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HOLOMORPHIC EMBEDDED LOAD FLOW METHOD'S APPLICATION ON

THREE-PHASE DISTRIBUTION SYSTEM WITH UNBALANCED 

WYE-CONNECTED LOADS

NITIN GUPTA

ABSTRACT

With increasing load and aging grid infrastructure, an accurate study of power 

flow is very important for operation and planning studies. The study involves a numerical 

calculation of unknown parameters, such as voltage magnitude, angle, net complex power 

injection at buses and power flow on branches. The performance of traditional iterative 

power flow methods, such as Newton-Raphson, depends on initial starting point, does not 

guarantee solution for heavily loaded, and poor convergence for unbalanced radial power 

system.

Holomorphic load embedding is a non-iterative and deterministic method for 

finding steady-state solutions of any power system network. The method involves 

converting voltage parameter at every bus into an embedded parameter (a) where 

analytic continuation is applied using Pade' approximants. The embedded parameter (a) 

acts as a well-defined reference for the complex analysis and solution obtained when 

setting a simple value a is known as Germ Solution, by some texts. Using the values of 

coefficient of Maclaurin Series, the Holomorphic method can find solutions in the whole 

complex plane using analytic continuation as it extends the nature of function beyond the 

radius of convergence.

The holomorphic embedding method has been applied in the past to solve power 

flow problems in balanced power system models. There are several advantages of the
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said method over traditional iterative techniques, such as guaranteed convergence, the 

existence of solution, and faster calculation for certain cases. The method dives into 

complex analysis, algebraic curves, Taylor series expansion, Pade' approximants, and 

solving a linear set of equations.

. For simplicity purpose, the networks are often assumed to be balanced with 

constant power loads. Power flow analysis and its derivatives are performed on a single­

phase equivalent of the same system. For bulk systems, the assumption is acceptable as 

load aggregation balances the loads in each phase to an acceptable level. However, in 

low-voltage distribution systems, ignoring such parameter could lead to an incorrect 

solution. In this work, a class of Holomorphic load-flow method is proposed to solve the 

power flow problem in three-phase distribution systems with unbalanced wye-connected 

loads.

Keywords - Three-phase Distribution system, Holomorphic load-flow 

Embedding, Analytic Continuation, and non-iterative.
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CHAPTER I 

INTRODUCTION

1.1 Power-flow Methods & their Problems

Power-flow or load-flow analysis is crucial for any power system, not only from 

the standpoint of operation and control, but also from protection, resilience, future 

planning [1]. The result of any Power-flow analysis is to obtaining steady-state 

parameters, such as voltage magnitude, |V|, and voltage angle, 0, on each bus, and other 

parameters, such as transmission line flow, active and reactive power components, could 

be derived from |V| and 6. For a complete study of a power system, four parameters for 

each bus are required for each steady-state scenario, voltage magnitude, voltage angle, 

net active power injection and net reactive power injection. For each type of bus, two of 

the parameters are known and the other two are unknown, the details can be noted in 

Table 1.1 below.

Table 1 - Bus Types with Known and Unknown Parameter Details

Bus Type Known Parameters Unknown Parameters
Slack Bus or Reference 

Bus
|V|, 0 P, Q

PV Bus (Generator 
Bus)

P, |V| Q, 0

PQ Bus (Load Bus) p, Q |V|, 0
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The known parameters or variable in power-flow are network data (topology, 

branch impedances, shunt admittances, complex power generation limits for generators, 

etc.), net complex power injection at each load bus (also called as PQ bus), voltage and 

active power injection at each generator bus (also called as PV bus), and selection of 

slack bus in the network. Using the above-mentioned known parameter for a network, a 

power-flow study provides unknown parameters for each bus that can be obtained. The 

next aim is to derive branch flows, with all this information calculated about a power 

system, operators monitor and take actions to ensure that voltage, 7, at each bus is with 

limits, and branch flow is under thermal limits, p™ax. To solve any violations, power 

system operators in real-time can take actions, such as control complex power injection at 

desired buses to adjust |7| and 6, which in turn can resolve any branch-flow violations.

The Alternating-Current power-flow analysis is non-linear due to the relation 

voltage square and complex power injection at each bus. The non-linear set of equations 

are traditionally solved using iterative methods which can be computationally intensive, 

if not NP-hard problems [2]. For large AC power system, Direct current (DC) 

approximation method is used which are fast to calculate and provides acceptable 

accuracy for operations [3].

Many variants of Iterative methods can be used to solve a power-flow problem 

that is numerically represented by a non-linear system of equations. Iterative methods, 

such as Gauss-Seidel (GS) method, Newton-Raphson (NR) method and its derivates such 

as the Fast-decoupled Newton-Raphson method is widely used in the industry. However, 

each method has benefits and shortcomings, GS method takes less memory, but is very 
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slow for larger networks, NR method calculates reliable solution only for scenarios when 

the system is operating at flat voltage.

Figure 1 - PV curve which shows two solution branches and voltage bifurcation/collapse 
point

Iterative methods often have two major drawbacks. First, there is no guarantee of 

convergence after all iterations, and the convergence depends on the starting point of 

iterations which is reasoned from the fractal property of the solution plane. Second, there 

is no complete control over the choice of solution due to multiple solutions of a non­

linear system of equations [2]. For the practical operation of the power system, a higher 

voltage solution is feasible which is close to a flat voltage profile, typically within 5% 

percent of 1.0 per unit [1]. Figure 1 shows the two solution branches, one low voltage 
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branch and one high voltage branch. For system stability reasons, a high voltage branch 

solution is desired for operation [4].

1.2 Basic of Holomorphic Embedding Method

After discussing the advantages and disadvantages of iterative methods in the 

previous section, in this section, non-iterative methods are discussed, specifically the 

holomorphic embedding load-flow method (HELM). It is known that closed-form 

solution to non-linear equation produces fast and accurate results [4]. However, finding a 

closed-form solution for a larger system with a different scenario is computationally very 

hard with present technology [5]. In the holomorphic embedding method, original power 

balance equations (PBE’s), stated below, is embedded with a holomorphic parameter a, 

which transform the original PBEs into their analytical form. From the mathematical 

standpoint, analytical continuation is a complex analysis method used to expand the 

holomorphic function beyond the radius of convergence (given that function satisfy 

Cauchy-Reimann equations [6]) and thus extending the power series domain. In the 

below PBEs, N is the number of buses, Gi,k and Bi,k are real and imaginary part of the 

(ith, kth) element of the bus admittance matrix Y, respectively.

N
Pi =^tl^i\I^R\(Gi,kcosQi,k 

k=1

+ Bi,ksin Qiik) 1.1

N

Qi = \\^k\(Gi,ksinBi,k -
k=1

Bi,kcos Bik) 1.2

4



The holomorphic embedding method always reaches the high-voltage operating 

point when the solution exists. In the meantime, it gives a clear indication if no solution 

exists.

1.3 Introduction to Three-Phase Distribution System

In the last few decades, the Distribution Systems (DS) have changed due to 

increasing load, distributed energy resources (DRE), and other factors. It is more 

important to accurately study power flow in DS due to reasons such as:

• Optimization and efficient use of distribution systems require answering questions 

like maximum operating capacity of feeders and other types of equipment.

• Need to modernize distribution systems with features such as smart metering and 

faster fault detection.

• Penetration of distributed energy resources, such as roof-top photovoltaic panels 

and electric vehicles acting as battery banks.

• Most faults occur on the distribution system of the power system and an accurate 

power flow study would improve resilience and reliability.

Analysis and optimization of the Distribution System end of the power system has 

been ignored for a long time due to technical difficulties [7]. With the introduction of 

micro-Renewable Energy Source (RES), accurate power-flow analysis of distribution 

systems has become more important. General iterative methods produce inaccurate 

results for DS, the problems mentioned below in points are the reason for that.

• Loads on radial single-phase distribution feeders are unbalanced in comparison to 

the other phases.
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• Additionally, overhead or underground conductor configuration of the three- 

phases lines introduces mutual inductance between the phases.

• At a lower voltage of DS, resistive losses cannot be ignored as they are 

significant. Therefore, resistance in branches is taken into network parameters.

• For better modeling of DS, taking into account of the type of load is necessary. 

Modeling of constant impedance, current, and power loads (collectively known as 

ZIP loads) will further improve the accuracy of the analysis.

• Other parameters such as configurations of lines on poles, transposition of 

conductors, and transformer connection cause inaccuracy in traditional power­

flow methods.

The methods mentioned in Section 1.1 are generally applied to high-voltage, 

single-phase equivalent of a balanced system. However, towards the lower voltage side of 

the power system, i.e., the Distribution System (DS), is inherently unbalanced due to 

unpredictable consumption of power on each phase or lateral. Factors such as 

transmission line spacing configurations, conductor type, the resistance of the conductor 

and the possibility of no load on some phases, etc., play an important role in power flow 

solution [7]. Approximate methods such as voltage drop over a radial network and 

ladder-iterative methods provide approximate solutions [8]. For ladder-iterative methods, 

such as forward-backward sweep, it is assumed that impedance of all lines and loads 

connected to each node is known, and source voltage, Vsource, (which is typically a sub­

station) remains known and fixed between iterations [9]. During forwards sweep, it is 

assumed that the circuit is under no-load condition, therefore, the voltage at the last

6



lateral is equal to Vsource. Using this information, in a backward sweep, the load current 

is calculated at each node, using the below general equations [9].

. _ Vlastnode
‘node

Vlast node-1 = Vlastnode - ‘last node x ^lastnode

1.3

1.4

In simple words, the radial system is solved two times, once with a fixed initial 

voltage profile and calculating currents injection in each node with given initial voltage, 

and second solving the voltage on each node with the previously calculated current 

injection. The analysis of a three-phase unbalanced system with a transformer requires 

detailed Y modelling with 3N X 3N dimension [7]. Further, certain configurations of a 

three-phase transformer can lead to singularity issues in their admittance matrix [10]. In 

the text, these problems are addressed, and accurate modeling is developed on which 

HELM is applied.

1.4 Goal of the Thesis

In this thesis work, the following topics are discussed:

• Advantages and disadvantages of state-of-the-art PF methods.

• Basic modeling of system components, such as loads, buses, transformers for 

HELM application.

• Modeling of a three-phase radial distribution system.

• Application of Holomorphic embedding to balanced IEEE single-phase cases and 

its numerical simulation in MATLAB using MATPOWER [11-13].
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• Application of Holomorphic embedding to unbalanced three-phase IEEE 37 

feeder/bus system [14] and its numerical simulation in MATLAB. Discussing the 

limitation and HELM and future scope.

