Bridging the Domain Gap for Multi-Agent Perception
Document Type
Conference Paper
Publication Date
7-2023
Publication Title
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA
Abstract
Existing multi-agent perception algorithms usually select to share deep neural features extracted from raw sensing data between agents, achieving a trade-off between accuracy and communication bandwidth limit. However, these methods assume all agents have identical neural networks, which might not be practical in the real world. The transmitted features can have a large domain gap when the models differ, leading to a dramatic performance drop in multi-agent perception. In this paper, we propose the first lightweight framework to bridge such domain gaps for multi-agent perception, which can be a plug-in module for most of the existing systems while maintaining confidentiality. Our framework consists of a learnable feature resizer to align features in multiple dimensions and a sparse cross-domain transformer for domain adaption. Extensive experiments on the public multi-agent perception dataset V2XSet have demonstrated that our method can effectively bridge the gap for features from different domains and outperform other baseline methods significantly by at least 8% for point-cloud-based 3D object detection.
Repository Citation
Xu, Runsheng; Li, Jinlong; Dong, Xiaoyu; Yu, Hongkai; and Ma, Jiaqi, "Bridging the Domain Gap for Multi-Agent Perception" (2023). Electrical and Computer Engineering Faculty Publications. 523.
https://engagedscholarship.csuohio.edu/enece_facpub/523
DOI
10.1109/ICRA48891.2023.10160871
Comments
Presented at:
2023 IEEE International Conference on Robotics and Automation (ICRA)
London, ENGLAND
MAY 29-JUN 02, 2023