Date of Award

2012

Degree Type

Dissertation

Department

Chemical and Biomedical Engineering

First Advisor

McLain, Robert

Subject Headings

Lumbar vertebrae, Spine, Biomechanics -- Testing, Finite element method

Abstract

Two separate in vitro biomechanical studies were conducted on human cadaveric spines (Lumbar) to evaluate the stability following the implantation of two different spinal fixation devices interspinous fixation device (ISD) and Hybrid dynamic stabilizers. ISD was evaluated as a stand-alone and in combination with unilateral pedicle rod system. The results were compared against the gold standard, spinal fusion (bilateral pedicle rod system). The second study involving the hybrid dynamic system, evaluated the effect on adjacent levels using a hybrid testing protocol. A robotic spine testing system was used to conduct the biomechanical tests. This system has the ability to apply continuous unconstrained pure moments while dynamically optimizing the motion path to minimize off-axis loads during testing. Thus enabling precise control over the loading and boundary conditions of the test. This ensures test reliability and reproducibility. We found that in flexion-extension, the ISD can provide lumbar stability comparable to spinal fusion. However, it provides minimal rigidity in lateral bending and axial rotation when used as a stand-alone. The ISD with a unilateral pedicle rod system when compared to the spinal fusion construct were shown to provide similar levels of stability in all directions, though the spinal fusion construct showed a trend toward improved stiffness overall. The results for the dynamic stabilization system showed stability characteristics similar to a solid all metal construct. Its addition to the supra adjacent level (L3- L4) to the fusion (L4- L5) indeed protected the adjacent level from excessive motion. However, it essentially transformed a 1 level into a 2 level lumbar fusion with exponential transfer of motion to the fewer remaining discs (excessive adjacent level motion). The computational aspect of the study involved the development of a spine model (single segment). The kinematic data from these biomechanical studies (ISD study) was then used to validate a finite element model o

COinS