1.5 Organization of the Thesis

The chapter 2 elaborates on the literature review of iterative methods and ladder- 

iterative method for solving power flow. It also summarizes about Direct Approach 

method for solving power-flow in a three-phase distribution system. Further, the 

fundamentals of holomorphic embedding, analytic continuation and Pade' approximant is 

discussed in detail. The chapter 3 of the text elaborates on Holomorphic load embedding 

in a power system network. In the same chapter, a detailed numerical recursive model for 

a different type of buses and tap-changing transformer is formulated for single-phase and 

three-phase network. For easy understanding of the process of HELM, the chapter has a 

flow chart for the HELM procedure. The chapter 4 discusses simulation for various IEEE 

networks and a detailed step-by-step example for a three-bus system is discussed. The 

last chapter 5 discusses the conclusion of the work and future work for the HELM.
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CHAPTER II 

LITERATURE REVIEW & BACKGROUND

This Chapter will focus on the basic concept behind power flow, discuss 

traditional PF methods for single-phase equivalent network and for a radial distribution 

system. Further, it will discuss a non-iterative method of PF, such as Continuation Power 

Flow (CPF), DC approximation Power Flow and Holomorphic Embedded Load-flow 

(HELM) method. Further, the concept of Analytic Continuation and Pade' Approximants 

are discussed in detail.

2.1 Power Balance Equations

Out of four variable, voltage magnitude | Vj |, and voltage angle 0I, net real power 

injection Pi, and net reactive power injection Qi, at each bus in a power system network, 

two of them are directly or indirectly known during steady-state conditions. To study PF 

on any system, transmission line admittances and impedances, values of connected loads 

and their nature, and operating limit of transmission line, generator and other components 

is required. Using Kirchhoff Current Law, the nodal equation for the network as to be 

written as

9



I = YxV 2.1

where Y is a N x N admittance matrix, and I and V are current and voltage vector with

N x 1 dimensions. The nodal current equation for each bus i can be written as

N
Il=^Y,,kVk

i=1

2.2

The net complex power delivered or Power balance equation at bus i can be written as

Si = ViI-=Pi+jQi 2.3

Using the equation (2.2) and (2.3), the relation can be modified to

Pi +jQi = Vt
N
^YlkVk
-k=1

*

,Vi 2.4

Using the Euler form of the voltage terms [1], the equation (2.4) can be transformed into

N
Pi + jQi Y Yi,k Vke(S-!_k-e^,Vi

k=1

2.5

The above PBE can be written in a trigonometric form as well as 

N
Pi =Vi^ Y^ Vk cos(8i -Sk- Qi:k), Vi 2.6

k=1

N
Qi=Vi^ Yi,k Vk sin(6i -&k- Bik), Vi 2.7

k=1

The equation (2.6) and (2.7) are used to iteratively calculate net complex power injection 

on each bus for given voltage magnitude and voltage angle, where Vi = |Vi |z0i and Vi = 

|Vk|z0k.
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2.2 Traditional Iterative Methods for Solving PF

One of the most common Iterative methods used in the industry is Newton- 

Raphson (NR) method, and the Fast Decoupled-NR method (FDNR). The methods such 

as Gauss-Seidel (GS) uses low memory and have slow convergence [2]. The process 

requires fixing the initial voltage guess, which is usually Voltage magnitude of 1.0 p.u. 

and voltage angle of 0 radians, termed as flat voltage profile. The PBE equation (2.4) can 

be written iteratively as shown below [15].

^ + 1)=-^ - (¿»l.»Vt(n+1))-( £ ^„(n)) 2.8

i,i * \k=i y ^=¿+1 y

In the equation (2.8), Vj(x) represents the value of the voltage at bus i for the xth iteration.

2.1.1 Newton raphson method & others

One of the most popular PF methods is the NR method. The first step is to 

initially set unknown variables, voltage magnitude and voltage angle on PQ bus and 

Reactive power injection and voltage angle for PV bus, with an initial guess. The values 

of the initial guess are generally flat voltage profile; however, the performance of the NR 

method depends on the topology of the network and how close is initial guess to the 

feasible solution in the solution plane. The second step includes writing a Taylor series 

form of PBEs with higher-order terms ignored, this step results in obtaining a linear 

system of equations for the system. The third step includes successive iterations of the 

obtained linearized PBEs which calculates the estimate of unknown variables. The 

decision of convergence is dependent on the iteration after which mismatch in values is 

smaller than set tolerance, generally 10-5.
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Mismatch equations are derived from the equation (2.6 and 2.7). The linearized system of

equations for the nth iteration is represented by the below equation (2.9)

M(n)l _ 1 rAPi(n)
△Vf(n)J = J [AQf(n) 2.9

where △Pi(n) and △Qi(n) is active and reactive power mismatch for nth iteration for Bus 

i, the symbol J is Jacobian matrix [1]. The mismatch can be computed using the below 

equations (2.10) and (2.11).

N
△Pi(n) = Pi(n) - |Vi(n)|^|7k(n)| (%COs9i,k + B^sine^) 2.10

k=1

N
△Q(n) = Qi(n) - |Vi(n)| ^ |Vk(n)| (Gi,ksin6i,k - Bi,kcos 6i,k) 2.11

k=1

The slack bus variables are removed from the matrix form of the linear system of 

equations as they are already known and assumed to be fixed as Vsiack = 1.0p.u. and 

®siack = 0. The values of voltage magnitude and voltage angle for the (n+1)th iteration is 

calculated using the following equation: 

'Si(n+ 1) 
Vi(n + 1)

5i(n)
Vi(n)

△ 5i(n) 
△Vi(n) 2.12+

The convergence rate for most topology is quadratic, however, the computational 

resources used in calculating Jacobian matrix and solving a linear system of equations for 

each iteration is substantial for larger power systems [2]. NR method works well for 

network operating near nominal load conditions but has poor performance for networks 

under heavily loaded conditions [16]. The reason to find a better PF method is due to two 

reasons, there is no guarantee of convergence after all the iterations as it depends on the 

starting point guess, and second that there are multiple operating solutions and there is no 
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control of its selection. NR method does not performance decreases in the distribution 

system due to radial nature of DS, higher Resistance (R) by Reactance (X) ratio, and 

introduction of mutual impedance between non-transposed phase conductor [7].

2.1.2 Direct approach method for distribution system

Figure 2 - Three-phase line model between two nodes.

Since, any distribution system is unbalanced due to non-ideal parameters like 

spacing between phase conductors, conductor sizing, and equal transposition among 

phases. The line impedances, for accurately modeling, uses modified Carson’s equations 

of modeling line impedance [17]. The Carson’s equations were published in 1926 which 

considered effects of self-impedance as well mutual impedance of nearby conductors in 

transmission line configuration. Figure 2 shows self-impedance and mutual impedance 

between phase conductors in a three-phase unbalanced transmission line. Using Kron 

reduction and Carson’s equations, KVL for a simple two-node circuit can be represented

by the below equations [18]:

A 
VB 
kJ

pa r7̂aan ^abn 7 -iaacn ^Aa

vb + ^ban %bbn %bcn ¡Bb
bd 7 cacari %cbn 7cccn -1 ^Cc-

2.13
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One method to find out load-flow in such radial distributed systems is called the 

Direct Approach algorithm [8]. The Direct approach method is based on which uses a 

bus-injection to branch-current (BIBC) and branch-current to bus-voltage (BCBV) 

matrices and bus-current injection to find out the load-flow parameters in the network. In 

the BIBC matrix, +1 in a row the bus-current injections contribute to the corresponding 

branch-current flow. In the below equation (2.14), the branch-current vector is 

represented by [I^r] with dimensions (N — 1) X 1, bus-current injection vector is /j with 

dimensions (N — 1) X 1, where N is the number of nodes in the DS:

[/*r] = [B/BC] X [/j] 2.14

It is important to note that in the /j vector the source node or also known as 

substation node is not included as, in a radial distribution system, a source node is 

equivalent to a slack bus. Using the branch-current injections, it is straight to calculate 

node voltages in the radial DS using Ohm law. The equation (2.15)

[AV] = [BCBV][/Sr] 2.15

where AV represents V1 — Vj, with V1 being the source node voltage. In the BCBV 

matrix, each row elements are filled with impedance values of the branch sections that 

current follow to reach a particular node. Using the equations (2.14) and (2.15), the below 

relation is derived:

[AV] = [BCBV][B/BC][/] 2.16

The equation (2.16) can be iteratively represented as

[AVn+1] = [BCBV][B/BC][/n] 2.17

[Vn+1] = | V,n/,n/1 + [AVn+1] 2.18
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In a network, the BIBC matrix defines the relationship bus-current injection to branch­

currents and BVBC defines the relationship between branch-current to bus voltages. 

These matrices are upper and lower triangles respectively and do not change for 

particular network topology, this feature makes this fast for approximate load-flow results 

in radial distribution systems [8].

2.2 Non-iterative method of PF

Iterative methods such as NR, Fast-decoupled NR, and others suffer through 

problems of convergence for heavily loaded systems and need a very good initial guess 

for finding a high voltage operable solution. They also suffer from higher computational 

requirements and becomes complexity exponentially increases as the power system size 

increases [20-21].

2.2.1 Series power flow

The series load-flow method tried to develop explicit power series of the bus 

voltage function. Two ways are discussed in the literature to achieve such closed-form, 

one by finding Taylor series coefficients via recursion technique and the other is fixed- 

point iteration [22]. This method uses real analysis as opposed to HELM which uses 

complex analysis, more detailed on which will be discussed in the next sections.

2.2.2 Continuation power flow

The Continuation Power Flow (CPF) method is based on the analysis technique of 

homotopy continuation which is characterized as path-following in nature. CPF is proven 

to work well for ill-conditioned and heavily loaded power systems and is also referred to 

as a predictor-corrector method. The voltage magnitude |Kl and voltage phase angle 8i at 
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a bus i are unknown variable and a vector z = (| Vj|, 5j)T. The PBE (2.10 and 2.11) can 

be expressed in term of variable z and the below homotopy equation would be:

H(z, t) = (1 — t)(Z — a) + t^P(n), V bus i 2.19

In the equation (2.19), for t = 0, H(z, t) = Z — a, where a is an intelligent initial 

guess for unknown variables and t = 1, the initial homotopy equation is recovered. CPF 

exploits the concepts of continuity and differentiation in a single domain, therefore is 

considered as a local method in terms of solution plane [4], [23].

2.2.3 Holomorphic load flow method

The most recently invented complex analysis method for calculating load method 

is load-flow is Holomorphic Load-Flow Method (HELM). It was invented by Dr. 

