Document Type
Article
Publication Date
12-1-2002
Publication Title
Fuzzy Sets and Systems
Abstract
The generation of membership functions for fuzzy systems is a challenging problem. We show that for Mamdani-type fuzzy systems with correlation-product inference, centroid defuzzification, and triangular membership functions, optimizing the membership functions can be viewed as an identification problem for a nonlinear dynamic system. This identification problem can be solved with an extended Kalman filter. We describe the algorithm and compare it with gradient descent and with adaptive neuro-fuzzy inference system (ANFIS) based optimization of fuzzy membership functions. The methods discussed in this paper are illustrated on a fuzzy filter for motor winding current estimation, and are compared with Butterworth filtering. We demonstrate that the Kalman filter can be an effective tool for improving the performance of a fuzzy system.
Repository Citation
Simon, Daniel J., "Training Fuzzy Systems with the Extended Kalman Filter" (2002). Electrical and Computer Engineering Faculty Publications. 28.
https://engagedscholarship.csuohio.edu/enece_facpub/28
Original Citation
Simon, D. (December 01, 2002). Training fuzzy systems with the extended Kalman filter. Fuzzy Sets and Systems, 132, 2, 189-99.
Version
Postprint
Publisher's Statement
(c) 1992 Elsevier
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Volume
132
Issue
2