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DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK SOFTWARE AND
MODELS FOR ENGINEERING MATERIALS.
ABDALLAH F. BSEISO
ABSTRACT

Artificial Neural Network (ANN), which is inspired by biological neural networks
in the human brain, is one important tool of machine learning that creates artificial
intelligence through computational systems. The creation of this intelligence is
contingent on learning from available data regarding a specific subject. Although
machine learning, in general, has profuse applications in most scientific disciplines, yet
few have been developed in civil engineering due to the required time consuming and
demanding programming. In order to minimize this, intelligible ANN software has been
developed in this research capable of training networks with any number of hidden layers
and nodes for each layer. Furthermore, two models have been created to demonstrate the
robust applications of ANN. The first application involves a simulation of the strain-
temperature behavior of a shape memory alloy (SMA) under thermal cycling. In the
second case, the bond strength between the concrete and the steel-reinforced bars is
predicted considering the effects of steel corrosion level, concrete compressive strength,
and concrete cover. Java programming language was used in developing the ANN
software and a simple graphical user interface (GUI) has been designed, allowing the user
to control the inputs and the training progress, make predictions and save the outputs. In
this study, the ANN models were developed with different structures and activation
functions to prove the ANN eminent idiosyncrasy of modeling data from different fields.

Comparison is made between these models as well as models created by statistical

v



regression and other models available in the literature. The developed software can
efficiently train ANNs with any structure, as less time is needed to develop one ANN
using the software than using programming methods. Moreover, the user will have the
option to save the weights and the biases at any iteration and predict responses for the
currently trained or previously trained ANN. The model predicted results can be saved or
exported as an excel file. In terms of the created models, ANN can capture highly
complicated relationships accurately and effectively compared to traditional modeling

methods. Based on that, more accurate predictions are expected using ANN.
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CHAPTER 1
INTRODUCTION
ANN is a computational algorithm that consists of a number of neurons
communicating with each other based on a predetermined system. This algorithm is
capable of learning from available data regarding a specific subject, thus, forming an
artificial intelligence which can make decisions and predictions, not just following a set
of instructions made by the programmer. The power of ANN lies in accurately simulating
the convoluted relationships and patterns in an enormous amount of training data.
Therefore, a wide range of ANN applications has been developed in the last decade in
various fields including medicine, economics, management, and engineering (Wu et al.

2018).

The structure of the ANN consists of parallel layers, one input layer, one output
layer, and at least one hidden layer. Each layer has a specific number of neurons activated
with a certain function (Wu et al. 2018). The performance, accuracy and required training
time of the ANN are affected by the design of its structure, i.e., the number of hidden
layers, the neurons in each layer, and the activation function. Whiles increasing the
number of hidden layers and neurons generally increases the ANN’s ability to capture the

patterns and relationships between the different parameters in the training data, it



increases the complexity of the ANN structure (Kavzoglu 1999). A more complex
structure goes hand in hand with more training time, which has more significant effects
on training massive data. In addition, ANN with complex structure could cause
overfitting in which the ANN gives accurate predictions only for the training data but
contrary for any other datapoint outside the training data. Moreover, the activation
function of the hidden layers also has huge effects on the performance of the ANN (in
terms of the training process and the output). Thus, the ANN structure should be chosen
judiciously to maintain the required accuracy of the ANN while having the least training
time possible. It is worth knowing that after a certain optimized point, increasing the

structural complexity may cause a negative or no effect on the ANN accuracy.

In order to demonstrate the wide range of applications of ANN in different fields,
two ANN models have been developed in this study in different applications. The first
ANN model developed in this study is the strain model for the cyclic behavior of a
55NiTi shape memory alloy material subjected to isobaric thermal cycles. The strain
magnitude and the actuation character of the material are affected by the applied stress,
cycle number, and temperature. The purpose of this model is to accurately predict the
strain behavior of SMA under thermal cycling instead of the several micromechanical
and phenomenological constitutive models that have been formulated previously in
literature (Cisse et al. 2016; Khandelwal et al. 2009; Lagoudas et al. 2006; Saleeb et al.
2011; Owusu-Danquah et al. 2017). In addition, the ANN model aims to simulate the
strain behavior with a small number of equations despite the convoluted patterns in the
data while other models from literature consist of a significant and unwieldy number of