Antonio Trias and first presented in 2012 at the IEEE-PES conference [4]. It very well 

addresses the problem of iterative methods, faster convergence to a solution that is free 

from an initial guess, and lack of control over high-voltage solution selection in multi­

solution situations. It guarantees a converged solution and unequivocally indicates, with 

oscillating Taylor series coefficients, if there is no solution for the set of non-linear set of 

power system equations.

HELM is a non-iterative method and turns voltage variables in PBEs into a 

complex analytic function, this enables a richer plane for solution finding, especially 

beyond the radius of convergence. The analytic function which is embedded with a 

holomorphic embedded parameter helps recursively calculate, at a well-known reference 

point called germ solution, the coefficients, Vj[n], of Maclaurin power series. The 

analytic continuation is implemented using various near-diagonal Pade' approximant 

methods [24-25].

16



2.3 Analytical Continuation

Analytic continuation is a complex analysis technique that has properties to 

extend the domain of an analytic function beyond the original region of convergence 

(ROC) [4], [24]. Analytic continuation differs from numerical continuation as numerical 

continuation finds a solution which is interpolation to already know the solution in its 

nearby region. To apply HELM for a radial distribution system, an understanding of 

analytic continuation and Pade' approximants for power systems is necessary.

In context with HELM, the voltage in PBE equations is represented via an 

analytic function. To understand the concept of an analytic function, consider an example 

of power series /(a).

/(a) = 1 + a + a2 + a3 + — 2.20

The series in equation (2.20) converges only for the values where |a| < 1, which means 

that magnitude of the complex number a shall be less than 1 for the /(a) to be 

represented by the below expression:

1
g(a~)=------- 2.211-a

The function ^(a) have a larger region of convergence than the original power series 

form of /(a), which is real(a) < 1. The expression in equation (2.21) is commonly 

referred to as the closed-form of equation (2.20), which is easy to solve within the 

boundary of ROC but is not defined at a = 1 or a > 1.
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Figure 3 - Region of Convergence for a simple power series

Figure 3 gives a perspective of ROC for the equation (2.20). The equation (2.20) can 

further be expressed via an exponential function through analytic continuation by 

function h(a):

m e~(1-a)x
h(a) = I e-(1-a^xdx = lim——------7 2.22

0 -(1 - a)

The region of convergence for function h(a) is everywhere, except a = 1. There are 

various ways to extend the ROC of an algebraic function using analytics continuation. To 

find solutions for large sets of non-linear sets of equations, it is desirable to obtain 

maximum ROC, which can be obtained by employing maximal analytic continuation 

using Stahl’s theory [19].
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Using Taylor series expansion, more particularly Maclaurin series, a holomorphic 

or analytic function can be expressed by an infinite power series of the following form: 

/(n)(a)/(a) = ) c[n]an =  ------^a'' 2.23
n=0

where c[n] is the nth coefficient term and /("’(a) is the nth derivative of function /(a)at 

zero. The series from equation (2.23) has all the properties of an analytic function for 

infinite terms. However, in practical cases, dealing with infinite terms is computationally 

an NP-hard problem, therefore, a rational approximation method, such as Pade' 

approximant, needs to discuss in detail.

2.4 Pade' Approximant

The method to find the approximation of a function using rational function was 

developed by Henri Pade' in the year 1890. Pade' approximant is used to find out the 

approximate value of an infinite power series by finding its rational equivalent function. 

It is known that Pade' approximant can provide a better approximate value for function 

where the Taylor series does not converge or perform better for truncated Taylor series 

[25]. Therefore, Pade' approximants represent the holomorphic function and improve on 

ease to find the ROC of a power series [27]. The Pade' rational approximant with 

numerator L and denominator M as the degree is represented by

IL/Ml/(< > = M=°°[‘]“j + ? ■'>1: 2.24
¿y=0 b[j]U

Where /(a) is the analytic function, o(aL+M+1) represents the error caused due to 

truncation and a[i] and b[j] are the numerator and denominator coefficient for ith and 

jth coefficient. Pade' approximant is used to extrapolate the function domain beyond 

ROC for the Holomorphic/analytic function. When the ration of L/M = 1, which is 
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called diagonal or near-diagonal Pade' approximants, then the results obtained have the 

best accuracy [25]. There are various methods to solve Pade' approximants such as 

Viskovatov Method, Direct Matrix Method, and Epsilon Method (Wynn’s Epsilon 

Method). For the scope of this text, the Direct Matrix Method is elaborated here.

2.4.1 Direct matrix method

Direct Matrix Method for calculating Pade' approximant where consider a 

Maclaurin power series in equation (2.25), which represents a holomorphic or analytic 

function, below:

c(a) = c0 + c1a1 + c2a2 + c3a3 + —

00

= ^ c[n]an 2.25
n=0

where c[n] represents the coefficient of the Maclaurin series and n represents the degree 

of the polynomial. The rational approximant for the series in the equation (2.25) is 

represented by equation (2.26) below.

a0 + a1a1 + a2a2 + a3a3 + —+ aLaL
[L/M]f(a^ b0 + b1a1 + b2a2 + b3a3 + —+ bMaM 2.26

The equations (2.26) and (2.25) are equated as follows:

a0 + a1a1 + a2a2 + a3a3 + —+ aLaL 
b0 + b1a1 + b2a2 + b3a3 + —+ bMaM

0
^ c[n]an
n=0

2.27

In the equation (2.27), L + M + 1 number of coefficients are known in the Maclaurin 

series of the holomorphic function and there are L + M + 2 number of unknown 

coefficients in Pade' approximant, this means that one coefficient in rational approximant 
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can be set as per the user, and in this text it, that variable is b0 = 1. Further manipulating 

the equation (2.27), we get

a0 + a1a1 + a2a2 + a3a3 + —+ aLaL =

(b0 + b1a1 + b2a2 + b3a3 + — bMaM')(c0 + c1a1 + c2a2 + c3a3 + — cL+MaL+M) 2.28

The equation (2.28) can be represented by a system of M linear equations, as shown 

below:

bMcL-M+1 + bM-1cL-M+2 + " b0cL+1 = 0

bMcL-M+2 + bMcL-M+3 + " b0cL+2 = 0 229

bMcL + bM-1cL+1 + " b0cL+M = 0

At this point in the problem, the c[n] are known and unknown is rational approximant’s 

numerator and denominator variable an and bn. The equation (2.28) can be represented in

Matrix format as below:

cL-M+1 + cL-M+2 + " Cl 
cL-M+2 + cL-M+3 + " cL+1

cL + cL+1 +----- cL+M-1

bM 

bM-1

■ b .

cL+1 
cL+2

cL+M

2.30

Once the value of bn are known, then through comparison of the power of a on both side 

of the equation (2.28), an can be calculated. The Direct Matrix method discussed in [24] 

can be used for any value of L and M, but through Stahl’s theory, it is noted that diagonal 

or near-diagonal Pade' approximant results in maximum analytic continuation with 

largest ROC [19], [25]. Therefore, for the values of L = M or L = M, the chances of 

getting maximal analytic continuation are higher.
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2.5 Conclusion

Chapter II elaborates and prepares the basics of understanding HELM. The 

chapter dives into the basics of Power flow, details of traditional iterative and non­

iterative methods for single-bus equivalent models as well for three-phase radial 

distribution systems. Further, the concept of ROC, analytic continuation and Pade' 

approximant were discussed. It was discussed a technique called Direct Matrix Method 

for solving Pade' approximant for a holomorphic function.
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CHAPTER III

HOLOMORPHIC EMBEDDING LOAD-FLOW METHOD (HELM)

3.1 Introduction to HELM Modeling

By definition, a holomorphic function is a complex variable function that is 

differentiable at every complex point around a point in a complex plane. A general 

holomorphic function can be expressed by a convergent Taylor series at any point, and 

for the simplicity of the text, it is expressed at 0, thus a holomorphic function can be 

expressed as the Maclaurin series. Since expressing a holomorphic function with a 

closed-form expression is not accurate, therefore, the technique of holomorphic 

embedding is used in power balance equations and that makes sure that the resultant set 

of the equation is analytic or holomorphic. The process of embedding PBE is explained 

in detail in [25], [26].

3.2 HELM Model for Single-Phase Network

To develop the HELM model, consider a power system network of N + 1 buses, 

where there is 1 slack bus, set PQ of load buses, and set PV for generation buses. The 

PBE for the system can be summed with the following set of equations:
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^**
Y Yilkvk = -^.iePQ
V_i v
k=0 L

P^Rel^Y^

X k=0 /

3.1.1

3.1.2

lVil = Vsp,i,iEPV 3.1.3

Vsiack = Vspi, i E slack bus 3.1.4

The equation (3.1.1) represents the PBE for a PQ bus, equations (3.1.2) and (3.1.3) 

represent the PV bus, and equation (3.1.4) represents the slack bus model. The equation 

(3.1.1) -(3.1.4) is not holomorphic and there is an infinite number of ways to transform 

them into one. Different holomorphic embedding results in a different set of the equation, 

but the solution shall be the same every time.

3.2.1 Basic holomorphic embedding

For holomorphically embedding and maintaining holomorphicity in the equation 

(3.1.1), it is restructured as below:

w 5*
> Y^anSVk(a)=—i--aY,ShuntVl(a).iEPQ 3.2

k=i V'(“)

The Yj.k matrix is divided into two parts, Y^kans and Y?hunt, this helps in maintaining the 

holomorphicity of the function at a = 0.1. At a = 1, the equation (3.2) is transformed 

back to the original PBE for a PQ bus. The equation (3.2.1) means that sum of all 

elements in a row of Yj^ans be 0, which is easy to solve. The YiShunt includes shunt 

elements, such as tap-changing transformer, shunt admittance of transmission lines and 
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shunt capacitor or inductor at bus i. The term Vk*(a) represents the holomorphic function 

for unknown voltage variables.

The slack bus voltage magnitude and voltage angle is a free variable and is 

generally set to a flat voltage profile for simplicity. Therefore, Vsp^ = 1 z0°, however for 

better systematic use of slack bus equation, the equation (3.1.4) is transformed into:

VsZacfc = 1 + a(Vsp,1 - 1) 3.3

The equation (3.1.2) can be embedded as follows:

. aP; - iOt(a) . .£ Y%ans Vk(a) = J™ - aY^Vfa) iePV 3.4.1
k=0 1 J

Vi(a) * V*(a*) = 1 + a (| V^ |2 - 1), i G PV 3.4.2

The equation (3.4.1) represents the PBE equation for a generating bus and (3.4.2) 

represents the voltage condition for generating units.

3.2.2 Maclaurin power series for voltage function

The holomorphically embedded voltage function, Vfa), is replaced by the 

Maclaurin power series to apply the analytic continuation technique to expand the ROC. 

