Files

Download

Download Full Text (100 KB)

Faculty Advisors

Streletzky, Kiril A.

Description

Scanning Electron Microscopy (SEM) is widely used to analyze the size, shape, and composition of material systems. However, using this tool for analyzing systems such as particles suspended in solution requires drastic sample alterations, such as precipitation and fixation. Besides altering their environment, this exposes the particles to the harsh conditions within an electron microscope, such as high vacuum and electron beam exposure. To this end, the first goal of this study was to develop methodologies for imaging wet samples using electron microscopy. This is realized by creating a sandwich structure containing the solution of interest between a partially electron transparent window and the aluminum stub. The ability of the developed imaging cells to provide good imaging conditions is demonstrated with a variety of samples including polystyrene spheres, polymeric microgels, and spindleshaped nanoparticles. As some of the systems investigated are temperature sensitive, the second goal of the project was to develop a temperature controlled stage that can be integrated with the SEM. In the future, this heating stage will be used alongside the wet samples to image microgels above and below their critical solution temperature.

Publication Date

2017

College

College of Sciences and Health Professions

Department

Physics

P2: Developing Methodologies for Wet-Sample Electron Microscopy Imaging

Share

COinS