[Fe-Fe]-Hydrogenase Reactivated by Residue Mutations as Bridging Carbonyl Rearranges: A QM/MM Study

Stefan Motiu
Cleveland State University

Valentin Gogonea
Cleveland State University, v.gogonea@gmail.com

Follow this and additional works at: http://engagedscholarship.csuohio.edu/scichem_facpub

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Publisher's Statement
This is the accepted version of the following article: Motiu, S.; Gogonea, V. [Fe-Fe]-hydrogenase reactivated by residue mutations as bridging carbonyl rearranges: A QM/MM study. International Journal of Quantum Chemistry 2010, 110, 2705-2718., which has been published in final form at: http://onlinelibrary.wiley.com/doi/10.1002/qua.22381/full

Recommended Citation
Motiu, Stefan and Gogonea, Valentin, "[Fe-Fe]-Hydrogenase Reactivated by Residue Mutations as Bridging Carbonyl Rearranges: A QM/MM Study" (2010). Chemistry Faculty Publications. 298.
http://engagedscholarship.csuohio.edu/scichem_facpub/298

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
[Fe-Fe]-Hydrogenase Reactivated by Residue Mutations as Bridging Carbonyl Rearranges: A QM/MM Study

STEFAN MOTIU, VALENTIN GOGONEA
Introduction

Fe-Fe- and [Ni-Fe]-hydrogenases are two major classes of enzymes that reversibly catalyze the apparently simple reaction of protons and electrons to molecular hydrogen, $2H^+ + 2e^- \rightleftharpoons H_2$, which occurs in anaerobic media. In living systems, of the two metalloproteins, [Fe-Fe]-hydrogenases are mostly used for H_2 production, having a reactivity of about 2 orders of magnitude larger than [Ni-Fe]-hydrogenases. These enzymes are found in many bacteria, simple eukaryotes, and archaea where they provide H_2 for the metabolic processes of these life forms. By means of H_2 oxidation, ATP synthesis exploits H_2 as an energy source, whereas H_2 synthesis results from the metabolic disposal of excess electron (with available H^+’s), or from pyruvate fermentation. Proteins, such as ferredoxins, cytochrome C3, and cytochrome C6, act as physiological e^- donors or acceptors [1–3]. The exploration of alternative energy sources has kindled great interest in hydrogenase research. The reason for studying biological H_2 production is to clarify the complex mechanism (for hydrogen synthesis), which may help researchers produce clean fuel [4], using certain anaerobic organisms [5–8].

This theoretical study aims to find ways of making these enzymes function aerobically (to provide clean fuel, viz., H_2), because they become inactivated by exogenous ligands such as O_2, OH^-, and H_2O [9, 10]. Water is the metabolic product of the inactivated catalytic site, that is, $(Fe_{d^-})O \rightarrow (Fe_{d^-})H_2O^+$, and it also binds to the hydrogenase active site in its resting state, viz., $Fe^{II}Fe^{II}$ [11, 12].

By performing Density Functional Theory (DFT) calculations on the H-cluster, with H_2O, OH^-, and O_2 bound to Fe_{d^-} (redox states $Fe^{II}Fe^{II}$), Liu and Hu [10] have inferred, based on agreement between calculated and experimental vibrational frequencies of the three endogenous CO ligands, that OH^- is the oxygen species which inhibits hydrogenases. The X-ray structures of [Fe-Fe]-hydrogenases, from *Clostridium pasteurianum* (CPI) [11] and *Desulfovibrio desulfuricans* (DdH) [13] can be used to theoretically investigate their functions via biochemical pathways [10, 14]. Since former DFT and hybrid quantum mechanics/molecular mechanics (QM/MM), calculations [9, 10, 14, 15, 16–22] have shown success in clarifying certain aspects of the catalytic properties of the H-cluster; similar methodologies are also used in our investigation. In our study, as well as in other computational studies [9, 10, 14, 15, 19, 20], CH_3S^- has been substituted for cysteine, Cys382, and H^+ for the proximal cubane.2

The active site of hydrogenases, viz., the H-cluster (see Fig. 1), is comprised of a dimetal complex, [Fe-Fe], with the metal centers being bridged by N-thioetheramine (DTMA), and a cubane subunit, [Fe$_2$S$_4$]$^{2+}$. The iron atoms are coordinated by endogenous ligands, viz., two cyanides (CN^-), two terminal carboxyls (CO_2), and a bridging carbonyl (CO_2).3 An Fe atom, which is part of the proximal
cubane subunit, \([\text{Fe}_4\text{S}_4]^{2+}\) is linked to the Fe\(_p\) of the di-iron subunit, \([\text{Fep}\text{-Fed}]\), through a cysteinyl sulfur (or S\(_\text{p}\) of Cys382).

In spite of the di-iron H-cluster subunit redox states, the proximal cubane remains in oxidation state II, \([\text{Fe}_4\text{S}_4]^{2+}\). Computational and experimental [Fe-Fe]-hydrogenase H-cluster (and synthetic H-cluster analogues) research [3, 4, 9, 10, 12–15, 19, 21, 24–52] corroborates the potential redox states of the di-iron H-cluster subunit, Fep\(_I\)-Fed\(_I\), EPR silent, is the reduced di-iron H-cluster subunit, Fe\(_p\)-Fed\(_I\), paramagnetic, is the partially oxidized, and catalytically active di-iron subunit, and Fe\(_p\)-Fed\(_II\), EPR silent [13, 53], is the fully oxidized, inactive biferrous subunit, and has an OH\(^-\) or H\(_2\)O molecule bound to the Fed\(_I\).

By performing spectroscopic studies on [Fe-Fe]-hydrogenases, which have been purified from Clostridium pasteurianum and Desulfovibrio desulfuricans, their catalytic functions have been elucidated [11–13, 54, 55]. An X-ray crystal structure of CPI hydrogenase shows an (inactivating) oxygen species that may be OH\(^-\) or H\(_2\)O bound to the Fed of the H-cluster, while the other X-ray structure has an inactivating CO bound to Fed [11, 12]. For this study, DdH has been selected because its crystal structure has a better resolution (viz., 1.6 Å), than CPI (viz, 1.8 Å) [11, 13].

This investigation is subdivided into three parts, viz., thermodynamics, geometric, and electronic analysis, for both wild-type and mutated (residue substituted) DdH. These analyses were carried out in order to understand the thermodynamic results, their relationship to certain molecular spatial behavior, for example, CO\(_p\) movement, and the electronic structural methods, such as frontier molecular orbitals (FMO) and natural bond orbital partial charges (NBO).