equations. Furthermore, the ANN model has another advantage of predicting the strain



behavior of upper thermal cycles, which is very important as SMAs under real-life
applications are subjected to heating and cooling for an enormous number of cycles.
Finally, the ANN model aims to predict the SMA strain behavior under new stresses. The
second model simulates the bond strength between steel rebars and concrete. Since
conducting the pullout test under every possible condition is not feasible, this model aims
to predict the bond strength at any values of corrosion level, concrete cover, and concrete
compressive strength. Moreover, this ANN bond strength model is compared with
nonlinear regression and previously developed models in literature to attest to the ANN

superiority over other conventional modeling methods.

This study, which explores two different applications of ANN in engineering
materials, has some limitations as a consequence of the available experimental data.
Starting with the bond strength model, it only accounts for the effects of 3 factors
(corrosion level, concrete cover, and concrete compressive strength), while other factors,
such as the embedment length and the bar diameter, also affects the value of the bond
strength. Moreover, the available experimental data is limited to 90 specimens which
could affect the accuracy of the model as increasing the size of the training data set
increases the accuracy of the ANN unless the extra data is doesn’t have any significant
effect (as might be experimentally observed). Regarding the SMA model, separate ANN
is trained for each stress of the 4 stresses, that are available in the experimental data, to
generate accurate models. Furthermore, the ANN is used to predict the strain behavior of
upper cycles, from 101st to 200th, without consideration of fatigue failure which may

occur during these cycles.



Currently, many obstacles hinder developing various ANN applications in many
fields, especially civil engineering (Silva et al. 2017). To begin with, the process of
designing the ANN and identifying the most adequate structure requires a huge amount
of time and effort due to the lack of rules in this process and its reliance on trying
different structures, then selecting the best one. For each trial, a new programming code
must be built before training the ANN once more, then compare the results with other
trials. Moreover, the paucity of required ANN programming skills by researchers and
professionals in many disciplines impels them to use other methods. In order to overcome
these challenges, ANN software has been developed in this research that can be used on
any PC computer. The software consists of interactive windows allowing the user to train
any ANN easily without writing any piece of code. In addition, changing the structure of
the ANN can be done with few clicks which makes the process of identifying the best

structure more facile.



CHAPTER 11
ANN SOFTWARE

2.1 Methodology

The procedure of building any computer software starts with identifying the main
purposes of that program and the tasks it is going to perform, then the most compatible
environment and programming language are chosen. The ANN software designed in this
research aims to build, train and predict different ANNs by ordinary computer users
through simple and typical buttons, frames, windows, text fields, and files. Therefore,
Windows operating system was selected to be the environment for the software as it is
the most installed operating system on personal computers and the vast majority of
computer users are familiar with it. The software was developed using Java programming
language due to its convenience in creating a simple and flexible graphical user interface
with Java Core Libraries. This language is also used by other operating systems which
makes translating the software to other environments more feasible including other
platforms such as android smartphones. The GUI of the software consists of three main
sections which can be navigated between using the tab bar at the top. The first section is

used for training new ANN while the second section is for predicting values using the



ANN under training in the first section. However, the third section is responsible for
prediction in case there is already established or previously trained ANN.

The interface of the training section consists of 8 buttons, 2 text fields, 1 spinner,
3 checkboxes, 1 drop list, and 5 text labels. The spinner is responsible for identifying the
number of hidden layers while the number of nodes in each layer is identified by clicking
on “Enter number of nodes” button which opens a small dialog as many times as the total
number of layers allowing the user to enter the number of nodes in a text field. The
training data is divided into two groups, the input data, and the target data, each group is
imported from a separate excel file using different buttons, the input data is stored in a
two-dimensional array in the memory called “x” while the output data is stored in a one-
dimensional array called “y”. The 2 checkboxes and the 2 text fields determine when the
training process will stop. The user can choose to end the training at one of the following
4 cases; (1) at a certain number of iterations, (i1) if the mean square error is less than a
certain value, (iii)whatever comes first of the previous two conditions or (iv) it never
stops automatically but rather decided by the user. The training process begins by
clicking on the “Start” button constructing a new object of the Training class and passing
the stored variables of the ANN structure and training data into this object. The training
object creates a new thread which handles the training process in the background
allowing the interface of the software to stay functional. Initially, the software generates
random values between 0.005 and 0.035 for the weights and the biases storing them in a
three- dimensional array for the weights and a two-dimensional array for the biases. The
first index of these arrays indicates the node number while the second index indicates the

