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DEVELOPMENT OF AN SPR METHOD TO MONITOR THE CHEMICAL

INTERACTION OF DNA WITH A SMALL REACTIVE MOLECULE: 

PEROXYNITRITE AS AN EXAMPLE

DIVYA SHARMA

ABSTRACT

Peroxynitrite is an anion with the formula ONOO-. It is an unstable structural isomer of

nitrate, NO3-. Although its conjugate acid (ONOOH) is highly reactive, it is quite 

relatively stable in basic solutions. Generation of peroxynitrite in-vivo occurs through the 

diffusion-controlled reaction between superoxide anion and nitric oxide free radical. It is 

a strong oxidizing and nitrating agent, and its formation has been correlated with many 

pathological conditions. Because of its oxidizing properties, peroxynitrite can damage a 

wide array of molecules in cells, including DNA and proteins. Reactions of peroxynitrite 

with DNA, proteins, and lipids, trigger a wide array of cellular responses ranging from 

subtle modifications of cell signaling to oxidative injury committing cells to necrosis and 

apoptosis. Peroxynitrite-induced DNA modifications include formation of 8-nitroguanine 

and 8-oxoguanine as well as DNA single strand breakage and base modifications when 

exposed to different concentrations of peroxynitrite. However, the accurate measurement 

of peroxynitrite concentration has been a challenge since this analyte reacts with many 

cellular targets. Development of analytical techniques capable of rapid and sensitive 

detection of this fast reacting and damaging agent is an important research goal not only 

to monitor its dynamic concentration but also to correlate its amount with observed 

chemical damage that this oxidant generates.
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Surface Plasmon Resonance (SPR) is an analytical platform that can detect interactions of 

immobilized ligand with running analytes. The change detected is related to a change in 

the refractive index as a result of analyte binding to immobilized ligands. Peroxynitrite 

reaction with DNA is expected to result in significant structural changes in the tethered 

DNA double helix of attached probes. We hypothesize that although peroxynitrite is a 

small molecule and is not expected to bind or cause significant changes in refractive 

index on SPR chips, the expected effect of its reactivity with DNA bases will result in 

collective structural configuration of immobilized DNA probes with can be monitored 

using SPR chips. To address this hypothesis, we propose the following 4 specific aims:

Specific Aimi: Optimization of methods of immobilization of oligonucleotides on 

nanogold SPR interfaces.

Specific Aim2: Characterization of the DNA-functionalized SPR gold chip.

Specific Aim3: Study of the interaction of PON with immobilized DNA structures on the 

SPR chips.

Specific Aim 4: Compare and contrast SPR results with electrochemical methods using 

the same DNA sequences immobilized on electrode surfaces.

iv



Page
TABLE OF CONTENTS

ABSTRACT....................................................................................................................iii

LIST OF TABLES........................................................................................................ vii

LIST OF FIGURES.....................................................................................................viii

LIST OF SCHEMES.......................................................................................................x

CHAPTER

I. GENERAL BACKGROUND....................................................................... 1

1.1. Introduction........................................................................................... 1

1.2. Peroxynitrite - formation and reactivity............................................... 2

1.3. Peroxynitrite induced DNA damage..................................................... 3

1.3.1. DNA base modifications.............................................................. 4

1.3.2. DNA single strand breakage.........................................................5

1.3.3. Peroxynitrite induced apoptosis................................................... 6

1.4. Biosensors as sensing platforms for detection of DNA damage 

induced by peroxynitrite..................................................................6

1.4.1. Charge-driven DNA surface immobilization...............................9

1.4.2. Covalent attachment....................................................................10

L4.2.1 Thiol-gold linkages.................................................................. 11

1.4.2. 2. Thermal stability of DNA functionalized gold particles..........13

1.4.3. Streptavidin-biotin interactions................................................... 14

II. METHODS AND INSTRUMENTATION

2.1. Introduction........................................................................................... 15

2.2. Surface Plasmon Resonance.................................................................15

v



2.2.1. Theory........................................................................................ 15

2.2.2. Workflow................................................................................... 18

2.2.3. Sensor chips and binding curves..................................................18

2.2.4. Regeneration..............................................................................21

2.3. Electrochemistry................................................................................ 22

2.3.1. Introduction................................................................................22

2.3.2. Electrochemical method used: Cyclic Voltammetry.................22

2.3.3. Electrode modification and immobilization method used.........24

III. EXPERIMENTAL

3.1. Introduction......................................................................................... 25

3.2. Synthesis and general reagents............................................................ 25

3.3. SPR method......................................................................................... 27

IV. CONCLUSION AND FUTURE ASPECTS.................................................50

REFERENCES ..............................................................................................................52

vi



LIST OF TABLES

Table Page
I. Tabulation of advantages and disadvantages of different immobilization 

techniques............................................................................................................. 9

vii



LIST OF FIGURES

Figure......................................................................................................................... Page

1.1. Two conformational isomers of peroxynitrite.................................................. 3

1.2. The superoxide and nitric oxide react to form peroxynitrite which 
reacts with DNA..........................................................................................4

1.3. Immobilization techniques for fabrication DNA microarray............................8

1.4. DNA immobilization on Au (Gold) surface.................................................... 12

1.5. Reduction of cystamine to cysteamine............................................................13

1.6. Biotin-avidin interactions................................................................................14

2.1. Binding curve generated from an SPR experiment......................................... 16

2.2. Cartoon symbolizing the SPR sensor chip surface functionalized with the 
ligand as the specific target for the added analyte.................................... 17

2.3. Covalent coupling of ligands with amine (-NH2) functional group on to 
carboxylic acid modified sensor chips......................................................19

2.4. Non-specific binding vs. specific binding.......................................................20

2.5. Example response graph of a kinetic titration experiment, with 
increasing concentrations of analyte injected over the sensor surface......21

2.6. Example response graph with regeneration of surface 
between subsequent analyte injections......................................................22

2.7. Typical cyclic voltammogram of a reversible electrochemical System..........23

2.8. Drop casting method used to immobilize DNA on gold Electrode................ 24

3.1. Modification of nanogold on the Nicoya sensor chip with thiolated 
hybridized DNA in the presence of cystamine blocker............................ 29

3.2. Process of hybridization of a thiolated oligonucleotide and its 
complementary sequence followed by the immobilization of the resulting 
probe on the Nicoya SPR chip.................................................................. 29

3.3. EDS spectra of nanogold SPR chip before (A) and after (B) immobilization 
of the thiolated oligonucleotide probes.....................................................31

viii



3.4: SPR glass chip.................................................................................................32

3.5. OpenSPR instrument used in this work...........................................................33

3.6. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20 
uL/min...................................................................................................... 34

3.7. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20
uL/min.............................................................................................................. 35

3.8. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20 
uL/min...................................................................................................... 36

3.9. Exposure of the SPR chip to repeated injections of NaOH at pH 12.............. 37

3.10. Transfer of PON form high pH to physiologic pH at 7.4.............................. 38

3.11. Typical SPR response of DNA-modified SPR chip to injections of 
peroxynitrite at pH 7.4...........................................................................39

3.12. Typical SPR response with increasing concentrations of Peroxynitrite....... 40

3.13. Cyclic voltammograms of 2.0 mM K3[Fe (CN)6] at a bare gold electrode 
and at the same electrode after immobilization of thiolated DNA..... 43

3.14. Cyclic voltammograms of 2.0 mM K3[Fe (CN)6] at a DNA-modified 
electrode in phosphate buffer pH 7.4 after exposure to increasing 
peroxynitrite concentrations............................................................... 44

3.15. Cyclic voltammograms of methylene blue in solution at a bare gold 
electrode and at a DNA-modified electrode in phosphate buffer pH 7.4 
after exposure to increasing peroxynitrite concentrations..................... 47

3.16. Cyclic voltammograms of methylene blue intercalated 
in immobilized DNA. Response of the same electrode after addition of
2.0 mM ferricyanide to the solution..............................................................49

3.17. Cyclic voltammograms of methylene blue intercalated
in immobilized DNA. Response of the same electrode after incubation in 
peroxynitrite solution with a concentration of 500 uM.................................. 50

ix



LIST OF SCHEMES

Scheme Page

1.1. Diffusion-controlled reaction between superoxide anion and nitric oxide 
radical......................................................................................................... 2

1.2. Reaction of peroxynitrite with guanine residues............................................. 5

3.1. General reaction between alkyl nitrites and hydroperoxide ion to form 
peroxynitrite............................................................................................ 27

3.2. Representations of DNA-modified electrodes before and after reaction with 
peroxynitrite................................................................................................45

3.3. Electrochemical reduction of methylene blue to its reduced form................46

3.4. Representation of a DNA-modified electrode with intercalated methylene 
blue at the top of the DNA film.............................................................. 46

3.5. Representation of a DNA-modified electrode withintercalated methylene 
blue at the outside of the DNA film........................................................ 48

x



CHAPTER I

GENERAL BACKGROUND

1.1 Introduction

DNA determines genetic characteristics in living organisms. Analysis of genetic 

material has gained prominence in the diagnosis of a variety of diseases. Most of the 

techniques rely on the unique structure of DNA which is made up of two complementary 

antiparallel strands held together by highly specific interactions.1 Single stranded DNA 

(ss DNA) anneals with complementary specific sequences through spontaneous 

hybridization. The DNA sequence can be affected by physical factors like high 

temperature, effects of radiation as well as by chemical factors like reaction highly 

reactive chemicals such as reactive oxygen species (ROS) or mutagenic chemicals. 

Peroxynitrite (PON, ONOO-) is one such chemical that has been shown to induce single­

strand breaks and base chemical damage in DNA.