The Maclaurin series can be expressed as below:

inf

V(a) = ^ V[n] an = V[0] + V[1]a + V[2]a2 + - V[n]an 3.5.1
n=0 

inf

O(a) = ^ O[n] an
n=0

= 0[0] + O[1]a + O[2]a2 + - O[n]an 3.5.2 

25



where 7[n] are complex numbers and are recursively calculated. One important thing to

note is that in equation (3.2), the V*(a*) is used, instead of V*(a) or V(a*). This is due 

to the requirement of voltage function needs to satisfy Cauchy-Reimann equations [4],

[30]. The invalid holomorphic functions, V * (a) and V(a*), do not follow Weitinger’s 

rule [28]. As per Weitinger’s rule, the derivative of voltage function w.r.t. a* 
(— = o) 
\da* J

shall be zero [28]. The V*(a*) is expressed in expanded form as below:

V*(a*) = V*[0] + V*[1]a + V*[2]a2 + -V*[n]an

Further, to compare the coefficients of power series in equation (3.2), (3.4.1) 

and (3.4.2), the embedded voltage function in the denominator needs to be taken care of 

by inversing the function V(a). Let, W(a) be the inverted function of V(a), which is 

defined as:

1
W(a) = —— = W[0] + W[1]a + W[2]a2 + - W[n]an 3.6.1

V(a)

1
W*(a*) = = W*[0] + W‘[1]a + W*[2]a2 + - W*[n]an 3.6.2

The equations (3.6) can be further manipulated by comparing coefficients like shown 

below:

W(a) x V(a) = 1
(W[0] + W[1]a + - W[n]an) x (V[0] + V[1]a + - V[n]an) = 1 3.7

W[0]V[0] = 1

The generalized form for inverted voltage function W(a), it defined in equation (3.8) 

W[n] =
Zn=iV[f]W[n-f]

V[0]
3.8
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The equation (3.8) is recursively used to calculate the value of W[n] [33]. After 

substituting the values of power series in the equations (3.2), (3.3) and (3.4), they can be 

represented by:

N
£ Iff”“ «¡[0] + n[1]a + ••• n[n]a”) 
k=0

= aS- M [0]] + W1]a + • Wk")

_ar.sftUnt(y.[o] + ^[1]« + -7j[n]an),i e PQ 3.9.1

SN=o Yiïans (M0] + Wk + - Wk") 

= («Pi -j(Qi[o] + Wk + •••Wk"))((W0] + W1k + - Wnkn))

- aYshUnt(Fi[0] + yi[1]a + • y [n]an), j e py 3.9.2

(7i[0] + y[1]a + - Wk")mo] + Wk + -Wk") = 1 + «(l^sp.il2 - 1),i

e py 3.9.3

Once, the coefficients in the above equations are equated on LHS and RHS, the 

equations (3.9) can further be represented by:

N
A Yi,kans vk [n] = Si A k - 1] - Wnay [n - 1], j e PQ 
k=0

3.10

N
\ varans 
A Y^k
k=0

kH

= PM [n - 1] -j (g Qi[/M*[n - /]) -
)sftuna[n- 1],ieP7 3.11

yreai[0] = 1
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n-1

2Vj'e“i

Vjreai[1]

[n] = -^Vt[l]V[n-l]

VjSP2 - 1

2

,n>2,l>1,iE^V 3.12
i

3.2.3 Germ solution

At a = 0, the equations for PQ bus, PV bus and the slack bus turn into the following:

N
^ y.trans p^ [0] = 0,iE PQ 3.13.1
k=0

Vsack = 1/0° 3.13.2

N
^^™Vfc[0] = -jQj[0]<[0],i GPV 3.13.3
k=0

Vi[0]Vi‘[0] = 1,iePV 3.13.4

Solving the germ equations using any method for solving a set of linear equations would 

obtain the germ solution, at each bus of the system it is going to be Vj [0] = 1/0°, 

Wj[0] = 1 and Q; [0] = 0,j e PV [24]. For any value of a, other than 0, the function of 

voltage needs to be expressed in Maclaurin power series, where recursively obtain the 

coefficient of the Maclaurin power series and then develop analytic continuation using 

Pade' approximant for the said series. The iterative methods are generally defined as 

methods that successively or iteratively displaces from the center while finding the 

solution. The HELM does not fall into the iterative method definition, therefore, the best 

way to describe HELM is using the term recursively. Therefore, HELM recursively 

solves the consistent system of equations (3.10), (3.11), and (3.12) along with germ 

solution gives the complex values of power series coefficients.
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The holomorphic equations and the unknown voltage power series coefficients 

are complex-valued numbers and need to be separated into real and imaginary parts for 

recursively solving through a linear system of equations as PV and PQ bus equations are 

coupled together [25].

3.2.4 Tap-changing and phase-shifting transformer

In the complex IEEE standard power system model cases like the 118-Bus case, 

the phase-shifting transformers with tap-ratio t parameter are introduced. Since the t 

parameter introduces an asymmetry in the Ytrans. To get the same flat voltage profile as 

mentioned in germ equation (3.13.1), the Ytrans needs to be separated into Ysy^nsand a 

diagonal matrix Yshunt [29]. In Figure 3, the total line charging susceptance jBc/2 fl is 

expressed in the n-network model configuration. Without the tap-changing or phase-

shifting transformer, an admittance matrix, in its canonical form, is:

Y = (ys+j0.5*Bc)/T2 + Ksft
-Ys/

-Ys/t*1 3.14
s

The equation (3.14) is a complete admittance matrix containing series admittance, Ys, 

shunt susceptance, Be, and shunt admittance, Ysh. Figure-3 shows the elements of a tap­

changing transformer between two buses.
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Figure 4- Equivalent Model of a bus with a Tap & Shift-changing transformer

The matrix below Ygy™s complies with the equation (3.13.1) and therefore can be used to 

calculate germ solution easily. The equation (3.15.2) represents the final shunt 

component on admittance at a bus, it contains connected shunt reactance and capacitance 

at a bus, line susceptance j Be, and tap-changing transformer effect [31].

Yshunt =

r trans 
sym

pr -KsA*l
.-Ys/ Ys

3.15. 1

Y-©-^)

0

0

Ys.->(¥)-(Ys(^-i))
3.15.2

It is important to note that t, is a complex number, where the magnitude of the t
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represents the tap-ratio and the polar angle of the t represents the phase shift angle of the 

transformer. The below set of the equation represents the Holomorphic embedded PBE 

and are based on equation (3.15).

N
V CS Vk[n] = W*[n - 1] - K/s“V/[n -1], j g PQ 3.16.1
k=0

N
V i-,;'-". izn
k=0

= P^*[n - 1] - J (V QdWin - /])

- y.s“[n- 1],j e PV

7T/SP2
V^O] = 1 , Vre'l[1] = -1

--1
2Vreal[n] = - V OM[n - /],n > 2,1 > 1, j G PV

i

3.16.2

3.16.3

At a = 0, the system of equation in (3.16) can be calculated using:

N
V is^VtiO] = 0,i G PQ 3.17.1
. = 0

Vsiacfc[0] = 1/0° 3.17.2

N
V CS V.[0] = -jQ/[0M*[0], j G PV 3.17.3
. = 0

Vj[O]Vj*[O] = 1, j G PV 3.17.4

Further, the embedded equations are split into real and imaginary parts. The voltage

variable, Vj[n], is split into Vre[n] and Vjtm[n]. Similarly, elements of the admittance 
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matrix, Yt^, is split into (Gt,k + jBi,k), and complex power Si is split into Pi and Qi. This 

increases the dimensions of each matrix in holomorphically embedded PBE by two times. 

This step is necessary as the real part and imaginary part of the unknown voltage variable 

is both unknown and needs to be solved by solving a set of linear equations [25].

3.3 HELM Model for Three-Phase Network

For the development of the HELM model for the three-phase radial distribution 

network, voltage regulator and substation transformer has been removed, where 

substation transformer is assumed to be Slack bus. Each bus in a three-phase network can 

have either one phase, two-phase or three-phase laterals/nodes. As discussed in Section 

2.1, an admittance matrix for a three-phase distribution system is made up of a Phase­

frame matrix rather than a symmetrical element [7], [32].

Figure 5 - Three-phase line model with series and shunt components

There are various kinds of electrical loads in a power system. The kinds are a 

primarily non-linear combination of constant impedance (Z), constant power(P) and 
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constant current (I) loads, more commonly referred to as ZIP loads. Below Table (2) 

summarizes the relation between ZIP and bus voltage in Delta and Wye connected loads:

Table 2 - Modeling for ZIP loads in PBEs

Load Type Current Injection as a 
function of Bus Voltage Wye Load

Constant Impedance rahcnfTzA 
li,z MJ

acabcn \*
1 Ji,Nominal \ 
( V.abcn )

Constant Current C^i)
-VO™ ,

i rabcn
yabcn ^Nominal

Constant Power rahcnzT/A
li,PQ Mi) -YP^ . ,V?bcn

yi,Nominal Vi

In Table (2), terms with nominal in subscript represent the values for 1.0 per unit voltage 

[34]. It is relevant to note that constant impedance load has an inverse relation with bus 

voltage, which means that any drop in voltage would increase net current injection. 

Similarly, for constant power loads, the bus voltage has a direct relation to bus current. 

Figure (5) is accurate modeling of three-phase transmission lines with buses n and m. 

The process of calculating parameter for three-phase lines can be summarized as below 

[7], [10]:

[vabcnl
Vn 
rabcn 

. in

1[/] +-[Zaöc][Faöc]

[yabc]+1[yabc][zabc][yabc] 
4

^abc

1
[i] + ~[yabc][zabc]

rT/abcni
Vm
jabcn

.*m
3.18

The equation (3.18) is analogous to the ABCD parameter model in transmission line 

analysis. It is to note that in equation (3.18) each ABCD parameter is itself a 3x3 matrix 

instead of a single element. The relation in equation (3.18) is useful in algorithms that 

work on the ladder technique for solving the power-flow problem, as the voltage on the 
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next bus can be determined by using the voltage at the previous bus in a radial network 

[32]. Also, the line-to-line quantities can be, vice versa, calculated using the phase-to- 

neutral quantities using the below relations:

[Kbi 1 -1 0 \Vnn

vbc = 0 1 -1] Kbn 3.19.1
vca. -1 0 1 Wcn.

Ian 1 0 -1 Iab

Ibn = -1 1 0] Ibc 3.19.2
Jen- 0 -1 1 Jca-

The above equation (3.19) is derived from Kirchhoff’s voltage and current laws.

