Document Type

Article

Publication Date

2-2010

Publication Title

Linear Algebra and its Applications

Abstract

We desire to find a correlation matrix of a given rank that is as close as possible to an input matrix R, subject to the constraint that specified elements in must be zero. Our optimality criterion is the weighted Frobenius norm of the approximation error, and we use a constrained majorization algorithm to solve the problem. Although many correlation matrix approximation approaches have been proposed, this specific problem, with the rank specification and the constraints, has not been studied until now. We discuss solution feasibility, convergence, and computational effort. We also present several examples.

Original Citation

Dan Simon, Jeff Abell. (2010). A majorization algorithm for constrained correlation matrix approximation. Linear Algebra and its Applications, 432(5), 1152-1164, doi: 10.1016/j.laa.2009.10.025.

DOI

10.1016/j.laa.2009.10.025

Version

Postprint

Volume

432

Issue

5

Share

COinS