Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch

ORCID ID

0000-0002-0752-6887

Document Type

Article

Publication Date

2016

Publication Title

ACS Nano

Abstract

Nanoscale plasmonic waveguides composed of metallic nanoparticles are capable of guiding electromagnetic energy below the optical diffraction limit. Signal feed-in and readout typically require the utilization of electronic effects or near-field optical techniques, whereas for their fabrication mainly lithographic methods are employed. Here we developed a switchable plasmonic waveguide assembled from gold nanoparticles (AuNPs) on a DNA origami structure that facilitates a simple spectroscopic excitation and readout. The waveguide is specifically excited at one end by a fluorescent dye, and energy transfer is detected at the other end via the fluorescence of a second dye. The transfer distance is beyond the multicolor FRET range and below the Abbé limit. The transmittance of the waveguide can also be reversibly switched by changing the position of a AuNP within the waveguide, which is tethered to the origami platform by a thermoresponsive peptide. High-yield fabrication of the plasmonic waveguides in bulk was achieved using silica particles as solid supports. Our findings enable bulk solution applications for plasmonic waveguides as light-focusing and light-polarizing elements below the diffraction limit.

Comments

We gratefully acknowledge financial support by the DFG through the SFB 1032 Nanoagents (TP A2), the Volkswagen Foundation (grant 86 395-1), and the Cluster of Excellence Nanosystems Munich (NIM).

Original Citation

Vogele K, List J, Pardatscher G, Holland NB, Simmel FC, Pirzer T. Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. ACS Nano. 2016;10:11377-11384.

Volume

10

Issue

12

DOI

10.1021/acsnano.6b06635

Share

COinS