Document Type

Article

Publication Date

5-1-2014

Publication Title

Information Sciences

Abstract

Biogeography-based optimization (BBO) is an evolutionary optimization algorithm that uses migration to share information among candidate solutions. One limitation of BBO is that it changes only one independent variable at a time in each candidate solution. In this paper, a linearized version of BBO, called LBBO, is proposed to reduce rotational variance. The proposed method is combined with periodic re-initialization and local search operators to obtain an algorithm for global optimization in a continuous search space. Experiments have been conducted on 45 benchmarks from the 2005 and 2011 Congress on Evolutionary Computation, and LBBO performance is compared with the results published in those conferences. The results show that LBBO provides competitive performance with state-of-the-art evolutionary algorithms. In particular, LBBO performs particularly well for certain types of multimodal problems, including high-dimensional real-world problems. Also, LBBO is insensitive to whether or not the solution lies on the search domain boundary, in a wide or narrow basin, and within or outside the initialization domain.

DOI

10.1016/j.ins.2013.12.048

Version

Postprint

Volume

267

Share

COinS