layer number. The third index in the weight array indicates the node number in the



previous layer that the weight is multiplied with. The training process aims to minimize
the square error function, which is the average square difference between the predicted
and the target outputs of the training data, by calculating the derivative of this function in
respect to each weight or bias and then update this weight or bias by subtracting the
derivative value from it. Before starting this process, since calculating each one of these
derivatives depends primarily on the ANN structure, a five-dimensional array is formed
which indicates the number of terms in each derivative and which weights or nodes are
multiplied in each term. The first three indexes in this array are used to identify which
weight the derivative is for. The fourth index is for the term number in the derivative
while the fifth index indicates the weights or nodes that are multiplied in each term to
calculate the derivative. At the beginning of each iteration, all the derivatives are
calculated based on the updated weights and biases from the previous iteration and then
the weights and the biases are updated once again. At the end of each iteration, the mean
square error is calculated and displayed with the iteration number on the interface using 2

text labels during the training process.

The second section of the software aims to make predictions using the ANN
under training in the first section. For instance, the user can pause the training at any time
and make predictions to evaluate the training progress. The ANN parameters, such as
number of layers and last updated weights and biases, are obtained from the training
section. The inputs, which the user wants to predict for, can either be one point or
multiple points. If the first option was chosen, a small dialog will pop up asking the user
to enter the inputs which the point consists of. The output, in this case, is just one value

displayed by the text label on the GUIL. However, predicting for multiple points requires






through the first four components. The number of hidden layers is defined using
component (1), which is a spinner, and its value must be no less than 1. After clicking on
component (2), a small dialog will pop up (see Figure 3) multiple times allowing the user
to enter the number of nodes at each layer in this order, input layer, hidden layers, and
lastly the output layer. In the current version, the software supports only one node for the
output layer. Component (3) opens a new file explorer window (see Figure 4) allowing
the user to choose the excel file for the input data. Component (4) serves the same
function as component (3) but for the target data. Excel files should only contain
numerical data with no headings or texts. Each row in the input file presents a separate
point (sample) and correlates with the same row in the target file. Therefore, the number
of rows in the input and target excel files must be the same. On the other hand, each
column in the input file correlates with one input variable, so the number of columns

must be the same as the number of nodes in the input layer.












components (1) and (2), either predicting for one point or multiple points. If the earlier
option (1) is chosen, the inputs (or variables) for the point must be entered one at a time
in a small dialog which will open as many times as the number of nodes in the input layer
after clicking on “Enter point” button. However, predicting for multiple points requires
importing the inputs as an excel file in which each row represents one point (sample), and
each column represents one input (variable) in the input layer. This excel file can be
chosen using file explorer which opens after clicking on “Import points” button. After
identifying the inputs using either component (1) or (2), component (3) is clicked to
perform the mathematical calculations in the background and display the result in the text
label in component (4). If the predictions are made for multiple points, the outputs can be
stored in an excel file that consists of one column, as the output layer has only one node

and as many rows as the number of points (samples) in the input file.
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CHAPTER III
SHAPE MEMORY ALLOY STRAIN MODEL

3.1 Introduction

Many studies have been conducted on 55NiTi shape memory alloy, composed of
55 wt% nickel. These studies investigate the application and control of their useful
thermo-mechanical properties in the fields of energy and actuation. Shape memory effect
and superelasticity are the two main distinctive characteristics which make the S5NiTi
adequate to be used efficiently in various fields of engineering. NiTi, as all other shape
memory alloys (SMAs), demonstrate the ability to recover huge strains when heated from
the martensitic phase to the austenitic phase returning to its initial shape, this ability is
called one-way shape memory effect (OWSME). Additionally, SMA can be trained to
recover its martensitic shape when cooled from the austenitic phase to the martensitic
phase having two-way shape memory effect (TWSME). Superelasticity is the material’s
ability to recover from relatively high strains spontaneously when the stress is removed
isothermally. Due to these and other properties, NiTi has been used in a wide range of
applications including thermal and electrical actuators, medical devices and orthopedic
implants, intelligent reinforced concrete (IRC) with a self-rehabilitation ability of small

cracks, heating and cooling devices, and many other applications (Tang et al. 2012;
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Nemat-Nasser et al. 2005; Chang et al. 2001; Wada et al. 2008; Huang et al. 2010;