3.3.1 HELM for wye-connected PQ loads

For a three-phase radial distribution system, each bus can have up to three nodes 

corresponding to the a, b, and c phase, for the programming point of all the nodal 

quantities in each bus are transformed into a system-wide vector. Such a vector quantity 

would have (3n) X 1 dimension. Similarly, a system-wide admittance matrix can be 

formed with each row and each column corresponding to the phase node of a bus with 

dimensions of (3n) X (3n), where n is the number of buses in the three-phase system. 

Since in the modified case, a three-phase transformer is opted out, Yshunt is zero. For 

example, the two-bus system in equation (3.20.1) has three-phase nodes each, each node 

is addressed with 1-6 number.

Bus Id^Phase A Phase B Phase C
Busl^ 1 2 3 3.20.1
Bus 2 ^ 4 5 6

The total six-phase nodes are arranged in a linear manner for vector calculations, as 

shown in the equation (3.20.2):
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Bus Idx Linear Phase node idx

Bus 1
11

1.20.2

Bus 2
li

The equation (3.21.1) below represents PBEs for constant power loads connected in the 

Wye connection. After holomorphically embedding, the recursive relation for calculating 

the power series coefficient is obtained in the equation (3.21.1).

3N
£ r« V»(a)
k=0

5*
i 

a------------
V*(a*)’

i E PQ nodes 3.21.1

S^No MM0] + VJ1]«1 + Vk[2]a2 + ... + Vk[n]a") = aS*(Wi*[0] + ^[lla1 +

Wi*[2]a2 ... + Wi |n|a"), i E PQ

3N
^ MH = S(-W(-[n - 1]
k=0

3.21.2

3.21.3

The germ solution for a 1 bus with three-phase nodes which are Wye connected PQ loads 

can be expressed as below:

3N
£ Ys^i Vlabc"[0] = Vtabcn'° 3.17.1
k=0

The vector yabcn'° represent nominal or balanced three-phase voltage, admittance matrix 

is made of phase-frame nodal admittance sub-matrices.
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3.3.2 HELM for wye-connected constant impedance loads

The impedance loads, such as heating load, can be modeled using the below

expression:

3N
^,kVk(a) =
k=0

, i G set of constant impedance nodes 3.18
V-(a*) 

a—-—

lv™ml2 . ... ... ...
where Zj = 1 , and VjNom stands for the nominal phase-to-neutral voltage for 

sf

node i and it is a constant value for a system. The nominal voltage depends upon phase a, 

b, or c of the node. The equation (3.18) can be modified to a recursive relation for

calculating voltage series coefficient:

N
^WJn] =
k=0

S-Vi[n- 1] 
: r?

| V/'°m |
, i G set of constant impedance nodes 3.19

3.3.3 HELM for wye-connected constant current loads

For constant current loads, the PBE equation for wye-connected three-phase loads 

can be embedded as below:

N
^W/c(a) = aA(a) 3.20.1
k=0

N
^ nk(Vk[0] + MUa1 + Vk[2]a2 ... + W]an)
k=0

= (/¿[0]a1 + /¿[1]a2 + /¿[2]a3 ... + /¿[n]an+1) 3.20.2

In the equation (3.20.2), power on both sides is compared and a recursive relationship is

defined below:

N
^ WJn] =^[n-1]
k=0

3.20.3
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Therefore, using the equations the set of holomorphically embedded equations for 

wye connected three-phase load an accurate power flow can be calculated for various 

combinations of loads.

3.4 Flow Chart of the HELM

Figure (6) describes the steps for the HELM algorithm for single-phase and 

three-phase power systems. It starts with reading the data such as

For single-bus cases:

• Bus Data includes bus id, bus type, complex power demand on the bus, connect 

shunt equipment.

• Generation Data includes bus id with generating units, complex power generation 

capacity, set voltage at buses, maximum and minimum complex power limit.

• Branch Data includes “From” and “To” bus pairing, series and shunt impedance 

off the branches, and tap-changing ratio.

For three-phase radial unbalanced network:

• Branch/line Data includes “From” and “To” nodes for each phase, length of the 

conductor, and transmission line pole configuration.

• Spot Load Data includes the type of load, complex power load for each node.

• Network Elements Data includes data for the voltage regulator and three-phase

transformer.

After reading the data, it is manipulated in the form for programming use. The bus 

admittance matrix Y is calculated for the network configuration. The admittance 

matrix remains constant for a network case. For a single-phase equivalent case, the 

size of Y is n x n, and for a three-phase network, the size is 3n x 3n, where n is the
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number of buses in the system. The right side of holomorphic embedded PBE is set to

zero for calculating Germ solution, which is coefficient V[0] of the voltage power

series. In the next step, V[n] the coefficient for each bus is calculated using V[n — 1]

coefficient. This recursive relationship is based on equations (3.10-3.12). Once the

power series coefficients are obtained for a predefined value of n, like 50. Then, the

Maclaurin series representation of voltage at each bus is expressed as a rational 

approximation using Pade' approximant technique. After this step, the mismatch is 

checked for each bus between the given net power injection and net power injection 

calculated using the obtained voltage value using the following relation:

mismatch =
s'—O#*'))

3.21

Mismatch value is further divided into real power mismatch and reactive power mismatch 

for different bus types.
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Figure 6 - Steps for Implementing HELM
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3.5 Summary

The iterative methods (also known as Numerical methods) of load-ow analysis 

have convergence problems due to the fractal shape of the basin of attraction of the 

solution map. Due to a lack of knowledge regarding general characteristics of shape and 

size of the said basins, the Holomorphic Embedding Load-Flow method calculates the 

coefficients of the voltage series with an embedding reference point as the germ solution. 

The voltage power series is one of the major ways of representing the Holomorphic 

functions. The obtained Power series only converge within the radius of convergence 

(ROC), however, using an analytic continuation, such as near-diagonal sequences of Pade 

approximants, the region of convergence is extended beyond the ROC.
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CHAPTER IV

SIMULATIONS

4.1 Convergence Criteria

In the entire project, a per-unit system is used for all the power system values. 

The complex power base selected was 100 MVA. The MATPOWER package [11-13] 

and Julia v1.1.1 [35] are employed to conduct the simulations. The stopping criteria for 

the Pade' approximant values for the bus voltage magnitude are set to 10-4 per unit and 

for voltage angle is set to 0.5 degrees. Further, the tolerance for stopping criteria for 

power mismatch on all buses is set to 10-6 per unit. The algorithms have been 

implemented in IEEE standard bus cases [36].

4.2 Simulation Results

This section explains and summarizes the load-flow results using the holomorphic 

load-flow method. The bus cases selected are diverse with a variety of loads, generation 

capacity, branch parameter, tap-changing, and phase-shifting transformers. All the 

solutions solved using HELM have been verified with the traditional Newton-Raphson 

method. This work only records the variation of number terms in power series required 

for reducing power mismatch. For future work, variation in the L/M ratio of Pade' 

approximant can also be examined for various IEEE standard cases.
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4.2.1 Single-phase bus systems

The single-phase cases are the equivalent representation of a three-phase balanced 

power system network. The solution is extrapolated to the other two phases after 

calculating the solution for the single-phase equivalent. This assumption is particularly 

useful for DC approximated power-flow methods and a very large power grid model.

4.2.1.1 IEEE 5-bus system

A modified IEEE 5-bus case which has a tap-changing and phase-shifting 

transformer on the branch 3-4. The data for the case is shared in Annexure A. The below 

equation (4.1-4.3) represents the calculated bus admittance matrix Y. The matrix Y is split 

into the series matrix Ytrans and shunt matrix Yshunt.

22.250-7222.484
- 3.523 + 735.234

0.0 + ]0.0
-3.257 + 732.569
-15.470 + 7154.70

-3.523+7 35.234 
12.691-j126.898
-9.1676 + 7'91.676

0.0 + 70.0
0.0 + 70.0

0.0 + 70.0
- 9.1676 + 7 91.676 

9.1676-795.489
0.5177+72.936

0.0 + 7 0.0

-3.2569+732.569 -15.4703 + 7154.703
0.0 + 70.0 0.0 + 7 0.0

-0.517+72.936 0.0+70.0 4.1
6.590-768.224 -3.333 + 733.336

-3.3336+733.336 18.804-7188.021 .

ytrans

■ 22.2507-7222.507 -3.52348+735.235
-3.52348 + 735.235 12.6911 - 7126.911

0.0 + 70.0 -9.1676 + 791.676
-3.257+732.569 0.0 + 70.0

-15.4703+7154.703 0.0 + 70.0

0.0 + 70.0 
-9.16758 + 791.676 
9.68532-794.612 
0.51774 + 72.9362

0.0 + 70.0

-3.2569+732.569 
0.0 + 70.0

-0.5178+72.9362 
6.07284-768.8419 
-3.3337+733.337

-15.470+7154.703’
0.0 + 70.0
0.0 + 70.0

-3.33367+733.337
18.804-7188.04 .

4.2

yShunt =

0.0 + 70.02248
0.0 + 70.01282

-0.51773 -70.876976
0.517735 + 70.617297

0.0 + J0.019 ]

4.3

The set of equations (3.16) can be separated in real and imaginary component for 

calculation and can be written as below for IEEE 5-bus system.
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V1im[n]'
222.51 0.0 - 35.2348 - 3.5235 0.0 0.0 - 32.569 - 3.2569 - 154.703 0.0

Qi [n]
T rjYn r T22.251 1.0 - 3.5235 35.2348 0.0 0.0 - 3.2569 32.569 -15.4703 0.0

-35.235 0.0 126.911 12.691 - 91.6758 0.0 0.0 - 0.0 0.0 0.0 K2 [n]
-3.525 0.0 12.6911 -126.911 -9.16758 0.0 0.0 0.0 0.0 0.0 V2re[n]

0.0 0.0 - 91.675 -9.168 94.6121 0.0 -2.936 - 0.5177 0.0 0.0 Wm[n]
0.0 0.0 -9.1675 91.6758 9.68532 1.0 - 0.5178 2.93622 0.0 0.0

Q3[n]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 Kim[n]
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 Vfe[n]

-154.703 0.0 0.0 0.0 0.0 0.0 - 33.33 - 3.334 188.04 0.0
"[ -15.4703 0.0 0.0 0.0 0.0 0.0 - 3.333 33.334 18.804 1.0 ] L Qs[n] ]

'Im. (RHSof3.16.2y
Re. (RHSof3.16.2)
[m. (RHSof3.16.1)
Re. (RHSof3.16.1) 
[m. (RHSof3.16.2) 
Re. (RHSof3.16.2) 

0.0 
1.0

[m. (RHSof3.16.2) 
.Re. (RHSof3.16.2)

22.251 0.0 -15.4703
-222.507 0.0 154.703
-3.52348 -9.16758 0.0
35.2348 91.6758 0.0

- 0.0
0.0

9.68532
-94.6121

0.0
0.0 [KHn] VIe[n] K^'|n||

0.0 0.0 0.0
0.0 0.0 0.0

-15.4703 0.0 18.804
L 154.703 0.0 -188.04]

4.4

Using the steps explained in section 3.4, the equation (4.4) is solved recursively solved to 

obtain coefficients of the power series. The coefficients are further used to find the 

solution using Pade' approximant. Table (3) shows the power flow results for the IEEE 5- 

bus system using HELM.

