Date of Award

2018

Degree Type

Dissertation

Degree Name

Doctor of Engineering

Department

Washkewicz College of Engineering

First Advisor

Zhao, Wenbing

Subject Headings

Computer Engineering, Computer Science

Abstract

Mobile devices are ubiquitous in today's society, and the usage of these devices for secure tasks like corporate email, banking, and stock trading grows by the day. The first, and often only, defense against attackers who get physical access to the device is the lock screen: the authentication task required to gain access to the device. To date mobile devices have languished under insecure authentication scheme offerings like PINs, Pattern Unlock, and biometrics-- or slow offerings like alphanumeric passwords. This work addresses the design and creation of five proof-of-concept authentication schemes that seek to increase the security of mobile authentication without compromising memorability or usability. These proof-of-concept schemes demonstrate the concept of Multi-Dimensional Authentication, a method of using data from unrelated dimensions of information, and the concept of Analog Authentication, a method utilizing continuous rather than discrete information. Security analysis will show that these schemes can be designed to exceed the security strength of alphanumeric passwords, resist shoulder-surfing in all but the worst-case scenarios, and offer significantly fewer hotspots than existing approaches. Usability analysis, including data collected from user studies in each of the five schemes, will show promising results for entry times, in some cases on-par with existing PIN or Pattern Unlock approaches, and comparable qualitative ratings with existing approaches. Memorability results will demonstrate that the psychological advantages utilized by these schemes can lead to real-world improvements in recall, in some instances leading to near-perfect recall after two weeks, significantly exceeding the recall rates of similarly secure alphanumeric passwords.

COinS