Document Type
Article
Publication Date
8-1-2002
Publication Title
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Abstract
Given a fuzzy logic system, how can we determine the membership functions that will result in the best performance? If we constrain the membership functions to a certain shape (e.g., triangles or trapezoids) then each membership function can be parameterized by a small number of variables and the membership optimization problem can be reduced to a parameter optimization problem. This is the approach that is typically taken, but it results in membership functions that are not (in general) sum normal. That is, the resulting membership function values do not add up to one at each point in the domain. This optimization approach is modified in this paper so that the resulting membership functions are sum normal. Sum normality is desirable not only for its intuitive appeal but also for computational reasons in the real time implementation of fuzzy logic systems. The sum normal constraint is applied in this paper to both gradient descent optimization and Kalman filter optimization of fuzzy membership functions. The methods are illustrated on a fuzzy automotive cruise controller.
Repository Citation
Simon, Daniel J., "Sum Normal Optimization of Fuzzy Membership Functions" (2002). Electrical and Computer Engineering Faculty Publications. 24.
https://engagedscholarship.csuohio.edu/enece_facpub/24
Original Citation
Simon, D. (2002). Sum normal optimization of fuzzy membership functions. International Journal Of Uncertainty, Fuzziness & Knowledge-Based Systems, 10(4), 363-384.
Version
Postprint
Publisher's Statement
Electronic version of an article published as International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems; Aug2002, Vol. 10 Issue 4, 363-384, © 2002 World Scientific Publishing Company, http://www.worldscinet.com/ijufks/ijufks.shtml
Volume
10
Issue
4
Included in
Electrical and Computer Engineering Commons, Systems Engineering and Multidisciplinary Design Optimization Commons