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UTILIZING SIMULATED VEHICLE TRAJECTORY DATA FROM

CONNECTED VEHICLES TO CHARACTERIZE PERFORMANCE MEASURES 

ON AN ARTERIAL AFTER AN IMPACTFUL INCIDENT

ABSTRACT

Traffic incidents are unforeseen events known to affect traffic flow because they 

reduce the capacity of an arterial corridor segment and normally generate a temporary 

bottleneck. Identification of retiming requirements to enhance traffic signal operations 

when an incident occurs depends on operations-oriented traffic signal performance 

measurements. When effective and real-time traffic signal performance metrics are 

employed at traffic control centers, delays, fuel use, and air pollution may all be 

decreased. The majority of currently available traffic signal performance evaluations 

are based on high-resolution traffic signal controller event data, which gives data on 

an intersection-by-intersection basis but requires a substantial upfront expenditure. 

The necessary detecting and communication equipment also involves costly and 

periodic maintenance. Additionally, the full manifestation of connected vehicles 

(CVs) is fast approaching with efforts in place to accelerate the adaptation of CVs and 

their infrastructures. CV technologies have enormous potential to improve traffic 

mobility and safety. CVs can provide abundant traffic data that is not otherwise 

captured by roadway detectors or other methods of traffic data collection. Since the 

observation is independent of any space restrictions and not impacted by queue 

discharge and buildup, CV data offers more comprehensive and reliable data that can 

be used to estimate various traffic signal performance measures.

This thesis proposes a conceptual CV simulation framework intended to ascertain 

the effectiveness of CV trajectory-based measures in characterizing an arterial 

corridor incident, such as a vehicle crash. Using a four-intersection corridor with 
vi



different signal timing plans, a microscopie simulation model was created in

Simulation of Urban Mobility (SUMO), Vehicles in Network Simulation (Veins) and 

Objective Modular Network Testbed in C++ (OMNeT++) platforms. Furthermore, an 

algorithm for CVs that defines, detects and disseminates a vehicle crash incident to 

other vehicles and a roadside unit (RSU) was developed. In the thesis, it is 

demonstrated how visual performance metrics with CV data may be used to identify 

an incident. This thesis proposes that traffic signal performance metrics, such as 

progression quality, split failure, platoon ratios, and safety surrogate measures 

(SSMs), may be generated using CV trajectory data. The results show that the 

recommended approaches with access to CV trajectory data would help both 

performance assessment and operation of traffic control systems. Unlike the current 

state of the practice (fixed detection technology), the developed conceptual 

framework can detect incidents that are not captured by intersection-vicinity-limited 

detectors while requiring immediate attention.
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CHAPTER I 

INTRODUCTION

1.1. Background

Unpredictable traffic incidents, such as vehicle crashes or breakdowns, often 

disrupt various traffic flow characteristics. About 50% of all commuter traffic in the 

US is brought on by "nonrecurring" incidents like bad weather and construction 

zones. 25% of this traffic is completely brought on by stalled vehicles, spilled cargo, 

road debris, and crashes. Traffic congestion is the most evident outcome of an 

incident (FHWA, 2020).

The frequency of these incidents has a significant impact on traffic flow (Novat, 

N, 2022b). For example, lane-blocking incidents have a greater impact on traffic flow 

than the number of lanes obstructed. The capacity of a road is reduced by around 50% 

when an incident blocks one of its three lanes (Cheu & Ritchie, 1995; Giuliano, 

1989). When two additional lanes are blocked, capacity is reduced by around 80%. 

Minor lane-blocking incidents can have a big impact on traffic when they're not 

swiftly resolved. Their effects, meanwhile, are more obvious when traffic is at its 

worst. If a lane is blocked when traffic flow is at or close to a facility's capacity, the 

queue of traffic that forms behind the obstruction won't go forward after the 

obstruction is gone; instead, it will remain in place until the flow of traffic into the 

queue drops. Significant incidents that result in protracted traffic closures have further 
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negative effects on mobility and, consequently, safety. Intersecting arterial roadways, 

other collector highways, and even local streets are all impacted by traffic closures 

(Giuliano, 1989). The capacity to respond to medical emergencies, fires and police 

call unrelated to the highway incident is impacted by increasing traffic congestion. It 

is crucial to resolve incidents safely and immediately to lessen their negative effects 

on traffic and safety.

Although signalized intersections are known to be effective at maintaining traffic 

build-up by assigning priority at intersections, they also present significant challenges 

for drivers. The presence of traffic control devices affects delays, collisions, 

congestion and emissions, and the impact is even heightened when there is a 

perceived incident on the signalized corridor. The National Transportation Operations 

Coalition notes that operating traffic signals in the United States have caused 295 

million vehicle miles of delay on major roadways (Denney et al., 2012; National 

Transportation Operations Coalition, 2012). To optimize the performance of these 

signalized intersections, transportation agencies have been considering the use of 

detector-based Automated Signal Performance Measures (ATSPMs). Necessary 

signal timing readjustments are done based on the inferences made from the ATSPMs 

to optimize the performance of the signalized intersections. ATSPM detector-based 

approaches can estimate measures such as queue length, arrivals on green and red, 

etc., by computing cumulative arrival counts and departure counts (Q. Wang et al., 

2021).

However, the National Transportation Operations Coalition also documented a 

cost-benefit ratio that exceeds 40:1 on optimizations made from the use of ATSPMs 

(National Transportation Operations Coalition, 2012). Also, C. Day et al., (2014) 

published a report in which controller-based high-resolution data collection costs were 
2



presented. It was stated there was a one-time cost of $3,120 for installing detectors, 

plus an additional $420 per year for maintenance required for a single basic 

intersection. This represents a 10-year future cost of $7,320 for an agency. Given the 

multitude of sparsely located signalized intersections in the United States, it would 

require an exhaustive reach of resources by the local and state departments of 

transportation (DOTs) to install and maintain the infrastructure necessary for signal 

optimization at each intersection. In addition to that, they also have the following 

limitations: (a) detector malfunctions, which could limit traffic detection leading to 

decreased efficiency when estimating performance measures and (b) Only when a 

vehicle passes by can stationary detectors offer instantaneous data; otherwise, the 

status of the traffic must be approximated (Feng et al., 2015).

Fortunately, the development of data collection, mining, and analytical tools has 

led to the introduction of efficient alternative methods for calculating signal 

performance indicators from crowd-sourced datasets that can be cost-effective in 

terms of DOT resource allocation. These performance metrics are created from point­

based probing GPS sources using smartphone apps and fleet telematics. Fortunately, 

the development of data collection, mining, and analytical tools has led to the 

introduction of efficient alternative methods for calculating signal performance 

indicators from crowd-sourced datasets that can be cost-effective in terms of DOT 

resource allocation. These performance metrics are created from point-based probing 

GPS sources using smartphone apps and fleet telematics. As these datasets continue to 

grow in both scope and accuracy, their reliability as an alternative data source for 

signal performance measures tools will certainly increase. One example of these 

crowd-sourced datasets is the automated probe vehicle trajectory data offered by 

commercial providers typically containing latitude, longitude, timestamp, speed, 
3



heading and a unique trip identifier. Recent studies have explored means of extracting 

various performance measures from these datasets (Arvin et al., 2020; C. Day et al., 

2011; C. M. Day & Bullock, 2016; Waddell et al., 2020). The proposed performance 

measures eliminate the need to install and maintain expensive infrastructure for 

physical vehicular detection. However, the probe trajectory data still encounters a low 

ping frequency challenge due to lower penetration rates and limited connectivity 

(Waddell et al., 2020). The use and acceptance of traffic-signal performance measures 

on a greater scale will profit from avoiding the expense of physical detection 

installation and maintenance.

Additionally, using wireless connections, enhanced data from connected cars 

(CVs) may explain traffic conditions close to an intersection, which would 

complement the requirement for detectors and facilitate the broadcast and gathering of 

probe vehicle trajectory data. This can be achieved through direct communication 

with other CV environment devices, such as roadside units (RSU), a computing 

device located on the roadside that provides connectivity support to CVs. With 

advanced CV technology, data can be exchanged between CV and RSU, and RSUs 

can channel the information to traffic control centers (TCC) for storage and 

processing. From CV technology, important real-time traffic data such as queue 

length can be obtained or estimated more accurately.