Methods

The ONIOM method [56] (DFT for the QM region, and the universal force field, UFF [57], for the MM region, implemented in Gaussian03 [58]) has been utilized to determine the reaction thermodynamics, viz., \(\Delta G\) for individual reaction steps, of the [Fe-Fe]-hydrogenase H-cluster (the active group of DdH) reactivation.

Low spin states (singlet and doublet) and low oxidation states (I and II) have been used for the di-irons [10, 19] in agreement with the experimental and computational data.

The electronic structure of the hydrogenase H-cluster (without proximal cubane) has been determined using DFT method (B3LYP functional [59, 60]), and 6–31\(\text{G}(d,p)\) basis set.

Hydrogen atoms were added to the X-ray crystal structure of DdH using the Gromacs program [61, 62] [Brookhaven Protein Data Bank id.1HFE]. After the structure has been solvated [2,043 H\(_2\)O molecules (in 1 nm layer peripheral to H-cluster)], six Na\(^+\) ions were randomly incorporated into the solvent (7 Na\(^+\) ions for clusters 1, 3, 4; 8 Na\(^+\) ions for cluster 2) to neutralize the negative charges [23] on the H-cluster, medial, and distal cubane/cysteines clusters. At physiological pH (~7), Gromacs program considers negative charges on the acidic residues (28 Asp and 33 Glu), and positive charges on the most basic residues (44 Lys and 15 Arg).

Out of the 13 His found in DdH, only two are protonated, and these charges (in conjunction with those from Lys and Arg) are used to neutralize the negatively charged residues, viz., Asp and Glu. Thus, the overall apoprotein charge is zero, except the 12 negatively charged cysteines bound to the iron atoms of the three cubanes, where each has a charge of 2\(^+\).

Geometry optimizations have been performed in aqueous enzyme phase, where residues in the MM region (except the proximal cubane), and Fe\(_p\) and

CO\textsubscript{3}P\textsubscript{r} in the QM region have been kept frozen.5 The rational for freezing Fe\textsubscript{p} and CO\textsubscript{3}P\textsubscript{r} arises from former optimizations [15] where they were found to spatially rearrange the least. Once geometry optimizations have been carried out for DdH, frequency calculations are performed in order to obtain thermodynamic data, viz., \(\Delta G \). Frequency calculations treat both the apoenzyme and the cubanes as partial charges, whereas [Fe\textsubscript{p}-Fe\textsubscript{q}] subunit is treated at DFT level.

The DdH apoenzyme and cubanes, viz., proximal, medial, and distal are included in the MM region. The QM region consists of the [Fe\textsubscript{p}-Fe\textsubscript{q}] subunit (the moiety of H-cluster), and C\textsubscript{p} and S\textsubscript{q} (cysteinyl sulfur of Cys382). To avoid dangling bonds between the ONIOM layers, two linking hydrogen atoms were added between S\textsubscript{p} and Fe (of the proximal cubane), and between C\textsubscript{p} and C\textsubscript{q} (of Cys382).

The UFF charge equilibration method was utilized to describe the electrostatic interactions within the MM region of DdH, whereas the solvent charges \(q_{iO} = -0.706 \text{ a.u.} \) and \(q_{iH} = 0.353 \text{ a.u.} \) were obtained from literature [30].

Then, a DdH sphere with a radius of 8 Å from Fe\textsubscript{q} was investigated regarding the potential inhibitory residues for H\textsubscript{2}O removal. H-cluster hindering residues (for H\textsubscript{2}O elimination) are identified by using QM/MM geometry optimizations, and then their influence on thermodynamics and electronic properties of the catalytic site is assessed. Given that water is polar, candidate potential inhibitory residues should also be polar. Then, potential, polar inhibitory residues are screened to identify the most probable residues that hinder H\textsubscript{2}O from leaving the catalytic site. Screening is the process whereby polar residues are removed (from within a sphere of radius 8 Å), one at a time, which is followed by frequency calculations aiming to learn whether the binding energy of water has decreased. If successful, then further residue substitutions are performed, that is, a neutral polar residue is substituted for a neutral, nonpolar residue, and an acidic residue is substituted for a basic residue, and vice versa.6 Then, after each substitution, geometry optimization is performed, followed by frequency calculations to obtain the Gibbs’ energy of H\textsubscript{2}O dissociation.

Lastly, Gibbs’ energies of H\textsubscript{2}O and H\textsubscript{3}O+ (viz., \(\Delta G_{H2O} = -76.419750 \), and \(\Delta G_{H3O}^+ = -76.598767 \) Hartrees/molecule), which are needed for thermodynamic analysis, have been obtained by performing frequency calculations on these molecules which were positioned in the H-cluster cavity surrounded by the apoenzyme and the cubanes.

Results

THERMODYNAMIC ANALYSIS

The reactivation mechanism of [Fe-Fe]-hydrogenase H-cluster essentially consists of three reaction steps, viz., protonation, reduction, and H\textsubscript{2}O elimination. The reactivation pathways (Schemes 1–3) proceed with different combinations for the three steps.

For the hybrid calculations, the reductive step, 1 \(\rightarrow \) 2 (Scheme 1), of [Fe11-Fe11]-hydrogenase H-cluster proceeds rather endergonically, viz., \(\Delta G_{\text{Enzyme}} = +42.6 \text{ kcal/mol} \) (Table I) relative to the gas phase \(\Delta G_{\text{Gas}} \phi = +8.2 \text{ kcal/mol} \), Table I), which points out that DdH reduction is less spontaneous than in vacuum, emphasizing the stereo-electronic effects of the apoenzyme, the medial, and distal cubanes on the H-cluster. The protonation step, 2 \(\rightarrow \) 3 (Scheme 1), is highly exergonic \(\Delta G_{\text{Enzyme}} \phi = -317.9 \text{ kcal/mol} \), see Supporting Information Table I for protonation free energies using an alternative protonation source). The Gibbs’ energy difference between the reactions of the two environments (i.e., vacuum vs. enzyme \(\Phi \), Table I) is +91.3 kcal/mol, and points to a more spontaneous reaction in gas phase. In step 3 \(\rightarrow \) 4 (H\textsubscript{2}O elimination), the hydrogenase H-cluster calculations show a rather small, endergonic result \(\Delta G_{\text{Enzyme}} \phi = +2.0 \text{ kcal/mol} \), as opposed to the exergonic gas phase outcome \(\Delta G_{\text{Gas}} \phi = -6.6 \text{ kcal/mol} \). The enzymatic H\textsubscript{2}O removal is nonspontaneous due to the influence of the protein environment on the H-cluster electronic properties.

