Document Type
Article
Publication Date
12-2012
Publication Title
Journal of Engineering for Gas Turbines and Power
Abstract
This paper presents an experimentally driven model updating approach to address the dynamic inaccuracy of the nominal finite element (FE) rotor model of a machining spindle supported on active magnetic bearings. Modeling error is minimized through the application of a numerical optimization algorithm to adjust appropriately selected FE model parameters. Minimizing the error of both resonance and antiresonance frequencies simultaneously accounts for rotor natural frequencies as well as for their mode shapes. Antiresonance frequencies, which are shown to heavily influence the model’s dynamic properties, are commonly disregarded in structural modeling. Evaluation of the updated rotor model is performed through comparison of transfer functions measured at the cutting tool plane, which are independent of the experimental transfer function data used in model updating procedures. Final model validation is carried out with successful implementation of robust controller, which substantiates the effectiveness of the model updating methodology for model correction.
Recommended Citation
Wroblewski, A.C., Sawicki, J.T. and Pesch, A.H., 2012, "Rotor Model Updating And Validation for an Active Magnetic Bearing Based High-Speed Machining Spindle," Journal of Engineering for Gas Turbines and Power- Transactions of the ASME, 134(12) pp. 122509.
DOI
10.1115/1.4007337
Volume
134
Issue
12