Peroxynitrite is a powerful oxidizing and nitrating agent. It is formed in biological 

systems when nitric oxide and superoxide are produced in proximity at physiological sites. 

The two species readily react at diffusion-controlled rates to produce the highly reactive 

PON.2 ONOO- causes strand breaks in plasmid and eukaryotic cell DNA.3 It also causes 

nitration and nitrosation leading to the formation of products like 8-nitroguanine, 4- 
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hydroxy-5-nitrosooxy-guanine and various oxidation products like oxazolone, 8- 

hydroxyadeine and 8-hydroxyguanine in isolated DNA or nucleosides.4 DNA damages 

cause changes in the structure of the genetic material and prevent the replication 

mechanism from functioning and performing properly.

Optical methods are among the oldest and best-established techniques for sensing 

chemical changes in biomolecules. The advantages these techniques have are non­

destructive in character and usually come with high sensitivity. The Surface Plasmon 

Resonance (SPR) based methods are one kind of such optical methods that can be used in 

real-time biosensing. Its working principle is based on the ability to sense subtle changes 

in the refractive index as a result of binding or structural change of a sample near the SPR 

sensing surface (more details about the method will be given later).

The focus of this work is to quantify and detect peroxynitrite-induced DNA 

damage on gold sensor surface and gold electrodes.

1.2 Peroxynitrite - Formation and Reactivity

Peroxynitrite is the primary product of the reaction of superoxide ion (O2'-) and 

nitric oxide ion (NO.).5The reaction is shown in the equation below.

O2*- + NO' ^ ONO2-

Scheme 1.1. Diffusion-controlled reaction between superoxide anion and nitric oxide 
radical

Nitric oxide and superoxide anion react very fast in a diffusion-controlled reaction to produce 

peroxynitrite. The reactivity of ONOO- is affected by an intermediate which could 
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be peroxynitrous acid (ONOOH) or its activated isomer (ONOOH*).6 Peroxynitrite is 

present in two conformational isomers: the cis-isomer and the trans-isomer.

Figure 1.1. Two conformational isomers of peroxynitrite

7 Vibrational spectroscopy shows that cis isomer is more stable than trans isomer.

Peroxynitrite chemistry strongly depends on pH. It behaves as anion at pH 7.4 whereas at 

lower pH forms peroxynitrous acid i.e. ONOOH (its pKa= 6.8).8 The anionic form is very 

reactive and reacts with many targets such as CO2 to form nitrosoperoxycarbonate adduct 

(ONOOCO2). The homolytic cleavage of O-O bond in both ONOOH and ONOOCO2- 

results in generation of harmful radicals ('OH), CNO2), (CO3'"). These radicals cause 

disruption of membrane lipids, nucleobase oxidation/nitration and DNA strand breaks 

which are all irreversible impacts.6, 9 Peroxynitrite in both its anionic form (ONOO-) as 

well as its protonated form (ONOOH) participates in oxidation reactions (Fig. 1) with a 

variety of macromolecules and cellular targets.

1.3 Peroxynitrite Induced DNA Damage

Peroxynitrite mostly brings about oxidative change in DNA. Nitric oxide also reacts 

with DNA however, the damage caused by peroxynitrite is more deleterious. In fact, 

chemical damage that once was assigned to nitric oxide, turned out to be the result of 

peroxynitrite when it was later established that the latter is produced at the same sites where 
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superoxide anions are formed with nitric oxide as a result of nitric oxide synthase 

decoupling or other inflammatory reactions. Ischiropoulos and co-workers detected

significant concentration of peroxynitrite (up to 0.11 nmol/106 cell per min) as a marker

of peroxynitrite activity.10

Figure 1.2. The superoxide and nitric oxide reacts to form peroxynitrite which reacts with 

DNA.2

1.3.1 DNA base modifications. Reactions of peroxynitrite with nucleosides and 

nucleobases showed that it affects purine bases (i.e. adenine and guanine) more than the 

pyrimidine bases. Further analysis by techniques like high performance liquid 

chromatography (HPLC) and thin layer chromatography (TLC) revealed the products 

formed are 8-nitroguanine and 8-oxo-guanine, where the former is the major product. 8- 

nitorguanine was formed at pH 8 and increased with the increase in the concentration of 

peroxynitrite.11 Peroxynitrite is also considered as the biomarker for the DNA damage 

with the formation of 8-nitroguanine.
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Analysis of reaction products by HPLC and TLC showed that the reaction of 

peroxynitrite with nucleobases formed several new products as outlined below in Scheme 

1.3 .11 Reactions below shows reaction between peroxynitrite and guanine residue to 

form 8-nitroguanine (A), 5-guanidino-4-nitroimidazole (B), 8-oxoguanine (C) and 2,5- 

diamino-4H-imidazol-4-one (D) and it undergoes hydrolysis to form 2,2,4-triamino- 

5(2H)-oxazolone (E) at physiologic pH.12 However, formation of 8-oxoguanine takes 

place in the presence of other species such as hydrogen peroxide and several metal ions.

Scheme 1.2. Reaction of peroxynitrite with guanine residues
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1.3.2 DNA single strand breakage. Over the past years single strand breakage in 

DNA upon exposure to peroxynitrite or superoxide or NO has been the focus of a number 

or research groups. Peroxynitrite has been reported to induce single strand breakage in 

plasmid DNA with concentration as low as 1uM whereas higher concentrations ( 1mM) 

were needed to induce double strand breakage.13 DNA cleavage caused by peroxynitrite 

was seen at almost every nucleotide with little more at guanine residues. Since 

peroxynitrite-induced DNA damage occurs at acidic pH rather than neutral or alkaline 

pH, it was hypothesized that hydroxyl radical-like intermediate(s) or peroxynitrous acid 

(ONOOH) are responsible for the single strand breakage.14

The mechanism for DNA strand breakage upon exposure to peroxynitrite has not 

been studied well and has been focus of intense research.

1.3.3 Peroxynitrite induced apoptosis. Once the level of cellular damage caused 

by peroxynitrite exceeds the threshold of viable cellular repair, the cell eventually dies. 

Peroxynitrite and NO have been shown to cause cell death in two ways: either acute cell 

death (necrosis) or delayed cell death (apoptosis) depending on a cell type. Low levels of 

exposure to NO or peroxynitrite leads to apoptosis whereas sudden exposure to high 

concentrations causes necrosis.15, 16

The defective cells are incapable of repairing single strand breakage in DNA, these 

unrepaired single strands give rise to double strand breaks, which eventually leads to cell 

death.17 Hence, it is quite clear that peroxynitrite-induced DNA damage determines the 

fate of the cell in many ways.

1.4 Biosensors as Sensing Platforms for Detection of DNA Damage Induced by
Peroxynitrite
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Biosensors are used for the real-time and label-free study of biochemical reactions 

between various ligands and analytes. The rapid development in the biosensor technology 

has made it possible to study the nucleic acid interactions and related kinetics with 

various reactive analytes. Detection of point mutations18, simultaneous screening of 

nucleic acid samples on high density DNA arrays19 and DNA base modifications2 are 

few potential applications of biosensing platforms in the field of nucleic acid analysis. 

DNA detection in any biosensing setup usually happens in two steps: PCR amplification 

that makes DNA assay very sensitive as few copies of DNA could be detected during 

amplification process, and then reaction with a transducer follows which converts the 

recognition event into a measurable signal.20 Optical, piezoelectric or electrochemical

21instruments are used as transducers in DNA biosensing.

Optical techniques are one of the oldest and most reliable techniques for sensing 

biomolecules. The advantages offered are their non-destructive character and the relative 

high sensitivity. Although some optical methods based assays exhibit sensitivities that 

allow to observe the interactions between the biomolecules without the need to label.22, 

23 most methods rely on the introduction of an optical chromophore for signal 

transduction. The potential and efficient use of surface-based biosensors depends on the 

highly programmable positioning of biomolecules on surfaces. DNA chips are important 

tools in this regard and have been in steady development on multiple fronts. Yet, the 

success of DNA chips is still influenced by number of factors like (i) good accessibility 

and functionality of the surface-bound probes, (ii) density of attachment and (iii) 

attachment chemistry.24, 25
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Immobilization is the preliminary step towards developing of a whole range of 

microarray methods. It can be defined as the attachment of molecules to a surface 

resulting in the possibility to offer localized chemical reactivity that can be monitored in­

situ 25 The mechanism by which immobilization takes place determines the property of 

the sensing surface. The DNA probes can be either made base-by-base or pre-synthesized 

to be immobilized on the surface.

Over the past years, various immobilization techniques have been developed and 

used. However, they mainly fall into three important categories: (1) physical adsorption, 

(2) covalent bonding and (3) affinity-based immobilization (such as biotin-avidin type 

immobilization).

Physical Adsorption Covalent Immobilization Affinity Immobilization

25Figure 1.3. Immobilization techniques for fabrication DNA microarray

Figure 1.3 illustrates different mechanisms by which immobilization process takes 

place. However, these immobilization techniques also lead to non-specific binding. It is 

very important to minimize non-specific binding in order to ensure high reactivity, proper 

8



orientation and stability of the surface-bound molecules. The table given below lists the 

advantages and disadvantages of the different immobilization methods.