The DdH protonation, 1 \(\rightarrow \) 2’ (Scheme 2), provides an exergonic reaction, viz., \(\Delta G_{\text{Enzyme}} \phi = -236.8 \text{ kcal/mol} \), proceeding less spontaneously than in gas phase, viz. \(\Delta G_{\text{Gas}} \phi = -328.3 \text{ kcal/mol} \), correlating the trend in Scheme 1. The enzyme \(\Phi \) calculations, for the H\textsubscript{2}O removal, 2’ \(\rightarrow \) 3’, (Scheme 2), confer an endergonic result, \(\Delta G_{\text{Enzyme}} \phi = +22.9 \text{ kcal/mol} \), as opposed to the exergonic gas \(\Phi \).
reaction step \((\Delta G_{\text{Gas}} \Phi = -16.6 \text{ kcal/mol}) \), which results in a difference of +39.5 kcal/mol. Again, the effect of the protein environment is manifest on the individual steps of the reaction mechanism. The final reductive step, \(3' \rightarrow 4 \), of the aqueous enzyme \(\Phi \) (Scheme 2) proceeds exergonically, viz., \(\Delta G_{\text{Enzyme}} \Phi = -59.4 \text{ kcal/mol} \), close to the gas phase result, viz., \(\Delta G_{\text{Gas}} \Phi = -62.7 \text{ kcal/mol} \).

However, Scheme 3, in contrast, definitely provides room for enhancements that could achieve H\(_2\)O removal because, in step \(3' \rightarrow 4 \), the hydrogenase H-cluster calculations provide a rather small, free energy, viz., \(\Delta G_{\text{Enzyme}} \Phi = +2.0 \text{ kcal/mol} \), which could be changed into an exergonic reaction via mutagenesis. For Scheme 3, only the H\(_2\)O removal step is endergonic (viz., \(\Delta G_{\text{Enzyme}} \Phi = +2.0 \text{ kcal/mol} \), as in Scheme 1), whereas the other remaining steps [protonation (viz., \(\Delta G_{\text{Enzyme}} \Phi = -236.8 \text{ kcal/mol} \)), reduction (viz., \(\Delta G_{\text{Enzyme}} \Phi = -38.4 \text{ kcal/mol} \)] are exergonic.

The following investigation addresses possible reactivation mechanisms of DdH mutants, uses the QM/MM method for pathway I, II, and III, and aims for the removal of H\(_2\)O.

The wild-type hydrogenase has been residue manipulated in two ways. First of all, the considered residues (Table I) have been removed one at a time in order to find which are responsible for keeping the water from being displaced. Subsequently, for the six culprit residues, that proved to hinder the removal of water, substitutions had been carried out (as describe in the Methods section), viz., Arg\(^{111}\)Glu, Thr\(^{145}\)Val, Ser\(^{177}\)Ala, Glu\(^{240}\)His, Glu\(^{374}\)His, and Tyr\(^{375}\)Phe.

In Scheme 1, the reduction step, \(1 \rightarrow 2 \), upon the removal of Glu\(^{240}\), becomes less endergonic by \(\Delta G = +17.0 \text{ kcal/mol} \) (relative to wild-type DdH) but not even close to make it spontaneous.\(^7\) For \(2 \rightarrow 3 \), with the removal of a basic residue, that is, Lys\(^{237}\) (when compared with the wild-type enzyme), the protonation step proceeds more exergonically, viz., by a Gibbs’ energy difference of +27.3 kcal/mol. The last step, \(3 \rightarrow 4 \), proceeds exergonically, viz., \(\Delta G_{\text{Enzyme}} \Phi = -1.6 \text{ kcal/mol} \), upon the removal of Glu\(^{374}\) from the apoenzyme; however, Scheme 1
Scheme II for H-cluster Reactivation

Scheme 2. The reactivation pathway II of [Fe-Fe]-hydrogenase H-cluster. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

cannot proceed to the completion due to the endergonic, reductive step, 1 → 2.

For Scheme 2, an improvement has been obtained (as in Scheme 1) upon the removal of exactly the same residue for each of the corresponding step, that is, Lys237 for protonation (viz., $\Delta G_{\text{Enzyme}}^\Phi = -264.4$ kcal/mol), Glu240 for reduction (viz., $\Delta G_{\text{Enzyme}}^\Phi = -78.7$ kcal/mol), and Glu374 for H$_2$O elimination (viz., $\Delta G_{\text{Enzyme}}^\Phi = +21.5$ kcal/mol). However, in spite of Gibbs’ energy improvements for all reaction steps, no matter what residues (Table I) are removed, Scheme 2 is hindered from completion in the H$_2$O removal step.

In Scheme 3, the only endergonic step is for the removal of H$_2$O ($\Delta G = +2.0$ kcal/mol), which was, nevertheless, made to proceed exergonically by eliminating several residues, one at a time. The most promising residues are ΔArg111, ΔThr145, ΔSer177, ΔGlu240, ΔGlu374, and ΔTyr375, and their respective deletion Gibbs’ energies are -0.7 kcal/mol, -0.2 kcal/mol, -0.5 kcal/mol, $+0.8$ kcal/mol, -1.6 kcal/mol, and $+1.1$ kcal/mol (Table I). In 3 → 4, single residue substitutions have been carried out on the six residues that hinder the removal of water, viz., Arg111Glu, Thr145Val, Ser177Ala, Glu240His, Glu374His, and Tyr375Phe, followed by (sequential) frequency calculations.

Then out of the most successful substitutions, two, three, and four residue combinations were examined by frequency calculations (Table II). The 1st two-residue combination is Glu374His and Tyr375Phe giving $\Delta G = -5.1$ kcal/mol; the 2nd three-residue combination is Thr145Val, Glu374His, and Tyr375Phe giving $\Delta G = -6.2$ kcal/mol, and the 3rd four-residue combination is Arg111Glu, Thr145Val, Glu374His, and Tyr375Phe giving $\Delta G = -7.5$ kcal/mol.

GEOMETRIC CONSIDERATIONS

To explain Gibbs’ energies between the aqueous enzyme Φ and the gas Φ calculations, DdH H-cluster and H-cluster geometries for the two phases are analyzed, and then the hydrogenase H-cluster
distances to the six replaced, juxtaposed residues are presented for the aqueous enzyme Φ.