Table 3 - Power-Flow Solution for Modified IEEE 5-Bus Case

Bus 
Id

Bus 
Type

Voltage 
Magnitude Voltage Angle Net MW 

Injection
Net MVar 
Injection

1 PV 1 3.485 210 29.404
2 PQ 0.989371 -0.182 -300 -98.61
3 PV 1 0.223 23.49 178.737
4 REF 1 0 -395.01 -1.863
5 PV 1 4.286 466.51 -37.606
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Further power-flow results are mentioned below:

Total MVar Generated = 398.753

Total MVar Load = 328.69

Total MVar Loss = 70.063

MVar Shunt Losses:0.0

Minimum:

0.989370564606465

-0.1828905259805847

Total Mw Generated = 1004.99

Total Mw Load = 1000.0

Total Mw Loss = 4.99

Mw Shunt Losses: -0.0

Maximum:

Voltage Mag: 1.0

Voltage Ang: 4.286438009999222

Coefficients in Voltage series = 40

Convergence Status = true

Initial condition = Flat Start

Number of Buses = 5

Number of Branches = 6

Mismatch Value = 4.39648317751562e-14

Mismatch vs No. of Terms in Power series for modified IEEE 5 -Bus 
Case

O
GJ

ns 
EJ/J
S
M— O
O
M O
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-10

-12

-14

5 10 15 20 25
-16

0 30
No. of terms in power series (n)

Figure 7 - Highest Absolute Mismatch of PBE vs Number of terms in Power series for 
Modified IEEE 5-Bus Case
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Figure (7) shows the decreasing trend of mismatch error with an increase in 

power series terms. It can be noted that mismatch error is almost constant for power 

series coefficient, n > 10. Therefore, for better computational performance for IEEE 5- 

bus system power series terms shall be set of 10.

4.2.1.2 IEEE 33bw-bus system

The IEEE 33bw-bus system is shown in Figure (8). It is a radial single-phase 

system with bus 1 as a substation bus or reference bus. In a traditional radial system, the 

substation bus is the only bus that has generation units on it and is assumed to be infinite 

capacity. The detailed power-flow results for the IEEE 33bw-bus system using HELM 

are mentioned in Appendix B. In Figure (9), it can be noted that for more than 15 terms in 

the power series, there is no significant reduction in mismatch error for the case.

Sub station

_____________ 1
19 _____

1____
2____
3 I

20 4 1----------------
21 5 23
22 6 24

7 25
8 1--------------- 26
9 27
10 28
11 29
12 30
13 31
14 32
15 33

Figure 8 - Single Line Dia

16
17____

gram of IEEE 33bw-bus case
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Figure 9 - Highest Absolute Mismatch of PBE vs Number of terms in Power series for 
IEEE 33bw-Bus Case

4.2.1.3 IEEE 118-bus system

Figure (10) represents IEEE 118-bus system on which HELM was also applied.

Figure (11) represents the relationship between mismatch error and the number of terms 

in the power series of voltage in PBEs. With the increase in the number of terms in the 

voltage power series, the mismatch error decreases; however, the decrease is not 

monotonic, but oscillating in nature. It can be noted that the mismatch becomes nearly 

constant for values of n > 18. The full results of load-flow results using HELM can be 

found in Appendix C.

46



Figure 10 - Single Line Diagram of IEEE 118-Bus Case

No. of terms in power series (n)

Figure 11 - Highest Absolute Mismatch of PBE vs Number of terms in Power series for 
IEEE 118-Bus Case
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4.2.1.4 IEEE 300-bus system

Figure (13) represents IEEE 300-bus system on which HELM was applied. Figure 

(12) represents a relationship between mismatch error and the number of terms in the 

power series of voltage in PBEs. Again, with the increase in the number of terms in 

power series, the mismatch error decreases; however, the decrease is not monotonic, but 

oscillating in nature. It can be noted that the mismatch becomes nearly constant for 

values of n > 44. The summary of load-flow results using HELM results is below:

Total Mw Generated = 23935.376

Total Mw Load = 23525.85

Total Mw Loss = 409.526

Mw Shunt Losses: -0.214

Maximum:

Voltage Mag: 1.0734999999999981

Voltage Ang: 35.07237077770962

Coefficients in Voltage series = 40

Convergence Status = true

Initial condition = Flat Start

Total MVar Generated = 7983.709

Total MVar Load = 7787.97

Total MVar Loss = 195.739

MVar Shunt Losses: -599.525

Minimum:

0.9287992618042102

-37.54254862965541

Number of Buses = 300

Number of Branches = 411

Mismatch Value = 1.6566e-12
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Mismatch vs No. of Terms in Power series for IEEE 300-Bus Case

Figure 12 - Highest Absolute Mismatch of PBE vs Number of terms in Power series for 
IEEE 300-Bus Case

Figure 13 - Single Line Diagram of IEEE 300-Bus Case
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4.2.2 Three-phase bus system

The three-phase modeling is accurate than a single-phase modeling of a power 

system. It has advantages such as the inclusion of mutual impedance in the admittance 

matrix. In a single-bus equivalent system, the off-diagonal elements of a phase-frame 

matrix, like one in the equation (2.13), are zero and all the diagonal element has the same 

value. This reduces the complexity and eases computational time but increases in 

accuracy. Therefore, the HELM is applied to the distribution system for detailed 

application.

4.2.2.1 IEEE 37-bus three-phase feeder/system

Figure (16) shows the IEEE 37-bus system is shown in Appendix D. The 

substation is connected to Bus 799 which is also called reference bus for the system. The 

IEEE 37-bus system is an unbalanced radial distribution system with a total of 111 phase­

nodes and a total of 37 bus. The reference bus has a nominal voltage with a positive 

phase sequence. Figure (14) maps the relation between mismatch error and the number of 

terms in power series. It can be noted that after 25 terms, in the holomorphically 

embedded voltage power series, the mismatch remains constant. Therefore, using such 

knowledge computational time can be optimized for the IEEE 37-bus system.
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Figure 14 - Highest Absolute Mismatch of PBE vs Number of terms in Power series for
IEEE 37-Bus Case

From Table (4), it can be analytically noted that the quality of voltage magnitude and 

angle on each node deviates from ideal as we go from substation node to downward 

nodes. One solution to improving the voltage profile on nodes that are further from the 

substation is to use a voltage regulating transformer.
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Table 4 - Power-Flow Solution for Each Phase of IEEE 37-Bus Case

Bus id

Phase A Phase B Phase C
Voltage 

Magnitude 
(p.u.)

Voltage 
Angle 

(Degree)

Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)

Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)
799

(Ref. bus) 1.000 0.000 1.000 -120.000 1.000 120.000
701 0.995 -0.701 0.999 -120.480 0.992 118.961
702 0.992 -1.142 0.997 -120.741 0.989 118.439
703 0.988 -1.687 0.998 -120.861 0.986 118.047
704 0.990 -1.161 0.993 -121.052 0.989 118.245
705 0.992 -1.128 0.996 -120.796 0.988 118.351
706 0.990 -1.014 0.987 -121.363 0.990 118.058
707 0.989 -0.890 0.980 -121.738 0.991 117.997
708 0.982 -2.425 1.000 -120.827 0.977 117.604
709 0.984 -2.201 0.999 -120.859 0.979 117.701
710 0.979 -2.935 1.000 -120.776 0.969 117.252
711 0.975 -3.414 1.004 -120.651 0.965 117.186
712 0.992 -1.131 0.996 -120.778 0.987 118.299
713 0.991 -1.154 0.995 -120.854 0.989 118.326
714 0.990 -1.180 0.993 -121.058 0.989 118.252
718 0.988 -1.293 0.993 -121.063 0.989 118.287
720 0.990 -1.034 0.988 -121.316 0.989 118.062
722 0.989 -0.876 0.980 -121.780 0.992 117.989
724 0.989 -0.862 0.979 -121.822 0.992 117.994
725 0.990 -1.003 0.987 -121.394 0.990 118.057
727 0.986 -1.761 0.998 -120.872 0.985 118.017
728 0.985 -1.838 0.998 -120.905 0.984 118.004
729 0.985 -1.853 0.999 -120.891 0.985 118.029
730 0.985 -2.075 0.999 -120.849 0.980 117.764
731 0.984 -2.160 0.998 -120.949 0.980 117.693
732 0.982 -2.427 1.000 -120.815 0.976 117.567
733 0.980 -2.646 1.001 -120.806 0.974 117.532
734 0.978 -2.946 1.002 -120.760 0.971 117.370
735 0.979 -2.938 1.000 -120.761 0.968 117.207
736 0.979 -2.890 0.998 -120.912 0.970 117.248
737 0.975 -3.295 1.004 -120.725 0.968 117.345
738 0.975 -3.404 1.004 -120.693 0.967 117.285
740 0.976 -3.417 1.004 -120.636 0.965 117.141
741 0.976 -3.418 1.004 -120.637 0.965 117.152
742 0.991 -1.111 0.995 -120.863 0.989 118.351
744 0.986 -1.822 0.999 -120.890 0.985 118.020
775 0.984 -2.201 0.999 -120.859 0.979 117.701
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Figure (15) shows the graphical variation of voltage magnitude and voltage 

angle on each phase node of the IEEE 37-bus system. It is interesting to note the decline 

of voltage magnitude for buses that are further away from substation bus due to voltage 

drop on each previous bus on the current path. Figure (15) also gives an insight on 

strategic bus locations on which distributed energy resources, such as photovoltaic 

panels, battery bank or other power quality correction methods, can be installed for 

improved voltage profile. For example, a voltage correction method could be installed at 

bus 13 so that it can improve the voltage in that neighborhood.
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Figure 15 - Phase-wise Voltage Magnitude and Angle for IEEE 37-Bus Case
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4.3 Performance Summary

To understand the performance of HELM on various IEEE bus systems, average 

time performance using Benchmarking package in Julia environment was used. In Table 

(5), the number of power series coefficients for each bus is n = 50. The value of n can be 

decreased or increased to improve the performance as a minimum number of coefficients 

reduces the computational cost. However, for case-wise comparison, the number of 

coefficients are chosen to be 50. From Table (5), it is clear to note that as the number of 

buses in a case system increases, the average time taken to execute the algorithm is 

increased.

