Influence of Temperature and Aging Time on HA Synthesized by the Hydrothermal Method

Document Type

Article

Publication Date

5-1-2005

Publication Title

Journal of Materials Science: Materials in Medicine

Abstract

The influence of temperature and aging time on the morphology and mechanical properties of nano-sized hydroxyapatite (HA) synthesized by a hydrothermal method is reported here. The pre-mixed reactants were poured into a stirred autoclave and reacted at temperatures between 25-250°C for 2-10 h. HA powders thus obtained were examined using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and a particle size analyzer. It was found that the aspect ratio of the particles increased with the reaction temperature. The length of the HA particles increased with the reaction temperature below 170°C, but it decreased when the temperature was raised above 170°C. The agglomerates of HA particles were formed during synthesis, and their sizes were strongly dependent on reaction temperatures. As the reaction temperature increased, the agglomerate size decreased (p = 0.008). The density of the discs pressed from these samples reached 85-90% of the theoretical density after sintering at 1200°C for 1 h. No decomposition to other calcium phosphates was detected at this sintering temperature. A correlation existed (p = 0.05) between the agglomerate sizes of HA particles synthesized at various conditions and their sintered densities. With the increase of the agglomerate size, the sintered density of the HA compact decreased. It was found that both the sintered density and flexural strength increased with increasing aging time and reaction temperature. A maximum flexural strength of 78 MPa was observed for the samples synthesized at 170°C for 5 h with the predicted average at these conditions being 65 MPa. These samples attained an average sintered density of 88%. © 2005 Springer Science + Business Media, Inc.

Volume

16

Issue

5

DOI

10.1007/s10856-005-6984-5

Share

COinS