The wild-type DdH QM/MM calculations for H_2O removal, (3 \rightarrow 4), reveal a contrasting picture regarding CO$_b$ translation towards Fe$_d$ relative to the gas phase H_2O elimination. That is, in Table III,8 3 \rightarrow 4, the iron-carbon distance, Fe$_d$-CO$_b$, essentially remains constant (viz., 1.907 Å \rightarrow 1.908 Å), whereas the gas Φ distance becomes smaller (viz., 1.945 Å \rightarrow 1.850 Å), and the reaction (3 \rightarrow 4) is exergonic$^{14, 15}$ which may explain why H_2O removal is endergonic for the enzyme Φ.

Thus, it is ascertained that for the aqueous enzyme Φ, an endergonic ligand (H_2O) dissociation is manifested in the Fe$_p$-CO$_b$ bond contraction (1.959 Å \rightarrow 1.939 Å). The opposite trend is observed in gas phase, where the Fe$_p$-CO$_b$ bond is elongated (2.013 Å \rightarrow 2.232 Å) after H_2O elimination.

Out of the three reaction pathways presented here, only Scheme 3 is analyzed for geometrical considerations, for it is the only one having the potential for metabolic reactivation by means of residue substitutions. The latter scheme has only the H_2O removal step to be overcome in order to proceed exergonically, while, on the other hand, the other schemes cannot be made exergonic by residue substitutions.

Next, an analysis is provided for the interatomic distances (Å), between Fe$_p$, Fe$_d$, Fe$_p$ and CO$_b$, Fe$_d$ and CO$_b$, and Fe$_d$ and H_2O, before and after water removal, to compare the H_2O elimination Gibbs’ energies for the residue substituted DdH with the thermodynamics of the wild-type DdH.

For the removal of water from the wild-type enzyme, the distance between Fe$_d$ and CO$_b$ is slightly increasing (Table III), which corresponds to the endergonic step, viz., $\Delta G_{\text{Enzyme}} = +2.0$ kcal/mol. However, the H_2O removal from the mutated enzyme is exergonic (Table II), correlating to the movement of the CO$_b$ towards the Fe$_d$. As a result of mutating DdH, the following bond contractions, Fe$_d$-CO$_b$, have been obtained, viz., 0.024 Å for Arg111Glu, 0.028 Å for

SCHEME 3. The reactivation pathway III of [Fe-Fe]-hydrogenase H-cluster. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
TABLE I
Native and residue removed DdH Gibbs’ energies (kcal/mol) for reaction steps of reactivation pathways I, II, and III.