Table I. Tabulation of advantages and disadvantages of different immobilization 
techniques

Immobilization 
Method

Interaction Advantages Disadvantages

Physical26
Adsorption

Charge-charge 
interaction

-Simple
- Fast
- Direct method
- Appropriate for 
DNA, RNA and 
PNA

-Random 
orientation
-Poor 
reproducibility 
-Crowding effect

Covalent27 28
Bonding

Chemical bonding - Good stability
- High binding 
strength
- Use during long 
term

- Use of linker 
molecules
- Slow, irreversible
- Crowding effect
- Island formation

Streptavidin­
Biotin 
Interactions29

Specific 
Streptavidin-Biotin 
Interactions

-Improved 
orientation
-High specificity & 
functionality 
-Well-controlled
-Reversible

-Expensive, slow 
-Crowding effect 
-Poor 
reproducibility

1.4.1 Charge-driven DNA surface immobilization. This immobilization method 

is based on ionic interactions between the negatively charged phosphate backbone of the 

DNA probes and positively charged functionalized surfaces. Charge-driven 

immobilization is the simplest method used as it does not require any DNA modifications 

or any linkers to attach the DNA probes to the surface. However, the resulting modified 

surface with DNA or oligonucleotides with this mode of immobilization are likely to be 

heterogeneous in nature with random orientations on the surface.30 The molecules are 
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randomly oriented since each molecule can form many contacts in different directions to 

minimize the repulsive interactions with already present DNA probes.

Random orientation is not the only limiting factor that makes this immobilization 

method less reliable. Leaching is also a potential problem since electrostatic interactions 

are not very strong and this may lead to DNA molecules gradual removal from the 

3 3 30surface when the surface comes in contact with salts and detergents during experiment.

Moreover, problems like mass transport effect, high background signals and non-specific 

binding can result in false calculations.

1.4.2 Covalent attachment. Covalent coupling of target species to surfaces gives 

rise to highly stable microarrays with strong binding strength. Covalent bonding coupling 

methods are many and are commonly used for chemical immobilization.30, 31 This type 

of attachment method is applicable to the different kinds of couplings. Some of them are 

listed below:

Amine Coupling. This chemistry is the mostly used for the attachment of proteins and 

other biomolecules covalently on the sensor surface. The carboxyl groups on the sensor 

surface are activated with EDC/NHS to give reactive succinimide esters. These ester groups 

then react with the primary amine groups or other nucleophilic groups in the ligand.

Thiol Coupling. In this method, thiol group is attached on the ligand and the sulfur 

atom of the thiol group reacts with the metals like Au.

Aldehyde Coupling. Ligands containing aldehyde group are immobilized by 

activating the surface with hydrazine or carbohydrazide. Aldehyde coupling provides an 

alternative approach for immobilizing glycoproteins and other glycoconjugates. In this 

work, we focus on thiol-metal coupling.

10



1.4.2.1 Thiol-gold linkages. Self-assembled monolayer films of alkanethiols or 

disulfide alkanes on gold surfaces have been studied extensively, 32 including factors that 

affect their formation and stability.33Chemical modification of metal surfaces is the 

primary step to enhance the interfacial reactivity of a metal. 34 Factors like intermolecular 

interactions, adsorbate-substrate binding are key to form a stable surface-films.32, 35 

Organosulfur molecules are known to bind strongly to metals like Fe, Au, Ag and Cu. 

This is attributed to the capability of sulfur atom to form strong linkage with the metals. 

Thiol groups are used as one way to tether biomolecules to gold surfaces because of their 

strong affinity towards this metal. Raman spectroscopy provides experimental evidence 

of the loss of hydrogen and formation of S-Au bond on adsorption of organo-thiol 

molecules on Au gold atoms.36This method has been widely used to immobilize thiol- 

modified oligonucleotides on surface functionalized with gold nanoparticles by self- 

 7 37assembly of thiolated DNA probes.

Self-assembled monolayers (SAM) play a vital role in minimizing the non­

specific binding, and therefore presents a simple and effective means to control the 

density and availability of the surface targets. Non-specific binding (NSB) takes place 

when the analyte binds non-specifically to the surface rather than the target ligand. SAMs 

are obtained by thiolated DNAs mixed with alkanethiols or disulfide alkanes which use 

sulfide bonds to anchor DNA probes on the gold surface. The secondary thiol displaces 

the non-specifically adsorbed DNA molecules, leaving the tightly bound molecules in an 

upright position.38 Another important feature of this adsorption chemistry is the stability 

of the biomolecule monolayer attached on the surface.

11



As shown in figure below, thiol-metal interactions are one example of covalent 

binding of thiolated biomolecules on gold surfaces.

25Figure 1.4. DNA immobilization on Au (Gold) surface

Covalent coupling chemistry requires however the prior chemical modification of 

the DNA molecule with the right functionalization of the surface. However, there are 

many factors that influence the preparation of DNA-modified surfaces to construct 

microarrays. Some of these factors are immobilization chemistry, buffer, DNA 

concentration. The test surfaces should be developed in such a manner that all the 

molecules should be evenly spaced to allow high specificity and avoid crowding and non­

specific binding. Also, DNA probes that are closely packed have limited exposure for 

hybridization or reactivity with other analytes.

Another method that takes advantage of gold-thiol chemistry and introduces other 

chemical functionalities that can be used to attach DNA or other molecules is the use of 

self-assembled monolayers of cystamine and cysteamine on gold. This method has been 

used for the preparation of biosensors and modified electrodes.39 Self-assembled 

monolayers of cystamine or cysteamine form building blocks, where the sulfur atoms of

12



the molecules bind to the gold surface and the amino atoms are used for the attachment of 

other groups on the self-assembled thiol layer. The formation of cystamine monolayers is 

considerably slow when compared with the formation of cysteamine on gold surface. This is 

due to the slow cleavage of sulfur-sulfur bond of the disulfide in cystamine molecule.39

Figure 1.5. Reduction of cystamine to cysteamine40

1.4.2.2 Thermal stability of DNA functionalized gold particles. DNA 

functionalized gold nanoparticles (DNA-AuNPs) have shown great potential as 

biosensors to study induced DNA damage for disease diagnostics and treatment. It is 

important to maintain a stable conjugation between DNA oligonucleotides and gold 

nanoparticles under thermally stress conditions. There are few factors affecting the 

thermal stability of DNA-AuNPs like organo-sulfur anchor groups and packing densities. 

Fluorescence assay was used to determine the thermal stability of DNA bound to gold 

surface using different anchor groups. The Au-S bond formed with acyclic disulfide was 

thermally more stable than the bond formed using cyclic disulfide.41

DNA packing density on gold surface also played a role in determining the 

thermal stability of the DNA-gold nanoparticles. The effect was maximum at temperature 

as low as 37oC and was minimized as temperature increased to 85oC.

1.4.3 Streptavidin-biotin interactions. Streptavidin homo-tetramers have high 

affinity for biotin. The binding of biotin to streptavidin is one the strongest non-covalent 

13



interactions known.25 Therefore, the highly specific bonding between streptavidin and 

biotin can also be used to immobilize DNA on the surfaces. This interaction usually 

takes place in two steps (i) derivatization of the biomolecule with biotin using a 

crosslinker reagent (ii) and a second step to attach the biotinylated molecule to the

42 streptavidin surface.

Streptavidin and avidin are tetramers having four binding sites available for biotin.

Figure 1.6. Biotin-avidin interactions43

Streptavidin is preferably used over avidin to avoid non-specific interactions. Although, 

streptavidin-biotin interactions are very strong, the binding capacity decreases over time. 

Moreover, this immobilization process is complex involving multiple steps like 

fabrication of the surface, modification of the biomolecule and then blocking. All these 

steps increase the non-specific interactions, instability of the immobilized molecule, 

44 production time, and cost.
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CHAPTER II

METHODS AND INSTRUMENTS

2.1 Introduction

We studied DNA-peroxynitrite interactions using OpenSPR benchtop instrument 

from Nicoya LIFESCIENCES, which is based on the Surface Plasmon Resonance 

phenomenon. We also conducted a parallel comparative study using Cyclic Voltammetry. 

2.2 Surface Plasmon Resonance

2.2.1 Theory. Surface Plasmon Resonance (SPR) is an optical phenomenon that 

is used to study the biomolecular interactions at functionalized surfaces in real-time and 

without the use of labels. SPR instruments are used to measure the binding between 

partners such as proteins, or DNA and a protein, among other ligand-analyte interactions. 

It studies the binding kinetics and binding affinity of the ligand and analyte. The 

biosensing technique gives the “ON” (association) and “OFF” (dissociation) rates of real­

time binding. The data obtained from these studies helps to determine how fast molecules 

interact, and the molecular mechanisms followed in their interaction.

Figure 2.1 gives the typical binding curve consisting of an association phase, 

during which the analyte binds to the ligand, followed by dissociation phase where only 

buffer is flowing through the sensor surface.
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Figure 2.1. Binding curve generated from an SPR experiment45

The final phase is the regeneration phase where regeneration solution is used to 

remove the analyte from the ligand. SPR instruments can typically measure 

concentrations ranging from pM to mM.

This technique offers number of advantages:

Label-free technique (less expensive and convenient)

Requires small sample volumes

High sensitivity

Real-time binding

Quantitative

The method relies on optical measurement to determine very sensitive changes in the 

refractive index that occurs at the surface of the sensor chip upon binding or removal of 

molecular partners at the functionalized surface. The sensor chip is a glass substrate with 

gold coated film that is chemically modified to accommodate the immobilization process.
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One of the binding partners is immobilized on the sensor chip and is called ligand.

Whereas, the other molecule that passes through the sensor chip is called analyte.

Figure 2.2. Cartoon symbolizing the SPR sensor chip surface functionalized with the 
ligand as the specific target for the added analyte46

The sensor chip is inserted in the fluidic system within a small flow cell. This 

helps the user to inject analyte at different concentrations with intermittent washing steps. 

