Document Type

Conference Proceeding

Publication Date

7-2010

Publication Title

Genetic and Evolutionary Computation Conference

Abstract

Cardiomyopathy refers to diseases of the heart muscle that becomes enlarged, thick, or rigid. These changes affect the electrical stability of the myocardial cells, which in turn predisposes the heart to failure or arrhythmias. Cardiomyopathy in its two common forms, dilated and hypertrophic, implies enlargement of the atria; therefore, we investigate its diagnosis through P wave features. In particular, we design a neuro-fuzzy network trained with a new evolutionary algorithm called biogeography-based optimization (BBO). The neuro-fuzzy network recognizes and classifies P wave features for the diagnosis of cardiomyopathy. In addition, we incorporate opposition-based learning in the BBO algorithm for improved training. First we develop a neuro-fuzzy model structure to diagnose cardiomyopathy using P wave features. Next we train the network using BBO and a clinical database of ECG signals. Preliminary results indicate that cardiomyopathy can be reliably diagnosed with these techniques.

Comments

This work was supported by Grant 0826124 from the National Science Foundation.

Original Citation

M. Ovreiu and D. Simon. (2010). Biogeography-Based Optimization of Neuro-Fuzzy System Parameters for Diagnosis of Cardiac Disease. Genetic and Evolutionary Computation Conference, 1235-1242, doi: 10.1145/1830483.1830706.

DOI

10.1145/1830483.1830706

Version

Publisher's PDF

Share

COinS