<table>
<thead>
<tr>
<th>Reaction steps</th>
<th>(+e⁻)</th>
<th>(+H⁺)</th>
<th>(−H₂O)</th>
<th>(+H⁺)</th>
<th>(−H₂O)</th>
<th>(+e⁻)</th>
<th>(+e⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native DdH</td>
<td>1 → 2</td>
<td>+42.6</td>
<td>−317.9</td>
<td>+2.0</td>
<td>−236.8</td>
<td>+22.9</td>
<td>−59.4</td>
</tr>
<tr>
<td>∆Ser^{62,63a}</td>
<td>2 → 3</td>
<td>+38.3</td>
<td>−313.6</td>
<td>+2.0</td>
<td>−232.6</td>
<td>+23.1</td>
<td>−63.9</td>
</tr>
<tr>
<td>∆Arg^{111}</td>
<td>3 → 4</td>
<td>+59.0</td>
<td>−332.4</td>
<td>−0.7</td>
<td>−251.4</td>
<td>+22.0</td>
<td>−44.7</td>
</tr>
<tr>
<td>∆Tyr^{112}</td>
<td>1 → 2'</td>
<td>+47.5</td>
<td>−322.1</td>
<td>+1.6</td>
<td>−241.1</td>
<td>+22.8</td>
<td>−54.8</td>
</tr>
<tr>
<td>∆Asp^{144}</td>
<td>2' → 3'</td>
<td>+28.8</td>
<td>−305.0</td>
<td>+3.0</td>
<td>−223.4</td>
<td>+24.1</td>
<td>−73.8</td>
</tr>
<tr>
<td>∆Thr^{145}</td>
<td>3' → 4</td>
<td>+44.1</td>
<td>−318.8</td>
<td>−0.2</td>
<td>−237.9</td>
<td>+22.8</td>
<td>−59.9</td>
</tr>
<tr>
<td>∆Glu^{146}</td>
<td>2 → 3</td>
<td>+32.5</td>
<td>−308.5</td>
<td>+2.5</td>
<td>−227.4</td>
<td>+23.6</td>
<td>−69.7</td>
</tr>
<tr>
<td>∆Thr^{148}</td>
<td>3 → 4</td>
<td>+41.8</td>
<td>−316.8</td>
<td>+1.8</td>
<td>−235.8</td>
<td>+22.9</td>
<td>−60.3</td>
</tr>
<tr>
<td>∆Asp^{150}</td>
<td>1 → 2'</td>
<td>+32.8</td>
<td>−308.1</td>
<td>+2.1</td>
<td>−227.0</td>
<td>+23.3</td>
<td>−69.5</td>
</tr>
<tr>
<td>∆Thr^{152}</td>
<td>2' → 3'</td>
<td>+47.1</td>
<td>−322.6</td>
<td>+1.9</td>
<td>−241.6</td>
<td>+23.0</td>
<td>−55.1</td>
</tr>
<tr>
<td>∆Glu^{155}</td>
<td>3' → 4</td>
<td>+36.5</td>
<td>−311.4</td>
<td>+1.9</td>
<td>−230.2</td>
<td>+23.0</td>
<td>−65.8</td>
</tr>
<tr>
<td>∆Thr^{176}</td>
<td>2 → 3</td>
<td>+43.8</td>
<td>−319.5</td>
<td>+2.1</td>
<td>−238.3</td>
<td>+23.2</td>
<td>−58.5</td>
</tr>
<tr>
<td>∆Ser^{177}</td>
<td>3 → 4</td>
<td>+38.3</td>
<td>−312.8</td>
<td>−0.5</td>
<td>−231.8</td>
<td>+22.9</td>
<td>−66.1</td>
</tr>
<tr>
<td>∆Glu^{183}</td>
<td>1 → 2</td>
<td>+46.3</td>
<td>−322.3</td>
<td>+2.3</td>
<td>−241.1</td>
<td>+23.3</td>
<td>−55.9</td>
</tr>
<tr>
<td>∆Ser^{198}</td>
<td>2 → 3</td>
<td>+42.6</td>
<td>−318.0</td>
<td>+2.1</td>
<td>−236.9</td>
<td>+23.2</td>
<td>−59.6</td>
</tr>
<tr>
<td>∆Lys^{201}</td>
<td>3 → 4</td>
<td>+48.3</td>
<td>−323.5</td>
<td>+1.7</td>
<td>−242.6</td>
<td>+22.7</td>
<td>−53.6</td>
</tr>
<tr>
<td>∆Ser^{202}</td>
<td>1 → 2'</td>
<td>+46.3</td>
<td>−324.1</td>
<td>+2.4</td>
<td>−241.8</td>
<td>+22.5</td>
<td>−56.0</td>
</tr>
<tr>
<td>∆Asn^{207}</td>
<td>2' → 3'</td>
<td>+46.7</td>
<td>−321.6</td>
<td>+1.5</td>
<td>−240.6</td>
<td>+22.5</td>
<td>−55.2</td>
</tr>
<tr>
<td>∆Ser^{230}</td>
<td>3' → 4</td>
<td>+38.2</td>
<td>−314.0</td>
<td>+2.3</td>
<td>−232.9</td>
<td>+23.3</td>
<td>−64.0</td>
</tr>
<tr>
<td>∆Lys^{237}</td>
<td>2 → 3</td>
<td>+69.2</td>
<td>−345.2</td>
<td>+1.2</td>
<td>−264.4</td>
<td>+21.7</td>
<td>−32.1</td>
</tr>
<tr>
<td>∆Lys^{238}</td>
<td>3 → 4</td>
<td>+47.4</td>
<td>−322.1</td>
<td>+1.7</td>
<td>−241.5</td>
<td>+22.9</td>
<td>−54.4</td>
</tr>
<tr>
<td>∆Glu^{240}</td>
<td>1 → 2</td>
<td>+25.6</td>
<td>−300.1</td>
<td>+0.8</td>
<td>−218.9</td>
<td>+23.8</td>
<td>−78.7</td>
</tr>
<tr>
<td>∆Thr^{257}</td>
<td>2 → 3</td>
<td>+42.8</td>
<td>−318.0</td>
<td>+1.9</td>
<td>−236.9</td>
<td>+23.1</td>
<td>−59.5</td>
</tr>
<tr>
<td>∆Thr^{259}</td>
<td>3 → 4</td>
<td>+45.9</td>
<td>−320.8</td>
<td>+1.8</td>
<td>−239.9</td>
<td>+23.0</td>
<td>−56.1</td>
</tr>
<tr>
<td>∆Thr^{260}</td>
<td>1 → 2'</td>
<td>+42.1</td>
<td>−317.4</td>
<td>+2.0</td>
<td>−236.4</td>
<td>+23.1</td>
<td>−60.1</td>
</tr>
<tr>
<td>∆Ser^{289}</td>
<td>2' → 3'</td>
<td>+44.0</td>
<td>−319.1</td>
<td>+1.9</td>
<td>−238.1</td>
<td>+22.9</td>
<td>−58.1</td>
</tr>
<tr>
<td>∆Thr^{294}</td>
<td>3' → 4</td>
<td>+40.4</td>
<td>−316.0</td>
<td>+2.2</td>
<td>−234.9</td>
<td>+23.2</td>
<td>−61.8</td>
</tr>
<tr>
<td>∆Thr^{299}</td>
<td>2 → 3</td>
<td>+40.9</td>
<td>−316.2</td>
<td>+1.9</td>
<td>−235.1</td>
<td>+23.0</td>
<td>−61.2</td>
</tr>
<tr>
<td>∆Glu^{374}</td>
<td>3 → 4</td>
<td>+27.7</td>
<td>−301.3</td>
<td>−1.6</td>
<td>−220.2</td>
<td>+21.5</td>
<td>−76.5</td>
</tr>
<tr>
<td>∆Tyr^{375}</td>
<td>2 → 3</td>
<td>+41.5</td>
<td>−315.8</td>
<td>+1.1</td>
<td>−234.8</td>
<td>+22.3</td>
<td>−60.6</td>
</tr>
<tr>
<td>∆Gln{388}</td>
<td>3 → 4</td>
<td>+44.0</td>
<td>−319.2</td>
<td>+2.0</td>
<td>−238.1</td>
<td>+23.1</td>
<td>−58.2</td>
</tr>
<tr>
<td>Gas φ</td>
<td></td>
<td>+8.2</td>
<td>−409.2</td>
<td>−6.6</td>
<td>−328.3</td>
<td>−16.6</td>
<td>−62.7</td>
</tr>
</tbody>
</table>

* Residue removed DdH.
 s = small chain.

Thr^{145}Val, 0.017 Å for Glu^{374}His, and 0.031 Å for Tyr^{375}Phe, corresponding to exergonic steps for water elimination (Table II).

Note that a simultaneous bond elongation occurs [for all presented mutations (Table III)] between the Fe₆ and the bridging carbonyl, Fe₆-CO₆, when bond contraction for Fe₆-CO₆ takes place. As a result of mutating DdH (vs. the wild-type enzyme), larger bond contractions between the iron atoms, Fe₆-Fe₆', have been obtained (ca. 0.1 Å, Table III). It is also noticed that the bond length between the distal iron and water, Fe₆-H₂O, is longer, that is, about 2.2 Å (vs. 2.1 Å) in the mutated DdH vs. the wild-type enzyme.

The following trend has been observed for some of the DdH mutants that the closer the substituted residue is to the H-cluster exogenous water (Table IV), the more spontaneous is the water removal step becomes. The exception is Tyr^{375}Phe, in which the substituted amino acid is highly hydrophobic; although it gets closest to the exogenous oxygen atom of H₂O, it nevertheless has less effect on removing water when compared with Glu^{374}His mutant where the substituted amino acid (at a greater
distance from H2O) is not only polar but also of opposite charge as well. The negative partial charge on oxygen (\(q_{\text{H2O}} = -0.935\)) of H2O repels the negatively charged carboxylate of Glu374 (\(q_{\text{COO}} = -0.547, -0.567, -0.563\)), thus making the water removal difficult. When Glu374 is replaced by a protonated histidine, the opposite effect is observed.

