Document Type

Article

Publication Date

2020

Publication Title

Mathematical Biosciences and Engineering

Abstract

Kidney tubules are lined with flow-sensing structures, yet information about the flow itself is not easily obtained. We aim to generate a multiscale biomechanical model for analyzing fluid flow and fluid-structure interactions within an elastic kidney tubule when the driving pressure is pulsatile. We developed a two-dimensional macroscopic mathematical model of a single fluid-filled tubule corresponding to a distal nephron segment and determined both flow dynamics and wall strains over a range of driving frequencies and wall compliances using finite-element analysis. The results presented here demonstrate good agreement with available analytical solutions and form a foundation for future inclusion of elastohydrodynamic coupling by neighboring tubules. Overall, we are interested in exploring the idea of dynamic pathology to better understand the progression of chronic kidney diseases such as Polycystic Kidney Disease.

DOI

10.3934/mbe.2020094

Version

Publisher's PDF

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Volume

17

Issue

2

Share

COinS