Otsuka et al. 1999; Song et al. 2006).

Several SMA applications include heating and cooling the SMAs periodically or
occasionally. For instance, an air conditioning device was developed by Kirsch et al.
(2017) based on the electrocaloric cooling effect of SMAs. Recent studies have
demonstrated that the SMAs exhibit thermal hysteresis when subjected to
mechanical/thermal loads (Ortin et al. 2006). This effect can clearly be observed in the
continuous change in the SMAs strain values with each cycle of heating and cooling
under constant stress. Many experiments illustrate that increasing the number of heating
and cooling cycles leads to a gradual increase in the strain values. This increase in strain
values per cycle reduces gradually, thus, it is relatively significant for early cycles in
comparison to upper cycles (Padula et al. 2012). Additionally, thermal cycling also
affects the thermal transformation temperatures, i.e., martensite finish (Mf), martensite
start (Ms), austenite start (As), and austenite finish (Af), from martensitic phase to
austenitic phase and vice versa. Moreover, during the thermal cycling, SMAs stain
behavior and thermal transformation temperatures are affected by the maximum
temperature at each cycle and the applied stress (Padula et al. 2008). Data from literature
for S5NiTi strain-temperature relationship for 100 heating and cooling cycles with 165C

maximum temperature is used to build Artificial Neural Network (ANN) models.

Modeling the material behavior provides an approach to describe this behavior
mathematically through one set of equation(s). Initially, experiments are conducted to
study the material behavior under different conditions, and based on this experimental

data, models are developed. The significance of modeling is to be able to predict the
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material behavior under conditions out of the experimental data since performing
experiments on all the possible conditions is unachievable and experiments are time
consuming or expensive procedures. For instance, modeling S5NiTi strain behavior under
thermal cycling is used to predict strains that were not experimentally recorded at
corresponding temperatures. Therefore, these models are essential for various
applications, e.g., being the core of developing computer software capable of simulating
the characteristics of the materials (Gu et al. 2015). Due to the complexity of the
relationship between the 55NiTi strains and the four independent variables (temperature,
cycle number, cycle state, and applied stress), using traditional regression modeling
methods is insufficient as a large number of equations will be needed in that case to
generate the model (which will likely be inaccurate). On the other hand, ANN captures
relatively more scrupulous relationships with feasible equations (Ghaboussi et al. 1991).
Consequently, this study demonstrates an application of ANN to develop accurate models

that captures the strain behavior of S5NiTi as a function of four major factors, i.e.,

temperature, cycle state (heating or cooling), cycle number, and stress.

3.2 Methodology
3.2.1 Experimental Observation

The available experimental data for a 55NiTi rod, which was subjected to 50, 80,
150, and 300 MPa stresses, was used for the model development, testing, and validation.
The strains are measured at every second for 100 cycles of heating and cooling. Each
cycle starts with heating the material from 30°C to 165°C, and then the cycle ends with

cooling the material back to 30°C. For both states of heating and cooling at a certain

temperature, as the cycle number increases the strain value increases as well. This
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increase is not proportional; the strain difference between two following cycles (often
called open-loop strains) reduces gradually as the number of cycles increase. Each
heating cycle consists of 3 stages. In the first stage, the strain value is subjected to a very
small decline as the temperature increases. In the second stage, a huge drop in the strain
value occurs in a small period of time and a small interval of temperature compared to the
two other stages. Finally, the strain behaves as almost constant with a small change in its
value. Similarly, each cooling cycle consists of 3 stages. The strain change is very small

in the first and third stages, while a relatively huge increase occurs in the second stage.