The fluidic system regulates the buffer flowing through the flow cell and across the 

sensor chip in a controlled manner. The analyte is injected through the sensor surface for 

a specific amount of time (interaction time) as adjusted by the flow rate.

The optical system consists of a light source, which illuminates the gold film and a 

detector, which is used to measure the unique optical spectrum produced by SPR. When a 

molecule binds to the surface of the sensor chip, the refractive index of the space in which 

plasmonic wave is propagating through changes, which causes the shift in reflectance 

detected optically. The amount of shift depends on the mass of material bound to the surface, 

and hence the shift is a direct measure of real-time interaction of the analyte with 
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the modified surface or, for that matter, of any change in structure of immobilized species 

at the surface.

2.2.2 Workflow. The typical SPR experiment starts with a first step of 

immobilizing the target ligand on the surface of the sensor chip. This could be done in 

many ways taking advantage of chemical functionalization as described in the previous 

chapter. After immobilizing the ligand at a certain surface density, the next step is to 

block the remaining binding sites to avoid non-specific binding. Meanwhile, the running 

buffer is continuously flowing through the sensor chip surface. Once the surface is stable, 

one can proceed with the different analyte injections. During the analyte injection, the 

flow rate is set according to the interaction time needed for the specific ligand-analyte. 

Binding of the analyte will increase the signal until it reaches the equilibrium. As soon 

we switch to plain running buffer solution, bound analyte molecules come off the surface, 

which will cause the signal to decrease. The resulting curve will give the binding between 

the ligand and analyte.

2.2.3 Sensor chips and binding curves. The preliminary step to obtain good 

binding kinetics is the correct choice of sensor chips for the experiment. There are 

number of ways in which a sensor chip can be functionalized for different types of 

applications. Plain gold sensor chips are used to immobilize thiolated ligands due to 

strong Sulfur-Gold linkage. Biotinylated ligands can be immobilized on streptavidin 

coated chips. Carboxylated chips are used for the immobilization of ligand having amine 

groups using the standard EDC coupling. Similarly, other derivatized glass chips are 

available to immobilize chemically modified ligands with appropriate functional groups.
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Figure 2.3. Covalent coupling of ligands with amine (-NH2) functional group on to 
carboxylic acid modified sensor chips46

Avoiding non-specific binding is also important in order to determine the right 

kinetics. Non-specific binding happens because of the interactive forces between the 

analyte and the surface. To prevent this process, it is important to block the surface of the 

sensor chip with a suitable blocker to ensure the response is due to the binding between 

the ligand and analyte. The figure below shows the non-specific binding of the analyte 

with the surface vs. specific binding of the analyte to the ligand.
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Figure 2.4. Non-specific binding vs. specific binding46

In order to get accurate binding curves, one must repeat the experiment with different 

analyte concentrations. We typically perform the first step with lowest concentration and then 

increase accordingly. If the level of NSB is minimal, then the user may proceed with the 

experiment under the same conditions. However, there are other factors as well which affect 

the binding curves and one of them is mass transport effect. Mass transport effects will show 

up in kinetic data as binding curves that have very little curvature. Reducing ligand density is 

very important in order to get a typical SPR response.
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Figure 2.5. Example response graph of a kinetic titration experiment, with increasing

concentrations of analyte injected over the sensor surface

2.2.4 Regeneration. Regeneration is used to wash the analyte from the sensor surface 

so that the higher analyte concentration can be injected without the interference of previous 

analyte injection. However, it is only required if analyte-ligand bond is very strong and 

analyte is not washed away with the washing buffer. In such cases, an effective regeneration 

buffer is specific to the types of molecules being used and their affinity for each other. To 

regenerate the binding surface, an acidic, basic, salt or surfactant solution is injected to break 

the ligand-analyte bond.47 The regeneration buffer to be used is determined according to the 

binding pair used in the experiment. Regeneration should be started with least harsh 

conditions and subsequently harsh conditions.
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Figure 2.6. Example response graph with regeneration of surface between subsequent 
47 analyte injections

2.3 Electrochemistry

2.3.1 Introduction. In this section, we address electrochemical techniques that we 

used in parallel with SPR to study the chemical reactivity of peroxynitrite on DNA chips. 

Electrochemical methods fall into two major branched (1) bulk techniques, which effect 

overall change of the solution in the electrochemical cell, and (2) analytical methods 

which only affect analytes at the electrode interface and determine concentrations of 

species without changing the properties of the original solution.48 All the methods that 

we use in this work are analytical in nature.

2.3.2 Electrochemical method used: cyclic voltammetry. Cyclic Voltammetry is an 

analytical technique used to study the kinetics and thermodynamics of the oxidation and 

reduction processes of the target molecular species. It can also be used for analytical 

purposes to monitor the concentration of target species. In this method, the potential of the 

electrode is varied linearly with time and the resulting current is monitored.49 The potential 
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is then switched at a pre-set value and is scanned back to monitor the current of the 

reverse reaction. The resulting graph of current as a function of the potential is called 

cyclic voltammogram.50 Cyclic voltammetry can be conducted at various scan rates, 

which gives, in certain cases, the possibility to study the kinetics of electron transfers or 

related chemical reactions at the electrode interface.51 The figure given below shows a 

typical cyclic voltammogram of a reversible system.

Figure 2.7. Typical cyclic voltammogram of a reversible electrochemical system. The 
potential is scanned linearly with time and the resulting current is plotted on the y-axis.49

For the purposes of this work, we first scan the potential negatively (potential is 

lowered moving to the right of the graph) which result in a reductive current. The 

potential is then switched a pre-set value and is scanned back positively (moving left on 

the graph) which results in an oxidative current.50
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2.3.3 Electrode modification and immobilization method used. The gold 

electrode is first sonicated and polished using standard procedures. A drop of the solution 

of thiolated DNA sequence is then cast on the surface of the electrode and allowed to 

react with under controlled conditions that prevent solvent evaporation. This results in the 

formation of self-assembled monolayer of the thiolated molecules on the substrate.

Drop-casting Method - This method can be 
successfully used if there is a strong affinity between the 
solution and the substrate.

> luM DNA solution was immobilized on gold 
electrode and was left overnight for 12 hours.

Figure 2.8. Drop casting method used to immobilize DNA on gold electrode

This drop-cast method can be used whenever there is a strong affinity between the 

target molecules and the electrode substrate. This is the case for thiolated oligonucleotide 

on the gold electrode.52 The synthesized DNA probe is linked with the group of thiols 

(SH) to bind covalently to the metal surface.53 .
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CHAPTER III 

EXPERIMENTAL

3.1 Introduction

This chapter outlines the general experimental methods and materials used 

throughout this work and addresses the specific aims outline in the summary page.

3.2 Synthesis and General Reagents

Phosphate buffer. Phosphate-buffered saline solution (PBS) of 5mM and 50mM 

sodium chloride (NaCl) was prepared by dissolving 3.28 g of sodium di-hydrogen 

phosphate (NaH2PO4), 4.12 g of disodium hydrogen phosphate (Na2HPO4) and 1.46 g of 

NaCl in deionized water (DI water) and fill the volume up to 500 ml. The pH of the 

resulting buffer is adjusted with a few drops of concentrated acid or base to pH 7.4.

Cystamine so/ution. Cystamine was prepared by adding 6.7 mg of cystamine in 10 

ml of PBS solution. 10 ul of resulting cystamine solution (3 mM) is then diluted in 10 ml 

of PBS solution.

Preparation of doub/e-stranded o/igonuc/eotidesprobes. Single stranded thiolated 

oligonucleotides having 15 base pairs were purchased from Biosynthesis, Inc. The thiol 

groups are tethered to the oligonucleotides using a 6-mercapto-hexyl group attached to 

the 5’-phosphate of the oligonucleotide. The sequences are as follows:
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1. [Thiol C6]-AG TAC AGT CAT CGC G,

2. CGC GAT GAC TGT ACT,

3. [Thiol C6]-GG GGG GGG GGG GGG G,

4. CCC CCC CCC CCC CCC)

All oligos were suspended in deionized water to prepare stock solution of about 2ug/ul 

concentration. Equal volumes of each ssDNA and the corresponding matching sequence 

(1+2 and 3+4) were hybridized in PBS (5mM phosphate, 50mM NaCl, pH 7.4) by 

heating the mixture for 5-10 minutes at 950C in a heat block. The heated solution was 

then allowed to cool down slowly to room temperature over 3-4 hours. We used 

absorption spectroscopy to estimate the final DNA concentration using the known DNA 

extinction coefficient at 260 nm.

Synthesis of peroxynitrite. Chemicals- 40ml of NaOH (5N) was prepared, 27 ml 

Isoamyl nitrite (0.2 M), 23 ml of Hydrogen Peroxide (H2O2) (30%), 5 ml of

Diethylenetriamine pentaacetate (DTPA) was prepared in 0.05 N sodium hydroxide 

(NaOH).

Procedure- 23 ml of H2O2 was mixed with 40 ml of NaOH (5 N) in a round bottom flask kept 

in chilled ice bath. The solution could equilibrate for 15-20 minutes on an ice bath. Then, 5 

mL of 0.04 M DTPA (prepared in 0.05 N NaOH) was gently mixed with the solution. The 

total volume of buffered H2O2 was then increased by adding deionized water to 100 mL with 

a 0.2 M concentration. Finally, this solution was mixed with equimolar concentration of 

isoamyl nitrite (0.2 M, 27 mL). This solution was stirred vigorously overnight at room 

temperature. Deep yellow color marks the formation of peroxynitrite. The peroxynitrite 

remained in the aqueous phase and isoamyl alcohol remained in the
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organic phase, where organic phase corresponds to isoamyl nitrite and hydroperoxide 

anion is the aqueous phase.

