-vis spectra for the starting materials (compounds 1 and 2 and first transition-series 

chlorides) were obtained for comparison with resulted products. 

Table 1. UV-vis spectral data  
Compound UV-vis λ, nm 

1 453, 310, 218 
2 386, 286, 215 
3 355, 293, 217 
4 678, 587, 375, 254 
5 375 
6 413, 272 

FeCl2 360, 311, 240 
CoCl2 682, 613, 589, 573, 255, 214 
NiCl2 301, 240 
CuCl2 459, 310 
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3.2. IR Spectra  

Fourier-transform IR (FTIR) spectra were obtained using a PerkinElmer Spectrum 

2 spectrometer, using attenuated total reflection (ATR) mode with neat solid samples. 

Table 2: IR spectral data: w = weak, m = medium, s = strong 
Compound  , cm-1 

1 2971 (m), 2892 (w), 1669 (w), 1436 (m), 
1390 (m), 1170, (m), 998 (m), 397 (w), 
783 (w), 522 (s), 471 (m) 

2 2976 (w), 2892 (w), 1483 (m), 1446 (m), 
1390 (m), 1273 (w), 1170 (m), 1002 (m), 
788 (m), 503(s), 466(m) 

3 2983 (w), 2948.9 (w), 1457 (s), 1405 (m), 
1310.4 (w), 1184 (S), 1037 (m), 790 (s), 
466 (w) 

4 2983 (w), 2900 (w), 1650 (w), 1458 (s), 
1397 (m), 1271 (w), 1184 (m), 944 (s), 
791 (s), 500 (s), 465 (m) 

5 3344 (Broad w), 2978 (w), 2891 (w), 
1650 (w), 1484 (m), 1393 (m), 1271 (w), 
1175 (m), 1001 (m), 944 (s), 787 (m), 726 
(s), 500 (s), 465 (m) 

6 2987(w), 2908 (w), 1641 (w), 1458(m) 
,1384 (m),1275 (w),1175 (m), 1005 
(m),944 (s), 787 (s), 630 (s), 469 (s) 

This table showed the starting materials and compounds obtained. (w = weak), (m = 
medium),   (s = strong) 
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Figure 11: IR Spectrum for Compound 1 

 

 
Figure 12: IR Spectrum for Compound 2 
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Figure 13: IR spectrum for treatment of 1 with FeCl2 

 

 
Figure 14: IR spectrum for treatment of 2 with CoCl2 
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Figure 15: IR spectrum for treatment of 2 with NiCl2 

 
Figure 16: IR spectrum for treatment of 2 with CuCl2 

The bands at 471 and 522 cm-1 in the IR spectrum of compound 1 were assigned 

as Mo-S double bond stretching vibrations21.  The bands at 466 and 503 cm-1 in the IR 

spectrum of compound 2 were assigned as W-S double bond stretching vibrations21. 
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These bands would be expected to change in frequency when another metal, such as Fe, 

Co, Ni, or Cu, were to be bound to a sulfido ligand in one of these complexes. 

3.3. Treatment of 1 with FeCl2 

Three peaks appeared in the UV-vis spectrum of compound 3, formed from the 

reaction of compound 1 with FeCl2 in acetonitrile. The peaks at 355 and 293 nm were 

shifted dramatically from the peaks at 453 and 310 nm seen in the UV-vis spectrum of 

compound 1.  

There are significant differences in the IR spectra of 1 and 3. While the spectrum 

of 1 shows a strong, sharp peak at 522 cm-1, that of 3 instead shows a strong, sharp peak 

at 790 cm-1. This significant shift may be due to Fe–S bonding in 3.  Also, the spectrum 

of 3 demonstrated another strong sharp peaks at around 1007, 1037, 1184, and 1457 cm-1. 

On the other hand, the peaks appearing in that range, between 1000 to 1460 cm-1 in 

spectrum of 1 mentioned above were medium sharp peaks. The significant differences 

clearly demonstrate that we do not have unreacted 1, that is, some reaction certainly 

occurred to generate a new compound or compounds. We cannot, however, confirm from 

the IR spectra that structure 3 is the correct one. 

