Document Type

Article

Publication Date

5-1995

Publication Title

Neurocomputing

Abstract

The application of neural networks to optimal satellite subset selection for navigation use is discussed. The methods presented in this paper are general enough to be applicable regardless of how many satellite signals are being processed by the receiver. The optimal satellite subset is chosen by minimizing a quantity known as Geometric Dilution of Precision (GDOP), which is given by the trace of the inverse of the measurement matrix. An artificial neural network learns the functional relationships between the entries of a measurement matrix and the eigenvalues of its inverse, and thus generates GDOP without inverting a matrix. Simulation results are given, and the computational benefit of neural network-based satellite selection is discussed.

Original Citation

Dan Simon, Hossny El-Sherief. (1995) Navigation satellite selection using neural networks. Neurocomputing, 7(3), 247-258, doi: 10.1016/0925-2312(94)00024-M.

DOI

10.1016/0925-2312(94)00024-M

Version

Postprint

Volume

7

Issue

3

Share

COinS