FRONTIER MOLECULAR ORBITAL ANALYSIS

Molecular orbital analysis is provided using frontier orbitals (HOMO, LUMO, and SOMO) in correlation with the formerly presented Gibbs’ energies. Essentially, reduction for all three pathways are carried out on closed-shell clusters, that is, an \(e^-\) is transferred into the lowest unoccupied molecular orbital, H-cluster LUMO.

In the case of open-shell H-cluster protonation (both gas and aqueous enzyme \(\Phi\)), a \(\sigma\)-bond is formed between a \(H^+\) and (the exogenous ligand) \(OH^-\) by the interaction of electrons in the highest occupied molecular orbitals, viz., SOMO and HOMO. Conversely, when a \(H^+\) is in close proxim-

TABLE II

DdH Gibbs’ energies (kcal/mol) of one, two, three, and four residue mutations for reaction step \(3 \rightarrow 4\).

<table>
<thead>
<tr>
<th>Residue substitutions for H2O removal step (3 \rightarrow 4)</th>
<th>energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg(^{111})Glu</td>
<td>-0.9</td>
</tr>
<tr>
<td>Thr(^{145})Val</td>
<td>-1.3</td>
</tr>
<tr>
<td>Ser(^{177})Ala</td>
<td>-0.1</td>
</tr>
<tr>
<td>Glu(^{240})His</td>
<td>+1.1</td>
</tr>
<tr>
<td>Glu(^{374})His</td>
<td>-3.1</td>
</tr>
<tr>
<td>Tyr(^{375})Phe</td>
<td>-2.1</td>
</tr>
<tr>
<td>Combinations of</td>
<td></td>
</tr>
<tr>
<td>Glu(^{374})His and Tyr(^{375})Phe</td>
<td>-5.1</td>
</tr>
<tr>
<td>Thr(^{145})Val, Glu(^{374})His, and Tyr(^{375})Phe</td>
<td>-6.2</td>
</tr>
<tr>
<td>Arg(^{111})Glu, Thr(^{145})Val, Glu(^{374})His, and Tyr(^{375})Phe</td>
<td>-7.5</td>
</tr>
</tbody>
</table>

TABLE III

Interatomic distances (Å) for wild-type and mutated DdH, between \(\text{Fe}_p\) and \(\text{Fe}_d\), \(\text{Fe}_p\) and \(\text{CO}_b\), \(\text{Fe}_d\) and \(\text{CO}_b\), and \(\text{Fe}_d\) and H2O, before and after H2O removal \(3 \rightarrow 4\).

<table>
<thead>
<tr>
<th>Before H2O removal</th>
<th>3 (Wild-type)</th>
<th>3 (Arg(^{111})Glu mutant)</th>
<th>3 (Thr(^{145})Val mutant)</th>
<th>3 (Glu(^{374})His mutant)</th>
<th>3 (Tyr(^{375})Phe mutant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe}_p)-(\text{Fe}_d)</td>
<td>2.626</td>
<td>2.659</td>
<td>2.670</td>
<td>2.690</td>
<td>2.666</td>
</tr>
<tr>
<td>(\text{CO}_b)-(\text{Fe}_p)</td>
<td>1.959</td>
<td>1.963</td>
<td>1.968</td>
<td>1.975</td>
<td>1.991</td>
</tr>
<tr>
<td>(\text{CO}_b)-(\text{Fe}_d)</td>
<td>1.907</td>
<td>1.952</td>
<td>1.963</td>
<td>1.945</td>
<td>1.937</td>
</tr>
<tr>
<td>(\text{Fe}_d)-O(H2O)</td>
<td>2.127</td>
<td>2.205</td>
<td>2.181</td>
<td>2.223</td>
<td>2.184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After H2O removal</th>
<th>4 (Wild-type)</th>
<th>4 (Arg(^{111})Glu mutant)</th>
<th>4 (Thr(^{145})Val mutant)</th>
<th>4 (Glu(^{374})His mutant)</th>
<th>4 (Tyr(^{375})Phe mutant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe}_p)-(\text{Fe}_d)</td>
<td>2.587</td>
<td>2.584</td>
<td>2.616</td>
<td>2.589</td>
<td>2.582</td>
</tr>
<tr>
<td>(\text{CO}_b)-(\text{Fe}_p)</td>
<td>1.939</td>
<td>2.006</td>
<td>2.003</td>
<td>2.008</td>
<td>2.005</td>
</tr>
<tr>
<td>(\text{CO}_b)-(\text{Fe}_d)</td>
<td>1.908</td>
<td>1.928</td>
<td>1.935</td>
<td>1.928</td>
<td>1.906</td>
</tr>
</tbody>
</table>

TABLE IV

Interatomic distances between the oxygen (of exogenous H2O; \(\text{Fe}_p\)-OH\(_2\), compound 3) and the juxtaposed atoms of the residue R-groups.

<table>
<thead>
<tr>
<th>Mutated DdH</th>
<th>H2O oxygen</th>
<th>Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg(^{111})Glu mutant</td>
<td>O((\text{H}_2\text{O}))</td>
<td>17.507</td>
</tr>
<tr>
<td></td>
<td>O((\text{H}_2\text{O}))</td>
<td>18.259</td>
</tr>
<tr>
<td>Thr(^{145})Val mutant</td>
<td>C((\gamma))</td>
<td>9.616</td>
</tr>
<tr>
<td></td>
<td>C((\gamma))</td>
<td>9.650</td>
</tr>
<tr>
<td>Ser(^{177})Ala mutant</td>
<td>C((\beta))</td>
<td>6.077</td>
</tr>
<tr>
<td>Glu(^{240})His mutant</td>
<td>N((\delta))</td>
<td>12.395</td>
</tr>
<tr>
<td></td>
<td>N((\epsilon))</td>
<td>11.666</td>
</tr>
<tr>
<td>Glu(^{374})His mutant</td>
<td>N((\delta))</td>
<td>9.631</td>
</tr>
<tr>
<td></td>
<td>N((\epsilon))</td>
<td>9.038</td>
</tr>
<tr>
<td>Tyr(^{375})Phe mutant</td>
<td>C((\iota))</td>
<td>7.724</td>
</tr>
</tbody>
</table>
ity to a closed-shell H-cluster, the resulting σ-bond is mainly due to the contribution of e⁻'s from HOMO and the H⁺.