The peroxynitrite synthesis follows the following chemical reaction where the 

hydroperoxide ion from hydrogen peroxide under alkaline conditions reacts with 

isoamyl nitrite.

RONO + HOO- ^ HOONO + RO ^ ONOO- + ROH

Scheme 3.1. General reaction between alkyl nitrites (isoamyl nitrite in this case) and 
hydroperoxide ion to form peroxynitrite

Purification- Isoamyl alcohol and traces of isoamyl nitrite are removed by washing the 

solution with dichloromethane and chloroform. The aqueous phase where peroxynitrite 

accumulates is separated from the organic layer. The solution is then passed through a 

column filled with granular MnO2 to remove any unreacted H2O2. Pure peroxynitrite is 

then collected and stored in aliquots in a freezer at -80oC. The needed amounts are 

thawed and kept on ice prior to experiments.

Preparation of so/utions of redox active probes. A 2 mM stock solution of 

potassium ferricyanide K3 [Fe (CN)e] is prepared in pH 7.0 PBS. When needed, the 

ferricyanide solution of mixed with methylene blue at a final concentration of 2pM 

methylene blue in the same pH 7.0 PBS buffer.

3.3 SPR Method

Instrument and Software. All SPR experiments were performed using OpenSPRTM 

instrument purchased from Nicoya LIFESCIENCES. The OpenSPR™ operates using a UL 

certified Class 2 power supply with an input of 100-240 V, ~50-60 Hz and 0.31A MAX.
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The software works with Windows 7 or higher. The data was analyzed using TraceDrawer 

1.8.1 by Ridgeview Instruments AB.

Specific Aim 1: Optimization of Methods of Immobilization of Oligonucleotides on 

Nanogold Interfaces

Single-stranded oligonucleotides with the tethered thio-hexyl group is first 

hybridized to its complementary sequence in PBS buffer (5 mM PBS with 50 mM NaCl, 

pH 7.4) using a heating block. The mixture is heated 5-10 minutes at 950C and then 

allowed to cool down slowly to room temperature over 3-4 hours.

DNA immobilization on the sensor chips. It important to mention first that the 

Nicoya sensor chips use gold nanoparticles on the glass chip rather than a gold film. The 

gold nanoparticles result rather in localized surface plasmon resonance (LSPR), which 

gives number of advantages over regular gold film SPR, including robust angle­

independent responses, as well as lower variability due to bulk sample effects.

The gold nanoparticles on the sensor chip can modified the same way any gold 

surface is modified with thiol-derivatized probes. In our case, 10 ul drop of hybridized 

DNA was cast on the Nicoya sensor chip. The covered chip was kept in chamber with 

controlled moisture overnight allowing enough time for the oligonucleotide to form self­

assembled monolayers on the gold nanoparticles. Each functionalized gold chip was 

prepared using this procedure for each experiment. In addition, in order to make sure that 

the exposed surfaces of all nanoparticles are covered and to ensure an appropriate density 

of oligos on the nanoparticles, we used cystamine as a blocking agent in a 1:3 (DNA: 

Cystamine) ratio. Figure 3.1 illustrates this nano-gold modification process.
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Figure 3.1. Modification of nanogold on the Nicoya sensor chip with thiolated hybridized 
DNA in the presence of cystamine blocker

Figure 3.2 shows the process of hybridization of thiolated an oligo and its complementary

sequence, as well as the immobilization of the resulting hybridized probe on the SPR chip.

Figure 3.2. Process of hybridization of a thiolated oligonucleotide and its complementary 
sequence followed by the immobilization of the resulting probe on the Nicoya SPR chip
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In effort to optimize the immobilization conditions of thiolated DNA on our SPR chips, 

we have tried various exposure times under an environment with controlled moisture to 

ensure that the drop of the solution with the target thiolated DNA does not evaporate 

during the immobilization process.

We have first followed established procedures in our lab calling for about 6 hours 

of immobilization time. However, the characterization of resulting chips showed that the 

DNA immobilization was not complete. We have therefore prolonged the chip exposure 

time to 12 hours overnight. Subsequent characterization of these chips showed 

appropriate DNA densities on the chips and reliable SPR signals. We therefore selected 

these immobilization conditions for the remainder of the work.

Specific Aim 2: Characterization of the DNA-Functionalized SPR Gold Chip

Before the use of the SPR chips modified with thiolated DNA, we wanted to 

ensure that the thiolated probes are in fact tethered to the gold nanoparticles on the SPR 

chip. For this reason, we used scanning electron microscopy with elemental analysis 

using energy dispersive spectroscopy.

The rationale for this method is the fact that in the presence of immobilized 

oligonucleotide probes not only the morphology of the nanoparticles on the chips is 

expected to change, but also the characteristic signature peaks of phosphorus (phosphate 

backbone) and nitrogen (bases) are expected to signal the presence of the tethered 

oligonucleotides. Although EDS can be used for semi-quantitative determination of 

elements on the analyzed surfaces, we used here purely qualitatively to indicate the 

presence of elements that are intrinsic to the added DNA probes.
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Figure 3.3 shows the comparative EDS spectra of representative areas of the SPR 

chip before and after immobilization of oligonucleotides. The insets are typical SEM 

images of the chips before and after DNA immobilization. The EDS spectrum of the bare 

nanogold SPR chip shows the presence of Na and Si elements that are attributed to the 

glass substrate of the SPR chip. We also observe the Au element signal, which represents 

the attached nanogold particles on the glass SPR chip. The EDS spectrum of the DNA- 

modified SPR chip shows the appearance of surface N and P elements, which are attributed 

to the oligonucleotides attached to the gold nanoparticles using thiol-Au bonding.

Figure 3.3. EDS spectra of nanogold SPR chip before (A) and after (B) immobilization of 
the thiolated oligonucleotide probes. Red arrows in (B) point to the peaks of N and P 
elements of the attached DNA. Insets are typical scanning electron microscopic images of 
the SPR chip before (A) and after (B) DNA probe immobilization.

Conclusion. The coupled SEM-EDS surface characterization shows that the 

procedure and conditions we used for the immobilization of thiolated DNA on the gold 

nanoparticles on the SPR chips results in modified chips with the target DNA probes.
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Specific Aim 3: Study of the Interaction of PON with Immobilized DNA Structures 

on the SPR Chips

Figure 3.4 shows a typical sensor chip. The colored spot in the middle is the 

attached nanogold that is used to generate the LSPR phenomenon. The same gold 

nanoparticles are subject to DNA modification as described above. The glass chip is then 

inserted in a microfluidics system that direct analytes flow on the nanogold surface to 

monitor resulting SPR changes.

Figure 3.4: SPR glass chip: The colored spot in the middle is the active nanogold surface 
of interest and that generates the localized surface plasmon resonance signal.
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Figure 3.5. OpenSPR instrument used in this work. The top portion shows the placement 
of the flow cell and the optical detector. The lower portion show two views of the SPR 
chip housing within the flow cell module.

Instrument is first primed using the buffer solution (5 mM PBS, 50 mM NaCl, pH 

7.4). This is done at flow rate of 150 ul/min. New reference spectrum is taken after 

removing the sensor chip and the sensor holder. Once the reference is taken, the 

functionalized sensor chip is loaded into the flow cell module. The reference absorbance 

plasmon peak of the sensor is found and recorded and is used to track any binding 

interactions on the sensor surface, which result in a change in the position of the 

absorbance peak. Collection of real-time data then begins. Once a stable baseline is 

obtained the instrument and the inserted sensor chip are ready for use.

All SPR test are performed at a flow rate of 20 uL/min and injection are allowed 5 

minutes to complete (the volume of the loading loop is 100 uL).
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In order to test if the surface of DNA-modified gold nanoparticles on the SPR 

chips is saturated with cystamine as the blocking agent, we performed injections of 3 uM 

cystamine solution over the DNA-modified SPR chip. As shown in figure 3.6, injection of 

cystamine solution results in an increase in the SPR signal indicating the blocker is 

depositing on the DNA modified sensor surface. This indicates that the original 

modification with the 3:1 (cystamine: DNA) ratio under our conditions does not result in 

DNA-nanoparticles fully saturated with cystamine blocker. One injection was enough to 

block all bare spots on the DNA-modified nanoparticles as indicated by a stable baseline.

Figure 3.6. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20 uL/min. The 
change with buffer injection is minimal. The increase in the SPR signal upon cystamine 
injection indicates that the DNA-modified nanoparticles on the SPR chips have bare spots 
that are further blocked with added cystamine.
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After we confirmed that the surface of DNA-modified gold nanoparticles is fully 

blocked, and that the SPR signal is stable, we proceeded with peroxynitrite injections at 

different concentrations. Again, each injection is performed at 20ul/min for five minutes. 

Figure 3.7 shows that the addition of peroxynitrite (as aliquots stored in NaOH at pH 12) 

results in a decrease of the SPR signal. The decrease does not seem to be proportional to 

the increase in peroxynitrite concentration. Rather, repeated additions of PON in NaOH, 

no matter what the concentration used, resulted in gradual decrease in the SPR signal. We 

therefore suspected that the degradation of the SPR signal may be simply due to the 

chemical effect of the highly alkaline pH in which PON is stored.