Few recent studies have been conducted utilizing CV trajectory data to optimize 

various signal performance measures (Arvin et al., 2020; Feng et al., 2015; Wang et 

al., 2021). Past studies have utilized both detector based ATSPMs and a few with 

secondary vehicle trajectory probe data from a range of mobile communication 

network devices to explore various signal performance measures. However, the 

information on the efficiency of these tools in detecting, evaluating, and producing 
4



performance measures after an impact from unplanned incidents, such as a roadway 

crash, is lacking. The development of signal performance metrics has benefited from 

the use of probe data from a variety of communication devices, but the CV concept 

vehicles operate as roaming traffic detectors that are not restricted to particular and 

fixed positions along the road infrastructure.

There are several methods that may be used to build the traffic messages that the 

CVs will broadcast. For instance, every interval, each CV can send a traffic message 

that includes its current location and speed. Better yet, the communication is 

transmitted to the rest of the vehicles in the network to take an alternative course of 

action, such as slowing down, re-routing, etc. Another advantage is communicating 

with other roadside features. CVs can collect data, such as real-time traffic signal 

status, thus making the analysis and characterization of various traffic flow 

parameters easier from one CV data source.

By using CV as the data source, it will be possible to analyze this data and, as a 

result, gain a better knowledge of what happens at signalized intersections and 

corridors. With this data at hand, accurate signal control system input and output 

conversion into more informative and practical data sets will be feasible under a 

variety of operational conditions. The quantitative and qualitative performance 

assessment method that is proposed will formulate a decision support framework for 

thorough and long-term performance analysis and decision-making when it comes to 

incident management.
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1.2. Study objective

This thesis proposes a conceptual framework for leveraging the capacity of CV 

technology in detecting incidents on an arterial corridor and using the trajectory data 

shared by CVs to develop signal performance measures to characterize the spatial- 

temporal impacts of an arterial incident. The following are the study's specific 

objectives:

1. To develop a simulation framework for incident creation and detection by CVs 

on the network.

2. To develop performance measures that use the CV trajectory data to detect and 

determine incidents.

3. To estimate Safety Surrogate Measures (SSM) from CV trajectory data for 

incident detection purposes.

1.3. Research questions

This thesis aims to integrate information from CVs data into practical and 

effective traffic analytical metrics that help in detecting incidents, thereby enhancing 

its anticipated operational capabilities. To do so this thesis aimed to answer the 

following questions:

1. How can CVs help collect traffic operation data that is not captured by 

location-limited detectors for operation conditions reflecting and occurring 

well in advance of the downstream intersection vicinity?

2. How can CVs generated traffic data be utilized for traffic state 

characterization especially when an incident occurs on the corridor?

3. Can safety-related metrics have estimated from CV data help in detecting 

arterial corridor incidents?

6



1.4. Scope of study

To address the research questions presented in section 1.3, a simulation study was 

performed on a single four-intersection signalized arterial corridor in downtown 

Cleveland. The CV trajectory collected from the simulation was used to estimate 

changes in speed and acceleration, split failure, Arrival on Green (AOG), Arrival on 

Red (AOR) and platoon ratios. Additionally, two safety-related metrics are 

incorporated, the Time To Collision (TTC), and Deceleration to Avoid a Crash 

(DAC), to explain the impact of the vehicle crash incident. The major assumption in 

this study is that majority (90%) of the simulated vehicles have connectivity 

capabilities and only 10% are non-connected vehicles.

1.5. Study method

To be able to define an incident scenario (vehicle crash), as well as define the 

response of the vehicles impacted by the incident in a CV environment, this study 

uses a micro simulation model developed in a microscopic urban mobility simulator, 

SUMO (Krajzewicz et al., 2002) coupled with OMNet++ and Veins frameworks for 

vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communication. A vehicle 

crash is induced in the network for CVs to detect the vehicle crash, then an algorithm 

is developed for CVs to disseminate the traffic flow data to other vehicles on the road 

and the RSU. Following the vehicle crash data dissemination, another algorithm is 

developed to make the vehicles that received the information slow down or stop for 

safety in response to the vehicle crash. Consequently, vehicle trajectory data before 

and after the crash is extracted from the simulation for further analysis and 

development of the performance measures.
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1.6. Study contribution

The primary addition of this work to the body of literature is an enhanced 

description of how a signalized arterial corridor approach performance may be 

affected spatially and temporally by an incident. The trajectory analytics framework 

uses SSMs to describe a real-time incident to determine how reliably and to what 

extent data from CVs may be used. Although the current state of practice does offer 

useful metrics to support traffic management centers in responding to incidents, the 

means of data collection is still lacking. Not all traffic flow data is captured along the 

entire corridor, only data within the vicinity of an intersection is captured.

To do this, this study develops a mechanism for evaluating service quality, at a 

corridor and intersection approach level by introducing a composite CV trajectory 

diagram and cross-referencing it with other qualitative and quantitative metrics that 

can characterize the entire arterial corridor. The quantitative and qualitative 

performance assessment method proposed will formulate a decision support 

framework for thorough and long-term performance analysis and decision-making. 

The qualitative component of the performance assessment framework i.e., visualizing 

relevant signal performance data in an easy-to-understand format is critical when 

identifying the root cause of any observed interruptions or substandard performance 

levels. Consisting of a set of metrics and graphical representations for larger datasets, 

the proposed methodology will enable quick responsive management and control of 

signalized arterial corridors especially if an impactful incident has occurred.

The metrics provide higher precision in determining the incident's location and 

time in real-time, making any necessary signal timing modifications, and suggesting 

other alternative routes. The metrics will provide a sufficient rationale for traffic 

management centers to dispatch necessary responders (fire, police, medical personnel, 
8



etc.) to a precise location of the incident and at the right time to address perceived 

incidents on the corridor.

1.7. Thesis organization

Chapter I introduces the thesis background, study objectives, study method used, 

potential study benefits and motivation of this study. Chapter II presents the literature 

review of the ATSPMs in partially and/or fully connected signal systems on detector- 

based data and in a CV environment, revising past research in which the applications 

were developed. Chapter III introduces a methodological conceptual framework for 

simulating an incident (vehicle crash) and develops ATSPMs for CV trajectory data in 

explaining the incident, which will serve as a road map for methods and applications 

to be introduced in later chapters. Chapter IV introduces the trajectory analytics 

framework by defining a condition-responsive trajectory-based set of measures. The 

emphasis is on the newly developed, composite, time-space-signal measure of 

effectiveness, which relates to the utilization of green time and space, platoon ratios, 

etc. Chapter V presents an innovative visualization tool that superimposes CV 

trajectory data with SSMs in explaining the vehicle crash, as well as a qualitative and 

quantitative representation/display of SSMs performance measures. Chapter VI 

provides concluding remarks and proposes a direction for future studies.
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CHAPTER II 

LITERATURE REVIEW

This section provides an overview of traffic signal performance measures, 

different data sources used to develop signal performance measures and current 

implementation in developing performance measures. The purpose of this literature 

review is to have a comprehensive understanding of current practices and identify a 

gap in new methodologies.

2.1. Automated Traffic Signal Performance Measures (ATSPMs)

ATSPMs are metrics that automatically process data to provide an insightful 

assessment of a given traffic signal in the form of performance measures that rely on 

traffic signal controller high-resolution data (detector data). The performance of 

signalized intersections may be measured and displayed by traffic management 

centers using ATSPM at a reasonable cost. ATSPM enables traffic control centers to 

promptly identify maintenance issues that impact traffic flow and proactively adjust 

traffic signal timing. These metrics often include several data visualization reports 

that may be used to assess how well traffic moves along corridors and to locate 

wasted green time that can be allocated to other intersecting movements. 

Additionally, traffic management centers are informed of vehicle and pedestrian 

detector issues via ATSPM visualizations, saving staff time while doing maintenance. 

To assess the efficacy of signal timing alterations, system data of vehicle quantities, 
10



delays, and speeds are also employed. The TMC staff can make decisions more 

quickly and more efficiently by using ATSPM technologies. Metrics for the ATSPM 

include arrivals on red, coordination diagram, pedestrian delay, phase termination, 

preemption information, split failure, split monitor, and turning movement counts.

The Highway Capacity Manual (HCM) states that the LOS, which is based on 

control delay, is the typical metric used to evaluate intersection performance. 