The [Fe-Fe]-hydrogenase H-cluster 1 of the wild-type enzyme becomes reduced (Scheme 1, 1 → 2), and according to the LUMO depiction (see Fig. 2), the transferred e⁻ appears to be localized in the vicinity of the di-iron atoms, Fe_p-Fe_q. However, according to the NBO partial charge results (see Fig. 3), the iron atoms (of hydrogenase H-cluster 1) do not have affinity for the approaching e⁻, that is, $q_{Fe_p} = -1.291$ a.u. and $q_{Fe_d} = -1.109$ a.u. The fact that the reduction is endergonic (ΔG_{Enzyme} = +42.6 kcal/mol) corroborates the orbital analysis results, which indicate that e⁻ transfer to the cluster should be thermodynamically unfavorable due to existing negative charge on the di-iron atoms.

Regarding [Fe-Fe]-hydrogenase H-cluster 2, (2 → 3), the open shells, SOMO, HOMO, and HOMO have similar orbital distribution over OH⁻ (Fig. 2), and could make a σ-bond with the incoming H⁺; in conjunction with the NBO partial charge of the hydroxyl oxygen, $q_O = -0.991$ a.u., the large H⁺ affinity for cluster 2, $\Delta G = -317.9$ kcal/mol, (2 → 3) comes as no surprise.

In H-cluster 3, (3 → 4), the open shells, HOMO, HOMO, and SOMO, are diffused throughout the cluster except over the Fe-d-OH₂ bond, implying that the e⁻ of the σ-bond, Fe_d-OH₂, reside in a lower energy state, which also explains the negative

FIGURE 2. The frontier molecular orbitals from DFT calculations (B3LYP/6-31+G(d,p)). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
FIGURE 3. The NBO charges obtained from DFT calculations (B3LYP/6-31+G(d,p)). Charges are given in a.u. for the following H-clusters: 1, 2, 2', 3, 3', and 4 starting from the top of the columns. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

NBO partial charges of both Fe₄ (q_Fed = -1.012 a.u.), and the O (q_O = -0.935 a.u.) H₂O. This fact may explain, therefore, the affinity of Fe₄ for H₂O, that is, ΔG = +2.0 kcal/mol.

For [Fe-Fe]-hydrogenase H-cluster 1, (Scheme 2, 1 → 2'), the HOMO is more diffuse over Fe₄, DTMA bidentate ligand, and over the exogenous ligand, that is, OH⁻. In spite of greater e⁻ orbital diffusion over the DTMA ligand, the H⁺ becomes captured by OH⁻, for it is a stronger base than the N of the DTMA bridge, as the NBO charges indicate (q_O = -0.898; q_N = -0.682). Note that these analyses also agree with the calculated hydrogenase H-cluster proton affinity, that is, ΔG = -236.8 kcal/mol.

For H-cluster 2', (Scheme 2, 2' → 3'), HOMO is diffused over the center of Fe₄, Fe₄ subcluster, COO⁻, and over CN⁻ (Fe₄ coordinated) which means that the e⁻ of the σ-bond, Fe₄-OH₂, are situated in a lower energy state, explaining the negative NBO partial charges of both O (of H₂O, q_O = -0.878 a.u.) and Fe₄ (q_Fed = -1.077 a.u.). This, then, accounts for the bond strength of Fe₄ for H₂O, that is, ΔG = +22.9 kcal/mol. In addition, from geometrical considerations, 2' → 3', it can be seen that COO⁻-Fe₄ bond becomes longer, viz., 1.932 → 1.942 Å [vs. 1.907 → 1.908 Å (in H-cluster 3, Scheme 1, 3 → 4)], which partially accounts for the more endergonic H₂O elimination process, coinciding with an increase of one order of magnitude for the Gibbs’ energy difference (for water elimination in 2' → 3' vs. 3 → 4).

In H-cluster 3', LUMO is mostly localized on the potential catalytic binding site. Upon the reduction of the H-cluster, (3' → 4), the LUMO depiction shows that the e⁻ should become localized peripherally to the Fe₄. Then according to the NBO partial charges, that is, q_Fep = -1.317 a.u. and q_Fed = -0.733 a.u., in conjunction with the above presented LUMO depiction, the cluster reduction occurs with a rather high spontaneity, that is, ΔG_{Enzyme} = -38.4 kcal/mol, although the diiron atoms have rather high NBO negative charges, that is, q_Fep = -1.305 a.u. and q_Fed = -1.077 a.u. just as for H-cluster 3', (3' → 4). It ought to be noted that the e⁻ transfer occurs exergonically relative to the endergic step (+42.6 kcal/mol) in Scheme 1, 1 → 2, perhaps because the total charge on each cluster is different, that is, cluster 2' has charge 0 a.u., whereas 1 has a charge of -1 a.u.

Discussion

The comparison between gas phase and wild-type enzyme calculations, presented in this study, unambiguously shows that COB migration is key to enzyme inhibition by O₂. When COB is close to the Fe₄, DdH becomes reactivated, while, on the other hand, when COB is further away from Fe₄, wild-type enzyme H-cluster inactivation is observed. The displacement of COB is controlled by the apoenzyme, and can be further modulated by amino acid substitutions. In the wild-type enzyme, the protein environment impinges COB away from the catalytic site, Fe₄, leading to an exogenously inhibited hydrogenase, and thus hindering H₂O elimination. On the contrary, suitable residue substitutions can reverse the enzyme inhibition by al-

⁹Because NBO charges on iron atoms are both negatively charged, and the reaction proceeds exergonically, it means that the e⁻ is transferred due to a vicinal potential difference, with the e⁻ source most likely being the proximal cubane/cysteine (Fe₃S₄/Cys₄), cluster.
lowing CO₃ to migrate towards Fe₄, concomitant with H₂O removal.

The potential reactivation pathway of Scheme 1 is rendered less promising by the protein environment due to step 1 → 2, which is rather endergonic.

Also, the reactivation pathway of [Fe-Fe]-hydrogenase H-cluster 4 (Scheme 2) cannot be realized because of the high nonsnontaneous step for H₂O removal (2′ → 3′), ΔG_{Enzyme} = +22.9 kcal/mol. As a result, this scheme does not seem to provide room for mutagenic enhancements (residue substitutions) that could improve H₂O removal.

However, in electrochemical settings, a hydrogenase can be adsorbed onto an electrode surface where the endergonic reductive step may be reversed by intramolecular changes (viz., apoenzyme amino acid substitutions) or extramolecular modifications (viz., voltage adjustment, or solution tunning such as pH modification, salt concentration changes, etc.).