Figure 3.7. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20 uL/min. The 
change with buffer injection is minimal. The increase in the SPR signal upon cystamine 
injection indicates that the DNA-modified nanoparticles on the SPR chips have bare spots 
that are further blocked with added cystamine.
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In order to confirm if the mere high concentration hydroxide solution is behind the 

indiscriminate decrease of the SPR signal, we examined the effect of injections of NaOH 

at the same pH=12 but in absence of PON. Figure 3.8 shows that the addition of plain 

NaOH at pH=12 results in a significant decrease of the SPR signal. The decrease of the 

SPR signal may simply be the result of the degradation of the SPR chip with the possible 

removal of the immobilized DNA. In fact, high pH is known to favor thiol dissociation 

from gold nanoparticles.54

While we do not know the mechanism of adhesion of the gold nanoparticles to the 

glass substrate (Nicoya’s proprietary information), it seems that the high pH seems to also 

contribute in washing away the nanoparticles off the glass surface as supported by visual 

examination of the chips before and after injections of NaOH at pH=12 (Figure 3.9).

Figure 3.8. Typical SPR response of DNA-modified SPR chip to injections of running 
buffer and of 100 uL of 3.0 uM cystamine solution at a flow rate of 20 uL/min. The 
change with buffer injection is minimal. The increase in the SPR signal upon cystamine 
injection indicates that the DNA-modified nanoparticles on the SPR chips have bare spots 
that are further blocked with added cystamine.
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Figure 3.9. Exposure of the SPR chip to repeated injections of NaOH at pH 12 results in 
the degradation of the chip with clear visual decrease of nanogold on the glass surface.

Given the intrinsic degradation problems that high pH aqueous NaOH storing 

medium brings, we wanted to know if we can work with PON at relatively neutral pH. 

We examined if we used peroxynitrite stored at pH 7.4. Peroxynitrite is relatively 

unstable at low pH and this is one reason why we store it at high pH. However, using 

absorbance spectroscopy, we monitored the degree of degradation of PON at pH 7.4 (5 

mM PBS, 50 mM NaCl). We monitored the absorbance of peroxynitrite absorbance band 

at 302 nm over time. It turns out that after 50 minutes in this medium, only 7.9% of the 

original PON degraded. The typical SPR experiment takes much less time. We therefore 

decided to work with peroxynitrite at pH 7.4 to monitor the interaction of PON with the 

immobilized thiolated DNA on the gold nanoparticles on the SPR chips. To this end, a 

small volume of PON from the original concentrated stock solution at pH 12 and is 

withdrawn and then diluted into a larger volume of PBS buffer at pH 7.4. the solution is 

kept on ice for a few minutes at most before injection (Figure 3.10)
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Figure 3.10. Transfer of PON form high pH to physiologic pH at 7.4 prior to injection 
into the microfluidic cells with the DNA-modified SPR chips.

Figure 3.11 shows the sensor response of DNA-modified gold nanoparticles SPR chip to

peroxynitrite injections at pH 7.4 at increasing peroxynitrite concentrations.

Figure 3.11. Typical SPR response of DNA-modified SPR chip to injections of 
peroxynitrite at pH 7.4 with increasing concentrations from 500 uM to 6 mM (solid 
traces). The dotted curves are the base line responses to running buffer and 3.0 uM 

cystamine solution at a flow rate of 20 uL/min.
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It is interesting to note that the SPR response increases in a relatively proportional 

way with the concentration of peroxynitrite over the range of 0.5 mM to 6.0 mM.

Figure 3.12. Typical SPR response with increasing concentrations of peroxynitrite

The reactive nature of peroxynitrite with DNA bases and backbone is known to 

result in significant chemical damage and consequently an expected unwinding of the 

hybridized oligonucleotide probes attached to the gold nanoparticles. This structural 

“swelling” of the DNA probes attached to gold nanoparticles upon peroxynitrite additions, 

combined with the efficient detection of subtle conformational changes using the localized 
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surface plasmon resonance (LSPR) are attributed to the observed changes in the SPR 

signal.

Conclusion. DNA-modified gold nanoparticles on SPR chips can be used to 

monitor the reactivity of peroxynitrite with the DNA double helix probes. The observed 

change in the SPR signal as a function of peroxynitrite concentration is due to structural 

changes of DNA probes induced by chemical damage combined with the efficient 

detection of conformational changes on gold nanoparticles taking advantage of efficient 

field confinement in localized surface plasmon resonance.

Specific Aim 4: Compare and Contrast SPR Results with Electrochemical Methods 

using the same DNA Sequences Immobilized on Electrode Surface.

Apparatus. All electrochemical measurements were performed using a CHI-440 

electrochemical workstation interfaced with a PC system.

Electrodes. Gold electrodes (CHI Inc.) were cleaned and polished before surface 

modification. Electrodes were hand-polished with 0.3- and 0.05-micron alumina slurries 

on a Buehler micro-cloth, followed by sonication for 15 min to ensure the elimination of 

the alumina particles from the surface before surface modification procedures. This 

procedure was repeated for each set of experiments.

Cell Setup. Standard glass multi-armed electrochemical cells were used. The 

cells were thoroughly rinsed with de-ionized water before use. The three electrodes 

consisted of the gold electrode as the working electrode, a platinum wire as an auxiliary 

electrode, and Ag/AgCl (3.0 M KCl) was used as the reference electrode.
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Electrochemical study of the interaction of peroxynitrite with DNA probes on 

electrodes. We next examined the interaction of peroxynitrite with immobilized DNA on 

gold electrodes using electrochemical means.

Surface modification procedures. DNA probes were immobilized on polished 

gold electrodes by casting a 10-ul drop of thiolated hybridized DNA on the gold electrode 

surface. The electrode is then covered and kept in a chamber with controlled moisture 

overnight to prevent evaporation and to allow enough time for the oligonucleotide to 

interact with the gold surface. After immobilization, the electrode is washed gently and 

stored until the time of electrochemical analysis.

Electrochemical investigation of the interaction of peroxynitrite with DNA probes 

immobilized on gold electrodes. The presence of immobilized DNA and the interaction of 

peroxynitrite with immobilized DNA are studied using electrochemically active species.

First, we take advantage of ferricyanide as a negatively charged reversible redox 

couple to monitor DNA immobilization on gold electrodes. The presence of negatively 

charged DNA probes on the electrode surface should repel ferricyanide from the electrode 

surface resulting in small or no reduction current of this redox probe. This is exactly what we 

observe in Figure 3.13. This figure shows the ferricyanide redox couple with a standard 

potential as expected at 0.2 V/Ag-AgCl55 on a bare gold electrode. The reduction and reverse 

oxidation currents are the result of direct electron exchange with the electrode surface. When 

thiolated DNA is immobilized on the same gold electrode, the redox couple disappears 

because the negatively charged DNA film prevents ferricyanide from reaching the electrode 

surface and undergoing direct electrochemical reduction.
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Figure 3.13. Cyclic voltammograms of 2.0 mM Ks[Fe (CN)s] at a bare gold electrode 
(black trace) and at the same electrode after immobilization of thiolated DNA (oligo# 1 
hybridized to its complementary sequence) (red trace) in phosphate buffer pH 7.4

In order to investigate the interaction of peroxynitrite with the selected DNA 

probes we examined the response of DNA-modified electrode in the presence of 

ferricyanide solution after exposure to various concentrations of peroxynitrite. To this 

end, we incubate the DNA-modified gold electrode in peroxynitrite at a given 

concentration for 20 minutes. The electrode is then washed with deionized water and 

buffer before it is immersed back into the test solution in the presence of ferricyanide.

Figure 3.14 shows the typical response of DNA immobilized gold electrode after 

exposure to peroxynitrite solution with increasing concentration. We observe that bathing the 

DNA-modified electrode in peroxynitrite solution with increasing concentration results in 

gradual recovery of the current of the ferricyanide redox probe. This behavior is not 

unexpected. In fact, the interaction of peroxynitrite with the immobilized DNA is expected 
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to result in chemical damage and unwinding of the DNA double helices within the DNA 

film immobilized on the electrode surface.

Figure 3.14. Cyclic voltammograms of 2.0 mM Ks[Fe (CN)6] at a DNA-modified 
electrode (oligo# 1 hybridized to its complementary sequence) in phosphate buffer pH 
7.4 after exposure to increasing peroxynitrite concentrations

The putative chemical damage induced by peroxynitrite opens the DNA film and 

introduces structural defects (Scheme 3.2). As a result, this allows the ferricyanide redox 

probe in solution to reach the electrode surface and undergo direct electrochemical 

reduction, which explains the gradual increase of the redox current.
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Scheme 3.2. Representations of DNA-modified electrodes before and after reaction with 
peroxynitrite (PON): (Top) Before incubation in PON solution. Ferricyanide redox 
probes (represented by yellow ovals) are repelled and not permitted to exchange electrons 
with the electrode surface. (Bottom) After exposure and incubation in PON solution. In 
this case ferricyanide can undergo direct electrochemical reduction with the electrode 
through film defects induced by chemical damage.

Analysis of ferricyanide’s reduction current increase as a function of the increase 

in PON concentration shows a linear relationship from 0.5 mM until 2 mM. This behavior 

is smilar to what we observe in SPR although the slope of the linear relationship of signal 

increase as function of PON concentration is higher for the SPR method.

We also noticed that this electrochemical method is not very sensitive for the low 

concentration of PON (500 uM or lower). We therefore explored another electrochemical 

method that rather relies on electrocatalysis at DNA-modified electrodes. We wanted to 

examine if the fact that this method is electrocatalytic in nature results in a method that is 

potentially more sensitive for lower concentrations of PON (lower that 500 uM). 