Operational performance measures have been created to assist agencies in adjusting 

time as more states have included ATSPMs into their regular procedures. 

Applications include, but are not limited to, tracking phase termination status by time- 

of-day (TOD), which is important for professionals to assess if certain motions at an 

intersection require extra split time or if the crossing is full.

The research by Freije et al. (2014), which developed a method to quantify split 

failures using stop bar detection, is one of the earlier studies on ATSPMs. Wu & Liu 

(2014) used detector-based data to quantify arrival type, which provides qualitative 

information on progression. C. Day et al. (2014) developed a graphic called Purdue 

Coordination Diagram, which provides insight into the level of progression, cycle 

length and split times at an intersection by plotting vehicle arrivals and phase changes 

on a time in cycle vs. TOD graph. Wu & Liu (2014) created a shockwave-based 

queue estimation model using setback detector data to identify whether an approach is 

overloaded. According to Emtenan & Day (2020), detectors with fixed setbacks that 

are closer to the stop bar frequently underestimate the number of stops brought on by 

queues. The accuracy of predicting the number of stops rose along with the detector 

setback.

11



2.1.1. The current state of the application of ATSPMs

The usage of ATSPMs has started to become institutionalized in several US 

jurisdictions. With additional deployments and pilots taking place in at least 44 

localities, Indiana, Wichita, Georgia, and Utah are among the first states to deploy 

ATSPMs. To facilitate easy implementation, the Utah Department of Transportation 

(UDOT) has created open-source ATSPM software that can be enhanced by the 

private sector or government agencies (Office of Research-FHWA, 2019). The UDOT 

and the Georgia Department of Transportation (GDOT) collaborated to take use of 

their ATSPM deployment expertise. The GDOT ATSPM implementation uses open- 

source software to make data and analysis easily accessible and adheres to the same 

fundamental design as that in Utah. The ATSPM system's data collection enables 

GDOT to manage the signal operation and maintenance (GDOT, 2022). For data 

reporting and storage, the Pennsylvania Department of Transportation (PennDOT) 

makes use of open-source software created by UDOT. Additionally, PennDOT 

gathers and stores high-resolution operational data with tenth-of-a-second timestamps 

using a mix of contemporary signal controllers and vehicle detection systems. Each 

signal's contact with a central computer server result in the storage and archiving of 

data for analysis and reporting (PennDOT, 2022).

2.2. Current CV trajectory probe data metrics

Recently, performance measurements from point-based probe GPS sources have 

been made available through smartphone apps, fleet telematics, and CVs. Most 

commercial service providers produce this kind of "trajectory" or "probe" data, which 

comprises timestamp, latitude, longitude, speed, direction, and a specific trip 

identification. It eliminates the need to construct and maintain physical detection 

systems on the road, which is a major advantage of utilizing this data (Carranza, 
12



2021). Studies have shown that using trajectory data, measures including travel time, 

delay, arrivals on the green, and queue length may be generated (Kidando et al., 

2020). Several of the studies are summarized in the sections that follow.

2.2.1. Control delay estimation from probe data

Intersection control delay is a key performance indicator used to measure the 

quality of service provided at intersections. It is interpreted as a proxy for the quality 

with which intersection capacity is used, as well as for the levels of fuel consumption 

and environmental impacts caused by vehicles (H. Wang et al., 2016, N. Novat et al., 

2022). Huang et al. (2013) suggested a formula for calculating control delay at 

signalized intersections using probe data from vehicle trajectories. However, the 

formula's parameters need to be calibrated for each intersection, so a location-specific 

pre-analysis must be performed before delay calculations can be performed. Waddell 

et al. (2020) developed a formula for estimating delay at an intersection using CV 

trajectories. First, the time it would take a vehicle to pass through an intersection 

without being stopped or delayed is determined by the speed of the vehicle at the start 

of its approach. Delay is then determined by subtracting the actual travel time from 

the ideal travel time without being stopped or delayed.

2.2.2. Travel time estimation from probe data

Travel time is a measure of the length of time necessary for a vehicle to move 

from one place to another. Li et al. (2019) developed a method to calculate composite 

travel times on a corridor from trip trajectory data. Trajectories that travel different 

sections of the corridor are combined to increase the number of start-to-finish trip 

occurrences. Zhang et al. (2019) utilized vehicle trajectory data and a Trip 

Information Maximizing Generative Adversarial Network to calculate travel time 

distributions.
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2.2.3. Arrivals on green (AOG) estimation from probe data

This is the number of vehicles that were able to progress through the intersection 

when the signal indication was green. Waddell et al. (2020) used vehicles' computed 

delay at an intersection to determine if they were stopped while approaching to 

compute AOG. Vehicles with delays of at least 5 seconds that still arrived during the 

green phase of the cycle were filtered out.

Another method proposed by Waddellet al. (2020) was to calculate AOG based on 

the percentage of vehicles that stopped at an intersection. Stopped percentages were 

calculated by dividing the number of vehicles with speeds under 5 mph for 2 seconds 

or more, 19 over the total number of vehicles. These two methods produced AOG 

values 7.2 and 2.5 percent lower than ATSPM AOG, respectively.

Moreover, C. M. Day & Bullock (2016) used CV data to calculate vehicle arrivals 

at virtual detectors upstream of an intersection, yielding arrival profiles. At the 90% 

confidence level, a statistically significant goodness-of-fit was found between the 

simulated arrivals and the actual measurements. After that, the AOG was computed 

using the green phase times obtained from the controller event logs.

2.2.4. Queue length estimation from probe data

This is the number of vehicles waiting in a queue to be served. Hao et al. (2019) 

obtained queue length from vehicle travel data. First, the stopping distribution of the 

vehicles was analyzed to determine the penetration rate of the available data. Queue 

length was then determined by multiplying the number of vehicle trajectories by the 

penetration rate. Cetin (2012) introduced a technique for estimating queue length at 

signalized intersections, using shock wave theory and spatial-temporal data on when 

vehicles enter the end of the queue.
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2.3. Research gap

Although there has been more interest in developing new crowd-sourced based 

traffic signal performance measures, this review warrants an opportunity for more 

metrics to be produced from CV trajectory data. Previous research has produced a 

variety of graphics that provide traffic operators with information on the performance 

of a traffic signal. Nonetheless, these graphics typically only provide information on 

one or two traffic signal metrics. This necessitates the examination of various 

graphics to gain a comprehensive understanding of traffic signal operation, especially 

during saturated conditions, or when there is an incident on the corridor, such as a 

vehicle crash, work zone, etc.

Chapter IV offers visuals with information on progression quality, traffic delay, 

arrivals on green, split failures and platoon ratios. Furthermore, the majority of 

proposed performance measures are centered on an incident occurring upstream of the 

intersection. The causes of the calculated poor performance are then attributed to the 

downstream traffic signal. Immediately following, chapter V introduces metrics based 

on SSMs that help in explaining poor downstream intersection performance due to 

simulated traffic incident (vehicle crash).

15



CHAPTER III

METHODOLOGY

This section presents the study's methodology in depth. Discussions include the 

study site, calibration and validation of data input, and microscopic simulation 

modeling.

3.1. Study location

To evaluate the suggested methods for simulation model calibration, a real-world 

arterial signalized section was modeled in SUMO. The simulation model was 

developed from a corridor with four signalized major intersections located in 

downtown Cleveland, Ohio, as shown in Figure 1. The four intersections are Carnegie 

Ave. and East 30th St., Carnegie Ave. and East 36th St., Carnegie Ave. and East 40th 

St. and Carnegie Ave. and East 46th St., all adjacent to the Cleveland State University 

and the Wolstein Center for sports and live events.

Figure 1. Study location
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3.2. Simulation framework

The framework was developed in Veins, SUMO and OMNeT++ 5. The 

architecture of the framework for communication between the components is shown 

in Figure 2. The framework is inspired by a study from Sayed (2021), who proposed 

the connectivity algorithm for CV simulation in Veins, SUMO and OMNeT++ 5. This 

study builds from Sayed's study (2021) by simulating an incident and expanding the 

method to collect more traffic flow parameters that are used to produce signal 

performance measures. The framework consists of a Traffic Server (TS), a Roadside 

Unit (RSU), and linked cars (CVs). In this approach, RSU is notified via CVs of both 

emergency and non-emergency situations. CVs are unable to directly reach the main 

Traffic Server (TS).