Table 5 - Time Performance Comparison of HELM using Benchmarking Tool Package in 
Julia

Case Name Tap Changer 
Transformer

Number of 
Samples

Total Mean Run Time 
(Milliseconds)

case5 N 158 31.687 ms
case9 N 122 41.101 ms

case14 Y 85 58.829 ms
case30 N 39 128.145 ms
case57 Y 25 202.941 ms

case89pegase Y 13 400.120 ms
case118 Y 9 574.574 ms
case300 Y 3 1692 ms

case1354pegase Y 1 7275 ms
case9241pegase Y 1 952549 ms

4.4 Advantages and Disadvantages of HELM

The advantages of HELM solve many of the issues of traditional power flow 

methods. HELM provides voltage solution on the higher voltage side of the PV curve, if 

it exists, and numerically expresses if the solution does not exist.
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CHAPTER V 

CONCLUSION & FUTURE SCOPE

5.1 Conclusion

The research presented here implemented HELM on various single-phase 

networks and three-phase unbalanced networks. The details of Holomorphic load flow 

modeling for a different type of loads were discussed. Theoretically, a voltage power 

series can have an infinite number of terms and for infinite computing precision, HELM 

guarantees the high-voltage operable solution, if it exists. It was observed that to obtain a 

solution for different networks, with finite set error, a different number of terms in the 

holomorphically embedded voltage power series shall be selected for better performance. 

The performance and accuracy of distributed power flow methods like the ladder- 

iterative method are shown to be slower than HELM. It is also observed that net power 

injection mismatch error reduces almost quadratically, however, the error decreases non- 

monotonically with an increase in the number of terms in power series. Further, it was 

also noted that the most time-consuming step was the calculation of Pade' approximant, 

due to its complexity of O(M3).
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5.2 Future Scope

The HELM seems very promising for various power flow and its derivative 

applications, such as Economic Dispatch and Optimal Power Flow, with both AC and DC 

assumptions [37]. Although the iterative techniques for power-flow studies, like Newton 

Raphson (NR), do not require an additional step of calculating Pade' approximant, which 

takes additional calculation resources. However, this is countered by the requirement of 

calculating the Jacobian matrix for each iteration in the NR method. To further improve 

the speed of the HELM, the analytic continuation (Pade' approximant) step can be 

performed in parallel on all the buses as there is no relating factor between voltage series 

of buses.

For further improvement of the Algorithm’s performance, LU factorization can 

be employed and a better starting point, aka Germ solution, can be determined. The 

starting point of HELM can be the second or third iteration result of methods like the 

Gauss-Seidel power flow method, this is theorized to improve the performance to large 

extent [7], [24]. Further, the robustness of HELM can be investigated especially for 

synthetic cases and systems with islanding, which can occur in very large power systems. 

The Algorithm can further be extended to Delta-connected ZIP load and other three- 

phase components like the voltage regulator and various winding configurations of a 

three-phase transformer.
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APPENDIX A

Modified IEEE 5-Bus Case Data

Table 6 - Branch Data for Modified IEEE 5-Bus Case

Branch Resistance in p.u. Reactance in p.u. Shunt susceptance 
in p.u.

1-2 0.00281 0.0281 0.00712

1-4 0.00304 0.0304 0.00658

1-5 0.00064 0.0064 0.3126

2-3 0.00108 0.0108 0.01852

3-4 0.00 0.43 0

4-5 0.00297 0.0297 0.00674

Table 7 - Bus Injection Data for Modified IEEE 5-Bus Case

Bus 
Id

Buys 
Type

Complex Power Generation 
(MW + j MVAR)

Complex Power load 
(MW + j MVAR)

Set 
Voltage 
in p.u.

1 PV (40+170) + j 0.0 0.0 + j 0.0 1 z0°

2 PQ • 300 + j 98.61 •

3 PV 323.49 + j 0.0 300 + j 98.61 1 z0°

4 REF 0.0 + j 0.0 400 + j 131.47 1 z0°

5 PV 466.51 + j 0.0 0.0 + j 0.0 1 z0°
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APPENDIX B

Results from HELM for IEEE 33bw-bus Single-Phase Case

Table 8 - Power-Flow Solution for IEEE 33bw-Bus Case

Bus 
Id

Bus 
Type

Voltage Magnitude 
(p.u.)

Voltage Angle 
(Degree)

Net MW Injection Net MVar Injection

1 REF 1 0 3.91768 2.43514
2 PQ 0.997032 0.014481 -0.1 -0.06
3 PQ 0.982938 0.096042 -0.09 -0.04
4 PQ 0.975456 0.161651 -0.12 -0.08
5 PQ 0.968059 0.228285 -0.06 -0.03
6 PQ 0.949658 0.133853 -0.06 -0.02
7 PQ 0.946173 -0.09647 -0.2 -0.1
8 PQ 0.941328 -0.0604 -0.2 -0.1
9 PQ 0.935059 -0.13348 -0.06 -0.02
10 PQ 0.929244 -0.19601 -0.06 -0.02
11 PQ 0.928384 -0.18876 -0.045 -0.03
12 PQ 0.926885 -0.17727 -0.06 -0.035
13 PQ 0.920772 -0.26859 -0.06 -0.035
14 PQ 0.918505 -0.34727 -0.12 -0.08
15 PQ 0.917093 -0.38495 -0.06 -0.01
16 PQ 0.915725 -0.40821 -0.06 -0.02
17 PQ 0.913698 -0.48547 -0.06 -0.02
18 PQ 0.91309 -0.49506 -0.09 -0.04
19 PQ 0.996504 0.003651 -0.09 -0.04
20 PQ 0.992926 -0.06333 -0.09 -0.04
21 PQ 0.992222 -0.08269 -0.09 -0.04
22 PQ 0.991584 -0.10303 -0.09 -0.04
23 PQ 0.979352 0.06508 -0.09 -0.05
24 PQ 0.972681 -0.02365 -0.42 -0.2
25 PQ 0.969356 -0.06735 -0.42 -0.2
26 PQ 0.947729 0.17331 -0.06 -0.025
27 PQ 0.945165 0.229463 -0.06 -0.025
28 PQ 0.933726 0.312409 -0.06 -0.02
29 PQ 0.925507 0.390314 -0.12 -0.07
30 PQ 0.92195 0.495586 -0.2 -0.6
31 PQ 0.917789 0.411178 -0.15 -0.07
32 PQ 0.916873 0.388135 -0.21 -0.1
33 PQ 0.91659 0.380405 -0.06 -0.04

Total Mw Generated = 3.918 Total MVar Generated = 2.435

Total Mw Load = 3.715 Total MVar Load = 2.3
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Total MVar Loss = 0.135Total Mw Loss = 0.203

Mw Shunt Losses: -0.0 MVar Shunt Losses:0.0

Coefficients in Voltage series = 40 Number of Buses = 33

Convergence Status = true Number of Branches = 32

Initial condition = Flat Start Mismatch Value = 7.6319e-15
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APPENDIX C

Results from HELM for IEEE 118-bus Single-Phase Case

Table 9 - Power-Flow Solution for IEEE 118-Bus Case

Bus Id Bus Type Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)

Net MW 
Injection

Net MVar 
Injection

1 PV 0.955 -19.0273 -51 -30.1041
2 PQ 0.971393 -18.4875 -20 -9
3 PQ 0.967692 -18.1438 -39 -10
4 PV 0.998 -14.4259 -39 -27.0096
5 PQ 1.00198 -13.9808 0 0
6 PV 0.99 -16.7081 -52 -6.07023
7 PQ 0.989328 -17.1527 -19 -2
8 PV 1.015 -8.95942 -28 63.1384
9 PQ 1.04292 -1.70531 0 0
10 PV 1.05 5.8756 450 -51.0422
11 PQ 0.985089 -16.9942 -70 -23
12 PV 0.99 -17.5111 38 81.2917
13 PQ 0.968302 -18.3703 -34 -16
14 PQ 0.983591 -18.2285 -14 -1
15 PV 0.97 -18.5259 -90 -22.8395
16 PQ 0.983897 -17.8127 -25 -10
17 PQ 0.995089 -16.0048 -11 -3
18 PV 0.973 -18.2192 -60 -5.57368
19 PV 0.962 -18.6854 -45 -39.2742
20 PQ 0.956934 -17.809 -18 -3
21 PQ 0.957725 -16.222 -14 -8
22 PQ 0.969019 -13.6684 -10 -5
23 PQ 0.999469 -8.7513 -7 -3
24 PV 0.992 -8.88613 -13 -14.9076
25 PV 1.05 -1.82016 220 50.0433
26 PV 1.015 -0.0398 314 10.1247
27 PV 0.968 -14.3956 -71 -9.01765
28 PQ 0.961568 -16.1211 -17 -7
29 PQ 0.963216 -17.1146 -24 -4
30 PQ 0.985333 -10.9662 0 0
31 PV 0.967 -16.9981 -36 5.58601
32 PV 0.963 -14.9394 -59 -39.2848
33 PQ 0.970934 -19.1462 -23 -9
34 PV 0.984 -18.4886 -59 -46.8271
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35 PQ 0.980452 -18.9449 -33 -9
36 PV 0.98 -18.9445 -31 -9.27492
37 PQ 0.990661 -18.0333 0 0
38 PQ 0.961286 -12.8924 0 0
39 PQ 0.969961 -21.4234 -27 -11
40 PV 0.97 -22.5045 -66 5.45407
41 PQ 0.966832 -22.9484 -37 -10
42 PV 0.985 -21.3471 -96 18.0296
43 PQ 0.977121 -18.5396 -18 -7
44 PQ 0.984436 -16.0567 -16 -8
45 PQ 0.986383 -14.2274 -53 -22
46 PV 1.005 -11.4243 -9 -15.0295
47 PQ 1.01705 -9.20087 -34 -1.79E-12
48 PQ 1.02063 -9.9815 -20 -11
49 PV 1.025 -8.97839 117 85.8451
50 PQ 1.00108 -11.0171 -17 -4
51 PQ 0.966877 -13.6358 -17 -8
52 PQ 0.956818 -14.5891 -18 -5
53 PQ 0.945983 -15.5639 -23 -11
54 PV 0.955 -14.6519 -65 -28.0989
55 PV 0.952 -14.9418 -63 -17.3358
56 PV 0.954 -14.7551 -84 -20.2857
57 PQ 0.970583 -13.5508 -12 -3
58 PQ 0.959039 -14.4075 -12 -3
59 PV 0.985 -10.5515 -122 -36.166
60 PQ 0.993156 -6.76988 -78 -3
61 PV 0.995 -5.87851 160 -40.394
62 PV 0.998 -6.49517 -77 -12.7416
63 PQ 0.968737 -7.17259 0 0
64 PQ 0.983739 -5.40664 0 0
65 PV 1.005 -2.2809 391 81.5102
66 PV 1.05 -2.44132 353 -19.9566
67 PQ 1.01968 -5.08103 -28 -7
68 PQ 1.00325 -2.40217 0 0
69 REF 1.035 0 513.863 -82.4241
70 PV 0.984 -7.38208 -66 -10.3307
71 PQ 0.986845 -7.7931 0 0
72 PV 0.98 -8.89144 -12 -11.1301
73 PV 0.991 -8.00459 -6 9.65137
74 PV 0.958 -8.33144 -68 -32.6252
75 PQ 0.967332 -7.06979 -47 -11
76 PV 0.943 -8.20121 -68 -30.7319
77 PV 1.006 -3.24936 -61 -15.8296
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78 PQ 1.00342 -3.55339 -71 -26
79 PQ 1.00922 -3.25456 -39 -32
80 PV 1.04 -1.00993 347 79.4665
81 PQ 0.996807 -1.85511 0 0
82 PQ 0.988545 -2.72826 -54 -27
83 PQ 0.984377 -1.53605 -20 -10
84 PQ 0.979704 1.00031 -11 -7
85 PV 0.985 2.55562 -24 -20.6066
86 PQ 0.986691 1.18617 -21 -10
87 PV 1.015 1.44539 4 11.0216
88 PQ 0.987453 5.69035 -48 -10
89 PV 1.005 9.74834 607 -5.90495
90 PV 0.985 3.33837 -163 17.3084
91 PV 0.98 3.35064 -10 -13.088
92 PV 0.99 3.8808 -65 -23.9562
93 PQ 0.985433 0.849095 -12 -7
94 PQ 0.98983 -1.31779 -30 -16
95 PQ 0.980332 -2.29044 -42 -31
96 PQ 0.992283 -2.45741 -38 -15
97 PQ 1.01117 -2.08416 -15 -9
98 PQ 1.02351 -2.56665 -34 -8
99 PV 1.01 -2.93323 -42 -17.5356
100 PV 1.017 -1.94116 215 77.5521
101 PQ 0.99142 -0.35312 -22 -15
102 PQ 0.989131 2.36499 -5 -3
103 PV 1.01 -5.68225 17 59.4224
104 PV 0.971 -8.25223 -38 -22.6117
105 PV 0.965 -9.35643 -31 -44.3345
106 PQ 0.961146 -9.6166 -43 -16
107 PV 0.952 -12.4173 -50 -5.44218
108 PQ 0.966212 -10.5565 -2 -1
109 PQ 0.967026 -11.0091 -8 -3
110 PV 0.973 -11.856 -39 -29.7192
111 PV 0.98 -10.2109 36 -1.84382
112 PV 0.975 -14.9552 -68 28.5117
113 PV 0.993 -16.0074 -6 6.75263
114 PQ 0.960093 -15.2736 -8 -3
115 PQ 0.960023 -15.2819 -22 -7
116 PV 1.005 -2.83716 -184 51.3225
117 PQ 0.973824 -19.0521 -20 -8
118 PQ 0.949438 -8.05813 -33 -15
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Total Mw Generated = 4374.863 Total MVar Generated = 795.684