To this end, we called upon an aromatic redox probe, methylene blue, that is known to 

undergo reversible reduction in solution with a bare electrode according to the the equation 

in Scheme 3.3.
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Scheme 3.3. Electrochemical reduction of methylene blue to its reduced form. The 
reduction is electrochemically reversible.

Methylene blue is also well-known to intercalate between DNA bases. If 

hybridized oligonucleotides are immobilized on an electrode, the intercalated methylene 

blue redox probes are capable of exchanging electrons with the electrode surface through 

the attached DNA double helix ( -way), Scheme 3.4.

Scheme 3.4. Representation of a DNA-modified electrode with intercalated methylene 
blue (blue bars) at the top of the DNA film. This representation depicts the possible 
electron transfer through the aromatic bases of hybridized DNA

However this electrochemical current is expected to be very small since the

amount of redox probes (methylene blue) intercalated at the outside of the compact DNA 

film on the electrode is very small.
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Figure 3.15 shows the relative responses of the redox current of methylene blue 

in solution on a bare gold electrode (Red trace; redox couple at -0.2 V vs. Ag/Ag/Cl56). 

This is to be compared to the response of the limited amount of methylene blue 

intercalated at the outside of the compact DNA immobilized on the gold electrode.

Figure 3.15. Cyclic voltammograms of methylene blue in solution at a bare gold 
electrode (red trace) and at a DNA-modified electrode (DNA -modified electrode: oligo 
#1 hybridized to its complementary sequence) in phosphate buffer pH 7.4 after exposure 
to increasing peroxynitrite concentrations

When reduced, the intercalated methylene blue at the outside of the compact DNA 

layer is capable of transfering electrons to a proper redox active molecule in solution if that 

species is easier to reduce (i.e. has a more positive redox potential). Ferricyanide fits very 

well this requirement and has been used for this purpose in similar situations.57 In fact, as we 

showed earlier, ferricyanide’s redox potential is at +0.2 V vs. Ag/AgCl, which is about 400 

mV more positive than methylene blue. This situation makes the electron transfer from
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reduced methylene blue intercalated at the outside of the compact DNA film to the 

ferricyanide in solution thermodynamically feasible. Figure 3.16 shows a significant 

increase of the methylene blue reduction curent when we add 2 mM ferricyanide to the 

solution. The current increase is the result of an electrocalalytic process where the 

reduction of methylene blue through immobilized DNA layer is coupled to the reduction 

of ferricyanide as a freely diffusing redox probe, 58 as illustrated in Scheme 3.5.

Scheme 3.5. Representation of a DNA- modified electrode with intercalated methylene 
blue (blue bars) at the outside of the DNA film. The reduction of ferricyanide by 
intercalated reduced methylene blue drives an electrocatalytic process that result in a 
significant increase of current.

It is important to note that the negatively charged ferricyanide cannot enter the 

negatively charged DNA film and interacts with methylene blue only at the outside of the 

DNA layer. The electrocatalytic process (reduction of freely diffusing ferricyanide 

mediated by DNA-intercalated methylene blue) is manifested through a significant 

increase of the reduction current upon addition of ferricyanide.
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Figure 3.16. Cyclic voltammograms of methylene blue intercalated in immobilized DNA 
(DNA-modified electrode: oligo #1 hybridized to its complementary sequence) in 
phosphate buffer pH 7.4 (red trace). Response of the same electrode after addition of 2.0 
mM ferricyanide to the solution (black trace)

This electrocatalytic process with significant increase in current through 

intercalated methylene blue is only efficient if the immobilized DNA film maintains its 

structural integrity that makes electron transfer through its stacked aromatic bases possible. 

We therefore examined if we can use this system to monitor DNA damage induced by 

peroxynitrite.

Figure 3.17 shows that exposure to a peroxynitrite concentration as small as 500 

uM, results in almost complete collapse of the electrocatalytic current. This indicates that 

the catalytic efficiency driven by ferricyanide reduction in solution is tightly dependent on 

the strucural integrity of the immobilized DNA film where the mediator methylene blue is 

intercalated.
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Figure 3.17. Cyclic voltammograms of methylene blue intercalated in immobilized DNA 
(DNA-modified electrode: oligo #1 hybridized to its complementary sequence) in 
phosphate buffer pH 7.4 (blue trace). Response of the same electrode after addition of 2.0 
mM ferricyanide to the solution (red trace). Response of the same electrode after 
incubation in peroxynitrite solution with a concentration of 500 uM (black trace).
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CHAPTER IV 

CONCLUSIONS AND FUTURE PROSPECTS

The fact that the “ferricyanide/methylene blue/DNA” electrocatalytic system is 

significanlty sensitive to a concentraton of peroxynitrite as small as 500 uM, gives us a 

system to monitor DNA damage induced by very small concentrations of peroxynitrite. 

This is important if we want to study the very subtle structural changes in the DNA 

double helix after transient exposure to very small peroxynitrite concentration. On the 

other hand, the non catalytic simple ferricyanide system on immobilized DNA gives the 

possibility to monitor the effect of peroxynitrite-induced DNA damage at moderate 

concentrations above 500uM. The simple ferricyanide system exhibits a linear 

relationship between the peroxynitrite concentration used and the observed current 

increases as expected. This is similar to our observation using the change of SPR signal 

on the surface of gold nanoparticles in localized SPR (LSPR) mode.

In the future, we will explore the linear range of peroxynitrite concentration 

versus DNA damage at moderate (millimolar) concentrations for both SPR and the 

ferricyanide electrochemical system.
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We will also examine the effect of a range of lower concentrations (nanomolar to 

low micromolar) using the ferricyanide/methylene blue/DNA electrocatalytic system and 

compare it to the SPR method for the same range.

Finally, we plan to vary the nature of DNA sequences used (i.e. various G 

content) to make the immobilized DNA more suscepltible to oxidative reactivity with 

peroxynitrite. To this end, we will monitor how SPR and electrochemical methods 

compare in predicting the extent of DNA chemical damage induced by peroxynitrite.

51



REFERENCES

1. Caruso, F.; Furlong, D. N.; Rodda, E.; Haring, V., DNA binding and DNA 

hybridization on gold and derivatized surfaces. Elsevier 1997, 189-190.

2. Islam, B. u.; Habib, S.; Ahmad, P.; Allarakha, S.; Moinuddin; Ali, A., 

Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human 

Diseases: A special Focus on Ply(ADP-ribose) Polymerase (PARP). Indian 

Journal of Clinical Biochemistry 2014, 30 (4), 358-361.

3. Salgo, M. G.; Stone K Fau - Squadrito, G. L.; Squadrito Gl Fau - Battista, J. R.; 

Battista Jr Fau - Pryor, W. A.; Pryor, W. A., Peroxynitrite causes DNA nicks in 

plasmid pBR322. (0006-291X (Print)).

4. Douki, T.; Cadet, J., Peroxynitrite Mediated Oxidation of Purine Bases of 

Nucleosides and Isolated DNA. Free Radical Research 1996, 24 (5), 369-380.

5. Radi, R., Peroxynitrite, a stealthy biological oxidant. The Journal of biological 

chemistry 2013, 288 (37), 26464-26472.

6. Beckman, Joseph S. Beckman, Tanya W. Chen, Jun Marshall, Patricia A. Freeman, 

Bruce A. Proc Natl Acad Sci US A. 1990, 87, 1620-1624.

7. Bennia, S.; Milad, R.; Messaoudi, S.; de Person, M.; Moussa, F.; Abderrabba, M.; 

Merlet, D., Density Functional Theory based study on structural, vibrational and 

NMR properties of cis - trans fulleropyrrolidine mono-adducts. PloS one 2018, 13 

(11), e0207635-e0207635.

52



8. Bayachou, M.; Altawallbeh, G.; Kalil, H.; Bose, T.; Wojciechowski, S., Methods of 

Peroxynitrite Synthesis in the context of Development and Validation. Royal 

Society of Chemistry.

9. Pacher, P.; Beckman Js Fau - Liaudet, L.; Liaudet, L., Nitric oxide and peroxynitrite 

in health and disease. (0031-9333 (Print)).

10. Ischiropoulos, H.; Zhu L Fau - Beckman, J. S.; Beckman, J. S., Peroxynitrite 

formation from macrophage-derived nitric oxide. (0003-9861 (Print)).

11. Yermilov, V.; Rubio J Fau - Becchi, M.; Becchi M Fau - Friesen, M. D.; Friesen 

Md Fau - Pignatelli, B.; Pignatelli B Fau - Ohshima, H.; Ohshima, H., Formation 

of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. (0143­

3334 (Print)).

12. Szabo, C.; Ohshima, H., DNA damage induced by peroxynitrite: subsequent 

biological effects. (1089-8603 (Print)).

13. Groves, J. T.; Marla, S. S., Peroxynitrite-Induced DNA Strand Scission Mediated by 

a Manganese Porphyrin. Journal of the American Chemical Society 1995, 117 

(37), 9578-9579.

14. Yermilov, V.; Yoshie Y Fau - Rubio, J.; Rubio J Fau - Ohshima, H.; Ohshima, H., 

Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks 

and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by 

peroxynitrite. (0014-5793 (Print)).

15. Bonfoco, E.; Krainc D Fau - Ankarcrona, M.; Ankarcrona M Fau - Nicotera, P.; 

Nicotera P Fau - Lipton, S. A.; Lipton, S. A., Apoptosis and necrosis: two distinct

53



events induced, respectively, by mild and intense insults with N-methyl-D- 

aspartate or nitric oxide/superoxide in cortical cell cultures. (0027-8424 (Print)).