RSU determines whether a request is for an emergency occurrence or not after 

receiving data and requests from the CV. The RSU quickly executes its own Safety 

Surrogate Measure (SSM) algorithm and delivers the required warning signals to the 

CV If the request is urgent, RSU sends the notification to the primary TS in the event 

of non-emergency circumstances. The TS responds to the RSU's message for 

forwarding and provides the appropriate details. The RSU transmits the CV’s reaction 

after receiving it from the TS. The next section has a thorough overview of the key 

components.
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Figure 2. Study framework and V2X communication flow
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3.3. Connected Vehicle (CV)

In this design, a CV is a vehicle with an RSU-compatible onboard communication 

device. A CV is presumed to have basic vision or LIDAR technology that can identify 

and gauge the foe vehicle's distance. Depending on the rate of distance change, CV 

determines the speed of the front vehicle. The speed and distance of the foe vehicle 

were deteπnined using Equation 1.

Figure 3. Foe vehicle speed estimation by CV.

Change in time, ∆t= t1 — t0

Ego vehicle drive-distance, det = (vet0) × t + (1∕2 × aeto × t2) Equation 2 

Foe speed at time t, vf t = det/t

In order to provide the SSM to the RSU within its communication range, the CV 

estimates the speed of the opposing vehicle for each time stamp.

An NCV is defined in this framework as a vehicle that does not have any 

communication equipment capable of communicating via any communication 

method. As a result, the NCV cannot be managed using this framework. The activity 

of the CV, on the other hand, will have an effect on the state of an NCV. The arriving 

NCV will slow down or stop, for instance, if a CV stops in a lane.
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A CV module was constructed, consisting of csuCV.cc, csuCV.h, and 

csuCV.NED files, to manage CVs via the TraCi API of SUMO and broadcast a signal 

in real-time to other CV, RSU, and TS. Signal transmission is automated. The 

module's main features are the "handlePositionUpdate" and "onWSA" functions. For 

each timestamp, the "handlePositionUpdate" function updates every CV in the 

network. This function implements all of the SSM algorithms as well as the data 

transfer messages from a CV. The "onWSA" features are used to validate incoming 

messages from other CVs, RSUs, and TSs. It will behave based on the message type 

after receiving it. Each message contains distinct characteristics that are utilized to 

distinguish across message types. APPENDIX A presents primary algorithm specified 

in "handlePositionUpdate."

3.4. Roadside Unit (RSU)

The roadside unit (RSU) in this study is a communication and data processing 

device that can exchange information directly with CVs and TSs within its 

communication range. It consists of three functional units:

1. Unit for data processing and storing.

Less severe incident CV data is processed by the data processing unit, which also 

momentarily stores the processed data before sending it to the TS. It erases its 

temporary data after transferring data to the TS.

2. Incident warning messages sending unit based on SSM index.

The unit that implements the SSM algorithm and sends alert messages applies the 

SSM algorithms to the kinematics of the CV that have been received for each time 

step, and it then transmits the warning message for upcoming conflicts to the CVs that 

are nearer those conflicts.
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3. Message transmission unit

The RSU in the message forwarding unit sends the TS the CV's request for non- 

emergency incidents, and similarly, it transmits the CV's reaction from the TS. No 

messages in this unit are encrypted by the RSU. This unit's primary responsibility is to 

send the message to the proper node right away (CV).

For an RSU to receive messages from the TS and CVs to issue a warning signal to 

the CVs, and send data to the TS, a module called "csuRSU" needs to be created. It 

likewise contains of "csuRSU.cc," "csuRSU.h," and "csuRSU.NED" files, much like a 

CV's module does. RSU is a stationary device that only activates in response to a 

signal or a programmed event, such as transferring data to TS at regular intervals. The 

"onWSM" function defines the algorithms for data processing (saving the SSM data) 

and warning message (sending an incident warning message to CVs).

3.5. Traffic Server (TS)

The primary data processing serving as a proxy for a traffic management 

center, with advanced computational ability and significant storage, is the traffic 

server (TS). TS and RSU have a direct communication link for information exchange. 

It has a request processing unit and an SSM data aggregation unit. The SSM data 

aggregation unit develops an aggregated SSM index and saves it in a permanent 

database after collecting data at predetermined intervals from all RSUs within its 

communication range.

The "onWSM" function developed a separate module for a TS named "TS" to 

collect data from an RSU and communicate corridor segment level SSM data to a CV 

through an RSU. The files "csuTS.cc," "csuTS.h," and "csuTS.NED" are included in 

this module.

21



3.6. Simulation setup

This section presents the process of the simulation parameters via simulation from 

all software (SUMO, Omnet++ and Veins), which explains the simulation data input 

to the model, the connectivity and communication between software, as well as the 

simulation calibration and validation steps.

3.6.1. Simulation setup in SUMO

The simulated real-world traffic network is the experiment study location 

presented in Figure 1, which was obtained from OpenStreetMap. SUMO has an 

integrated module known as OSMWebWizard that scraps data from OpenStreetMap. 

Utilizing OSMWebWizard has the advantage that the majority of network 

characteristics, including lane information, speed limits, traffic signals, etc., are also 

taken directly from OpenStreetMap.

To be able to use with SUMO, the OSM file was then transformed into a net.xml 

file. The.rou.xml, poly.xml,.sumo.config, and launched.xml files from.net.xml files 

are additional files that are also necessary for simulation in SUMO. The routing file, 

or.rou.xml, contains the vehicle's profiles, including its travel trajectories. Physical 

infrastructure, including structures and natural features, is provided in the.poly.xml 

file. For OMNeT++ and Veins to provide the network blockage effect, this file is 

required. The sumo.config file is the simulation file, and it starts the simulation, 

builds typologies for all the files, and sets the simulation settings. The SUMO 

simulation is executed and controlled by the launched.xml file in the Veins. The 

Krauss car-following model in SUMO was utilized in this experimental investigation.
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3.6.2. Simulation setup in Veins and OMNeT++ and

The required SUMO files are made, and then the simulation settings for 

OMNeT++ Table 1 are produced. Every one-second simulation step, the built 

framework updates the state of the network and traffic simulations in OMNeT++ and 

SUMO, respectively. The SUMO configuration file must provide a total simulation 

time of 3600 seconds. The obstacle module, which creates a stumbling barrier in 

packet loss and transmission, is activated. Periodic messages are not started in the car 

module so that CVs couldn't generate needless messages.

The CV module is in charge of controlling periodic messages. Each specified 

number of received messages triggers the RSU to transmit a temporary aggregated 

SSM to the TS (for instance, relay SSM messages to TS when there are 10 messages 

received, and then reset the database.). Only when the RSU makes a request does the 

TS module react. Table 1 lists the simulation parameters (CV, RSU, NIC, and RSU) 

for each of the modules utilized in OMNeT++. Settings marked with an asterisk 

indicate the simulation's default values.
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Table 1. Simulation parameters in OMNeT++

Module Description of parameters Value

General parameters for 
Simulation

Time for simulation 3600 s

Module for obstacles active

Simulation time step update interval Is

*TraCi Communication port 9999

CV module

*Antenna Position above the ground 3 m

*Send beacon periodically active

*Beacon sending interval 10 s

RSU Module

*Antenna Position above the ground 3 m

*Send beacon periodically active

*Beacon sending interval 10 s

TS Module

*Antenna Position above the ground 3 m

*Send beacon periodically inactive

*Maximum communication boundary (meter) 300 m

*Transmission power 20 mW

*Bitrate transfer 6 Mbps

*Minimum power level -110 dBm
* Default parameter values

3.7. SUMO microscopic model building, calibration and validation

The simulation must initially be built by entering fundamental simulation data, 

such as network layout, trip demand, vehicle characteristics, and traffic control 

systems (traffic signal timing data). These inputs have a direct impact on how well the 

micro-simulation models function, hence it is important to evaluate their reliability 

while calibrating and validating the models.

The calibration of driving behavior models using real-world data is the next phase. 

A model must be calibrated by having its outputs compared to observable data and 
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then changing model parameters until the results are within an acceptable error range. 

One of the driving behavior models that govern how cars move through traffic and 

must be customized for a specific location is car-following (or acceleration).

