3D Matrix Microenvironment for Targeted Differentiation of Embryonic Stem Cells Into Neural and Glial Lineages

Document Type

Article

Publication Date

8-1-2013

Publication Title

Biomaterials

Abstract

The onset of neurodegenerative disorders is characterized by the progressive dysfunction and loss of subpopulations of specialized cells within specific regions of the central nervous system (CNS). Since CNS has a limited ability for self-repair and regeneration under such conditions, clinical transplantation of stem cells has been explored as an alternative. Although embryonic stem cells (ESCs) offer a promising therapeutic platform to treat a variety of neurodegenerative disorders, the niche microenvironment, which could regulate their differentiation into specialized lineages on demand, needs to be optimized for successful clinical transplantation. Here, we evaluated the synergistic role of matrix microenvironment (type, architecture, composition, stiffness) and signaling molecules (type, dosage) on murine ESC differentiation into specific neural and glial lineages. ESCs were cultured as embryoid bodies on either 2D substrates or within 3D scaffolds, in the presence or absence of retinoic acid (RA) and sonic hedgehog (Shh). Results showed that ESCs maintained their stemness even after 4 days in the absence of exogenous signaling molecules, as evidenced by Oct-4 staining. RA at 1μ m dosage was deemed optimal for neural differentiation and neurite outgrowth on collagen-1 coated substrates. Significant neural differentiation with robust neurite outgrowth and branching was evident only on collagen-1 coated 2D substrates and within 3D matrigel scaffolds, in the presence of 1μ m RA. Blocking α6 or β1 integrin subunits on differentiating cells inhibited matrigel-induced effects on neural differentiation and neurite outgrowth. Hydrogel concentration strongly regulated formation of neural and astrocyte lineages in 1μ m RA additive cultures. When RA and Shh were provided, either alone or together, 3D collagen-1 scaffolds enhanced significant motor neuron formation, while 3D matrigel stimulated dopaminergic neuron differentiation. These results suggest a synergistic role of microenvironmental cues for ESC differentiation and maturation, with potential applications in cell transplantation therapy. © 2013 Elsevier Ltd.

Volume

34

Issue

25

DOI

10.1016/j.biomaterials.2013.04.042

Share

COinS