16. Lin, K. T.; Xue, J. Y.; Nomen, M.; Spur, B., Peroxynitrite -induced apoptosis in HL- 

60 cells. Journal of biological Chemistry 1990, 270, 16487-16490.

17. Burney, S.; Caulfield Jl Fau - Niles, J. C.; Niles Jc Fau - Wishnok, J. S.; Wishnok Js 

Fau - Tannenbaum, S. R.; Tannenbaum, S. R., The chemistry of DNA damage 

from nitric oxide and peroxynitrite. (0027-5107 (Print)).

18. Bonifazi, D.; Carloni Le Fau - Corvaglia, V.; Corvaglia V Fau - Delforge, A.; 

Delforge, A., Peptide nucleic acids in materials science. (1949-0968 (Electronic)).

19. D'Agata, R.; Spoto, G., Artificial DNA and surface plasmon resonance. (1949-0968 

(Electronic)).

20. Drummond, T. G.; Hill Mg Fau - Barton, J. K.; Barton, J. K., Electrochemical DNA 

sensors. (1087-0156 (Print)).

21. Oliveira Brett, A. M., Chapter 4 DNA-based biosensors. In Comprehensive 

Analytical Chemistry, Elsevier: 2005; Vol. 44, pp 179-208.

22. Arwin, H.; Lundstorm, I., Surface oriented optical methods for biomedical analysis. 

Methods Enzymol 1988, 137, 366-381.

23. Kukanskis, K.; Elkind J Fau - Melendez, J.; Melendez J Fau - Murphy, T.; Murphy 

T Fau - Miller, G.; Miller G Fau - Garner, H.; Garner, H., Detection of DNA 

hybridization using the TISPR-1 surface plasmon resonance biosensor. (0003­

2697 (Print)).

24. Sassolas, A.; Leca-Bouvier, B. D.; Blum, L. J., DNA Biosensors and Microarrays. 

Chemical Reviews 2008, 108 (1), 109-139.

54



25. Nimse, S. B.; Song, K.; Sonawane, M. D.; Sayyed, D. R.; Kim, T., Immobilization 

techniques for microarray: challenges and applications. (1424-8220 (Electronic)).

26. Lemeshko, S. V.; Powdrill T Fau - Belosludtsev, Y. Y.; Belosludtsev Yy Fau - 

Hogan, M.; Hogan, M., Oligonucleotides form a duplex with non-helical 

properties on a positively charged surface. (1362-4962 (Electronic)).

27. Wang, S. G.; Wang, R.; Sellin, P. J.; Zhang, Q., DNA biosensors based on self­

assembled carbon nanotubes. Biochemical and Biophysical Research 

Communications 2004, 325 (4), 1433-1437.

28. Lee Ty Fau - Shim, Y. B.; Shim, Y. B., Direct DNA hybridization detection based 

on the oligonucleotide-functionalized conductive polymer. (0003-2700 (Print)).

29. Dupont-Filliard, A.; Roget, A.; Livache, T.; Billon, M., Reversible oligonucleotide 

immobilisation based on biotinylated polypyrrole film. Analytica Chimica Acta 

2001, 449 (1), 45-50.

30. Conzone, S. D.; Pantano, C. G., Glass slides to DNA microarrays. Materials Today 

2004, 7 (3), 20-26.

31. Pan, S.; Rothberg, L., Chemical Control of Electrode Functionalization for 

Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy. 

Langmuir 2005, 21 (3), 1022-1027.

32. Derda, R.; Wherritt, D. J.; Kiessling, L. L., Solid-phase synthesis of alkanethiols for 

the preparation of self-assembled monolayers. Langmuir : the ACS journal of 

surfaces and colloids 2007, 23 (22), 11164-11167.

33. Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, 

G.; Rubert, A. A.; Salvarezza, R. C., The Chemistry of the Sulfur-Gold Interface: 

55



In Search of a Unified Model. Accounts of Chemical Research 2012, 45 (8), 1183­

1192.

34. Widrig, C. A.; Chung, C.; Porter, M. D., The electrochemical desorption of n­

alkanethiol monolayers from polycrystalline Au and Ag electrodes. Journal of 

Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 310 (1), 335­

359.

35. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of 

oleophobic mixed monolayers on solid surfaces. Journal of the American 

Chemical Society 1980, 102 (1), 92-98.

36. Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H., Fundamental studies of the 

chemisorption of organosulfur compounds on gold(111). Implications for 

molecular self-assembly on gold surfaces. Journal of the American Chemical 

Society 1987, 109 (3), 733-740.

37. Lu, Z.; Li, C. M.; Zhou, Q.; Bao, Q.-L.; Cui, X., Covalently linked DNA/protein 

multilayered film for controlled DNA release. Journal of Colloid and Interface 

Science 2007, 314 (1), 80-88.

38. Elsholz, B.; Wörl, R.; Blohm, L.; Albers, J.; Feucht, H.; Grunwald, T.; Jürgen, B.; 

Schweder, T.; Hintsche, R., Automated Detection and Quantitation of Bacterial 

RNA by Using Electrical Microarrays. Analytical Chemistry 2006, 78 (14), 4794­

4802.

39. Wirde, M.; Gelius, U., Self-Assembled Monolayers of Cystamine and Cysteamine 

on Gold Studied by XPS and Voltametry. Langmuir 1999, 15, 6370-6378.

56



40. Jeitner, T. M.; Pinto, J. T.; Cooper, A. J. L., Cystamine and cysteamine as inhibitors 

of transglutaminase activity in vivo. Bioscience reports 2018, 38 (5), 

BSR20180691.

41. Li, F.; Zhang, H.; Dever, B.; Li, X.-F.; Le, X. C., Thermal Stability of DNA 

Functionalized Gold Nanoparticles. Bioconjugate Chemistry 2013, 24 (11), 1790­

1797.

42. Wilchek, M.; Bayer, E. A., The avidin-biotin complex in bioanalytical applications. 

Analytical Biochemistry 1988, 171 (1), 1-32.

43. Chivers, C. E.; Koner, A. L.; Lowe, E. D.; Howarth, M., How the biotin-streptavidin 

interaction was made even stronger: investigation via crystallography and a 

chimaeric tetramer. The Biochemical  journal 2011, 435 (1), 55-63.

44. Duggan, D. J.; Bittner M Fau - Chen, Y.; Chen Y Fau - Meltzer, P.; Meltzer P Fau - 

Trent, J. M.; Trent, J. M., Expression profiling using cDNA microarrays. (1061­

4036 (Print)).

45. Drescher, D. G.; Ramakrishnan, N. A.; Drescher, M. J., Surface plasmon resonance 

(SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. 

Methods in molecular biology (Clifton, N.J.) 2009, 493, 323-343.

46. Oliverio, M.; Perotto, S.; Messina, G. C.; Lovato, L.; De Angelis, F., Chemical 

Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, 

Strategies, and Costs. ACS applied materials & interfaces 2017, 9 (35), 29394­

29411.

47. Goode, J. A.; Rushworth, J. V. H.; Millner, P. A., Biosensor Regeneration: A Review of 

Common Techniques and Outcomes. Langmuir 2015, 31 (23), 6267-6276.

57



48. Boon, E. M.; Salas Je Fau - Barton, J. K.; Barton, J. K., An electrical probe of 

protein-DNA interactions on DNA-modified surfaces. (1087-0156 (Print)).

49. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; 

Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of 

Chemical Education 2018, 95 (2), 197-206.

50. Salim, H. A. Modified Electrodes with Grafted DNA and Oligonucleotides for 

Detection and Quantification of Peroxynitrite. Cleveland State University, 2016.

51. Mabbott, G. A., An introduction to cyclic voltammetry. Journal of Chemical 

Education 1983, 60 (9), 697.

52. Rashid, J. I. A.; Yusof, N. A., The strategies of DNA immobilization and hybridization 

detection mechanism in the construction of electrochemical DNA sensor: A review.

Sensing and Bio-Sensing Research 2017, 16, 19-31.

53. Wang, Q.; Zhang, B.; Lin, X.; Weng, W., Hybridization biosensor based on the 

covalent immobilization of probe DNA on chitosan-mutiwalled carbon nanotubes 

nanocomposite by using glutaraldehyde as an arm linker. Sensors and Actuators 

B: Chemical 2011, 156 (2), 599-605.

54. Bhatt, N.; Huang Pj Fau - Dave, N.; Dave N Fau - Liu, J.; Liu, J., Dissociation and 

degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic 

solvents. (1520-5827 (Electronic)).

55. Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U., Hampering of the 

Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes 

during Electrochemical Impedance Spectroscopy. Analytical chemistry 2015, 88.

58



56. Kelley, S. O.; Barton, J. K.; Jackson, N. M.; Hill, M. G., Electrochemistry of 

Methylene Blue Bound to a DNA-Modified Electrode. Bioconjugate Chemistry 

1997, 8 (1), 31-37.

57. Boon, E. M.; Barton, J. K.; Bhagat, V.; Nersissian, M.; Wang, W.; Hill, M. G., 

Reduction of Ferricyanide by Methylene Blue at a DNA-Modified Rotating-Disk 

Electrode. Langmuir 2003, 79 (22), 9255-9259.

58. Liu, T.; Barton, J. K., DNA Electrochemistry through the Base Pairs Not the 

Sugar-Phosphate Backbone. Journal of the American Chemical Society 2005, 127 

(29), 10160-10161.

59


	Development of An Spr Method To Monitor the Chemical Interaction of Dna With A Small Reactive Molecule: Peroxynitrite As An Example
	Recommended Citation

	tmp.1649706953.pdf.k9rBW