The final step is to modify the calibration phase settings to take the effects of 

network-level congestion into consideration. The local characteristics must be 

represented in the driving behavior models, and area validation must be done as well 

(intersection-by-intersection).

Model calibration is usually followed by an iterative procedure called model 

validation. To determine if parameters obtained from calibration are reliable, model 

validation is necessesary, it is typically carried out using a separate data set of the 

broader region inside the modeling network. Model validation is the last step to 

determine whether each component accurately replicates observed trip characteristics 

and whether the model's overall performance is reasonable.

3.7.1. Simulation building and input data

Traffic volumes, signal timings, vehicle trajectory data, and geometry data were 

all used as simulation inputs. The StreetLight data provider offered traffic volume 

information as intersection turning movement counts (TMCs). APPENDIX E 

Geometric information constituting network data including the lane widths, turning 

radius and number of lanes, were extracted from Open Street map (OSM) through 

SUMO’s OSM web wizard tool (a python script used to scrap and import open Street 

map data to SUMO simulation platform). The intersections obtained from the OSM 

web wizard also come with randomized traffic volume data and signal timing data. 

Travel time data from StreetLight was used for general calibration and validation 
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process of the model. Intersection lights signal timing data was manually collected 

on-site.

3.7.1.1. Real-time time calibration data from StreetLight

Traditionally, one of the most important and common sources of data for 

quantifying travel behavior used for simulation model calibration and validation has 

been site-collected trip surveys. Discharge and approach headways, travel time and 

intersection turning movement counts (TMCs) are common traffic metrics collected 

on-site.

However, alternative means for retrieving travel data, such as Bluetooth media 

access control (MAC) address matching, have recently emerged. Although not as 

detailed as trip surveys, data from these alternative technologies allows for the cost- 

effective collection of a considerably larger sample. Moreover, tracking individual 

vehicle trips via smartphones has now become a common data source, as opposed to 

matching unique identifiers (e.g., MAC addresses) between two stations. Hand used 

devices (e.g., smartphones) with tracking capacity i.e global positioning services 

(GPS) allow the collection of high-resolution location data to infer trip time, trip 

length, route and possible travel mode. To take advantage of these data sources, this 

study replicates the task of collecting data from the site by using crowd-sourced 

speed, travel time and TMCs data from StreetLight - an application that provides valid 

estimates of different vehicle trip metrics. Streetlight uses extensive geospatial data 

generated by mobile phones to calculate ODs, trip purposes, travel times, and TMCs. 

Data obtained from Streetlight (Travel speed, Travel time and TMCs) was used to 

calibrate and validate the car following model.
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3.7.2. Calibration through an optimization algorithm

The calibration of the traffic simulation model is the stage of transportation 

system modeling intended to define the values of the model's parameters to have the 

least amount of variance between the observed traffic data and those anticipated by 

the model. The following optimization framework may be used to formulate this.: 

minβ.y f(Oobs,Osim)

Constrainted to :

Equation 3

Where βi is a vector of the model parameters that are associated with m various 

simulation elements such as different road types and vehicle classes etc. The intention 

or objective function is to measure the distance between the simulation and observed

traffic measurements Oobs and Osιm such that l β.i and u β.i are the lower and upper 

bounds of the calibration parameters. Osιm= S( βi , ..., βm),in which S( βi , ..., βm) 

is the micro-simulation model.

The Root Mean Square Error (RMSE) function serves as the objective function.

(Equation 4), This represents the residuals' standard deviation also known as 

prediction errors. Residuals are a measure of how far apart the observed and simulated 

trip durations are from the regression line data points, and RMSE is a measure of how 

evenly distributed these residuals are. What is the difference between the network's 

observed travel time and the travel time that results from optimizing the values of 

these parameters?

Equation 5
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Σ = summation, (xi — yi)2= differences of observed and simulated travel time, 

squared, N = sample size.

The RMSE objective function was selected since it is frequently used in 

calibration studies of traffic simulators and provides an average error in absolute 

terms without taking into account whether there are systematic variations. (Hollander 

and Liu, 2008).

3.7.3. Constrained Optimization By Linear Approximation (COBYLA) Method

The COBYLA algorithm was used to find optimal car-following model 

parameters. When there are no derivatives, Powell created COBYLA in 1994 as an 

iterative approach for nonlinearly restricted optimization computations. By 

interpolating at the vertices of a simplex, each iteration creates linear approximations 

to the goal and constraint functions, and a trust zone bound limits each change to the 

variables. When there are no derivatives, Powell created COBYLA in 1994 as an 

iterative approach for nonlinearly restricted optimization computations. By 

interpolating at the vertices of a simplex, each iteration creates linear approximations 

to the goal and constraint functions, and a trust zone bound limits each change to the 

variables. When there are no derivatives, Powell created COBYLA in 1994 as an 

iterative approach for nonlinearly restricted optimization computations. By 

interpolating at the vertices of a simplex, each iteration creates linear approximations 

to the goal and constraint functions, and a trust zone bound limits each change to the 

variables.

A set of n+1 values of the function is maintained by the algorithm in parameter 

space with an approximate solution xi, and a radius pi. A linear approximation on the 

n+1 points is used to estimate the objective function and constraint functions, and 
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their values are equal. By constraining the linear approximations of the constraint 

functions to be non-negative, this results in a linear program that can be solved. 

However, since the linear approximations are probably only accurate close to the 

existing simplex, the additional criterion that the solution, will become xi + 1, must 

be within pi from xi , pi only decreases never increase. It is quite simple to convert it 

to a global optimization technique by repeating the process beginning from randomly 

selected points. With this strategy, the initial deterministic approach gains stochastic 

features. The SciPy community's implementation (Jones et al., 2001) was utilized. 

After implementing the calibration algorithm, the calibrated parameters are presented 

in Table 2 with reference from the default value and the range of the allowable 

values of the specific parameters.

Table 2. Calibrated parameters

Attribute Default 
(seconds)

Range Optimal 
value 
(seconds)

Description

Minimum gap 2.5 >=0 2.5 The minimum gap when standing 
(m)

Acceleration 1.5 >=0 1.505 The acceleration ability of vehicles 
(in m∕s2)

Deceleration 4.5 >=0 2.715 The deceleration ability of vehicles 
(in m∕s2)

Emergency 
deceleration

4.5
deceleration

4.65 The maximum deceleration ability 
of vehicles in case of emergency (in 
m∕s2)

Sigma 0.5 [0,1] 0.1 The driver imperfection 0 being 
perfect driving

Γau 1 >=0 1.1 The driver's desired minimum time 
headway.

3.8. Simulation validation with travel time comparison

The calibrated model was used to estimate the travel times along the Carnegie

Ave. and E 30th St., and Carnegie Ave. and E 36th St., in the network and the results 

29



are summarized in Figure 4 (a) and (b). Through floating vehicle measurements inside 

the flow of traffic in one direction, trip time observations were made. The travel 

distribution and median values before and after model calibration were used for 

comparison threshold and as a means for simulation validation. The median travel 

time along the segment before model calibration (23.16 sec) is less than the median 

travel time obtained from StreetLight data (30.79 sec). The median of travel after 

model calibration (28.36 sec) was observed to be much closer to that obtained from 

filed StreetLight data (30.79 sec).

Figure 4. Plot distribution of (a) default simulation travel times and (b) calibrated 
simulation travel times, both compared with field travel times
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CHAPTER IV 

CV TRAJECTORY-BASED PERFORMANCE MEASURES

This section describes how to use CV vehicle trajectory data from the simulation 

to determine the arrival on green (AOG), split failures and platoon ratio performance 

measures, with a special focus on detecting and explaining upstream corridor 

incidents. The section also summarizes the practical application and uses of the 

proposed performance measures.

4.1. Signal-coded CV trajectory diagram

This study proposes the use of a CV trajectory time-space diagram, which is 

signal color-coded. This graphical representation helps determine traffic progression 

along the corridor. Figure 5 shows the color-coded time-space diagram indicating a 

series of trajectories of vehicles traveling eastbound pm Carnegie Ave. (filtered to one 

lane of through traffic only), and traffic signal status for the first 15 minutes (15:30 - 

15:45) of the peak hour (15:30 - 16:30). When through traffic or approach spillback is 

impeding traffic, it is possible to see and interpret the performance, provided that the 

trajectories from intersecting approaches are also considered.
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Figure 5. Signal-coded CV trajectory diagram
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A crash was simulated and defined to last for 4 minutes. As shown in Figure 5, 

callout I, trajectories that experienced disrupted progression as a result of a crash 

occurring have zero sloped (zero-speed) trajectories at a mid-block area (crash 

location). Furthermore, the impact of the incident on the preceding corridor section 

can be seen on the corridor section between E40th and E 36th Street as no trajectories 

are seen during that time frame (callout II).