The last reaction pathway of Scheme 3 provides the best chance for reactivating DdH because the only reaction step to overcome (H₂O removal) is barely endergonic (ΔG_{Enzyme} = +2.0 kcal/mol), which can be accomplished by suitable amino acid substitutions.

DdH screening by residue deletions pointed out which residues may increase the removal of H₂O from the catalytic site. From residue deletion clues, single and multiple residue substitutions have led to exergonic H₂O removal (e.g., Arg¹¹¹Glu, Thr¹⁴⁵Val, Glu³⁷⁴His, and Tyr³⁷⁵Phe providing ΔG = −7.5 kcal/mol).

Conclusions

The DdH reactivation, according to pathway I, consists of an endergonic e⁻ transfer step (viz., ΔG_{Enzyme} = +42.6 kcal/mol), followed by an exergonic H⁺ transfer step (viz., ΔG_{Enzyme} = −317.9 kcal/mol), and then an endergonic H₂O removal step (viz., ΔG_{Enzyme} = +2.0 kcal/mol).

For reactivation pathway II, the [Fe-Fe]-hydrogenase H-cluster H⁺ transfer occurs first (ΔG_{Enzyme} = −236.8 kcal/mol), followed by H₂O removal (ΔG_{Enzyme} = +22.9 kcal/mol), and then by e⁻ transfer (ΔG_{Enzyme} = −59.4 kcal/mol), with all steps being exergonic, except for the removal of water.

Pathway III, however, proceeds by an exergonic protonation step (viz., ΔG_{Enzyme} = −236.8 kcal/mol), an exergonic e⁻ transfer step (viz., ΔG_{Enzyme} = −38.4 kcal/mol), followed by water removal step (viz., ΔG_{Enzyme} = +2.0 kcal/mol), which is barely endergonic. Thus, the reason DdH intermediates of pathway III, rather than those of pathway I and II, were chosen to be residue mutated was to achieve a pathway that proceeds exergonically throughout. Results have been obtained for deleted, substituted, and combined (substitutions of) residues. Combinations of two, three, and four residues gave improved negative Gibbs’ energies for the removal of water, relative to single substituted residues.

In pathway III, the endergonic step, for H₂O removal, was made to proceed more spontaneously by removing inhibitory residues, one at a time. The promising residues are ΔArg¹¹¹, ΔThr¹⁴⁵, ΔSer¹⁷⁷, ΔGlu²⁴⁰, ΔGlu³⁷⁴, and ΔTyr³⁷⁵, and their respective Gibbs’ energies are −0.7 kcal/mol, −0.2 kcal/mol, −0.5 kcal/mol, +0.8 kcal/mol, −1.6 kcal/mol, and +1.1 kcal/mol.

Individual residues were substituted, viz., Arg¹¹¹Glu, Thr¹⁴⁵Val, Ser¹⁷⁷Ala, Glu²⁴⁰His, Glu³⁷⁴His, and Tyr³⁷⁵Phe. All substitutions resulted in improved spontaneity for H₂O removal, relative to residue deletions, except for ΔSer¹⁷⁷ → Ser¹⁷⁷Ala (ΔG = −0.5 kcal/mol → ΔG = −0.1 kcal/mol), and ΔGlu²⁴⁰ → Glu²⁴⁰His (ΔG = +0.8 kcal/mol → ΔG = +1.1 kcal/mol).

From the successful, single residue substitutions, two, three, and four residue combinations were used to prepare DdH mutants for frequency calculations. The two residue combination, Glu²⁴⁰His and Tyr³⁷⁵Phe, resulted in ΔG = −5.1 kcal/mol; the three residue combination, Thr¹⁴⁵Val, Glu³⁷⁴His, and Tyr³⁷⁵Phe, provided a ΔG = −6.2 kcal/mol, and the four residue combination, Arg¹¹¹Glu, Thr¹⁴⁵Val, Glu³⁷⁴His, and Tyr³⁷⁵Phe, gave a ΔG = −7.5 kcal/mol. Although the H₂O removal thermodynamic trend is not precisely cumulative, it seems to point in that direction.

The wild-type DdH H-cluster bond distance, that is, Fe₄CO₃ν, relative to that of the H-cluster (gas Φ), for H₂O elimination remains almost constant (viz., 1.907 Å → 1.908 Å), whereas the gas Φ² bond distance becomes smaller (viz., 1.945 Å → 1.850 Å), occurring with a concomitant exergonic H₂O removal; this, then, may partly explain why the removal of H₂O is exergonic for gas Φ, as opposed to the enzyme Φ.

Because pathway III has only the H₂O removal step to overcome to proceed exergonically, it was found to provide, to some extent, the sought after reactivation via residue substitutions. The step for H₂O removal from the wild-type hydrogenase
Enzyme shows that the distance between the Fe₄ and CO₅ remains approximately the same. However, the H₂O removal from the mutated enzyme proceeds exergonically, correlating to the movement of the CO₅ towards the Fe₄. The following bond contractions, Fe₄-CO₅ have been obtained, viz., 0.024 Å for Arg¹¹¹Glu, 0.028 Å for Thr¹⁴⁵Val, 0.017 Å for Glu³⁷⁴His, and 0.031 Å for Tyr³⁷⁵Phe, corresponding to exergonic steps for water elimination. Additionally, bond contractions have been obtained between the iron atoms (ca. 0.1 Å), concurrent with H₂O dissociation.

We conclude by postulating that even a single and proper residue (experimental) substitution, like Glu³⁷⁴Glu³⁷⁴His (ΔG = −1.6 kcal/mol → ΔG = −3.1 kcal/mol), can reanimate the [Fe-Fe]-hydrogenase.

We presented here a complete mechanistic picture of the reactivation reaction of the H-cluster and the role of the bridging carbonyl in modulating this reactivation. We compared the gas phase results with enzyme calculations and show how careful residue mutations can have a significant effect on the electronic structure of H-cluster. We have identified for the first time amino acid residues surrounding the active site that can be used to modulate the reactivity of [Fe-Fe]-hydrogenase. Our calculations and the different analyses (i.e., thermodynamic, geometrical, and electronic) emphasize that all these structural data pertaining to different origins (electronic, geometric, thermodynamics) concur in the suggested picture for the reaction mechanism of the reactivation of wild-type [Fe-Fe]-hydrogenase.

ACKNOWLEDGMENTS

Computational resources have been provided by the National Center for Supercomputer Applications (University of Illinois) and the Ohio Supercomputer Center.

References

64. Gues, N.; Peitsch, M. C. Electrophoresis 1997, 18, 2714.