Document Type

Article

Publication Date

10-1999

Publication Title

Metallurgical and Materials Transactions B: Physical Metallurgy and Materials Science

Abstract

The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms has been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances is in qualitative agreement with the closed-form solution of capillarity-driven fluid flow through constant-cross-section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preform's microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore-closing phenomenon.

Original Citation

Sangsuwan, P; Tewari, SN; Gatica, JE; Singh, M; Dickerson, R. (1999). Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 30, 933-944.

Volume

30

Issue

5

DOI

10.1007/s11663-999-0099-1

Version

Publisher's PDF

Share

COinS