Although signal status may contribute to CVs stopped time and delay the adverse 

impact is when there is excessive delay and longer queues such as due to an incident, 

and the vehicles are not moving even though the light is green. It's crucial to note that, 

unlike in a conventional time-space diagram, "available green time" refers to the 

green part of the trajectory, which varies depending on the vehicle, rather than the 

actual (effective) green length, which is the same for all vehicles. This visualization, 

when used at a more aggregate spatial or temporal level, can be used to assess how 

well a single vehicle utilized the available green time and space while operating under 

precise signal control and operational circumstances.

4.2. Signal performance-based measures

In general, motorists anticipate enough green progression time so that they can 

proceed through one cycle of synchronized signals and arrive within the green phase 

of a downstream intersection. They do not have to stop downstream of the signal thus 

unimpeded by downstream queues due to poor signal performance or an incident on 

the road.

In current practice, AOG and split failures are estimated using conventional 

detector-based data. However, it is difficult to determine the impact of upstream 
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incidents using detector-based data because they are constrained to capture actuations 

within the vicinity of the downstream intersection. Using simulated CV trajectory 

data, these two operational performance metrics can be viewed holistically from the 

perspective of each CV trajectory. The objective was to establish a set of trajectory- 

based performance measures that characterize signal capacity utilization, quality of 

progression, and effectiveness through quantifiable parameters.

4.2.1. Arrivals on Green and Arrivals on Red

AOG highlights the proportion of vehicles that arrive at a signalized intersection 

during the green portion of the signal’s cycle while the AOR metric is the number of 

vehicles that arrive in the red phase. These metrics also indicate the effectiveness of 

coordinated intersections. Low AOG values indicate poor progression of traffic 

between intersections along the corridor.

The simulation framework was designed to collect the status of the downstream 

signal at every simulation time step. The signal status was coupled with other CV 

trajectory data to compute the proportion of trajectories that were served during the 

allocated green time (The number of trajectories at the position of the stop bar when 

the signal indication was green). This approach is different from other studies 

including the recent study by Saldivar-Carranza et al. (2021). Saldivar-Carranza et al. 

(2021) estimated the AOG from probe data as a ratio of trajectories that had no stops 

during the approach and the total number of trajectories. While the assumption may 

be valid in estimating AOG, it may be difficult to infer trajectories that experienced 

split failures and whether the stop was due to the signal status or a mid-block incident. 

Therefore, coupling the arrivals metrics with actual signal status is essential, 

especially in explaining incidents from the perspective of signal performance
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measures. Qualitatively, trajectories that arrived on green or any other signal 

indication can be directly inferred from the CV trajectory diagram in 

Figure 7.

To quantify the impact of the vehicle crash using the AOG and AOR performance 

measures, the distribution of CV trajectory arrivals on the green and red signal 

indication on Carnegie Ave. eastbound through movement at the intersection on E 

36th St. are presented in Figure 6. The plot represents percent AOG and percent AOR 

against time in 90-second cycle length bins. Since vehicles were prompted to stop as a 

result of the crash, no vehicles arrived at the intersection on E 36th St. from when the 

vehicle crash began to when it ended, hence the AOR and AOG percentages are both 

0%.

Figure 6. Distribution of CV trajectories AOG and AOR
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Figure 7. Signal-coded CV trajectory diagram indicating split failure
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4.2.2. Split failure

When a traffic signal doesn't provide a certain movement of vehicles enough 

green time to cross the intersection, it results in a split failure, which makes them wait 

more than one cycle length. Split failures on an approach indicate that the approach is 

operating beyond its capacity. Agencies must be able to reallocate green time to 

improve system operation by being able to track the spatial-temporal occurrences of 

the split failures.

When a CV trajectory has lengthy stops and fails to advance as it approaches an 

intersection, it can be classified as having undergone a split failure using the CV 

trajectory diagram. The CV trajectory diagram is shown in

Figure 7, for Carnegie Ave. eastbound through movement at the intersection on E 

36th St., is presented, CVs experiencing split failure can be seen with trajectory signal 

coded green, as they failed to progress to the intersection due to the incident.

4.2.3. Approach platoon ratio

To measure the effectiveness of progression on a signalized corridor approach, the 

platoon ratio, abbreviated as Rp, is utilized. The platoon ratio is the proportion of the 

percentage of the overall cycle's green interval that is made up of CV trajectories that 

arrive during the green phase. This is given by.

 Equation 6
Rp = P * C/g

where P= proportion of all CV trajectories during the green time, C = cycle 

length, and g = effective green time.

Platoon ratios can be between 0.5 and 2.0. It is employed in the estimation of 

approach capacity and delays. There are six different arrival categories, with 1 being 
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the worst platoon situation and 6 being the best platoon condition. The progression 

quality and platoon ratio are close approximations. For instance, the following 

correlation between platoon ratio and the arrival has been proposed by (HCM, 2022) 

which is as shown in Table 3. In this instance, as shown in Figure 8, the platoon ratio 

is calculated as the ratio of trajectories arriving during the green phase to the fraction 

of the overall cycle's green period.

Table 3. Relationship between arrival type and platoon ratio

Arrival type Range of platoon ratio
RP

Default value 
(Rp)

Progression 
quality

1 <0.50 0.333 Very poor

2 > 0.50-0.85 0.667 Unfavorable

3 > 0.85 - 1.15 1 Random arrivals

4 > 1.15 - 1.50 1.333 Favorable

5 > 1.5-2.00 1.667 Highly favorable

6 >2 2 Exceptional

Table 3's arrival type identification can be used to determine the platoon ratio. The 

arrival type has values between 1 and 6. The HCM gives the following descriptions of 

each sort of arrival.

Arrival type 1 is distinguished by a dense platoon that makes up more than 80% of 

the movement group's volume and arrives at the start of the red period.
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A dense platoon arriving in the center of the red period or a scattered platoon with 

40 to 80 percent of the movement group's volume arriving throughout the red interval 

are both examples of arrival type 2.

Arrival type 3 designates any of two circumstances. A platoon comprising less 

than 40% of the movement group volume arrives partially during the red interval and 

partially during the green interval if the signals enclosing the segment are 

synchronized. This arrival type is characterized by platoons arriving at the subject 

junction at various moments in time, making arrivals appear to be random if the 

signals are not synchronized.

A platoon that is either scattered and contains 40 to 80 percent of the mobility 

group volume or one that is fairly packed and arrives in the middle of the green period 

defines arrival type 4. This sort of arrival is frequently connected to average-length 

segments that advance well in the intended direction of travel.

A dense platoon comprising more than 80% of the movement group volume 

arrives at the beginning of the green interval, which is the hallmark of arrival type 5.

Figure 8 presents the distribution of percentage AOG, percentage AOR, and 

platoon ratios of the CV trajectories against time in 90-sec intervals for Carnegie 

Avenue and E36th Street intersections. The impact of the incident can be seen as the 

values for percentage AOG, percentage AOR, and platoon ratios are zero.
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Figure 8. Distribution of platoon ratios

4.3. Approach speed and acceleration

Speed is the distance covered by the CV in the unit of time, while acceleration is 

the rate of change of the velocity with respect to time. As shown in Figure 9 and 

Figure 10, the speed and acceleration of the respective CV were queried and recorded 

for each simulation time step within the simulated peak hour, during an incident, it’s 

expected that CVs slow down and consequently stop hence the respective velocity and 

acceleration would be close or equal to zero. The average velocities and acceleration 

values of the trajectories are seen to decrease, and the decrease is observed to last 

from when the crash occurred to when it cleared (15:32 to 15:36).
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Figure 9. Average CV trajectories speed diagram

Figure 10. Average CV trajectories acceleration diagram

4.4. Approach waiting time

The duration of waiting is the period during which the vehicle's speed was less 

than or equal to 0.1 m/s (0.22 mph). Consequently, Figure 11 shows the average 

waiting time of all trajectories on Carnegie Avenue eastbound through movement at 

the intersection on E36th Street, which was determined by calculating the total time 

the CV trajectories recorded zero velocity (slope). It can be seen that during the 

incident the average waiting times of all trajectories increased. However, it can be 

argued that CVs could have been waiting due to yellow-red time or left-right turns at
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intersections. To take this into account a threshold region was suggested (callout I in 

Figure 11) which represents the length of red and amber time (90 sec) at the 

downstream signalized intersection (East 36th intersection). This is the total time CVs 

would stop while waiting for conflicting movements to go through the intersection, 

therefore any recorded waiting times that were are higher than the threshold region 

warrants an incident or underperformance of the corridor signals.

