Document Type
Article
Publication Date
11-17-2017
Publication Title
PLOS One
Abstract
In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved by the method of direct collocation, based on joint torque and joint angle data from ten subjects walking at three speeds. After optimization of controls and design parameters, the simulated system could operate at zero energy cost while still closely emulating able-bodied gait. This was achieved by controlled energy transfer between knee and ankle, and by controlled storage and release of energy throughout the gait cycle. Optimal gear ratios and spring parameters were similar across subjects and walking speeds.
Recommended Citation
Rohani, Farbod; Richter, Hanz; and van den Bogert, Antonie J., "Optimal Design and Control of an Electromechanical Transfemoral Prosthesis with Energy Regeneration" (2017). Mechanical Engineering Faculty Publications. 328.
https://engagedscholarship.csuohio.edu/enme_facpub/328
DOI
10.1371/journal.pone.0188266
Version
Publisher's PDF
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Volume
12
Issue
11
Comments
Financial support was received from the National Science Foundation under grants No. 1344954 and 1544702.