3.2.2 Artificial Neural Network Modeling Architecture

The artificial neural network (ANN) structure consists of one input layer, two
hidden layers, and one output layer. Each layer has a different number of neurons to
achieve its main role. For the input layer, the number of neurons depends on the number
of factors affecting the strain value, i.e., temperature ( 7 ), cycle number ( 1), cycle state
(heating or cooling), and the stress ( s ). Instead of using 4 neurons, one for each factor,
the number of neurons is reduced to 3 by representing the cycle state using the
temperature sign, positive for heating and negative for cooling. For the two hidden layers,
the number of neurons should provide enough complexity to the ANN, so it could learn
the patterns in the training data. After trying different numbers of neurons for the hidden
layers, the best choice of using 6 neurons for the first one and 4 neurons for the second
provided more accurate predictions than other ANN structures. The output layer consists

of one neuron, which is the strain value.

19


















2w 2.15678 -0.03297 -1.94983 -2.50866 0.72057
2wy 3.05178 1.24222 -0.10513 0.33194 -0.72056
Zwos 0.34515 1.83317 8.21398 4.45276 0.56547
Zwae 1.39660 1.96141 8.12789 2.61818 3.94939
w3 8.40351 2.13192 8.54794 1.77017 1.45934
w3z -1.41622 -0.08574 3.13570 2.35603 5.41102
2wis 1.86853 0.08554 3.60782 1.67790 0.76862
2w3q 3.56511 2.47275 3.48072 1.97095 1.55386
2w3s 1.37001 -0.09227 1.07028 2.82865 0.89959
2w3e 0.55551 5.24740 0.60549 6.72323 -0.80066
Zwa 0.31142 -2.19311 0.04385 5.07935 5.25910
Zwan 1.36442 9.85286 3.33441 1.17788 2.22510
2w 5.26412 -2.82527 1.86138 4.70952 5.77771
2way 0.67559 -0.55042 2.52765 4.82321 0.59066
Zwas 10.97443 12.32908 0.74921 2.38528 3.83009
2wae -3.02307 -2.55858 0.93826 2.77030 -3.73091
Swi 7.10065 8.97381 3.02368 3.14147 2.97071
3w 2.53550 2.54267 3.40585 2.65801 5.50398
Swi 3.41577 3.25841 6.97607 4.50101 3.69948
3wy 3.08513 2.82804 2.73942 7.53351 4.25681
5 8.94156 0.06486 0.13499 -0.36069 0.63191
15, 0.36763 8.08809 -0.86309 1.34998 -7.96668
b3 -1.35945 -4.66698 -0.30894 -0.04311 13.22931
by -1.35663 0.13085 0.04793 -0.08622 -4.53917
1bs 7.86832 5.09420 2.73973 0.85542 -3.26913
b 1.25369 -1.98060 4.04143 -0.61637 11.81353
2py -6.73639 -8.98108 -6.51384 -13.48302 -12.32539
2py -4.97765 -5.06764 -10.72059 -11.14069 -7.75558
2ps -7.45550 -4.58758 -9.18573 -6.53610 -8.07759
2py -7.52931 -14.18184 -8.64630 -5.46621 -7.93253
3h -9.56057 -8.70069 -3.37480 -0.80655 -3.90613

In order to emphasize the individual ANN model’s capability of predicting the
strain behavior, a comparison was made in Figure 9 between the experimental and the
ANN predicted strain at martensite (em), 1.€., the strain at the beginning of the cycle) and
at 165°C austenite () for the first 100 cycles. For 50, 80, 150, and 300MPa stresses, the
maximum differences between the experimental and the predicted en are 0.22, 0.23, 0.4,
and 0.48%, respectively, occurring in the 2™ cycle. Similarly, the maximum differences

for e also occur in the 2" cycle having the values of 0.11, 0.07, 0.19, and 0.62%,

25


















CHAPTER 1V
REINFORCED CONCRETE BOND STRENGTH MODEL

4.1 Introduction

The bond strength of a reinforced concrete (RC) describes the ability to transfer
the axial force from the reinforcement steel to the surrounding concrete effectively with
no or very small slip. Friction and adhesion, which primarily depend on the materials’
properties, are the two main factors that influence bond strength. Many experiments have
been conducted in order to form an understanding of the different factors affecting the
value of the bond strength and how this strength can be estimated (Juarez et al. 2011,
Hong et al. 2012; Cheng et al. 2018; Dancygier et al. 2010; Lachemi et al. 2009; et al.