Figure 11. Average CV trajectories waiting time diagram

4.5. Summary

To visualize and assess the corridor/signalized intersection performance in a 

variety of operating circumstances, a useful and simple framework was developed. 

Color-coded CV trajectory diagrams can identify distinctive trajectory-signal 

diagrams that represent different traffic states in terms of demand, signal status, and 

operational circumstances. It is possible to see issues in a signal system's phasing and 

split duration, spillback, overflow queuing, intersection blocking and incidents, by 

reviewing the trajectories that CVs take while overlapping with a signal indication in 

a diagram.
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Although CV trajectory graphs offer a useful visual understanding of queue 

spillback at intersections, they do not provide quantitative estimates. It is necessary to 

complement the visual presentation of vehicle trajectories with performance metrics. 

Examples of such metrics include phase failures, the number of vehicles served, 

queued, or unserved vehicles, the percentage of vehicles arriving on the green, as well 

as the percentage of stopped vehicles.

Despite being based on simulated traffic data, the proposed performance measures 

can easily be applied to actual world CVs trajectory. The CV trajectory diagrams 

differentiate between traffic incidents and normal traffic conditions. This diagram is 

anticipated to help traffic operators identify underperforming intersections or 

approaches and deploy necessary countermeasures.
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CHAPTER V

CV SAFETY-BASED PERFORMANCE METRICS

As vehicle technology keeps getting better, newer vehicles are equipped with 

advanced safety features which aim at reducing the crash occurrence or its likely 

severity. As a result, applications of the traffic conflict approach to evaluate safety 

condition in road corridors has gained more attention among researchers. Click or tap 

here to enter text. A traffic conflict is an observable situation in which two or more 

road users are so close to each other in space and time that there is a risk of a collision 

if their movements stay the same. A detailed analysis and integration of traffic 

conflicts with signal performance measures can give us a better insight into crash 

occurrence and thus leads to more efficient traffic safety measures. The traffic conflict 

indicators can be used as safety surrogate measures (SSM).

5.1. SSM-based performance measures

The time to collision (TTC), the declaration to avoid a crash (DAC), post 

encroachment time (PET), deceleration rate (DR), gap time (GT), and proportion of 

stopping distance (PSD), are examples of SSM that have been used in the literature 

(Khoda Bakhshi & Ahmed, 2022; Yao et al., 2022). The main advantage of using 

SSM as an alternative safety measure is that data for analysis are more readily 

available because these events occur more frequently compared to actual crashes.
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Even more, there is no need to wait for crashes to occur. This thesis used two SSMs 

which are TTC and DAC. Different types of encounters, e.g., crossing, merging, or 

lead/follow situations, may imply different calculation procedures for safety 

measures. TTC and DAC metrics are used due to the nature of this study the 

simulated crash, a rear-end crash in the following vehicle colliding with the leading 

vehicle. TTC and DAC have been used in literature to explain a rear-end crash in the 

following vehicle colliding with the leading vehicle traffic conflicts (Bidkar et al., 

2022; H. Zhang et al., 2022).

5.1.1. Time to Collision (TTC)

The TTC represents the time that a vehicle would take to collide with another 

vehicle if the current relative velocity at a given point was maintained (Sayed et al. 

1994). When a potential conflict is in progress, the TTC value decreases over time, 

and the critical measure of conflict severity becomes the TTC value when the vehicles 

finally collide. A standard safety limit has been proposed of 1.50 seconds, this is an 

indicator of potentially unsafe conflict (Rvd, 1991). Figure 12 presents an illustration 

of TTC when two vehicles collide or are experiencing a conflict, two trajectories front 

vehicle vf  and rear vehicle vi that converge at a point (point of collision). The time 

towards the collision has two components reaction time (time t2 to t3) and time to 

collision (TTC) (time t3 to t4). The TTC is calculated for all follow-lead situations for 

which the follower is faster than the leader. The TTC metric was computed as 

follows:

TTC = d/ vf - vi  Equation 7

Where vf is the speed of a rear vehicle, vi is that of the front vehicle, and d is the 

space gap (distance) between the two vehicles.
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Figure 12. TTC illustration on trajectory collision diagrams

Figure 13. Average TTC distribution v/s time in cycle slice of the 90s
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Figure 13 presents the distribution of the TTC values against time in the E36th 

Street intersection’s cycle length of 90 sec. The TTC values have been binned into 

two groups namely, safer values with TTC greater than 1.5 seconds and unsafe values 

indicating higher chances of collision with TTC less than 1.5 seconds. It can be seen 

that the distribution of average TTC values during the incident duration appears to be 

higher i.e., 72%, 85% and 83%. Generally, under normal traffic conditions without 

any vehicle crash incident, the distribution of average TTC values greater than 1.5 sec 

appears to be greater than 75%. This represents a safe time when drivers will typically 

stop with minimal likelihood to collide with another vehicle. Traffic operators can 

benefit from the use of this surrogate performance measure in conjunction with other 

CV trajectory measures to determine critical areas that require attention.

5.1.2. Deceleration to Avoid a Crash (DAC)

DAC is defined as the minimum required deceleration rate that a vehicle has to 

apply to avoid a crash with the leading vehicle. In a lead/follow scenario when the 

follower vehicle's speed is higher than the leader vehicle's speed, the DAC (maximum 

deceleration to prevent an accident) is defined in Equation 8.

DAC =  0.5 * Speed difference2 Equation 8
space gap

Figure 14, represents the distribution of DAC values of CV trajectories in the 

corridor between E30th and E36th intersection Streets along the Carnegie Avenue 

East Bound traffic. DAC values have been binned into 4 ranges; similar groups of 

DAC values have been used by Fazekas et al. (2017). This study adopts DAC values 

greater than 3.4 m∕s2 which is the safe deceleration value for stopping sight distance 

in AASHTO to indicate hard braking for sudden stopping. It can be observed that the 

distribution of DAC values that are greater than 3.4 m∕s2 during the incident duration
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from 15:31 to 15:35 appears to be the highest. This threshold category is observed to 

have lower distributions at other times before and after the incident. Similarly, this 

surrogate tool will help traffic operators to detect incident occurrences in a more 

precise manner when used with other performance measures the time and location of 

an incident causing disruption can be accurately determined.

Figure 14. Average DAC distribution v/s time in cycle lengths
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5.2. Summary

The metrics TTC & DAC were examined explaining the impact caused by a 

vehicle crash on traffic from a safety perspective. When the provided SSM metrics in 

this section are used in conjunction with the metrics provided in Chapter IV traffic 

management centers will be able to explain a variety of traffic conditions and respond 

to incidents proactively. Two SSM metrics were considered the TTC and DAC to 

detect and explain the simulated rear-end crash. Traffic operation centers will be able 

to detect a potential incident by observing variations in the distribution of the SSM 

values with respect to time. When there is a higher distribution of SSM values that lie 

outside of the safety margins of the proposed SSM threshold values there is a 

possibility of a potential incident that needs to be handled and an optimization of 

signal controller timings is warranted. However, the observed values for TTC and 

DAC can be limited to the type of car-following behavior that was used in the 

simulation (Kraus car-following model) and the calibration approach. Due to this 

limitation, the threshold used may differ, for this case, a comparative study against 

real-world TTC and DAC data is warranted It should be noted that different conflicts 

can be explained with different SSMs as for this thesis a lead/follow situation was 

simulated and TTC and DAC were the suitable metrics. For other situations like 

crossing and merging other metrics such as PET can be used. In current practice, SSM 

is not integrated as a method for real-time incident detection and management. This 

study provides a great avenue where such efforts can be implemented.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATION

Due to their ability to continuously collect traffic data along the highway, CVs are 

likely to have an impact on traffic control systems. Incorporating CV data into traffic 

control will improve efficiency in traffic control operations and can be used for 

proactive maintenance of traffic operations. The main goal of this thesis was to 

explore CV data and develop performance measures that can be used to assess the 

evolution of traffic conditions especially after an incident has occurred.