3.4. Treatment of 2 with CoCl2 

According to Table 1, the UV-vis spectrum of 4, formed from the reaction of 

compound 2 with CoCl2 in acetonitrile, has peaks at 678, 587, 375, and 254 nm, whose 

wavelengths differ significantly from those observed in the spectra of the starting 

materials 2 and CoCl2.  

 Table 2 shows that the IR spectrum of 4, displays 3 strong, sharp, peaks at 1458, 

944, and 791 cm-1 while at 1446, 1002, 788 cm-1, medium sharp peaks were appeared for 
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the spectrum of compound 2. This suggests that Co(II) may be bound to the sulfido 

ligands on W.  

3.5. Treatment of 2 with NiCl2  

Table 1 shows the peak in the UV-vis spectrum for compound 5, formed from the 

reaction of compound 2 with NiCl2 in acetonitrile. The presence of only a single peak, at 

375 nm, makes this spectrum considerably different from that of either 2 or NiCl2, 

suggesting a novel product. 

Table 2 lists the frequencies in the IR spectra of compounds 5 and 2. Comparing between 

IR spectra for 2 and 5, the spectra showed the same peaks except in 3 positions. These 

different positions appeared, in the IR spectrum of 5, as a weak, broad peak at 3344 cm-1 

and weak peaks at 1650 and 1175 cm-1. 

3.6. Treatment of 2 with CuCl2 

Table 1 shows the UV-vis data for compound 6, afforded by the reaction of 

compound 2 with CuCl2. The spectrum of compound 6  showed two peaks at 413 and 271 

nm. This variation was significantly different compared to the starting materials’ peak 

positions, as shown in Table 1.  

A comparison between the IR spectra of 2, and 6 shows that there are three 

different peaks in the spectrum of 6 whose frequencies differ significantly from those of 

2, namely, a weak, broad peak at 3344 cm-1, a weak, broad peak at 1641 cm-1, and a weak 

peak at 530 cm-1. 

The spectra for compounds 4, 5, and 6, formed by the reactions of compound 2 

with MCl2, (M = Co, Ni, Cu), showed that spectrum of compound 4 is more different 
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relative to compounds 6 and 5 spectra, and hence compounds 5 and 6 are similar to each 

other since they have almost similar peak positions. 

There was also another strategy we tried for these reactions. Treatment of MCl2, 

(M = Fe, Co, Ni, Cu) with TlPF6 , in order to precipitate the chloride as TlCl, followed by 

addition of either 1 or 2 yielded diffractable crystals which were suitable for X-ray 

experiments. X-ray data showed that the crystals were for byproducts (Et4N)PF6. Thus, 

we indicate that we may obtained novel products mixed with byproducts that need to be 

purified by another strategy. 

The UV-visible spectra, whose data are presented in Table 1, demonstrate clear 

differences between staring materials and the products, which strongly suggest that 

reactions proceeded upon overnight heating. UV-vis spectra alone are not sufficient to 

assign the structures of compounds 3-6. A comparison of  compounds 3-6 with their 

starting materials highlights significant shifts in peak locations. The strong indication that 

reactions proceeded is valuable. X-ray structural characterization resulted by our 

collaborators Dr. Youngs and Dr. Stromyer showed that some crystals we brought for X-

ray experiments gave a new data that was not for starting materials although they were 

not interesting because it is previously known compound which is Et4NPF6. 