Zhao 2013).

According to previous studies, the dominant factors are corrosion level, concrete
compressive strength, and concrete cover. Fang et al. (2004) reported that the effects of
corrosion level on bond strength differ can be presented in two main stages. During the
first stage, which ends with a corrosion level between 2% and 4%, increasing the
corrosion level comes hand in hand with a relatively small increase in the bond strength.
On the other hand, a dramatic decrease in the bond strength occurs in the second stage

when the corrosion level increases to be more than 4%. Lan Chung et al. (2008)
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compressive strength. These models were built on pullout test results conducted on 90
exclusive specimens, that there had no two identical specimens in the aspects of concrete
compressive strength, concrete cover, and corrosion level. These test results from
Yalciner et al. (2012) are also used in this research as a training dataset in building ANN

models.

The ANN captures the patterns in the training dataset accurately and creates more
adequate models than other methods such as regression; it also provides practical
equations in terms of number and complexity (Basheer et al. 2000; Gonzalez-Fernandez
et al. 2019). Therefore, ANN was developed as a function of three key factors, i.e.,
corrosion level (from 0% to 20%), compressive strength (from 23 to 51 MPa), and
concrete cover (ranging between 15 and 45mm). Since the degree of accuracy of an ANN
model is influenced by the choice of activation function, two non-linear activation
functions: Rectified Linear unit (ReLu) and Sigmoid were compared. Moreover,
statistical regression, non-linear and linear equations were also derived, and their results

were compared with the ANN model.

4.2 Methodology
4.2.1 Experimental Observation

The formulation and capability of the generalized ANN equations are dependent
on the accuracy of the set of training data points used. In this study, the ANN model is
developed using the experimental results from the tensile pullout tests on 90 different
specimens (Yalciner et al. 2012). These specimens had varying levels of corrosion,
magnitudes of concrete compressive strengths, and cover values, but the same bond

length of SOmm. In the model development, the training points were randomly selected to
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predictability. Other important features such as training time and the number of iterations
can also be used. As shown in Table 2, the values of J and R? from the two functions were
very close, with a small difference in favor of the ANN(ReLU). The training dataset used
consisted of 63 corroded samples, hence the training time for ANN(ReLU) and

ANN(sigmoid) is relatively small.

Table 2. ANN(ReLLU) and ANN(sigmoid) comparison.

ANN J R? training time (s) # of iterations
ANN(ReLU) 2.4099 96.89% 42 642528
ANN(sigmoid) 28762 96.28% 17 353406

The experimental and model-predicted bond strength values for the corroded
specimens are shown in Table 3. All these samples differed in the level of corrosion
(which was the predominant factor affecting the bond strength values). It is seen that
several of the ANN-predicted values closely matched that of the experiment. Figure 17
shows a relationship between the bond strength and corrosion for the model and
counterpart experiment for the case of 23 MPa under different concrete covers. To put the
predictive capability of the present ANN models in the right perspective, these values are
also shown against the predictions from other analytical models in the literature as well as
the nonlinear regression model (developed in the present study). It is seen that the new
ANN models can characterize the non-monotonic variation of the bond strength with
corrosion. For corrosion levels lesser than 3% in Figure 17a (when the concrete cover
was 15 mm), the ANN and the nonlinear regression models predicted higher values than

those observed in the experiment. Meanwhile, for the cases of 30 and 45 mm covers (in
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Figure 17b and ¢, respectively), the ANN(ReLU) results were very close to that of the

test in the lesser levels of corrosion.