Total Mw Load = 4242.0

Total Mw Loss = 132.863

Mw Shunt Losses: -0.0

Coefficients in Voltage series = 40

Convergence Status = true

Initial condition = Flat Start

Total MVar Load = 1438.0

Total MVar Loss = -642.316

MVar Shunt Losses:84.41194499999997

Number of Buses = 118

Number of Branches = 186

Mismatch Value = 1.99647132040731e-13
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APPENDIX D

Modified IEEE 37-bus Three-Phase Feeder Data

Figure 16 - Single Line Diagram of IEEE 37 Bus Case
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Table 10 - Spot Load Data for Modified IEEE 37-Bus Case

Spot Loads

Node Load
Ph­

1 Ph-1
Ph­

2 Ph-2 Ph-3 Ph-4
Model kW kVAr kW kVAr kW kVAr

701 Y-PQ 140 70 140 70 350 175
712 Y-PQ 0 0 0 0 85 40
713 Y-PQ 0 0 0 0 85 40
714 Y-PQ 17 8 21 10 0 0
718 Y-PQ 85 40 0 0 0 0
720 Y-PQ 0 0 0 0 85 40
722 Y-PQ 0 0 140 70 21 10
724 Y-PQ 0 0 42 21 0 0
725 Y-PQ 0 0 42 21 0 0
727 Y-PQ 0 0 0 0 42 21
728 Y-PQ 42 21 42 21 42 21
729 Y-PQ 42 21 0 0 0 0
730 Y-PQ 0 0 0 0 85 40
731 Y-PQ 0 0 85 40 0 0
732 Y-PQ 0 0 0 0 42 21
733 Y-PQ 85 40 0 0 0 0
734 Y-PQ 0 0 0 0 42 21
735 Y-PQ 0 0 0 0 85 40
736 Y-PQ 0 0 42 21 0 0
737 Y-PQ 140 70 0 0 0 0
738 Y-PQ 126 62 0 0 0 0
740 Y-PQ 0 0 0 0 85 40
741 Y-PQ 0 0 0 0 42 21
742 Y-PQ 8 4 85 40 0 0
744 Y-PQ 42 21 0 0 0 0

Total 727 357 639 314 1091 530
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Table 11 - Branch Data for Modified IEEE 37-Bus Case

Line Segment Data

Node A Node B Length(ft.) Config.
701 702 960 722
702 705 400 724
702 713 360 723
702 703 1320 722
703 727 240 724
703 730 600 723
704 714 80 724
704 720 800 723
705 742 320 724
705 712 240 724
706 725 280 724
707 724 760 724
707 722 120 724
708 733 320 723
708 732 320 724
709 731 600 723
709 708 320 723
710 735 200 724
710 736 1280 724
711 741 400 723
711 740 200 724
713 704 520 723
714 718 520 724
720 707 920 724
720 706 600 723
727 744 280 723
730 709 200 723
733 734 560 723
734 737 640 723
734 710 520 724
737 738 400 723
738 711 400 723
744 728 200 724
744 729 280 724
775 709 100 724
799 701 1850 721
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Phase Impedance and Admittance Matrices

Configuration 721

Z = R + j X in ohms per mile

0.2926 + j 0.1973 0.0673 - j 0.0368 0.0337 - j 0.0417
0.2646 + j 0.1900 0.0673 - j 0.0368

0.2926 + j 0.1973
j B in micro-Siemens per mile

159.7919 0.0000 0.0000
159.7919 0.0000

159.7919

Configuration 722

Z = R + j X in ohms per mile
0.4751 + j 0.2973 0.1629 - j 0.0326 0.1234 - j 0.0607

0.4488 + j 0.2678 0.1629 - j 0.0326
0.4751 + j 0.2973

j B in micro-Siemens per mile
127.8306 0.0000 0.0000

127.8306 0.0000
127.8306

Configuration 723

Z = R + j X in ohms per mile
1.2936 + j 0.6713 0.4871 + j 0.2111 0.4585 + j 0.1521

1.3022 + j 0.6326 0.4871 + j 0.2111
1.2936 + j 0.6713

j B in micro-Siemens per mile
74.8405 0.0000 0.0000

74.8405 0.0000
74.8405

Configuration 724

Z = R + j X in ohms per mile
2.0952 + j 0.7758 0.5204 + j 0.2738 0.4926 + j 0.2123

2.1068 + j 0.7398 0.5204 + j 0.2738
2.0952 + j 0.7758

j B in micro-Siemens per mile
60.2483 0.0000 0.0000

60.2483 0.0000
60.2483
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APPENDIX E

Detailed results from HELM for Modified IEEE 37-bus Three-Phase Feeder

Table 12 - Power-Flow Solution for IEEE 37-Bus Case

Bus 
id

Phase A Phase B Phase C

Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)

Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)

Voltage 
Magnitude 

(p.u.)

Voltage 
Angle 

(Degree)
799 1.000 0.000 1.000 -120.000 1.000 120.000
701 0.995 -0.701 0.999 -120.480 0.992 118.961
702 0.992 -1.142 0.997 -120.741 0.989 118.439
703 0.988 -1.687 0.998 -120.861 0.986 118.047
704 0.990 -1.161 0.993 -121.052 0.989 118.245
705 0.992 -1.128 0.996 -120.796 0.988 118.351
706 0.990 -1.014 0.987 -121.363 0.990 118.058
707 0.989 -0.890 0.980 -121.738 0.991 117.997
708 0.982 -2.425 1.000 -120.827 0.977 117.604
709 0.984 -2.201 0.999 -120.859 0.979 117.701
710 0.979 -2.935 1.000 -120.776 0.969 117.252
711 0.975 -3.414 1.004 -120.651 0.965 117.186
712 0.992 -1.131 0.996 -120.778 0.987 118.299
713 0.991 -1.154 0.995 -120.854 0.989 118.326
714 0.990 -1.180 0.993 -121.058 0.989 118.252
718 0.988 -1.293 0.993 -121.063 0.989 118.287
720 0.990 -1.034 0.988 -121.316 0.989 118.062
722 0.989 -0.876 0.980 -121.780 0.992 117.989
724 0.989 -0.862 0.979 -121.822 0.992 117.994
725 0.990 -1.003 0.987 -121.394 0.990 118.057
727 0.986 -1.761 0.998 -120.872 0.985 118.017
728 0.985 -1.838 0.998 -120.905 0.984 118.004
729 0.985 -1.853 0.999 -120.891 0.985 118.029
730 0.985 -2.075 0.999 -120.849 0.980 117.764
731 0.984 -2.160 0.998 -120.949 0.980 117.693
732 0.982 -2.427 1.000 -120.815 0.976 117.567
733 0.980 -2.646 1.001 -120.806 0.974 117.532
734 0.978 -2.946 1.002 -120.760 0.971 117.370
735 0.979 -2.938 1.000 -120.761 0.968 117.207
736 0.979 -2.890 0.998 -120.912 0.970 117.248
737 0.975 -3.295 1.004 -120.725 0.968 117.345
738 0.975 -3.404 1.004 -120.693 0.967 117.285
740 0.976 -3.417 1.004 -120.636 0.965 117.141
741 0.976 -3.418 1.004 -120.637 0.965 117.152
742 0.991 -1.111 0.995 -120.863 0.989 118.351
744 0.986 -1.822 0.999 -120.890 0.985 118.020
775 0.984 -2.201 0.999 -120.859 0.979 117.701
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