  While it was not possible to confirm the chemical structures proposed from UV-

vis and IR spectroscopy alone, it is worth considering the possible reaction products as 

we could not obtain diffractable crystals of novel product for X-ray structures so far. Our 

proposed reaction products are heterotrimetallic cluster complexes. Three neutral 

tetrametallic clusters  derived from compound 1 were reported by Wei and coworkers24: 

when 1 was treated with two equivalents of CuBr in the presence of the ligands 
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bis(diphenylphosphino)methane (dppm) and pyridine (py), the results were two neutral 

clusters [(edt)2Mo2(O)2(µ-S)2Cu2(dppm)2] and [(edt)2Mo2(O)2(µ-S3)(µ3-S)Cu2(py)4], 

respectively. In addition, the reaction of compound 1 with 2 equivalents of CuBr, 

followed by the addition of a 2:1 mixture of py and dppm formed another neutral 

tetrametallic cluster, [(edt)2Mo2(µ-S)2(µ3-S) Cu2(dppm)(py)].6py24. 

Moreover, another neutral tetranuclear cluster was reported (figure 2). 

[Ag2Mo2(edt)2S2(µ-S)2(dppm)2].3DMF was formed when compound 1 reacted with 2 

equivalents of Ag(CH3CN)4ClO4 in the presence of dppm25.  

An anionic tetranuclear cluster salt was prepared by You and Liu26. The treatment 

of compound 1 with two equivalents of CuCN gives rise to the anionic tetranuclear 

cluster salt (Et4N)2[Cu2Mo2(edt)2(S)2(µ-S)2(CN)2] (figure 3)26. 

 Another cluster anion salt was prepared by Wei and coworkers, who reacted 

compound 1 with an equimolar amount of CuBr. The hexanuclear cluster anion salt 

(Et4N)2[(edt)2Mo2(µ-S3)(µ3-S)Cu]2
. 2CH2Cl2 was formed by this reaction24.  

From these, we may predict that when we treated compound 1 or 2 with 

equimolar amounts of MCl2, (M = Fe, Co, Ni, Cu),  there is a number of possibilities for 

the clusters formed: they may be either trinuclear cluster anion salts, tetranuclear cluster 

anion salt, neutral tetranuclear cluster, or hexanuclear cluster anion salts. Structures 

similar to most these possibilities have been confirmed in reported compounds. However, 

treating compounds 1 or 2 with first-row late transition elements in their +2 oxidation 

states, such as Fe(II), Co(II), Ni(II), or Cu(II), is not well known. The reaction may 

procced to give the chemical structures proposed or the chemical structures reported 

when compound 1 treated by Cu(I) and Ag(I). It is difficult to predict a priori what the 



27 
 

structures are going to be, and a definitive assignment will require X-ray crystallography, 

in addition to spectroscopy. Below are other possible structures of the compounds 

prepared, in Figures17-19.  

 
Figure 17: Structure of  (Et4N)2[M’Mo2(S)2(-S)2(edt)2Cl2] 

 

 
Figure 18: Structure of  [M’Mo2(S)2(-S)2(edt)2(CH3CN)2] 

 

 

Figure 19: Structure of  (Et4N)2[M’(Mo2(S)2(-S)2(edt)2)2] 
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CHAPTER IV 

CONCLUSION 

Our hypothesis of this project involved trimetallic anion cluster when compounds 

1 or 2 treated by first row transition metals such as Fe(II), Co(II), Ni(II), and Cu(II). The 

expected results were shown in compounds 3 to 6. Another hypothesis was that treatment 

of compound 1 or 2 with MCl2 (M = Fe, Co, Ni, Cu) would afford either trinuclear 

cluster anion salts, tetranuclear cluster anion salt, neutral tetranuclear cluster, or 

hexanuclear cluster anion salt, as some of them were reported in the literatures when 

compound 1 reacted with Cu(I), or Ag(I). UV-vis spectra were useful for comparing 

between the starting materials and obtained results. IR spectra showed the differences 

between the all compounds when compared with starting materials. However, NMR 

experiments were useless because the fact that the compound 1 and 2 are paramagnetic as 

well as all the expected results. Also, without X-ray structures, it was not possible to 

confirm the structures proposed by the UV-vis and IR only, and it is difficult to predict a 

priori what the structures are. Our future directions are to confirm structure of the 

obtained compounds and examine these complexes in medicinal chemistry because of the 

contribution of Mo-S and W-S complexes to fields such as bioinorganic and medicinal 

chemistry. 
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