Table 3. Experimental and ANN(ReLU) predicted values of the bond strength for all

specimens.
Sample # Exp%rimental plsgg?cile d  Eror Sample # Experimental  Predicted Error
ond bond bond
bond

1 112 12355 0.2427 37 223 2245867  0.1587
2 11.7 12.0359  0.1295 38 224 22.26873 0.1313
3 13 12.0359  0.3295 39 21.7 21.64712  0.0529
4 13 12.0359  0.8071 40 21.5 2130086  0.1991
5 12.2 11.56637 0.9567 41 18.5 17.80152  0.6985
6 12.2 11.53337 0.5481 42 7.5 7.887259  0.3873
7 32 6.185662 1.3075 43 6.8 7.735134 09351
8 3.7 3.124296 1.4293 44 6.3 6.411523 0.1115
9 3 3.124296  1.7800 45 8 4169759  3.8302
10 2.1 0.626943  3.2476 46 35 3.762816  0.2628
11 2 0.602354 19012 47 35 3.709894  0.2099
12 43 0.187164 1.6363 48 3 2.556746  0.4433
13 18 18.2427  0.2427 49 23.8 2523418 1.4342
14 179 18.02951 0.1295 50 3.9 2488822  20.988
15 17 16.67051 0.3295 51 235 23.87853 0.3785
16 169 16.09286 0.8071 52 234 23.87853 0.4785
17 9.6 8.643265 0.9567 53 14 15.56505 1.5650
18 8.9 8.351876  0.5481 54 13.8 15.42246 1.6225
19 3.7 5.007476  1.3075 55 42 5.391433 1.1914
20 33 4.72929  1.4293 56 1.7 4795316  3.0933
21 55 3.719972  1.7800 57 6.2 4.426547 1.7735
22 6.5 3.252414 3.2476 58 2.4 3.837141 1.4371
23 2.1 0.198776 19012 59 59 1.135742  4.7643
24 1.8 0.163669 1.6363 60 31.6 30.58958 1.0104
25 189 19.28386  0.3838 61 26.2 30.17019  3.9702
26 179 19.13333  1.2333 62 26.9 30.17019  3.2702
27 18 19.13333  1.1333 63 31.7 30.17019 1.5298
28 19.1 19.0585  0.0414 64 31 29.34859 1.6514
29 183 17.9706  0.3294 63 30.8 29.21385 1.5861
30 18.2 17.69113  0.5088 66 7.6 8.014906  0.4149
31 13.7 1334227 03577 67 6.1 6.420102  0.3201
32 134 12.87994  0.5200 68 3.9 3.453329  0.4467
33 124 8.742726  3.6572 69 3.4 3.20548 0.1945
34 1.3 4.544842 3.2448 70 3.0 2900367  0.0996

35 1.3 4.544842 3.2448

36 3.2 2.249964  0.9500
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CHAPTER V
CONCLUSION
The ANN software utilizes a predetermined algorithm to create ANN that

simulates the relationships between the input and target data. This algorithm dwindles the
difference between the target data and the ANN outputs to the least possible value.
However, in order to create the optimum ANN, many processes and decisions, which this
algorithm cannot handle, must be made by the user. For instance, the most suitable
activation function, which provides a more accurate model is contingent on the nature of
the training data. In the present study, the ReLU activation function was associated with
more accurate predictions than the Sigmoid function for the bond strength model, while

the opposite is true for the SMA model.

Second, the percentage of the data used in the training process, which should
include all the patterns that the ANN aims to capture, depends on how illustrative this
percentage is. For example, for the bond strength model, reducing the training percentage
below 90% would affect the ANN model negatively, while for the SMA model, only 37%
of the data was used in the training process, and increasing this percentage does not

improve the model.
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The bond strength models created in chapter 4 reveal the superiority of ANN over
conventional methods (linear and non-linear regression) utilized previously in literature
by several researchers. In the non-linear regression model, the effect of each factor on the
bond strength is assumed to be independent, which is the opposite of what the experiment
suggests, so increasing the concrete cover would decrease the bond strength regardless of
the corrosion level value. On the other hand, the ANN model takes the effect of each
factor to be dependent so the cover effect at low corrosion level is completely different

from its effect at high corrosion level.

The ANN was applied on two completely different areas (reinforced-concrete and
SMA) and generated accurate models since the ANN bond strength model and SMA
model have proved their superiority to nonlinear regression and other models created in
literature. This confirms the capabilities of ANN as a powerful tool leading to relatively

simple yet accurate models in various fields.
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