In previous studies, high-resolution detector and traffic signal controller status 

data were used to visualize and, in a way, measure the quality of vehicle movement 

based on pre-set signal timing parameters as well as using high-resolution ATSPM 

data. Researchers and traffic operators have developed high-definition data-driven 

performance measures for intersections. They have been successful, but their work is 

limited by the type and quality of sensors they use. Information can be retrieved 

depending on the type of detection used, the position of the detector and the 

assumptions made when adjusting for the distance traveled toward the stop bar. If a 

queue is formed upstream of the advance detector due to an incident, like a vehicle 

crash, traditional performance measures don’t effectively show how well the signal 

meets demand.
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This research aimed to integrate CV trajectory data into the transportation system 

to enhance existing operational capabilities by proposing new and effective 

performance metrics with a focus on incident detection. Therefore, this thesis is 

focused on achieving the following objectives:

1. To formulate a simulation framework for generating and detecting network 

incidents by CVs.

2. To develop performance metrics that utilize the CV trajectory data to detect 

and identify incidents.

3. To estimate safety surrogate measures (SSM) for incident detection using CV 

trajectory data.

The findings indicate that unlike the current state of practice, the developed 

method takes advantage of CV’s sensing, communication, and computing capability 

and handles high and low-demand states equally well. A new traffic trajectory 

visualization tool was introduced that provides a visualization of a vehicle experience 

on a corridor with respect to downstream signal status and interpretation of the impact 

of the incident simulated. The proposed performance measures tools provide for 

means for assessing the proportion of vehicles arriving on green and on red, locations 

with an insufficient allocation of green time can also be readily visualized.

Characterization of individual trajectory quality of progression level of service 

(LOS) and proportion of trajectories in a particular LOS are provided. Furthermore, 

the platoon ratio (Pr) distribution in comparison to percentage arrivals in green (AOG) 

and percentage arrivals in red (AOR) is proposed. More tools on kinematic changes of 

the trajectories for speed, acceleration and waiting time on the corridor are also 

presented. This is the first study to integrate safety surrogate measures with signal
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performance measures to detect conflicts and interpret the likelihood of an incident 

affecting the quality of progression, present the changes in proportions of minimum 

time to collision (TTC) and decelerations to avoid crash values (DAC) against time in 

cycle length intervals.

All presented metrics have been estimated from CV trajectory data and real-time 

signal controller status. To a considerable extent, CV environments will rely on big 

data analytics. What this means is that we now have access to cutting-edge data and 

techniques, as well as novel capabilities and prospects for coming up with more 

efficient signal performance measures. The focus of the described thesis has been on 

the development of effective, rigorous, and implementable strategies for the 

management of urban signalized arterials. What differentiates these measures and the 

proposed approach from the current state of practice is that they reflect the system’s 

operational situation from its user’s perspective respective (CV trajectory). The 

presented information is cumulative in time and space and carries over from one 

“signal cycle” to another.

Decision-makers, traffic control operators and respective practitioners need a 

deeper understanding of the potential impacts of CVs to realize sustainable, 

affordable, and efficient urban transportation management systems. Timely, 

important, and challenging, this research is necessary because CVs are predicted to 

significantly impact transportation systems.

Despite the contribution of the study findings, this study was limited to the 

following factors: Although a careful calibration and validation approach was used in 

the simulation experiment, like most traffic simulation studies it is nearly impractical 

to calibrate all parameters to the likes of a real-world condition. Future studies can 
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consider a more robust calibration model which considers more driving behavior 

parameters. For instance, as research on CVs is constantly growing other studies can 

employ the use of car-following behaviors that have more recent adaptation to CVs. 

While this study used the COBYLA optimization algorithm future studies can use 

more recent and robust optimization algorithms.

Furthermore, more research is needed to test this approach on a variety of 

networks and traffic conditions and to find a good composite, for example, consider 

more lane configurations, different kinds of intersections, etc. Also, considering that 

certain conflicts (e.g., crossing) may have more severe impacts than others (e.g., rear- 

end) and consequently affect traffic flow and signal operations differently there is a 

need to investigate the use of a “safety (performance) index” which would use 

various ‘severity weights’ assigned to various conflict types.
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APPENDIX E: INTERSECTION EVENING PEAK TURNING MOVEMENT COUNTS

E 30th SB Carnegie Ave WB E 30th NB Carnegie Ave EB
Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Total %

3:30pm 19 123 64 33 329 25 27 125 20 32 228 23 1,048 25.14%
3:45pm 19 105 61 35 363 40 30 128 17 30 221 29 1,078 25.86%
4:00pm 17 94 65 35 320 42 29 114 16 41 215 21 1,009 24.21%
4:15pm 16 113 62 31 379 35 24 97 17 28 205 26 1,033 24.78%

Hourly Total 71 435 252 134 1,391 142 110 464 70 131 869 99 4,168 100.00%
Hourly Total % 9.37% 57.39% 33.25% 8.04% 83.44% 8.52% 17.08% 72.05% 10.87% 11.92% 79.07% 9.01%

PHF 0.93 0.88 0.97 0.96 0.92 0.85 0.92 0.91 0.88 0.8 0.95 0.85
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APPENDIX E: INTERSECTION EVENING PEAK TURNING MOVEMENT COUNTS

E36th SB Carnegie Ave WB E36th NB Carnegie Ave EB
Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Total %

3:30pm 6 33 14 4 319 10 3 113 10 243 5 661 25.50%
3:45pm 5 32 16 6 351 10 3 9 1 8 240 4 685 26.43%
4:00pm 4 19 17 6 315 8 3 10 1 11 219 4 617 23.80%
4:15pm 3 16 18 3 331 7 3 8 3 10 221 6 629 24.27%

Hourly Total 18 100 65 19 1,316 35 12 38 8 39 923 19 2,592 100.00%
Hourly Total % 9.84% 54.64% 35.52% 1.39% 96.06% 2.55% 20.69% 65.52% 13.79% 3.98% 94.09% 1.94%

PHF 0.75 0.76 0.9 0.79 0.94 0.88 1 0.86 0.67 0.89 0.95 0.79
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APPENDIX E: INTERSECTION EVENING PEAK TURNING MOVEMENT COUNTS

E40th SB Carnegie Ave WB E40th NB Carnegie Ave EB
Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Total %

3:30pm 3 79 13 2 310 1 8 23 2 8 234 11 694 25.66%
3:45pm 4 48 19 3 333 2 9 25 2 10 240 8 703 25.99%
4:00pm 3 54 18 3 297 2 11 34 2 11 207 6 648 23.96%
4:15pm 2 49 15 4 314 2 13 25 3 9 219 5 660 24.40%

Hourly Total 12 230 65 12 1,254 7 41 107 9 38 900 30 2,705 100.00%
Hourly Total % 3.91% 74.92% 21.17% 0.94% 98.51% 0.55% 26.11% 68.15% 5.73% 3.93% 92.98% 3.10%

PHF 0.75 0.73 0.86 0.75 0.94 0.88 0.79 0.79 0.75 0.86 0.94 0.68
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APPENDIX E: INTERSECTION EVENING PEAK TURNING MOVEMENT COUNTS

E46th SB Carnegie Ave WB E46th NB Carnegie Ave EB
Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Total %

4:30pm 1 24 5 4 293 3 2 8 1 5 220 3 569 23.43%
4:45pm 3 36 7 4 325 4 2 9 3 3 239 5 640 26.36%
5:00pm 3 29 9 4 292 2 3 9 3 4 243 4 605 24.92%
5:15pm 1 24 9 2 297 2 2 9 4 5 255 4 614 25.29%

Hourly Total 8 113 30 14 1,207 11 9 35 11 17 957 16 2,428 100.00%
Hourly Total % 5.30% 74.83% 19.87% 1.14% 97.97% 0.89% 16.36% 63.64% 20.00% 1.72% 96.67% 1.62%

PHF 0.67 0.78 0.83 0.88 0.93 0.69 0.75 0.97 0.69 0.85 0.94 0.8
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